1
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
2
|
Kunnathattil M, Rahul P, Skaria T. Soluble vascular endothelial glycocalyx proteoglycans as potential therapeutic targets in inflammatory diseases. Immunol Cell Biol 2024; 102:97-116. [PMID: 37982607 DOI: 10.1111/imcb.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- Department of Zoology, Government College Madappally, University of Calicut, Calicut, Kerala, India
| | - Pedapudi Rahul
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
3
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Islam S, Jahan N, Shahida A, Karnan S, Watanabe H. Accumulation of versican and lack of versikine ameliorate acute colitis. Matrix Biol 2022; 107:59-76. [DOI: 10.1016/j.matbio.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
5
|
Timms KP, Maurice SB. Context-dependent bioactivity of versican fragments. Glycobiology 2021; 30:365-373. [PMID: 31651027 DOI: 10.1093/glycob/cwz090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
Versican (VCAN) proteolysis and the accumulation of VCAN fragments occur in many developmental and disease processes, affecting extracellular matrix (ECM) structure and cell phenotype. Little is known about the significance of proteolysis and the roles of fragments, or how this ECM remodeling affects the microenvironment and phenotype of diseased cells. G1-DPEAAE fragments promote aspects of epithelial-mesenchymal transitioning in developing and diseased cells, resulting in cell migration. Enhanced proliferation and invasion of tumor and endothelial cells is directly associated with G1 domain deposition and G1-DPEAAE localization respectively. These tumorigenic and angiogenic roles could explain the disease exacerbating effect often associated with G1-containing fragments, however, the pathogenicity of G1 fragments depends entirely upon the context. Overall, VCAN fragments promote tumorigenesis and inflammation; however, the specific cleavage site, the extent of cleavage activity and the microenvironment in which cleavage occurs collectively determine how this pleiotropic molecule and its fragments influence cells.
Collapse
Affiliation(s)
- Katherine Payne Timms
- University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Sean Bertram Maurice
- Northern Medical Program, University of Northern British Columbia, Dr. Donald Rix Northern Health Sciences Centre, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, 2350 Health Sciences Mall Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
6
|
Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C, Constantin C, Neagu M. Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021; 11:biom11060903. [PMID: 34204372 PMCID: PMC8235174 DOI: 10.3390/biom11060903] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy, which rarely metastasizes but has a great ability to infiltrate and invade the surrounding tissues. One of the molecular players involved in the metastatic process are matrix metalloproteinases (MMPs). MMPs are enzymes that can degrade various components of the extracellular matrix. In the skin, the expression of MMPs is increased in response to various stimuli, including ultraviolet (UV) radiation, one of the main factors involved in the development of BCC. By modulating various processes that are linked to tumor growth, such as invasion and angiogenesis, MMPs have been associated with UV-related carcinogenesis. The sources of MMPs are multiple, as they can be released by both neoplastic and tumor microenvironment cells. Inhibiting the action of MMPs could be a useful therapeutic option in BCC management. In this review that reunites the latest advances in this domain, we discuss the role of MMPs in the pathogenesis and evolution of BCC, as molecules involved in tumor aggressiveness and risk of recurrence, in order to offer a fresh and updated perspective on this field.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
- Correspondence: (S.R.G.); (A.C.)
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: (S.R.G.); (A.C.)
| | - Cristian Scheau
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Andreea Matei
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| |
Collapse
|
7
|
Islam S, Watanabe H. Versican: A Dynamic Regulator of the Extracellular Matrix. J Histochem Cytochem 2020; 68:763-775. [PMID: 33131383 DOI: 10.1369/0022155420953922] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan belonging to the aggrecan/lectican family. In adults, this proteoglycan serves as a structural macromolecule of the extracellular matrix in the brain and large blood vessels. In contrast, versican is transiently expressed at high levels during development and under pathological conditions when the extracellular matrix dramatically changes, including in the inflammation and repair process. There are many reports showing the upregulation of versican in cancer, which correlates with cancer aggressiveness. Versican has four classical splice variants, and all the variants contain G1 and G3 domains at N- and C-termini, respectively. There are two glycosaminoglycan attachment domains CSα and CSβ. The largest V0 variant contains both CSα and CSβ, V1 contains CSβ, V2 contains CSα, and the shortest G3 variant has neither of them. Versican degradation is initiated by cleavage at a site in the CSβ domain by ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases. The N-terminal fragment containing the G1 domain has been reported to exert various biological functions, although its mechanisms of action have not yet been elucidated. In this review, we describe the role of versican in inflammation and cancer and also address the biological function of versikine.
Collapse
Affiliation(s)
- Shamima Islam
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
8
|
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, Allen CE, Frevert CW. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol 2020; 11:512. [PMID: 32265939 PMCID: PMC7105702 DOI: 10.3389/fimmu.2020.00512] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process. Versican interacts with inflammatory cells either indirectly via hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1 (PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and non-immune cells. These interactions activate signaling pathways that promote the synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB. Versican also influences inflammation by interacting with a variety of growth factors and cytokines involved in regulating inflammation thereby influencing their bioavailability and bioactivity. Versican is produced by multiple cell types involved in the inflammatory process. Conditional total knockout of versican in a mouse model of lung inflammation demonstrated significant reduction in leukocyte invasion into the lung and reduced inflammatory cytokine expression. While versican produced by stromal cells tends to be pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and immunosuppressive microenvironments. Inflammation in the tumor microenvironment often contains elevated levels of versican. Perturbing the accumulation of versican in tumors can inhibit inflammation and tumor progression in some cancers. Thus versican, as a component of the ECM impacts immunity and inflammation through regulating immune cell trafficking and activation. Versican is emerging as a potential target in the control of inflammation in a number of different diseases.
Collapse
Affiliation(s)
- Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephen P. Evanko
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Mary Y. Chang
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| | - Oliver M. T. Pearce
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E. Allen
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Charles W. Frevert
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
9
|
Islam S, Chuensirikulchai K, Khummuang S, Keratibumrungpong T, Kongtawelert P, Kasinrerk W, Hatano S, Nagamachi A, Honda H, Watanabe H. Accumulation of versican facilitates wound healing: Implication of its initial ADAMTS-cleavage site. Matrix Biol 2019; 87:77-93. [PMID: 31669737 DOI: 10.1016/j.matbio.2019.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022]
Abstract
Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan in the extracellular matrix, and is expressed at high levels in tissues during development and remodeling in pathological conditions. Its core protein is cleaved at a region close to the N-terminal end of CSβ domain by several members of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family, i.e., ADAMTS-1, 4, 5, 9, 15, and 20. Here, using a CRISPR/Cas9 system, we generated knock-in mice (V1R), which express an ADAMTS cleavage-resistant versican. Some V1R homozygote mice, termed R/R, exhibit syndactyly and organ hemorrhage. In wound healing experiments, R/R wound shows accumulation of versican and activated TGFβ-signaling in the early stage, leading to faster healing than wild type wound. Immunostaining for Ki67, CD31, smooth muscle α-actin, periostin demonstrates higher levels of overall cell proliferation and an increased number of endothelial cells and myofibroblasts. Immunostaining for CD11b and qRT-PCR for macrophage markers revealed increased levels of inflammatory cell infiltration, especially those of M1 macrophages. Cultured R/R dermal fibroblasts revealed increased deposition of versican, type I and III collagens, and hyaluronan, and upregulation of Smad2/3 signaling. Taken together, these results demonstrate that the cleavage site determines versican turnover and that versican plays a central role in the provisional matrix during the wound repair.
Collapse
Affiliation(s)
- Shamima Islam
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Kantinan Chuensirikulchai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Biomedical Technology Research Center, Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Saichit Khummuang
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Biomedical Technology Research Center, Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Tanyaporn Keratibumrungpong
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watchara Kasinrerk
- Biomedical Technology Research Center, Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan.
| |
Collapse
|
10
|
Kenagy RD, Kikuchi S, Evanko SP, Ruiter MS, Piola M, Longchamp A, Pesce M, Soncini M, Deglise S, Fiore GB, Haefliger JA, Schmidt TA, Majesky MW, Sobel M, Wight TN. Versican is differentially regulated in the adventitial and medial layers of human vein grafts. PLoS One 2018; 13:e0204045. [PMID: 30265729 PMCID: PMC6161854 DOI: 10.1371/journal.pone.0204045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Changes in extracellular matrix proteins may contribute significantly to the adaptation of vein grafts to the arterial circulation. We examined the production and distribution of versican and hyaluronan in intact human vein rings cultured ex vivo, veins perfused ex vivo, and cultured venous adventitial and smooth muscle cells. Immunohistochemistry revealed higher levels of versican in the intima/media compared to the adventitia, and no differences in hyaluronan. In the vasa vasorum, versican and hyaluronan associated with CD34+ progenitor cells. Culturing the vein rings for 14 days revealed increased versican immunostaining of 30–40% in all layers, with no changes in hyaluronan. Changes in versican accumulation appear to result from increased synthesis in the intima/media and decreased degradation in the adventitia as versican transcripts were increased in the intima/media, but unchanged in the adventitia, and versikine (the ADAMTS-mediated cleavage product of versican) was increased in the intima/media, but decreased in the adventitia. In perfused human veins, versican was specifically increased in the intima/media in the presence of venous pressure, but not with arterial pressure. Unexpectedly, cultured adventitial cells express and accumulate more versican and hyaluronan than smooth muscle cells. These data demonstrate a differential regulation of versican and hyaluronan in human venous adventitia vs. intima/media and suggest distinct functions for these extracellular matrix macromolecules in these venous wall compartments during the adaptive response of vein grafts to the arterial circulation.
