1
|
Deem JD, Phan BA, Ogimoto K, Cheng A, Bryan CL, Scarlett JM, Schwartz MW, Morton GJ. Warm Responsive Neurons in the Hypothalamic Preoptic Area are Potent Regulators of Glucose Homeostasis in Male Mice. Endocrinology 2023; 164:bqad074. [PMID: 37279930 PMCID: PMC10653198 DOI: 10.1210/endocr/bqad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
When mammals are exposed to a warm environment, overheating is prevented by activation of "warm-responsive" neurons (WRNs) in the hypothalamic preoptic area (POA) that reduce thermogenesis while promoting heat dissipation. Heat exposure also impairs glucose tolerance, but whether this also results from activation of POA WRNs is unknown. To address this question, we sought in the current work to determine if glucose intolerance induced by heat exposure can be attributed to activation of a specific subset of WRNs that express pituitary adenylate cyclase-activating peptide (ie, POAPacap neurons). We report that when mice are exposed to an ambient temperature sufficiently warm to activate POAPacap neurons, the expected reduction of energy expenditure is associated with glucose intolerance, and that these responses are recapitulated by chemogenetic POAPacap neuron activation. Because heat-induced glucose intolerance was not blocked by chemogenetic inhibition of POAPacap neurons, we conclude that POAPacap neuron activation is sufficient, but not required, to explain the impairment of glucose tolerance elicited by heat exposure.
Collapse
Affiliation(s)
- Jennifer D Deem
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| | - Bao Anh Phan
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| | - Kayoko Ogimoto
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| | - Alice Cheng
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| | - Caeley L Bryan
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| | - Jarrad M Scarlett
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA 98145, USA
| | - Michael W Schwartz
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| | - Gregory J Morton
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
2
|
Physiological and molecular mechanisms of cold-induced improvements in glucose homeostasis in humans beyond brown adipose tissue. Int J Obes (Lond) 2023; 47:338-347. [PMID: 36774412 DOI: 10.1038/s41366-023-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023]
Abstract
Exposure to low ambient temperatures has previously been demonstrated to markedly improve glucose homeostasis in both rodents and humans. Although the brown adipose tissue is key in mediating these beneficial effects in rodents, its contribution appears more limited in humans. Hence, the exact tissues and underlying mechanisms that mediate cold-induced improvements in glucose homeostasis in humans remain to be fully established. In this review, we evaluated the response of the main organs involved in glucose metabolism (i.e. pancreas, liver, (white) adipose tissue, and skeletal muscle) to cold exposure and discuss their potential contribution to cold-induced improvements in glucose homeostasis in humans. We here show that cold exposure has widespread effects on metabolic organs involved in glucose regulation. Nevertheless, cold-induced improvements in glucose homeostasis appear primarily mediated via adaptations within the skeletal muscle and (presumably) white adipose tissue. Since the underlying mechanisms remain elusive, future studies should be aimed at pinpointing the exact physiological and molecular mechanisms involved in humans. Nonetheless, cold exposure holds great promise as a novel, additive lifestyle approach to improve glucose homeostasis in insulin resistant individuals. Parts of this graphical abstract were created using (modified) images from Servier Medical Art, licensed under the Creative Commons Attribution 3.0 Unported License. TG = thermogenesis, TAG = triacylglycerol, FFA = free fatty acid, SLN = sarcolipin, UCP3 = uncoupling protein 3, β2-AR = beta-2 adrenergic receptor, SNS = sympathetic nervous system.