Collapse
Affiliation(s)
- Richard D. Kenagy
- Center for Cardiovascular Biology, Institute for Stem Cells and Regenerative Medicine, and Department of Surgery, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Steve P. Evanko
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States of America
| | - Matthijs S. Ruiter
- Cardiovascular Tissue Engineering Unit—Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan, Italy
| | - Marco Piola
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Alban Longchamp
- Department of Vascular Surgery, CHUV | Lausanne University Hospital, Lausanne, Switzerland
| | - Maurizio Pesce
- Cardiovascular Tissue Engineering Unit—Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan, Italy
| | - Monica Soncini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Sébastien Deglise
- Department of Vascular Surgery, CHUV | Lausanne University Hospital, Lausanne, Switzerland
| | - Gianfranco B. Fiore
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | | | - Tannin A. Schmidt
- Biomedical Engineering Department, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Michael Sobel
- Division of Vascular Surgery, VA Puget Sound Health Care System, University of Washington, Seattle, WA, United States of America
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States of America
| |
Collapse
|
11
|
Versican: a novel modulator of hepatic fibrosis. J Transl Med 2016; 96:361-74. [PMID: 26752747 DOI: 10.1038/labinvest.2015.152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023] Open
Abstract
Little is known about the deposition and turnover of proteoglycans in liver fibrosis, despite their abundance in the extracellular matrix. Versican plays diverse roles in modulating cell behavior in other fibroproliferative diseases, but remains poorly described in the liver. Hepatic fibrosis was induced by carbon tetrachloride treatment of C57BL/6 mice over 4 weeks followed by recovery over a 28-day period. Primary mouse hepatic stellate cells (HSCs) were activated in culture and versican was transiently knocked down in human (LX2) and mouse HSCs. Expression of versican, A Disintegrin-like and Metalloproteinase with Thrombospondin-1 motifs (ADAMTS)-1, -4, -5, -8, -9, -15, and -20, and markers of fibrogenesis were studied using immunohistochemistry, real-time quantitative PCR, and western blotting. Immunohistochemistry showed increased expression of versican in cirrhotic human livers and the mouse model of fibrosis. Carbon tetrachloride treatment led to significant increases in versican expression and the proteoglycanases ADAMTS-5, -9, -15, and -20, alongside TNF-α, α-smooth muscle actin (α-SMA), collagen-1, and TGF-β expression. During recovery, expression of many of these genes returned to control levels. However, expression of ADAMTS-5, -8, -9, and -15 showed delayed increases in expression at 28 days of recovery, which corresponded with decreases in versican V0 and V1 cleavage products (G1-DPEAAE(1401) and G1-DPEAAE(441)). Activation of primary HSCs in vitro significantly increased versican, α-SMA, and collagen-1 expression. Transient knockdown of versican in HSCs led to decreases in markers of fibrogenesis and reduced cell proliferation, without inducing apoptosis. Versican expression increases during HSC activation and liver fibrosis, and proteolytic processing occurs during the resolution of fibrosis. Knockdown studies in vitro suggest a possible role of versican in modulating hepatic fibrogenesis.
Collapse
|
12
|
Bogen O, Bender O, Löwe J, Blenau W, Thevis B, Schröder W, Margolis RU, Levine JD, Hucho F. Neuronally produced versican V2 renders C-fiber nociceptors IB4 -positive. J Neurochem 2015; 134:147-55. [PMID: 25845936 DOI: 10.1111/jnc.13113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/23/2022]
Abstract
A subpopulation of nociceptors, the glial cell line-derived neurotrophic factor (GDNF)-dependent, non-peptidergic C-fibers, expresses a cell-surface glycoconjugate that can be selectively labeled with isolectin B4 (IB4 ), a homotetrameric plant lectin from Griffonia simplicifolia. We show that versican is an IB4 -binding molecule in rat dorsal root ganglion neurons. Using reverse transcriptase polymerase chain reaction (RT-PCR), in situ hybridization and immunofluorescence experiments on rat lumbar dorsal root ganglion, we provide the first demonstration that versican is produced by neurons. In addition, by probing Western blots with splice variant-specific antibodies we show that the IB4 -binding versican contains only the glycosaminoglycan alpha domain. Our data support V2 as the versican isoform that renders this subpopulation of nociceptors IB4 -positive (+). A subset of nociceptors, the GDNF-dependent non-peptidergic C-fibers can be characterized by its reactivity for isolectin B4 (IB4), a plant lectin from Griffonia simplicifolia. We have previously demonstrated that versican V2 binds IB4 in a Ca2 + -dependent manner. However, given that versican is thought to be the product of glial cells, it was questionable whether versican V2 can be accountable for the IB4-reactivity of this subset of nociceptors. The results presented here prove - for the first time - a neuronal origin of versican and suggest that versican V2 is the molecule that renders GDNF-dependent non-peptidergic C-fibers IB4-positive.
Collapse
Affiliation(s)
- Oliver Bogen
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany.,Department of Medicine and Oral & Maxillofacial Surgery, University of California San Francisco, San Francisco, California, USA
| | - Olaf Bender
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Jana Löwe
- Universität Potsdam, Institut für Biochemie und Biologie, Potsdam, Germany
| | - Wolfgang Blenau
- Universität Potsdam, Institut für Biochemie und Biologie, Potsdam, Germany
| | - Beatrice Thevis
- Department of Pain Pharmacology, Grünenthal Innovation, Grünenthal GmbH, Aachen, Germany
| | - Wolfgang Schröder
- Early Clinical Development, Department of Translational Science, Grünenthal Innovation, Grünenthal GmbH, Aachen, Germany
| | - Richard U Margolis
- Department of Biochemistry and Molecular Pharmacology, New York University Medical Center, New York City, New York, USA
| | - Jon D Levine
- Department of Medicine and Oral & Maxillofacial Surgery, University of California San Francisco, San Francisco, California, USA
| | - Ferdinand Hucho
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
13
|
Nandadasa S, Foulcer S, Apte SS. The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis. Matrix Biol 2014; 35:34-41. [PMID: 24444773 DOI: 10.1016/j.matbio.2014.01.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/22/2022]
Abstract
Embryonic development is an exceptionally dynamic process, requiring a provisional extracellular matrix that is amenable to rapid remodeling, and proteolytic or non-proteolytic mechanisms that can remodel the major components of this matrix. Versican is a chondroitin-sulfate proteoglycan that forms highly hydrated complexes with hyaluronan and is widely distributed in the provisional matrix of mammalian embryos. It has been extensively studied in the context of cardiovascular morphogenesis, neural crest cell migration and skeletal development. Analysis of Vcan transgenic mice has established the requirement for versican in cardiac development and its role in skeletogenesis. The ADAMTS family includes several versican-degrading proteases that are active during remodeling of the embryonic provisional matrix, especially during sculpting of versican-rich tissues. Versican is cleaved at specific peptide bonds by ADAMTS proteases, and the cleavage products are detectable by neo-epitope antibodies. Myocardial compaction, closure of the secondary palate (in which neural crest derived cells participate), endocardial cushion remodeling, myogenesis and interdigital web regression are developmental contexts in which ADAMTS-mediated versican proteolysis has been identified as a crucial requirement. ADAMTS proteases are expressed coordinately and function cooperatively in many of these contexts. In addition to versican clearance, ADAMTS proteases generate a bioactive versican fragment containing the N-terminal G1 domain, which we have named versikine. This review promotes the view that the embryonic extracellular matrix has evolved not only to provide a permissive environment for embryo growth and morphogenesis, but through its dissolution to influence and regulate cellular processes.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Simon Foulcer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
14
|
Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater 2013; 9:7081-92. [PMID: 23507088 PMCID: PMC3669638 DOI: 10.1016/j.actbio.2013.03.005] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring biodegradable polymer with a variety of applications in medicine, including scaffolding for tissue engineering, dermatological fillers and viscosupplementation for osteoarthritis treatment. HA is available in most connective tissues in body fluids such as synovial fluid and the vitreous humor of the eye. HA is responsible for several structural properties of tissues as a component of extracellular matrix and is involved in cellular signaling. Degradation of HA is a stepwise process that can occur via enzymatic or non-enzymatic reactions. A reduction in HA mass or molecular weight via degradation or slowing of synthesis affects physical and chemical properties such as tissue volume, viscosity and elasticity. This review addresses the distribution, turnover and tissue-specific properties of HA. This information is used as the context for considering recent products and strategies for modifying the viscoelastic properties of HA in tissue engineering, as a dermal filler and in osteoarthritis treatment.
Collapse
Affiliation(s)
- Amir Fakhari
- Bioengineering Graduate Program, University of Kansas
| | - Cory Berkland
- Bioengineering Graduate Program, University of Kansas
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas
- Departemant of Chemical and Petroleum Engineering, University of Kansas
| |
Collapse
|
15
|
Eba H, Murasawa Y, Iohara K, Isogai Z, Nakamura H, Nakamura H, Nakashima M. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth. PLoS One 2012; 7:e52523. [PMID: 23285075 PMCID: PMC3527558 DOI: 10.1371/journal.pone.0052523] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 11/15/2012] [Indexed: 01/29/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA) complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis.
Collapse
Affiliation(s)
- Hisanori Eba
- Department of Dental Regenerative Medicine, Center of Advanced Medicine for Dental and Oral Diseases, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Endodontics, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Yusuke Murasawa
- Department of Advanced Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Koichiro Iohara
- Department of Dental Regenerative Medicine, Center of Advanced Medicine for Dental and Oral Diseases, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Zenzo Isogai
- Department of Advanced Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroshi Nakamura
- Department of Endodontics, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Hiroyuki Nakamura
- Department of Dental Regenerative Medicine, Center of Advanced Medicine for Dental and Oral Diseases, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail:
| | - Misako Nakashima
- Department of Dental Regenerative Medicine, Center of Advanced Medicine for Dental and Oral Diseases, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
16
|
Howell MD, Gottschall PE. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience 2012; 217:6-18. [PMID: 22626649 DOI: 10.1016/j.neuroscience.2012.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/18/2023]
Abstract
The extracellular matrix (ECM) in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, ECM aggregate in brain, the chondroitin sulfate (CS)-bearing proteoglycans (PGs) known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the CS chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity-including changes in neurite outgrowth and dendritic spine remodeling-and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the PG core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity.
Collapse
Affiliation(s)
- M D Howell
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR 72205, USA
| | | |
Collapse
|
17
|
Zhang Z, Zhang J, Miao L, Liu K, Yang S, Pan C, Jiao B. Interleukin-11 promotes the progress of gastric carcinoma via abnormally expressed versican. Int J Biol Sci 2012; 8:383-93. [PMID: 22393310 PMCID: PMC3291855 DOI: 10.7150/ijbs.3579] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/18/2012] [Indexed: 01/06/2023] Open
Abstract
Versican, a ubiquitous component of the extracellular matrix (ECM), accumulates both in tumor stroma and cancer cells and is highly regulated by various cytokines. The aberrant expression of versican and its isoforms is known to modulate cell proliferation, differentiation, and migration, all of which are features of the invasion and metastasis of cancer; versican is also known to favour the homeostasis of the ECM. Interleukin-11 (IL-11) is an important cytokine that exhibits a wide variety of biological effects in gastric cancer development. Here, we analysed the expression of versican isoforms and found that the major isoforms expressed by both gastric carcinoma tissue and gastric cell lines were V0 and V1, and V1 was significantly higher in gastric carcinoma tissue. The treatment of the gastric cell lines AGS and MKN45 with rhIL-11 resulted in a significant increase in the expression of V0 and V1. Exogenous IL-11 increased migration in AGS and MKN45 cells, whereas these effects were reversed when the expression of V0 and V1 were abolished by siRNA targeting versican V0/V1. Collectively, these findings suggest that the abnormally expressed versican and its isoforms participate, at least in part, in the progress of gastric carcinoma triggered by IL-11.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biol 2010; 29:304-16. [PMID: 20096780 DOI: 10.1016/j.matbio.2010.01.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/21/2009] [Accepted: 01/14/2010] [Indexed: 01/08/2023]
Abstract
Here, we demonstrate that ADAMTS9, a highly conserved versican-degrading protease, is required for correct cardiovascular development and adult homeostasis. Analysis of Adamts9(+/LacZ) adult mice revealed anomalies in the aortic wall, valvulosinus and valve leaflets. Abnormal myocardial projections and 'spongy' myocardium consistent with non-compaction of the left ventricle were also found in Adamts9(+/LacZ) mice. During development, Adamts9 was expressed in derivatives of the Secondary Heart Field, vascular smooth muscle cells in the arterial wall, mesenchymal cells of the valves, and non-myocardial cells of the ventricles, but expression also continued in the adult heart and ascending aorta. Thus, the adult cardiovascular anomalies found in Adamts9(+/LacZ) hearts could result from subtle developmental alterations in extracellular matrix remodeling or defects in adult homeostasis. The valvular and aortic anomalies of Adamts9(+/LacZ) hearts were associated with accumulation of versican and a decrease in cleaved versican relative to WT littermates. These data suggest a potentially important role for ADAMTS9 cleavage of versican, or other, as yet undefined substrates in development and allostasis of cardiovascular extracellular matrix. In addition, these studies identify ADAMTS9 as a potential candidate gene for congenital cardiac anomalies. Mouse models of ADAMTS9 deficiency may be useful to study myxomatous valve degeneration.
Collapse
|
19
|
Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ. The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 2009; 28:233-45. [PMID: 19160015 DOI: 10.1007/s10555-009-9182-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Increased expression of the proteoglycan, versican is strongly associated with poor outcome for many different cancers. Depending on the cancer type, versican is expressed by either the cancer cells themselves or by stromal cells surrounding the tumor. Versican plays diverse roles in cell adhesion, proliferation, migration and angiogenesis, all features of invasion and metastasis. These wide ranging functions have been attributed to the central glycosaminoglycan-binding region of versican, and to the N-(G1) and C-(G3) terminal globular domains which collectively interact with a large number of extracellular matrix and cell surface structural components. Here we review the recently identified mechanisms responsible for the regulation of versican expression and the biological roles that versican plays in cancer invasion and metastasis. The regulation of versican expression may represent one mechanism whereby cancer cells alter their surrounding microenvironment to facilitate the malignant growth and invasion of several tumor types. A greater understanding of the regulation of versican expression may contribute to the development of therapeutic methods to inhibit versican function and tumor invasion.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA, 5005, Australia.
| | | | | | | | | |
Collapse
|
20
|
Novak U, Kaye AH. Brain tumour invasion: Many cooks can spoil the broth. J Clin Neurosci 2008; 6:455-63. [PMID: 18639180 DOI: 10.1016/s0967-5868(99)90000-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/1999] [Accepted: 05/11/1999] [Indexed: 01/10/2023]
Affiliation(s)
- U Novak
- Department of Surgery, University of Melbourne, The Royal Melbourne Hospital, Parkville 3050, Australia
| | | |
Collapse
|
21
|
Kern CB, Norris RA, Thompson RP, Argraves WS, Fairey SE, Reyes L, Hoffman S, Markwald RR, Mjaatvedt CH. Versican proteolysis mediates myocardial regression during outflow tract development. Dev Dyn 2007; 236:671-83. [PMID: 17226818 PMCID: PMC1828600 DOI: 10.1002/dvdy.21059] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An important phase of cardiac outflow tract (OFT) formation is the remodeling of the distal region of the common outlet in which the myocardial sleeve is replaced by with smooth muscle. Here we demonstrate that expression of the proteoglycan versican is reduced before the loss of myocardium from the distal cardiac outlet concomitant with an increase in production of the N-terminal cleavage fragment of versican. To test whether versican proteolysis plays a role in OFT remodeling, we determined the effects of adenoviral-mediated expression of a versican isoform devoid of known matrix metalloproteinase cleavage sites (V3) and an N-terminal fragment of versican (G1). V3 expression promoted an increase in thickness of the proximal OFT myocardial layer independent of proliferation. In contrast, the G1 domain caused thinning and interruptions of the OFT myocardium. These in vivo findings were consistent with findings using cultured primary cardiomyocytes showing that the V3 promoted myocardial cell-cell association while the G1 domain caused a loss of myocardial cell-cell association. Taken together, we conclude that intact versican and G1-containing versican cleavage products have opposing effects on myocardial cells and that versican proteolysis may facilitate the loss of distal myocardium during OFT remodeling.
Collapse
Affiliation(s)
- Christine B Kern
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425-2204, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Crespo D, Asher RA, Lin R, Rhodes KE, Fawcett JW. How does chondroitinase promote functional recovery in the damaged CNS? Exp Neurol 2007; 206:159-71. [PMID: 17572406 DOI: 10.1016/j.expneurol.2007.05.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 04/28/2007] [Accepted: 05/02/2007] [Indexed: 12/22/2022]
Abstract
A number of recent studies have established that the bacterial enzyme chondroitinase ABC promotes functional recovery in the injured CNS. The issue of how it works is rarely addressed, however. The effects of the enzyme are presumed to be due to the degradation of inhibitory chondroitin sulphate GAG chains. Here we review what is known about the composition, structure and distribution of the extracellular matrix in the CNS, and how it changes in response to injury. We summarize the data pertaining to the ability of chondroitinase to promote functional recovery, both in the context of axon regeneration and the reactivation of plasticity. We also present preliminary data on the persistence of the effects of the enzyme in vivo, and its hyaluronan-degrading activity in CNS homogenates in vitro. We then consider precisely how the enzyme might influence functional recovery in the CNS. The ability of chondroitinase to degrade hyaluronan is likely to result in greater matrix disruption than the degradation of chondroitin sulphate alone.