Collapse
|
3
|
Maurer SF, Fromme T, Mocek S, Zimmermann A, Klingenspor M. Uncoupling protein 1 and the capacity for nonshivering thermogenesis are components of the glucose homeostatic system. Am J Physiol Endocrinol Metab 2020; 318:E198-E215. [PMID: 31714796 DOI: 10.1152/ajpendo.00121.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Uncoupling protein 1 (Ucp1) provides nonshivering thermogenesis (NST) fueled by the dissipation of energy from macronutrients in brown and brite adipocytes. The availability of thermogenic fuels is facilitated by the uptake of extracellular glucose. This conjunction renders thermogenic adipocytes in brown and white adipose tissue (WAT) a potential target against obesity and glucose intolerance. We employed wild-type (WT) and Ucp1-ablated mice to elucidate this relationship. In three experiments of similar setup, Ucp1-ablated mice fed a high-fat diet (HFD) had either reduced or similar body mass gain, food intake, and metabolic efficiency compared with WT mice, challenging the hypothesized role of this protein in the development of diet-induced obesity. Despite the absence of increased body mass, oral glucose tolerance was robustly impaired in Ucp1-ablated mice in response to HFD. Postprandial glucose uptake was attenuated in brown adipose tissue but enhanced in subcutaneous WAT of Ucp1-ablated mice. These differences were explainable by expression of the insulin-responsive member 4 of the facilitated glucose transporter family and fully in line with the capacity for NST in these very tissues. Thus, the postprandial glucose uptake of adipose tissues serves as a surrogate measure for Ucp1-dependent and independent capacity for NST. Collectively, our findings corroborate Ucp1 as a modulator of adipose tissue glucose uptake and systemic glucose homeostasis but challenge its hypothesized causal effect on the development of obesity.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Sabine Mocek
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, Germany
| | - Anika Zimmermann
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Muta K, Matsen ME, Acharya NK, Stefanovski D, Bergman RN, Schwartz MW, Morton GJ. Glucoregulatory responses to hypothalamic preoptic area cooling. Brain Res 2019; 1710:136-145. [PMID: 30610874 DOI: 10.1016/j.brainres.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 11/26/2022]
Abstract
Normal glucose homeostasis depends on the capacity of pancreatic β-cells to adjust insulin secretion in response to a change of tissue insulin sensitivity. In cold environments, for example, the dramatic increase of insulin sensitivity required to ensure a sufficient supply of glucose to thermogenic tissues is offset by a proportionate reduction of insulin secretion, such that overall glucose tolerance is preserved. That these cold-induced changes of insulin secretion and insulin sensitivity are dependent on sympathetic nervous system (SNS) outflow suggests a key role for thermoregulatory neurons in the hypothalamic preoptic area (POA) in this metabolic response. As these POA neurons are themselves sensitive to changes in local hypothalamic temperature, we hypothesized that direct cooling of the POA would elicit the same glucoregulatory responses that we observed during cold exposure. To test this hypothesis, we used a thermode to cool the POA area, and found that as predicted, short-term (8-h) intense POA cooling reduced glucose-stimulated insulin secretion (GSIS), yet glucose tolerance remained unchanged due to an increase of insulin sensitivity. Longer-term (24-h), more moderate POA cooling, however, failed to inhibit GSIS and improved glucose tolerance, an effect associated with hyperthermia and activation of the hypothalamic-pituitary-adrenal axis, indicative of a stress response. Taken together, these findings suggest that POA cooling is sufficient to recapitulate key glucoregulatory responses to cold exposure.
Collapse
Affiliation(s)
- Kenjiro Muta
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Miles E Matsen
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nikhil K Acharya
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Darko Stefanovski
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gregory J Morton
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Deem JD, Muta K, Scarlett JM, Morton GJ, Schwartz MW. How Should We Think About the Role of the Brain in Glucose Homeostasis and Diabetes? Diabetes 2017; 66:1758-1765. [PMID: 28603139 PMCID: PMC5482090 DOI: 10.2337/dbi16-0067] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jennifer D Deem
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Kenjiro Muta
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Jarrad M Scarlett
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Gregory J Morton
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Michael W Schwartz
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
6
|
Morton GJ, Muta K, Kaiyala KJ, Rojas JM, Scarlett JM, Matsen ME, Nelson JT, Acharya NK, Piccinini F, Stefanovski D, Bergman RN, Taborsky GJ, Kahn SE, Schwartz MW. Evidence That the Sympathetic Nervous System Elicits Rapid, Coordinated, and Reciprocal Adjustments of Insulin Secretion and Insulin Sensitivity During Cold Exposure. Diabetes 2017; 66:823-834. [PMID: 28115396 PMCID: PMC5360298 DOI: 10.2337/db16-1351] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Dynamic adjustment of insulin secretion to compensate for changes of insulin sensitivity that result from alteration of nutritional or metabolic status is a fundamental aspect of glucose homeostasis. To investigate the role of the brain in this coupling process, we used cold exposure as an experimental paradigm because the sympathetic nervous system (SNS) helps to coordinate the major shifts of tissue glucose utilization needed to ensure that increased thermogenic needs are met. We found that glucose-induced insulin secretion declined by 50% in rats housed at 5°C for 28 h, and yet, glucose tolerance did not change, owing to a doubling of insulin sensitivity. These potent effects on insulin secretion and sensitivity were fully reversed by returning animals to room temperature (22°C) for 4 h or by intravenous infusion of the α-adrenergic receptor antagonist phentolamine for only 30 min. By comparison, insulin clearance was not affected by cold exposure or phentolamine infusion. These findings offer direct evidence of a key role for the brain, acting via the SNS, in the rapid, highly coordinated, and reciprocal changes of insulin secretion and insulin sensitivity that preserve glucose homeostasis in the setting of cold exposure.