Collapse
Affiliation(s)
- Dámaso Crespo
- Cambridge University Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | | | | | | | |
Collapse
|
23
|
Kenagy RD, Plaas AH, Wight TN. Versican degradation and vascular disease. Trends Cardiovasc Med 2006; 16:209-15. [PMID: 16839865 PMCID: PMC3169384 DOI: 10.1016/j.tcm.2006.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/21/2006] [Accepted: 03/27/2006] [Indexed: 12/22/2022]
Abstract
Versican is an abundant proteoglycan in the blood vessel wall that is increased after vascular injury and accumulates in advanced atherosclerotic plaques. Versican is a large molecule with domains that mediate binding to cytokines, enzymes, lipoproteins, other extracellular matrix molecules, and signaling receptors. There is evidence that versican exists in the normal, as well as the diseased, vessel wall as discrete fragments, which represent these functional domains. We review the literature on versican degradation in vascular tissue and the function of versican domains, all of which suggest that proteolytic modification of versican may have physiologic as well as pathologic implications for the vascular system.
Collapse
Affiliation(s)
- Richard D Kenagy
- Center for Cardiovascular Biology and Regenerative Medicine, University of Washington, Department of Surgery, Seattle, WA 98109-4714, USA.
| | | | | |
Collapse
|
24
|
Kern CB, Twal WO, Mjaatvedt CH, Fairey SE, Toole BP, Iruela-Arispe ML, Argraves WS. Proteolytic cleavage of versican during cardiac cushion morphogenesis. Dev Dyn 2006; 235:2238-47. [PMID: 16691565 PMCID: PMC1828280 DOI: 10.1002/dvdy.20838] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The proteoglycan versican is essential to the formation of endocardial cushion mesenchyme by epithelial-mesenchymal transformation (EMT). A potentially important factor in the regulation of versican activity during cushion EMT is proteolysis by ADAMTS metalloproteinases. Using antibodies to the DPEAAE neoepitope created by ADAMTS proteolysis of versican, we detected the amino terminal 70-kDa versican cleavage fragment in cardiac cushions. Initially (i.e., 9.5 days post coitum [dpc]), the fragment is associated with endocardial cells undergoing EMT and with newly derived mesenchymal cells. ADAMTS-1 and its cofactor fibulin-1 were also associated with these cells. As cushions become increasingly populated with mesenchymal cells (10.5-12.5 dpc), the fragment remains asymmetrically distributed compared with the pattern of total versican. Highest levels of the fragment are present in regions immediately subjacent to the endocardium characterized as having densely packed, rounded cells, lacking cellular protrusions. With further development (i.e., 12.5-14.5 dpc), the pattern of fragment distribution within cushions broadens to include the ECM surrounding loosely packed mesenchymal cells in the cushion core. Together, the findings reveal that versican proteolysis leading to the production of the 70-kDa fragment is integral to the formation and differentiation of endocardial cushion mesenchyme.
Collapse
Affiliation(s)
- Christine B. Kern
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina
| | - Waleed O. Twal
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina
| | - Corey H. Mjaatvedt
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina
| | - Sarah E. Fairey
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina
| | - Bryan P. Toole
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina
| | - M. Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - W. Scott Argraves
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina
- *Correspondence to: W. Scott Argraves, Medical University of South Carolina, Department of Cell Biology, 173 Ashley Avenue, Charleston, SC 29425-2204. E-mail:
| |
Collapse
|
25
|
Bogen O, Dreger M, Gillen C, Schröder W, Hucho F. Identification of versican as an isolectin B4-binding glycoprotein from mammalian spinal cord tissue. FEBS J 2005; 272:1090-102. [PMID: 15720384 DOI: 10.1111/j.1742-4658.2005.04543.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nociceptors are specialized nerve fibers that transmit noxious pain stimuli to the dorsal horn of the spinal cord. A subset of nociceptors, the nonpeptidergic C-fibers, is characterized by its reactivity for the plant isolectin B4 (IB4) from Griffonia simplicifolia. The molecular nature of the IB4-reactive glycoconjugate, although used as a neuroanatomical marker for more than a decade, has remained unknown. We here present data which strongly suggest that a splice variant of the extracellular matrix proteoglycan versican is the IB4-reactive glycoconjugate associated with these nociceptors. We isolated (by subcellular fractionation and IB4 affinity chromatography) a glycoconjugate from porcine spinal cord tissue that migrated in SDS/PAGE as a single distinct protein band at an apparent molecular mass of > 250 kDa. By using MALDI-TOF/TOF MS, we identified this glycoconjugate unambiguously as a V2-like variant of versican. Moreover, we demonstrate that the IB4-reactive glycoconjugate and the versican variant can be co-released from spinal cord membranes by hyaluronidase, and that the IB4-reactive glycoconjugate and the versican variant can be co-precipitated by an anti-versican immunoglobulin and perfectly co-migrate in SDS/PAGE. Our findings shed new light on the role of the extracellular matrix, which is thought to be involved in plastic changes underlying pain-related phenomena such as hyperalgesia and allodynia.
Collapse
Affiliation(s)
- Oliver Bogen
- Freie Universität Berlin, Institut für Chemie-Biochemie, Thielallee, Berlin, Germany
| | | | | | | | | |
Collapse
|
26
|
Wright JW, Harding JW. The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol 2004; 72:263-93. [PMID: 15142685 DOI: 10.1016/j.pneurobio.2004.03.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 03/18/2004] [Indexed: 01/25/2023]
Abstract
The brain renin-angiotensin system (RAS) has long been known to regulate several classic physiologies including blood pressure, sodium and water balance, cyclicity of reproductive hormones and sexual behaviors, and pituitary gland hormones. These physiologies are thought to be under the control of the angiotensin II (AngII)/AT1 receptor subtype system. The AT2 receptor subtype is expressed during fetal development and is less abundant in the adult. This receptor appears to oppose growth responses facilitated by the AT1 receptor, as well as growth factor receptors. Recent evidence points to an important contribution by the brain RAS to non-classic physiologies mediated by the newly discovered angiotensin IV (AngIV)/AT4 receptor subtype system. These physiologies include the regulation of blood flow, modulation of exploratory behavior, and a facilitory role in learning and memory acquisition. This system appears to interact with brain matrix metalloproteinases in order to modify extracellular matrix molecules thus permitting the synaptic remodeling critical to the neural plasticity presumed to underlie memory consolidation, reconsolidation, and retrieval. There is support for an inhibitory influence by AngII activation of the AT1 subtype, and a facilitory role by AngIV activation of the AT4 subtype, on neuronal firing rate, long-term potentiation, associative and spatial learning. The discovery of the AT4 receptor subtype, and its facilitory influence upon learning and memory, suggest an important role for the brain RAS in normal cognitive processing and perhaps in the treatment of dysfunctional memory disease states.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA.
| | | |
Collapse
|
27
|
Westling J, Gottschall PE, Thompson VP, Cockburn A, Perides G, Zimmermann DR, Sandy JD. ADAMTS4 (aggrecanase-1) cleaves human brain versican V2 at Glu405-Gln406 to generate glial hyaluronate binding protein. Biochem J 2004; 377:787-95. [PMID: 14561220 PMCID: PMC1223897 DOI: 10.1042/bj20030896] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 09/05/2003] [Accepted: 10/15/2003] [Indexed: 11/17/2022]
Abstract
Human brain tissue from cerebellum and hippocampus was obtained between 2 h and 24 h post mortem and, after extraction in the presence of proteinase inhibitors, proteoglycans were purified by anion-exchange chromatography. The versican component was characterized by Western analysis with antibodies to the N-terminal peptide (LF99), the N-terminal globular domain (12C5) and the two GAG (glycosaminoglycan) attachment regions (anti-GAG-alpha and anti-GAG-beta). The results indicated that versican V2 is the major variant in all brain samples, and that it exists as the full-length form and also as at least six C-terminally truncated forms. The major immunoreactive species present is a 64 kDa product, which we identified by biochemical and immunological analysis as the brain protein previously termed GHAP (glial hyaluronate binding protein) [Perides, Lane, Andrews, Dahl and Bignami (1989) J. Biol. Chem. 264, 5981-5987]. Immunological analysis of purified human GHAP using a new anti-neoepitope antiserum (JSCNIV) showed that its C-terminal sequence is NIVSFE(405), and digestion of human cerebellum proteoglycans with ADAMTS4 (aggrecanase-1, where ADAMTS, a disintegrin and metalloproteinase with thrombospondin-1-like motifs) indicated that GHAP is a product of cleavage of versican V0 or V2 at the Glu(405)-Gln(406) bond. Since human cerebellum extracts contained multiple forms of ADAMTS4 protein on Western analysis, these data suggest that one or more members of the 'aggrecanase' group of the ADAMTS family (ADAMTS 1, 4, 5 and 9) are responsible for turnover of versican V2 in the adult human brain.