Collapse
Affiliation(s)
- Gregory J Morton
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Kenjiro Muta
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Karl J Kaiyala
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA
| | - Jennifer M Rojas
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Jarrad M Scarlett
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA
| | - Miles E Matsen
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Jarrell T Nelson
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Nikhil K Acharya
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| | - Francesca Piccinini
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Darko Stefanovski
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Gerald J Taborsky
- Veterans Affairs Puget Sound Health Care System, Department of Veterans Affairs Medical Center, Seattle, WA
| | - Steven E Kahn
- Veterans Affairs Puget Sound Health Care System, Department of Veterans Affairs Medical Center, Seattle, WA
| | - Michael W Schwartz
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
7
|
Saxagliptin Improves Glucose Tolerance but not Survival in a Murine Model of Dilated Cardiomyopathy. Cardiovasc Endocrinol 2012; 1:74-82. [PMID: 23795310 DOI: 10.1097/xce.0b013e32835bfb24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) agonists improve myocardial function and insulin sensitivity in the setting of chronic heart failure. Endogenously produced GLP-1 peptide (7-36) is rapidly cleaved by dipeptidyl peptidase 4 (DPP4) to the 9-36 peptide, which lacks anti-hyperglycemic activity. To elucidate the effect of increased endogenous GLP-1 during heart failure progression, the DPP4 inhibitor saxagliptin or vehicle was administered by daily oral gavage to female TG9 mice, a transgenic model of dilated cardiomyopathy, starting at day of life 42, just prior to the development of detectable contractile dysfunction. Saxagliptin treatment inhibited DPP4 activity >90% and increased GLP-1 levels 4-fold following a 2 gm/kg glucose load but did not affect fasting GLP-1 levels. There was no difference in food intake or body weight between groups. At 56 days of age, oral glucose tolerance was improved in saxagliptin-versus vehicle-treated animals (AUC0-120 1340 ± 46 and 1501 ± 43 min·mmol/L, respectively, p<0.015). In contrast to the effect of a GLP-1 agonist in TG9 mice, saxagliptin had no effect on survival (80.7 ± 4.3 days) compared to vehicle-treated mice (79.6 ± 3.6 days, p = 0.46). Taken together, these data indicate that improvement in glucose tolerance is not sufficient to improve survival. Future efforts to confirm these findings in additional models of heart failure are warranted.
Collapse
|
8
|
Bartelt A, Merkel M, Heeren J. A new, powerful player in lipoprotein metabolism: brown adipose tissue. J Mol Med (Berl) 2012; 90:887-93. [PMID: 22231746 DOI: 10.1007/s00109-012-0858-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/14/2011] [Accepted: 12/28/2011] [Indexed: 12/18/2022]
Abstract
Important causes for modern epidemics such as obesity, diabetes, and cardiovascular disease are over- and malnutrition. Dietary as well as endogenous lipids are transported through the bloodstream in lipoproteins, and disturbances in lipoprotein metabolism are associated with atherosclerosis, heart disease, and diabetes. Recent findings reveal biological principles-how lipoproteins, in particular triglyceride-rich lipoproteins, are metabolized and what factors regulate their processing. The fate of triglycerides delivered by lipoproteins is quite simple: either they can be stored or they can be utilized for combustion or biosynthetic pathways. In the healthy state, fatty acids derived from triglycerides can be burned in the heart, muscle, and other organs for actual work load, or they can be stored in white adipose tissue. The combination of storage and combustion is realized in brown adipose tissue (BAT), a peripheral organ that was long thought to be only of relevance in small mammals: Recent data however prove that BAT plays an important role in human adults. Here, we will review recent insights on how BAT controls triglyceride clearance and the possible implications for the treatment of chronic diseases caused by lipid mishandling.
Collapse
Affiliation(s)
- Alexander Bartelt
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | | | |
Collapse
|
9
|
Vyas AK, Yang KC, Woo D, Tzekov A, Kovacs A, Jay PY, Hruz PW. Exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy. PLoS One 2011; 6:e17178. [PMID: 21359201 PMCID: PMC3040766 DOI: 10.1371/journal.pone.0017178] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/24/2011] [Indexed: 12/21/2022] Open
Abstract
Background There is growing awareness of secondary insulin resistance and alterations in myocardial glucose utilization in congestive heart failure. Whether therapies that directly target these changes would be beneficial is unclear. We previously demonstrated that acute blockade of the insulin responsive facilitative glucose transporter GLUT4 precipitates acute decompensated heart failure in mice with advanced dilated cardiomyopathy. Our current objective was to determine whether pharmacologic enhancement of insulin sensitivity and myocardial glucose uptake preserves cardiac function and survival in the setting of primary heart failure. Methodology/Principal Findings The GLP-1 agonist exenatide was administered twice daily to a murine model of dilated cardiomyopathy (TG9) starting at 56 days of life. TG9 mice develop congestive heart failure and secondary insulin resistance in a highly predictable manner with death by 12 weeks of age. Glucose homeostasis was assessed by measuring glucose tolerance at 8 and 10 weeks and tissue 2-deoxyglucose uptake at 75 days. Exenatide treatment improved glucose tolerance, myocardial GLUT4 expression and 2-deoxyglucose uptake, cardiac contractility, and survival over control vehicle-treated TG9 mice. Phosphorylation of AMP kinase and AKT was also increased in exenatide-treated animals. Total myocardial GLUT1 levels were not different between groups. Exenatide also abrogated the detrimental effect of the GLUT4 antagonist ritonavir on survival in TG9 mice. Conclusion/Significance In heart failure secondary insulin resistance is maladaptive and myocardial glucose uptake is suboptimal. An incretin-based therapy, which addresses these changes, appears beneficial.
Collapse
Affiliation(s)
- Arpita Kalla Vyas
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kai-Chien Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dennis Woo
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Anatoly Tzekov
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Attila Kovacs
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Patrick Y. Jay
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul W. Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
10
|
Hruz PW, Yan Q, Struthers H, Jay PY. HIV protease inhibitors that block GLUT4 precipitate acute, decompensated heart failure in a mouse model of dilated cardiomyopathy. FASEB J 2008; 22:2161-7. [PMID: 18256305 DOI: 10.1096/fj.07-102269] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The clinical use of HIV protease inhibitors is associated with insulin resistance and other metabolic changes that increase long-term cardiovascular risk. Since the failing heart has increased reliance on glucose, the influence of drug exposure on glucose homeostasis, myocardial glucose uptake, cardiac function, and survival was determined in TG9 mice, an established transgenic model of dilated cardiomyopathy generated by cardiac-specific overexpression of Cre-recombinase, as these animals progressed to overt heart failure. Beginning on day of life 75, TG9 mice and nontransgenic littermate controls were given a daily 10 mg/kg intraperitoneal injection of HIV protease inhibitors (ritonavir, lopinavir/ritonavir 4:1, atazanavir, atazanavir/ritonavir 4:1) or vehicle. Glucose tolerance testing, measurement of in vivo myocardial 2-deoxyglucose uptake, and echocardiography were performed before and 30 min following drug administration. The progression of dilated cardiomyopathy in TG9 animals was accompanied by impaired glucose tolerance, which was acutely exacerbated by exposure to ritonavir. Ritonavir and lopinavir precipitated acute, decompensated heart failure and death from pulmonary edema in TG9 mice. However, atazanavir, which does not inhibit glucose transport, had no effect. These studies demonstrate that, in the presence of dilated cardiomyopathy, HIV protease inhibitors that impair glucose transport induce acute, decompensated heart failure. The potential for HIV protease inhibitors to contribute to or exacerbate cardiomyopathy in human patients warrants further investigation.
Collapse
Affiliation(s)
- Paul W Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | |
Collapse
|
11
|
TOYOMIZU M, AKAZAWA T, FUJII H, NAKAI N, SHIMOMURA Y, AKIBA Y. Stimulatory effect of cold acclimation on skeletal muscle branched-chain α-keto acid dehydrogenase in rats. Anim Sci J 2002. [DOI: 10.1046/j.1344-3941.2002.00050.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Terblanche SE, Masondo TC, Nel W. Effects of chronic cold exposure on the activities of cytochrome c oxidase, glutathione peroxidase and glutathione reductase in rat tissues (Rattus norvegicus). Comp Biochem Physiol B Biochem Mol Biol 2000; 127:319-24. [PMID: 11126762 DOI: 10.1016/s0305-0491(00)00269-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of cold acclimation on the activity levels of cytochrome c oxidase, glutathione peroxidase and glutathione reductase in various tissues of the rat (Rattus norvegicus) were investigated. One group was individually housed at 4 +/- 1 degrees C and the other at 24 +/- 1 degrees C for 6 months. Chronic cold acclimation resulted in significantly (P < 0.05) increased cytochrome c oxidase activity levels in liver, kidney, heart, interscapular brown adipose tissue and gastrocnemius muscle. The activity of glutathione peroxidase was significantly (P < 0.05) elevated in liver, interscapular brown adipose tissue, lung and muscle, whereas glutathione reductase was only significantly (P < 0.05) elevated in interscapular brown adipose tissue as a result of chronic cold exposure. The results obtained are possibly indicative of a positive compensatory response against the increased production of oxygen derived radicals as a result of chronic cold exposure.