Collapse
Affiliation(s)
- Jennifer Westling
- Center for Research in Paediatric Orthopaedics, Shriners Hospital, Tampa, FL 33612, U.S.A
| | | | | | | | | | | | | |
Collapse
|
28
|
Shi S, Ciurli C, Cartman A, Pidoux I, Poole AR, Zhang Y. Experimental immunity to the G1 domain of the proteoglycan versican induces spondylitis and sacroiliitis, of a kind seen in human spondylarthropathies. ACTA ACUST UNITED AC 2003; 48:2903-15. [PMID: 14558097 DOI: 10.1002/art.11270] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Experimental immunity to the G1 domain of the cartilage proteoglycan (PG) aggrecan (AG1) leads to the development of spondylitis as well as polyarthritis in BALB/c mice. The PG versican contains a structurally similar G1 domain (VG1). This study was conducted to determine whether immunity to VG1 would elicit similar pathology in these mice. METHODS Recombinant natively folded VG1 and AG1 were prepared. BALB/c mice received either a series of 5 injections of human VG1 or AG1, or no protein. Polyarthritis was determined clinically, and spondylitis and sacroiliitis histologically. Immunohistochemistry of rat tissues was used to study the localization of versican. Enzyme-linked immunosorbent assays were employed to study humoral immunity to the recombinant proteins as well as to overlapping synthetic peptides covering all these human G1 domains and mouse homologs. Affinity-purified antibodies to human AG1 and VG1 were isolated from sera of hyperimmunized mice. T lymphocyte proliferation assays were performed using recombinant human proteins. T cell lines reactive with specific immunodominant T cell epitopes in human AG1 and VG1 were isolated. Synthetic peptides encoding sequences in these human proteins and in corresponding mouse proteins were used in these analyses. Guanidinium chloride extracts of mouse spines were also used in Western blots to study antibody cross-reactivity. RESULTS Immunity to recombinant VG1 did not result in clinical polyarthritis. There was, however, clear evidence that VG1, like AG1, could induce spondylitis in the lumbar spine and sacroiliitis. Accumulation of mononuclear cells was observed in spinal ligaments adjacent to the intervertebral disc, in the intervertebral disc, and in the sacroiliac joints, the same sites where versican is localized. In contrast to AG1-immunized mice, in which T cells reactive with human AG1 cross-reacted with mouse AG1, there was no evidence in VG1-immunized mice that T cell immunity to human VG1 was cross-reactive with a mouse synthetic peptide that contained the sequence corresponding to the single immunodominant T cell sequence recognized in human VG1. Antibodies to specific sequences in human VG1 did, however, cross-react with human AG1 and with corresponding peptide sequences in mouse versican and aggrecan and with mouse proteins containing VG1 and AG1, present in mouse spine extracts. Similarly, antibodies to human AG1 cross-reacted with human VG1 and with extracted mouse VG1 and AG1 and synthetic peptides containing mouse sequences that corresponded to the reactive human epitopes in AG1 and VG1. CONCLUSION These observations suggest that humoral immunity to human VG1 is involved in the induction of experimental spondylitis and sacroiliitis in BALB/c mice. This humoral immunity is cross-reactive with mouse versican and aggrecan but is not associated with polyarthritis, probably because of the lack of cross-reactive T cell immunity and the absence of detectable versican in articular cartilage limbs. Induction of polyarthritis by bovine or human aggrecan requires the involvement of immunity mediated by T lymphocytes that are cross-reactive to a mouse aggrecan epitope. Together these observations suggest that humoral immunity to versican as well as immunity to aggrecan may be of importance in the development of the spinal pathology characteristic of spondylarthropathies.
Collapse
Affiliation(s)
- Shuiliang Shi
- Shriners Hospitals for Children, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Park KH, Chaiworapongsa T, Kim YM, Espinoza J, Yoshimatsu J, Edwin S, Gomez R, Yoon BH, Romero R. Matrix metalloproteinase 3 in parturition, premature rupture of the membranes, and microbial invasion of the amniotic cavity. J Perinat Med 2003; 31:12-22. [PMID: 12661139 DOI: 10.1515/jpm.2003.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are expressed in many inflammatory conditions and contribute to connective tissue breakdown. Stromelysin 1 [matrix metalloproteinase 3 (MMP-3)], a novel member of this family, is produced in the context of infection and is able to activate the latent forms of other MMPs. The purpose of this study was to determine if parturition (either term or preterm), premature rupture of the membranes (PROM), and microbial invasion of the amniotic cavity are associated with changes in amniotic fluid concentrations of MMP-3. STUDY DESIGN A cross-sectional study was conducted, which included women who underwent transabdominal amniocentesis (n = 365) in the following categories: (1) mid-trimester with a subsequent normal pregnancy outcome (n = 84) and a subsequent fetal loss (n = 10); (2) preterm labor with intact membranes without microbial invasion of the amniotic cavity who delivered at term (n = 36), or prematurely (n = 50), and preterm labor with microbial invasion of the amniotic cavity (n = 25); (3) preterm PROM with (n = 25) and without (n = 26) microbial invasion of the amniotic cavity; (4) term with intact membranes in the absence of microbial invasion of the amniotic cavity, in labor (n = 52) and not in labor (n = 31); and (5) term with PROM in the absence of microbial invasion of the amniotic cavity and not in labor (n = 26). MMP-3 concentrations in amniotic fluid were measured by a sensitive and specific immunoassay that was validated for amniotic fluid. MMP-3 concentrations were normalized using logarithmic transformation for statistical analysis. Parametric statistics were used and a p value < 0.05 was considered statistically significant. RESULTS (1) MMP-3 was detected in 99.5% (363/365) of amniotic fluid samples, and its concentration did not change with advancing gestational age. (2) Spontaneous parturition at term and preterm was associated with a significant increase in amniotic fluid MMP-3 concentrations (p = 0.04 and p = 0.002, respectively). (3) Spontaneous rupture of membranes in term and preterm gestations was not associated with significant changes in amniotic fluid MMP-3 concentrations. (4) Intra-amniotic infection was associated with a significant increase in amniotic fluid MMP-3 concentrations in both women with preterm labor and intact membranes (p = 0.03), and women with preterm PROM (p = 0.02). (5) Subsequent fetal loss after genetic amniocentesis was not associated with significant changes in mid-trimester concentrations of amniotic fluid MMP-3. CONCLUSIONS (1) MMP-3 is a physiologic constituent of amniotic fluid. (2) MMP-3 may play a role in the mechanisms of human parturition and in the regulation of the host response to intrauterine infection.
Collapse
Affiliation(s)
- Kyo Hoon Park
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Deb S, Wenjun Zhang J, Gottschall PE. Beta-amyloid induces the production of active, matrix-degrading proteases in cultured rat astrocytes. Brain Res 2003; 970:205-13. [PMID: 12706262 DOI: 10.1016/s0006-8993(03)02344-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The senile and neuritic plaque neuropathology of Alzheimer's disease (AD) is accompanied by an inflammatory response that includes activated astrocytes and microglia. Activated mononuclear phagocytes and reactive astrocytes, in response to inflammatory cytokines, secrete a set of extracellular matrix (ECM)-degrading enzymes that include the matrix metalloproteinases (MMPs). The major peptide component of senile plaques of AD, beta-amyloid (Abeta), stimulates the production of several MMPs from cultured rat astrocytes and microglia. The purpose of this study was two-fold: (1) to compare the pattern of MMP induction in rat astrocytes on treatment with 'soluble' and 'fibrillar' Abeta(1-40) and Abeta(1-42), and (2) to examine whether treatment of astrocytes with Abeta results in degraded fragments of ECM. Abeta aggregation differentially affected the production of MMP-2 and MMP-9 in astrocyte cultures. Activation experiments with amino phenyl mercuric acetate suggested that the 52-54 kDa gelatin-degrading activity was an activated form of MMP-2. In addition, Abeta peptide induced both MMP-3 and plasminogen activator-like activity from astrocytes. When medium from Abeta-treated, astrocyte cultures was immunoblotted for fibronectin, several immunopositive, lower molecular weight bands were observed as compared to untreated conditioned medium, suggestive of the presence of an active fibronectin-degrading protease. Thus, Abeta induces the secretion of several matrix-degrading proteases and stimulates matrix degradation in rat astrocytes. Since matrix-degrading proteases are elevated in AD brain, these proteases may influence the stability of ECM or other MMP substrates and thus may play a role in the neurotrophic/neurotoxic events associated with AD.
Collapse
Affiliation(s)
- Suman Deb
- Department of Pharmacology and Therapeutics, University of South Florida College of Medicine, Tampa 33612-4799, USA
| | | | | |
Collapse
|
31
|
Tang X, Davies JE, Davies SJA. Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J Neurosci Res 2003; 71:427-44. [PMID: 12526031 DOI: 10.1002/jnr.10523] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies have correlated the failure of axon regeneration after spinal cord injury with axons contacting scar tissue rich in chondroitin sulfate proteoglycans (CSPGs; Davies et al., 1999). In the present study, we have conducted immunohistochemical and quantitative Western blot analysis of five axon-growth-inhibitory CSPGs and tenascin-C within stab injuries of adult rat spinal cord at time points ranging from 24 hr to 6 months post injury. Quantitative Western blot analysis showed robust increases in neurocan, tenascin-C, and NG2 levels by 24 hr, suggesting that these molecules play a role in preventing axon regeneration across acutely forming scar tissue. Peak levels of 245/130 kD neurocan, NG2, and 250/200 kD tenascin-C were reached at 8 days, with maximum levels of phosphacan and 140/80 kD brevican attained later, at 1 month post injury. Versican V2 protein levels, however, displayed an opposite trend, dropping below unlesioned spinal cord values at all time points studied. Confocal microscopy at 8 days post injury revealed heightened immunoreactivity for phosphacan, NG2, and tenascin-C, particularly within fibronectin(+) scar tissue at lesion centers. In contrast, neurocan was displayed within lesion margins on the processes of stellate NG2(+) cells and, to a much lesser extent, by astrocytes. At 6 months post injury, 130 kD neurocan, brevican, and NG2 levels within chronic scar tissue remained significantly above control. Our results show novel expression patterns and cell associations of inhibitory CSPGs and tenascin-C that have important implications for axon regeneration across acute and chronic spinal cord scar tissue.