Collapse
Affiliation(s)
- S E Terblanche
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa.
| | | | | |
Collapse
|
13
|
Thomas-Delloye V, Marmonier F, Duchamp C, Pichon-Georges B, Lachuer J, Barré H, Crouzoulon G. Biochemical and functional evidences for a GLUT-4 homologous protein in avian skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1733-40. [PMID: 10600921 DOI: 10.1152/ajpregu.1999.277.6.r1733] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The characteristics and modulation of glucose transport were investigated in skeletal muscles of 5-wk-old Muscovy ducklings (Cairina moschata). Glucose uptake by sarcolemmal vesicles isolated from gastrocnemius muscle followed typical Michaelis-Menten kinetics with a K(m) value (17 mM) similar to that described in equivalent mammalian preparations. Western blot analysis of duckling sarcolemma using antibodies directed against rat GLUT-4 transporter revealed an immunoreactive protein of similar molecular mass (45 kDa) to that present in rats. When ducklings were killed in the postabsorptive state, GLUT-4 homologous protein was located predominantly (80%) in intracellular membranes. Insulin stimulation of a perfused leg muscle preparation in vitro led to the translocation of GLUT-4 homologous proteins from intracellular pools to the sarcolemma, with a subsequent increase in glucose uptake by sarcolemmal vesicles and perfused muscles. Glucose transport was positively controlled by the metabolic needs of skeletal muscle as reflected by the increased glucose uptake of sarcolemmal vesicles isolated from cold-acclimated ducklings. Present results, therefore, demonstrate, for the first time in an avian species, the existence in skeletal muscle of a glucose transporter showing molecular and functional homologies with the mammalian GLUT-4 transporter.
Collapse
Affiliation(s)
- V Thomas-Delloye
- Laboratoire de Physiologie des Régulations Energétiques, Cellulaires et Moléculaires, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1, Faculté des Sciences, F-69622 Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Agosto E, Cimmino M, Minaire Y, Géloën A. Short-term cold-exposure does not improve insulin sensitivity in rats. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 117:231-8. [PMID: 9172381 DOI: 10.1016/s0300-9629(96)00254-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Effects of noradrenergic activation induced by short-term cold-exposure (7 days at 4 degrees C) on whole-body glucose utilization and tissue glucose uptake were investigated in rats. Measurements were realized on anesthetized normothermic animals at four different levels of insulinemia, within physiological range, allowing calculation of insulin sensitivity and responsiveness. Whole-body glucose utilization increased as a logarithmic function of insulinemias, and was always higher in cold-exposed than in control rats. However, neither insulin sensitivity nor responsiveness, literally, appeared different between the two groups. In the diaphragm, the only studied working muscle, glucose uptake was largely higher than in restin muscles. At basal insulin concentration, glucose uptake was higher in cold-exposed than in control rats and increased in the two groups with insulinemia. Among resting muscles, glucose uptake was increased by previous cold exposure in gastrocnemius, soleus, and tibialis. However, insulin sensitivity and responsiveness were found augmented only in the two former. In interscapular brown adipose tissue, glucose uptake was largely higher in cold-exposed than in control rats, but no difference could be evidenced in insulin sensitivity or responsiveness. In white adipose tissues, glucose uptake increased with insulinemia. Insulin responsiveness and sensitivity were higher only in the retroperitoneal depot.
Collapse
Affiliation(s)
- E Agosto
- UMR 5578-CNRS, Laboratoire de Physiologie des Régulations Energétiques, Cellulaires et Moléculaires, Lyon, France
| | | | | | | |
Collapse
|
15
|
|
16
|
Green A, Carroll RM, Dobias SB. Desensitization of beta-adrenergic receptors in adipocytes causes increased insulin sensitivity of glucose transport. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E271-6. [PMID: 8770020 DOI: 10.1152/ajpendo.1996.271.2.e271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To determine the effect of desensitization of adipocyte beta-adrenergic receptors on insulin sensitivity, rats were continuously infused with isoproterenol (50 or 100 micrograms.kg-1.h-1) for 3 days by osmotic minipumps. Epididymal adipocytes were isolated. The cells from treated animals were desensitized to isoproterenol, as determined by response of lipolysis (glycerol release). Binding of [125I]iodocyanopindolol was decreased by approximately 80% in adipocyte plasma membranes isolated from treated rats, indicating that beta-adrenergic receptors were downregulated. Cellular concentrations of Gn alpha and Gi alpha were not altered. Insulin sensitivity was determined by measuring the effect of insulin on glucose transport (2-deoxy-[3H]glucose uptake). Cells from the isoproterenol-infused rats were markedly more sensitive to insulin than those from control rats. This was evidenced by an approximately 50% increase in maximal glucose transport rate in cells from the high-dose isoproterenol-treated rats and by an approximately 40% decrease in the half-maximal effective concentration of insulin in both groups. 125I-labeled insulin binding to adipocytes was not altered by the isoproterenol infusions, indicating that desensitization of beta-adrenergic receptors results in tighter coupling between insulin receptors and stimulation of glucose transport.