Collapse
Affiliation(s)
- Xiufeng Tang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
32
|
Yuan W, Matthews RT, Sandy JD, Gottschall PE. Association between protease-specific proteolytic cleavage of brevican and synaptic loss in the dentate gyrus of kainate-treated rats. Neuroscience 2003; 114:1091-101. [PMID: 12379262 DOI: 10.1016/s0306-4522(02)00347-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteolytic fragments generated by ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs)-mediated cleavage of the aggregating chondroitin sulfate proteoglycan, brevican, have been identified, but not localized in the CNS. The purpose of this study, using kainate-induced CNS lesion, was to examine the spatial and quantitative relationship between ADAMTS1 and 4 mRNA expression and ADAMTS-mediated cleavage of brevican (as determined by the abundance of the neo-epitope QEAVESE at the C-terminal of the cleaved brevican G1 domain). In untreated rats, in situ hybridization and reverse transcriptase polymerase chain reaction indicated that ADAMTS4 expression was higher than ADAMTS1 and was localized to hippocampus, temporal lobe and other areas of cortex, striatum and hypothalamus. ADAMTS4 mRNA expression in these regions correlated with the presence of the QEAVESE neo-epitope, which was concentrated in perineuronal nets and in neuropil. In rats that seized after kainate, there was a dramatic elevation in ADAMTS1 and ADAMTS4 transcript that correlated and co-localized with a robust elevation in an extractable, 55-kDa fragment of brevican in temporal lobe and hippocampus. This fragment consisted, at least in part, of the ADAMTS-cleaved epitope G1-QEAVESE. The kainate-induced elevation in this ADAMTS-cleaved fragment was localized to amygdaloid and thalamic nuclei, hippocampus, caudate-putamen, cingulate cortex, and the outer molecular layer of the dentate gyrus where it was accompanied by a robust elevation in ADAMTS1 and 4 mRNA and a 28% decline in synaptic density 5 days after kainate.Thus, complexes of extracellular matrix proteins that exist in perineuronal nets and in the neuropil are cleaved by specific matrix-degrading proteases at early time points during excitotoxic neurodegeneration. The observed ADAMTS-induced cleavage of brevican in the dentate outer molecular layer is closely associated with diminished synaptic density, and may, therefore, contribute to synaptic loss and/or reorganization in this region.
Collapse
Affiliation(s)
- W Yuan
- Department of Pharmacology and Therapeutics, University of South Florida College of Medicine, MDC Box 9, 12901 Bruce B. Downs Boulevard, Tampa 33612-4799, USA
| | | | | | | |
Collapse
|
33
|
Abstract
This review of ECM molecules shows quite clearly the function of the ECM in development but more importantly in the mature CNS after injury. Most of the proteoglycans, especially the large CS-PGs, are able to inhibit neurite outgrowth and in vivo experiments are now in progress to specifically inhibit these important molecules. The nature of growth promoter ECM molecules in the CNS after injury, either within or distant from the injury is now becoming better appreciated and we suggest that the laminin family should be important targets for exploration. Indeed, a better understanding of the interaction of laminin with those ECM components that are inhibitory is a clear goal for the future. Our ultimate aim must be to change the balance of factors at lesion sites to allow the more permissive environment after CNS injury to predominate.
Collapse
Affiliation(s)
- Barbara Grimpe
- Case Western Reserve University, School of Medicine, Department of Neurosciences, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
34
|
Iseki K, Hagino S, Mori T, Zhang Y, Yokoya S, Takaki H, Tase C, Murakawa M, Wanaka A. Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue. Glia 2002; 39:1-9. [PMID: 12112370 DOI: 10.1002/glia.10078] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Syndecan-1, -2, -3, and -4 are heparan sulfate proteoglycans that are differentially expressed during development and wound repair. To determine whether syndecans are also involved in brain injury, we examined the expression of syndecan core proteins genes in cryo-injured mouse brain, using in situ hybridization. All syndecan mRNA transcripts were similarly expressed in the region surrounding the necrotic tissue, exhibiting peak levels at day 7 after injury. Comparison with cellular markers showed that reactive astrocytes were the primary source of syndecans. Syndecans serve as co-receptors for fibroblast growth factor (FGF) and as a reservoir for another heparin-binding growth factor, pleiotrophin (PTN, or heparin-binding growth-associated molecule. In our model, FGF receptor1 (FGFR1) and PTN mRNA levels were upregulated in reactive astrocytes. The distribution patterns of FGFR1 and PTN overlapped considerably with those of syndecan-1 and -3 mRNAs, respectively. These results suggest that syndecans are expressed primarily in reactive astrocytes, and may provide a supportive environment for regenerating axons in concert with heparin-binding growth factors (e.g., FGF and PTN) in the injured brain.
Collapse
Affiliation(s)
- Ken Iseki
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Chondroitin sulfate proteoglycan (CS-PG) expression is increased in response to CNS injury and limits the capacity for axonal regeneration. Previously we have shown that neurocan is one of the CS-PGs that is upregulated (Asher et al., 2000). Here we show that another member of the aggrecan family, versican, is also upregulated in response to CNS injury. Labeling of frozen sections 7 d after a unilateral knife lesion to the cerebral cortex revealed a clear increase in versican immunoreactivity around the lesion. Western blot analysis of extracts prepared from injured and uninjured tissue also revealed considerably more versican in the injured tissue extract. In vitro studies revealed versican to be a product of oligodendrocyte lineage cells (OLCs). Labeling was seen between the late A2B5-positive stage and the O1-positive pre-oligodendrocyte stage. Neither immature, bipolar A2B5-positive cells, nor differentiated, myelin-forming oligodendrocytes were labeled. The amount of versican in conditioned medium increased as these cells differentiated. Versican and tenascin-R colocalized in OLCs, and coimmunoprecipitation indicated that the two exist as a complex in oligodendrocyte-conditioned medium. Treatment of pre-oligodendrocytes with hyaluronidase led to the release of versican, indicating that its retention at the cell surface is dependent on hyaluronate (HA). In rat brain, approximately half of the versican is bound to hyaluronate. We also provide evidence of a role for CS-PGs in the axon growth-inhibitory properties of oligodendrocytes. Because large numbers of OLCs are recruited to CNS lesions, these results suggest that OLC-derived versican contributes to the inhospitable environment of the injured CNS.
Collapse
|
36
|
Asher RA, Morgenstern DA, Shearer MC, Adcock KH, Pesheva P, Fawcett JW. Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J Neurosci 2002; 22:2225-36. [PMID: 11896162 PMCID: PMC6758262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2001] [Revised: 11/20/2001] [Accepted: 12/28/2001] [Indexed: 02/24/2023] Open
Abstract
Chondroitin sulfate proteoglycan (CS-PG) expression is increased in response to CNS injury and limits the capacity for axonal regeneration. Previously we have shown that neurocan is one of the CS-PGs that is upregulated (Asher et al., 2000). Here we show that another member of the aggrecan family, versican, is also upregulated in response to CNS injury. Labeling of frozen sections 7 d after a unilateral knife lesion to the cerebral cortex revealed a clear increase in versican immunoreactivity around the lesion. Western blot analysis of extracts prepared from injured and uninjured tissue also revealed considerably more versican in the injured tissue extract. In vitro studies revealed versican to be a product of oligodendrocyte lineage cells (OLCs). Labeling was seen between the late A2B5-positive stage and the O1-positive pre-oligodendrocyte stage. Neither immature, bipolar A2B5-positive cells, nor differentiated, myelin-forming oligodendrocytes were labeled. The amount of versican in conditioned medium increased as these cells differentiated. Versican and tenascin-R colocalized in OLCs, and coimmunoprecipitation indicated that the two exist as a complex in oligodendrocyte-conditioned medium. Treatment of pre-oligodendrocytes with hyaluronidase led to the release of versican, indicating that its retention at the cell surface is dependent on hyaluronate (HA). In rat brain, approximately half of the versican is bound to hyaluronate. We also provide evidence of a role for CS-PGs in the axon growth-inhibitory properties of oligodendrocytes. Because large numbers of OLCs are recruited to CNS lesions, these results suggest that OLC-derived versican contributes to the inhospitable environment of the injured CNS.
Collapse
Affiliation(s)
- Richard A Asher
- Physiological Laboratory, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Sztrolovics R, Grover J, Cs-Szabo G, Shi SL, Zhang Y, Mort JS, Roughley PJ. The characterization of versican and its message in human articular cartilage and intervertebral disc. J Orthop Res 2002; 20:257-66. [PMID: 11918305 DOI: 10.1016/s0736-0266(01)00110-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Splicing variation of the versican message and size heterogeneity of the versican core protein were analyzed in human articular cartilage and intervertebral disc. Splicing variation of the message was studied by PCR analysis to detect the presence or absence of exons 7 and 8, which encode large chondroitin sulfate attachment regions. At all ages in normal cartilage from the third trimester fetus to the mature adult, the presence of the versican isoform possessing exon 8 but not exon 7 (V1) could be readily detected. The message isoforms possessing neither exon 7 nor 8 (V3) or both exons 7 and 8 (V0) were only detectable in the fetus, and the isoform possessing only exon 7 (V2) was never detected. In osteoarthritic cartilage and in adult intervertebral disc the versican message pattern was the same as that observed in the normal adult with only the isoform possessing exon 8 being detected. Core protein heterogeneity was studied by immunoblotting following enzymic removal of the glycosaminoglycan chains from the proteoglycan, using an antibody recognizing the globular G1 region of versican. All articular cartilage extracts from the fetus to the mature adult contained multiple core protein sizes of greater than 200 kDa. The adult cartilage extracts tended to have an increased proportion of the smaller sized core proteins and osteoarthritic cartilage possessed similar core protein sizes to the normal adult. In contrast, intervertebral disc at all post-natal ages showed a greater range of size heterogeneity with a prominent component of about 50 kDa. The abundance of this component increased if the samples were treated with keratanase prior to analysis, suggesting that the G1 region of versican in disc can be substituted with keratan sulfate. The increased presence of versican in the disc relative to articular cartilage may suggest a more pronounced functional role for this proteoglycan, particularly in the nucleus pulposus.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Alternative Splicing
- Cartilage, Articular/embryology
- Cartilage, Articular/metabolism
- Child
- Child, Preschool
- Chondroitin Sulfate Proteoglycans/biosynthesis
- Chondroitin Sulfate Proteoglycans/genetics
- Fetus
- Humans
- Infant
- Infant, Newborn
- Intervertebral Disc/embryology
- Intervertebral Disc/metabolism
- Knee Joint/anatomy & histology
- Knee Joint/embryology
- Knee Joint/pathology
- Lectins, C-Type
- Middle Aged
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/surgery
- Proteoglycans/biosynthesis
- Proteoglycans/genetics
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Versicans
Collapse
|
38
|
Kenagy RD, Fischer JW, Davies MG, Berceli SA, Hawkins SM, Wight TN, Clowes AW. Increased plasmin and serine proteinase activity during flow-induced intimal atrophy in baboon PTFE grafts. Arterioscler Thromb Vasc Biol 2002; 22:400-4. [PMID: 11884281 DOI: 10.1161/hq0302.105376] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High blood flow causes intimal atrophy and loss of extracellular matrix in PTFE aortoiliac grafts. We have investigated whether matrix-degrading proteinases are altered in this baboon model of atrophy using zymography, western analysis, and a versican degradation assay. After four days of high flow, urokinase was increased and plasminogen activator inhibitor-1 was decreased in the intima. Plasminogen was increased after seven days. Pro-matrix metalloproteinase (MMP)-2, activated MMP-2, and proMMP-9 levels were modestly increased by high flow at 7 days, whereas MMP-3 and tissue inhibitor of metalloproteinases-1 were not altered. Extracts of 4-day high-flow intimas degraded more 35S-methionine-labeled versican than low-flow intimal extracts, and this activity was inhibited by AEBSF, a serine proteinase inhibitor, and a plasmin antibody. In contrast, this activity was not inhibited by the MMP inhibitor, BB-94 (Batimastat). These data suggest that serine proteinases, including plasmin, may be largely responsible for extracellular matrix degradation in this primate model of flow-induced intimal atrophy.
Collapse
Affiliation(s)
- Richard D Kenagy
- Division of Vascular Surgery, Department of Surgery, University of Washington, Seattle 98195-6410, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Oohashi T, Hirakawa S, Bekku Y, Rauch U, Zimmermann DR, Su WD, Ohtsuka A, Murakami T, Ninomiya Y. Bral1, a brain-specific link protein, colocalizing with the versican V2 isoform at the nodes of Ranvier in developing and adult mouse central nervous systems. Mol Cell Neurosci 2002; 19:43-57. [PMID: 11817897 DOI: 10.1006/mcne.2001.1061] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bral1, a brain-specific hyaluronan-binding protein, has been cloned recently. To gain insight into the role of Bral1, we generated a specific antibody against this protein. We have examined the detailed localization pattern of Bral1 protein and compared it with that of other members of the lectican proteoglycan family, such as brevican and versican, with which Bral1 is predicted to interact. The immunoreactivity of Bral1 antibody was predominantly observed in myelinated fiber tracts in the adult brain and could be detected at P20 in the white matter of the developing cerebellum, suggesting that expression starts when axonal myelination takes place. Furthermore, immunostaining demonstrated that Bral1 colocalized with the versican V2 isoform at the nodes of Ranvier. The present data suggest that Bral1 may play a pivotal role in the formation of the hyaluronan-associated matrix in the CNS that facilitates neuronal conduction by forming an ion diffusion barrier at the nodes.
Collapse
Affiliation(s)
- Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine and Dentistry, Okayama, 700-8558, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wright JW, Kramár EA, Meighan SE, Harding JW. Extracellular matrix molecules, long-term potentiation, memory consolidation and the brain angiotensin system. Peptides 2002; 23:221-46. [PMID: 11814638 DOI: 10.1016/s0196-9781(01)00599-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Considerable evidence now suggests an interrelationship among long-term potentiation (LTP), extracellular matrix (ECM) reconfiguration, synaptogenesis, and memory consolidation within the mammalian central nervous system. Extracellular matrix molecules provide the scaffolding necessary to permit synaptic remodeling and contribute to the regulation of ionic and nutritional homeostasis of surrounding cells. These molecules also facilitate cellular proliferation, movement, differentiation, and apoptosis. The present review initially focuses on characterizing the ECM and the roles of cell adhesion molecules (CAMs), matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), in the maintenance and degradation of the ECM. The induction and maintenance of LTP is described. Debate continues over whether LTP results in some form of synaptic strengthening and in turn promotes memory consolidation. Next, the contribution of CAMs and TIMPs to the facilitation of LTP and memory consolidation is discussed. Finally, possible roles for angiotensins, MMPs, and tissue plasminogen activators in the facilitation of LTP and memory consolidation are described. These enzymatic pathways appear to be very important to an understanding of dysfunctional memory diseases such as Alzheimer's disease, multiple sclerosis, brain tumors, and infections.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA 99164-4820, USA.
| | | | | | | |
Collapse
|
41
|
Sobel RA, Ahmed AS. White matter extracellular matrix chondroitin sulfate/dermatan sulfate proteoglycans in multiple sclerosis. J Neuropathol Exp Neurol 2001; 60:1198-207. [PMID: 11764092 DOI: 10.1093/jnen/60.12.1198] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extracellular matrix (ECM) alterations in the central nervous system (CNS) of multiple sclerosis (MS) patients result from blood-brain barrier breakdown, release and activation of proteases, and synthesis of ECM components. To elucidate their potential pathophysiologic roles, we analyzed expression of major CNS ECM proteoglycans (PGs) in MS and control CNS tissues. In active MS plaque edges, 3 CNS lecticans (versican, aggrecan, and neurocan) and dermatan sulfate PG were increased in association with astrocytosis; in active plaque centers they were decreased in the ECM and accumulated in foamy macrophages, suggesting that these ECM PGs are injured and phagocytosed along with myelin. In inactive lesions they were diminished and in normal-appearing white matter they showed heretofore-unappreciated abnormal heterogeneous aggregation. Phosphacan, an ECM PG abundant in both gray and white matter, was less markedly altered. Since in development the spaciotemporal expression of ECM PGs influences neurite outgrowth, cell migration, axon guidance, and myelination, these data suggest that 1) enhanced white matter lectican and dermatan sulfate PG expression in the pro-inflammatory milieu of expanding lesion edges contributes to their sharp boundaries and the failure of neuronal ingrowth; 2) decreases in plaque centers may preclude regeneration and repair; and 3) diffuse ECM PG damage relates to axon degeneration outside of overt lesions. Thus, ECM PG alterations are specific, temporally dynamic, and widespread in MS patients and may play critical roles in lesion pathogenesis and CNS dysfunction.