Collapse
Affiliation(s)
- A Green
- Department of Internal Medicine, University of Texas Medical Branch, Galveston 77555, USA
| | | | | |
Collapse
|
17
|
Blasco J, Fern�ndez-Borr�s J, Marimon I, Requena A. Plasma glucose kinetics and tissue uptake in brown trout in vivo: effect of an intravascular glucose load. J Comp Physiol B 1996. [DOI: 10.1007/bf00387514] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Kainulainen H, Schürmann A, Vilja P, Joost HG. In-vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT3 in brain tissue from streptozotocin-diabetic rats. ACTA PHYSIOLOGICA SCANDINAVICA 1993; 149:221-5. [PMID: 8266811 DOI: 10.1111/j.1748-1716.1993.tb09615.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of streptozotocin-induced diabetes (13 weeks) on the in-vivo glucose uptake and on the protein levels of glucose transporters in rat brain were studied and compared with those in cardiac muscle. Diabetes reduced the uptake of 2-[3H]deoxyglucose into lobus frontalis by 70%. However, uptake rates corrected for the 4-fold increase in serum glucose (glucose metabolic index, GMI) were essentially unaltered. The levels of glucose transporter proteins GLUT1 and GLUT3 in crude membranes from brain as assessed by immunoblotting were unaffected by diabetes, whereas GMI and levels of glucose transporters GLUT1 and GLUT4 in heart were reduced by 80 and 65%, respectively. Thus, glucose uptake and levels of glucose transporters in brain, unlike that in insulin sensitive tissues, are normal in long-term hypo-insulinaemia.
Collapse
Affiliation(s)
- H Kainulainen
- Institute of Pharmacology and Toxicology, RWTH Aachen, Germany
| | | | | | | |
Collapse
|
19
|
Brichard SM, Ongemba LN, Henquin JC. Oral vanadate decreases muscle insulin resistance in obese fa/fa rats. Diabetologia 1992; 35:522-7. [PMID: 1612224 DOI: 10.1007/bf00400479] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oral vanadate has been reported as improving glucose homeostasis in genetically obese and hyperinsulinaemic fa/fa rats. It has also been shown that these beneficial effects could not be ascribed to the decrease in body weight induced by the treatment, or to changes in insulin counterregulatory hormones. The present study examined therefore whether the effects of vanadate could be attributed to a direct correction of the severe insulin resistance of these animals. fa/fa Rats chronically treated with vanadate were compared to both control rats fed ad libitum and pair-fed rats. The three groups were studied in the basal state and during euglycaemic hyperinsulinaemic clamps. Slightly lower plasma glucose levels were always maintained in vanadate-treated rats in conjunction with markedly lower plasma insulin levels either during basal or clamp studies. During the clamp, the glucose infusion rate required to maintain glycaemia at basal values was consistently higher in vanadate-treated rats than in the other two groups. Experiments using [6-3H]glucose as tracer showed that this was not due to a greater inhibition of hepatic glucose production by insulin, but corresponded to a larger increment in peripheral glucose disposal. The stimulation of overall glucose metabolic clearance induced by insulin was 129% and 41% higher in vanadate-treated than in control and pair-fed rats respectively. Similar experiments with 2-deoxy-[1-3H]glucose as tracer showed that the larger increase in insulin-mediated glucose clearance occurred in various types of muscle. The action of insulin was particularly impressive on the cardiac muscle of vanadate-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S M Brichard
- Unité de Diabétologie et Nutrition, University of Louvain, Faculty of Medicine, Brussels, Belgium
| | | | | |
Collapse
|
20
|
Marette A, Bukowiecki LJ. Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport. Biochem J 1991; 277 ( Pt 1):119-24. [PMID: 1713031 PMCID: PMC1151199 DOI: 10.1042/bj2770119] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms by which noradrenaline, lipolytic agents and long-chain fatty acids stimulate glucose transport were investigated in rat brown adipocytes. Glucose transport was evaluated with tracer D-[U-14C]glucose and cell respiration was measured polarographically. Noradrenaline increased basal oxygen consumption (8-10-fold) and glucose transport (4-5-fold) in a dose-dependent manner, with a maximal stimulation at 100 nM. The stimulatory effects of noradrenaline on respiration and glucose transport were selectively mimicked by dibutyryl cyclic AMP (DBcAMP), 3-isobutyl-1-methylxanthine, cholera toxin and physiological concentrations of palmitic acid. Cytochalasin B completely blocked the effects of these agents on glucose transport. The beta-adrenergic antagonist propranolol inhibited noradrenaline-induced glucose transport, but did not affect the action of DBcAMP, palmitic acid or cholera toxin on this process. The specific inhibitor of mitochondrial carnitine palmitoyltransferase, 2-tetradecylglycidic acid (McN 3802) (50 microM), inhibited the stimulatory effects of noradrenaline (100 nM) and palmitic acid (0.5 mM) on both glucose transport and mitochondrial respiration. Significantly, McN 3802 failed to affect insulin (1 nM) action under identical experimental conditions. These results demonstrate that (a) the stimulatory effects of noradrenaline on brown-adipocyte respiration and glucose transport can be dissociated from those induced by insulin, and (b) noradrenaline increases glucose transport indirectly, by activating adenylate cyclase via beta-adrenergic pathways and by stimulating mitochondrial oxidation of fatty acids.
Collapse
Affiliation(s)
- A Marette
- Department of Physiology, Laval University, Medical School, Québec, Canada
| | | |
Collapse
|
21
|
Zelewski M, Swierczyński J. Comparative studies on lipogenic enzyme activities in brown adipose tissue and liver of the rat during starvation-refeeding transition and cold exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1990; 97:59-63. [PMID: 2253482 DOI: 10.1016/0305-0491(90)90178-v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. The effect of starvation-refeeding transition and cold exposure on the activity of lipogenic enzymes in brown adipose tissue (BAT) and liver from rats was compared. 2. Starvation caused a decrease of lipogenic enzyme activities in BAT and liver. 3. Refeeding of the animals with a high carbohydrate diet caused an increase of lipogenic enzymes in these tissues. 4. Cold exposure (4 degrees C for 30 days) led to the increase of BAT enzyme activities to the values observed in rats fed a high carbohydrate diet. 5. Under the same conditions the activity of hepatic lipogenic enzymes also increased but never reached the values observed in the liver of rats fed with a high carbohydrate diet. 6. Therefore BAT and liver lipogenic enzymes showed, in general, a similar pattern of variation under identical nutritional conditions, but substantial differences between these two organs occurred as far as the response to cold exposure was concerned. 7. The experiments also revealed that in the control animals BAT displayed a higher lipogenic potential than the liver.
Collapse
Affiliation(s)
- M Zelewski
- Department of Biochemistry, Academic Medical School, Gdańsk, Poland
| | | |
Collapse
|
22
|
Leighton B, Dimitriadis GD, Parry-Billings M, Lozeman FJ, Newsholme EA. Effects of aging on the responsiveness and sensitivity of glucose metabolism to insulin in the incubated soleus muscle isolated from Sprague-Dawley and Wistar rats. Biochem J 1989; 261:383-7. [PMID: 2673220 PMCID: PMC1138837 DOI: 10.1042/bj2610383] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. The effects of aging on the sensitivity and responsiveness of glucose transport, lactate formation and glycogen synthesis to insulin were studied in the incubated stripped soleus muscle isolated from aging Sprague-Dawley and Wistar rats. 2. As Sprague-Dawley rats aged from 5 to 13 weeks, there were marked increases in the concentrations of insulin that were required for half-maximal stimulation (i.e. EC50 value, which is a measure of sensitivity) of glucose transport, lactate formation and glycogen synthesis. 3. In marked contrast, there were no alterations in sensitivities of any of these processes to insulin in soleus muscle prepared from Wistar rats aged between 6 and 12 weeks. 4. However, in soleus muscles from 85-week-old Wistar rats the rates of glycogen synthesis in response to basal, sub-maximal and maximal concentrations of insulin were markedly decreased. The insulin EC50 value of glycogen synthesis was increased 4-fold, but was unchanged for lactate formation. 5. The insulin-stimulated rates of glucose transport in soleus muscles from 5- or 85-week-old Wistar rats were not significantly different.
Collapse
Affiliation(s)
- B Leighton
- Department of Biochemistry, University of Oxford, U.K
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- M A Cawthorne
- Beecham Pharmaceuticals Research Division, Great Burgh, Epsom, Surrey
| |
Collapse
|
24
|
Affiliation(s)
- J Himms-Hagen
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Rofe AM, Bourgeois CS, Bais R, Conyers RA. The effect of tumour-bearing on 2-deoxy[U-14C]glucose uptake in normal and neoplastic tissues in the rat. Biochem J 1988; 253:603-6. [PMID: 3178729 PMCID: PMC1149340 DOI: 10.1042/bj2530603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The extent to which normal and neoplastic tissues of the rate take up glucose was assessed by the 2-deoxy[U-14C]glucose tracer technique. Measurements of glucose uptake were made over 40 min in anaesthetized rats under conditions where the blood glucose concentration was constant. In fed tumour-bearing rats, the relative rates of glucose uptake per g wet wt. of tissue were tumour (100), small intestine (72), brain (61), heart (61), spleen (50), lung (42), adipose tissue (11) and muscle (8). Normal tissues of the fed tumour-bearing rats had decreased rates of glucose uptake as compared with the same tissues in fed non-tumour-bearing control rats. Blood glucose concentrations were similar in both groups, but insulin concentrations were decreased in tumour-bearing rats. Starvation decreased the rates of glucose uptake by normal tissues in both control and tumour-bearing rats, but the difference between the fed and starved states was greater in the control rats. Starvation did not decrease glucose uptake by the tumour. On an organ basis, the tumour (12-14% of body wt.) took up 4 times more glucose than did muscle (40% of body wt.).
Collapse
Affiliation(s)
- A M Rofe
- Division of Clinical Chemistry, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | | | |
Collapse
|
26
|
Mercer SW, Williamson DH. The influence of starvation and natural refeeding on the rate of triacylglycerol/fatty acid substrate cycling in brown adipose tissue and different white adipose sites of the rat in vivo. The role of insulin and the sympathetic nervous system. Biosci Rep 1988; 8:147-53. [PMID: 3044460 DOI: 10.1007/bf01116459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Triacylglycerol/fatty acid substrate cycling was measured in vivo in brown adipose tissue (BAT) and white adipose tissue (WAT) of fed, starved and refed rats. Starvation (24h) significantly decreased the rate of cycling in BAT, and refeeding chow diet led to a rapid, 6-fold increase in cycling. Cycling rate in WAT was much lower than in BAT, and was not influenced by fasting or refeeding. Similar rates of cycling were found in epididymal, mesenteric, subcutaneous, and scapular WAT depots. Sympathetic denervation of interscapular BAT abolished the response of the tissue to refeeding, as did acute suppression of insulin secretion. Similarly, rats fasted for 3 days showed no acute increase in the activity of the cycle following refeeding.
Collapse
Affiliation(s)
- S W Mercer
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, UK
| | | |
Collapse
|
27
|
Krief S, Bazin R, Dupuy F, Lavau M. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: role of white adipose tissue. THE AMERICAN JOURNAL OF PHYSIOLOGY 1988; 254:E342-8. [PMID: 3348393 DOI: 10.1152/ajpendo.1988.254.3.e342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by [3-3H]glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia (140 vs. 55 microU/ml). In obese compared with lean rats, tissue glucose uptake (assessed by the 2-deoxyglucose technique) was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart, in proximal intestine, and in total muscular mass of limbs. Our data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake.
Collapse
Affiliation(s)
- S Krief
- Institut National de la Santé et de la Recherche Médicale U177, Paris, France
| | | | | | | |
Collapse
|
28
|
Dimitriadis G, Leighton B, Parry-Billings M, Newsholme EA. Effects of the diuretic furosemide on the sensitivity of glycolysis and glycogen synthesis to insulin in the soleus muscle of the rat. Diabetologia 1988; 31:58-61. [PMID: 3280371 DOI: 10.1007/bf00279135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The diuretic furosemide (0.5 mmol/l) impaired glucose uptake in the soleus muscle of the rat by decreasing the sensitivity of glycolysis to insulin. In addition, at higher concentrations (1.0 mmol/l) the drug inhibited the basal rate of glycolysis. It did not, however, inhibit the rate of glycogen synthesis except at a concentration of 6.0 mmol/l. Since furosemide has some structural similarities to adenosine, the above effects on insulin sensitivity may be due to its ability to act as an adenosine receptor agonist in muscle. These effects of furosemide in skeletal muscle may contribute to the glucose intolerance following therapy with this and similar agents in man.
Collapse
Affiliation(s)
- G Dimitriadis
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
29
|
López-Soriano FJ, Alemany M. Effect of cold-temperature exposure and acclimation on amino acid pool changes and enzyme activities of rat brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 925:265-71. [PMID: 2887209 DOI: 10.1016/0304-4165(87)90191-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The amino acid pool composition and its concentration ratios with respect to blood and plasma, as well as the activities of alanine, aspartate and branched chain amino acid transaminases, glutamine synthetase, adenylate deaminase and glutamate dehydrogenase have been studied in the interscapular brown adipose tissue of control, 12-h cold-exposed and 15-day cold-acclimated rats. Cold temperature affected the amino acid metabolism and pool composition more intensely after 15 days than after 12-h cold-exposure, even though the patterns of change were very similar in both groups. Cold temperatures induced a decrease in glutamine and an increase in glutamate concentration in the tissue. This probably increased the metabolism of branched chain amino acids and caused a decrease in adenylate deaminase activity. It also seemed to increase alanine utilization. We concluded that amino acid metabolism in brown adipose tissue is enhanced by cold temperature acclimation.
Collapse
|
30
|
Buckley MG, Rath EA. Regulation of fatty acid synthesis and malonyl-CoA content in mouse brown adipose tissue in response to cold-exposure, starvation or re-feeding. Biochem J 1987; 243:437-42. [PMID: 2888457 PMCID: PMC1147874 DOI: 10.1042/bj2430437] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.
Collapse
|