Collapse
Affiliation(s)
- R A Sobel
- Department of Pathology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
42
|
Hu LT, Eskildsen MA, Masgala C, Steere AC, Arner EC, Pratta MA, Grodzinsky AJ, Loening A, Perides G. Host metalloproteinases in Lyme arthritis. ARTHRITIS AND RHEUMATISM 2001; 44:1401-10. [PMID: 11407701 DOI: 10.1002/1529-0131(200106)44:6<1401::aid-art234>3.0.co;2-s] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To assess the role of matrix metalloproteinases (MMPs) in cartilage and bone erosions in Lyme arthritis METHODS We examined synovial fluid from 10 patients with Lyme arthritis for the presence of MMP-2, MMP-3, MMP-9, and "aggrecanase" activity using gelatinolytic zymography and immunoblot analysis. We developed an in vitro model of Lyme arthritis using cartilage explants and observed changes in cartilage degradation in the presence of Borrelia burgdorferi and/or various protease inhibitors. RESULTS Synovial fluid from patients with Lyme arthritis was found to contain at least 3 MMPs: gelatinase A (MMP-2), stromelysin (MMP-3), and gelatinase B (MMP-9). In addition, there was evidence in 2 patients of "aggrecanase" activity not accounted for by the above enzymes. Infection of cartilage explants with B. burgdorferi resulted in induction of MMP-3, MMP-9, and "aggrecanase" activity. Increased induction of these enzymes by B. burgdorferi alone was not sufficient to cause cartilage destruction in the explants as measured by glycosaminoglycan (GAG) and hydroxyproline release. However, addition of plasminogen, which can act as an MMP activator, to cultures resulted in significant GAG and hydroxyproline release in the presence of B. burgdorferi. The MMP inhibitor batimastat significantly reduced the GAG release and completely inhibited the collagen degradation. CONCLUSION MMPs are found in synovial fluids from patients with Lyme arthritis and are induced from cartilage tissue by the presence of B. burgdorferi. Inhibition of MMP activity prevents B. burgdorferi-induced cartilage degradation in vitro.
Collapse
Affiliation(s)
- L T Hu
- New England Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pimenta AF, Strick PL, Levitt P. Novel proteoglycan epitope expressed in functionally discrete patterns in primate cortical and subcortical regions. J Comp Neurol 2001. [DOI: 10.1002/1096-9861(20010212)430:3<369::aid-cne1037>3.0.co;2-c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Bandtlow CE, Zimmermann DR. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 2000; 80:1267-90. [PMID: 11015614 DOI: 10.1152/physrev.2000.80.4.1267] [Citation(s) in RCA: 490] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteoglycans are a heterogeneous class of proteins bearing sulfated glycosaminoglycans. Some of the proteoglycans have distinct core protein structures, and others display similarities and thus may be grouped into families such as the syndecans, the glypicans, or the hyalectans (or lecticans). Proteoglycans can be found in almost all tissues being present in the extracellular matrix, on cellular surfaces, or in intracellular granules. In recent years, brain proteoglycans have attracted growing interest due to their highly regulated spatiotemporal expression during nervous system development and maturation. There is increasing evidence that different proteoglycans act as regulators of cell migration, axonal pathfinding, synaptogenesis, and structural plasticity. This review summarizes the most recent data on structures and functions of brain proteoglycans and focuses on new physiological concepts for their potential roles in the developing central nervous system.
Collapse
Affiliation(s)
- C E Bandtlow
- Brain Research Institute, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland.
| | | |
Collapse
|
45
|
Talts U, Kuhn U, Roos G, Rauch U. Modulation of extracellular matrix adhesiveness by neurocan and identification of its molecular basis. Exp Cell Res 2000; 259:378-88. [PMID: 10964505 DOI: 10.1006/excr.2000.4987] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurocan is one of the major chondroitin sulfate proteoglycans of perinatal rodent brain. HEK-293 cells producing neurocan recombinantly show changes in their behavior. The expression of full-length neurocan led to a detachment of the secreting cells and the formation of floating spheroids. This occurred in the continuous presence of 10% fetal bovine serum in the culture medium. Cells secreting fragments of neurocan-containing chondroitin sulfate chains and the C-terminal domain of the molecule showed a similar behavior, whereas cells expressing fragments of neurocan-containing chondroitin sulfate chains but lacking parts of the C-terminal domain did not show spheroid formation. Cells secreting the hyaluronan-binding N-terminal domain of neurocan showed an enhanced adhesiveness. When untransfected HEK-293 cells were plated on a surface conditioned by spheroid-forming cells, they also formed spheroids. This effect could be abolished by chondroitinase treatment of the conditioned surface. The observations indicate that the ability of the chondroitin sulfate proteoglycan neurocan to modulate the adhesive character of extracellular matrices is dependent on the structural integrity of the C-terminal domain of the core protein.
Collapse
Affiliation(s)
- U Talts
- Department of Protein Chemistry, Max Planck Institute for Biochemistry, Martinsried, 82152, Germany
| | | | | | | |
Collapse
|
46
|
Perissinotto D, Iacopetti P, Bellina I, Doliana R, Colombatti A, Pettway Z, Bronner-Fraser M, Shinomura T, Kimata K, Mörgelin M, Löfberg J, Perris R. Avian neural crest cell migration is diversely regulated by the two major hyaluronan-binding proteoglycans PG-M/versican and aggrecan. Development 2000; 127:2823-42. [PMID: 10851128 DOI: 10.1242/dev.127.13.2823] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been proposed that hyaluronan-binding proteoglycans play an important role as guiding cues during neural crest (NC) cell migration, but their precise function has not been elucidated. In this study, we examine the distribution, structure and putative role of the two major hyaluronan-binding proteoglycans, PG-M/versicans and aggrecan, during the course of avian NC development. PG-M/versicans V0 and V1 are shown to be the prevalent isoforms at initial and advanced phases of NC cell movement, whereas the V2 and V3 transcripts are first detected following gangliogenesis. During NC cell dispersion, mRNAs for PG-M/versicans V0/V1 are transcribed by tissues lining the NC migratory pathways, as well as by tissues delimiting nonpermissive areas. Immunohistochemistry confirm the deposition of the macromolecules in these regions and highlight regional differences in the density of these proteoglycans. PG-M/versicans assembled within the sclerotome rearrange from an initially uniform distribution to a preferentially caudal localization, both at the mRNA and protein level. This reorganization is a direct consequence of the metameric NC cell migration through the rostral portion of the somites. As suggested by previous in situ hybridizations, aggrecan shows a virtually opposite distribution to PG-M/versicans being confined to the perinotochordal ECM and extending dorsolaterally in a segmentally organized manner eventually to the entire spinal cord at axial levels interspacing the ganglia. PG-M/versicans purified from the NC migratory routes are highly polydispersed, have an apparent M(r) of 1,200-2,000 kDa, are primarily substituted with chondroitin-6-sulfates and, upon chondroitinase ABC digestion, are found to be composed of core proteins with apparent M(r)of 360–530, 000. TEM/rotary shadowing analysis of the isolated PG-M/versicans confirmed that they exhibit the characteristic bi-globular shape, have core proteins with sizes predicted for the V0/V1 isoforms and carry relatively few extended glycosaminoglycan chains. Orthotopical implantation of PG-M/versicans immobilized onto transplantable micromembranes tend to ‘attract’ moving cells toward them, whereas similar implantations of a notochordal type-aggrecan retain both single and cohorts of moving NC cells in close proximity of the implant and thereby perturb their spatiotemporal migratory pattern. NC cells fail to migrate through three-dimensional collagen type I-aggrecan substrata in vitro, but locomote in a haptotactic manner through collagen type I-PG-M/versican V0 substrata via engagement of HNK-1 antigen-bearing cell surface components. The present data suggest that PG-M/versicans and notochordal aggrecan exert divergent guiding functions during NC cell dispersion, which are mediated by both their core proteins and glycosaminoglycan side chains and may involve ‘haptotactic-like’ motility phenomena. Whereas aggrecan defines strictly impenetrable embryonic areas, PG-M/versicans are central components of the NC migratory pathways favoring the directed movement of the cells.
Collapse
Affiliation(s)
- D Perissinotto
- The National Cancer Institute, CRO, IRCSS, Division for Experimental Oncology 2, Via Pedemontana Occidentale 12, Aviano (PN) 33081 Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Matrix metalloproteinases (MMPs) are associated with chronic neurologic diseases such as multiple sclerosis and senile dementia. Lyme disease is a multisystemic infection involving the nervous system, skin, joints, and heart. Neurologic manifestations of chronic Lyme disease include encephalopathy and cranial and peripheral neuropathy. Borrelia burgdorferi, the spirochaete causing Lyme disease, has been cultured from the cerebrospinal fluid (CSF), and B. burgdorferi DNA is frequently detected in the CSF of patients with Lyme neuroborreliosis. We used cerebral and cerebellar primary cultures to determine whether B. burgdorferi induces the production of MMPs by primary neural cultures. B. burgdorferi in a dose- and time-dependent manner induced the expression of MMP-9 by primary neural cultures but had no effect on the expression of MMP-2. Human and rat type I astrocytes expressed MMP-9 when incubated with B. burgdorferi in the same manner as primary neural cultures. This response may play a role in the symptomatology and the pathogenesis of Lyme neuroborreliosis.
Collapse
Affiliation(s)
- G Perides
- Tupper Research Institute, Department of Medicine, Tufts University School of Medicine, New England Medical Center, Boston, Massachusetts.
| | | | | | | |
Collapse
|
48
|
Abstract
Damage to the central nervous system (CNS) results in a glial reaction, leading eventually to the formation of a glial scar. In this environment, axon regeneration fails, and remyelination may also be unsuccessful. The glial reaction to injury recruits microglia, oligodendrocyte precursors, meningeal cells, astrocytes and stem cells. Damaged CNS also contains oligodendrocytes and myelin debris. Most of these cell types produce molecules that have been shown to be inhibitory to axon regeneration. Oligodendrocytes produce NI250, myelin-associated glycoprotein (MAG), and tenascin-R, oligodendrocyte precursors produce NG2 DSD-1/phosphacan and versican, astrocytes produce tenascin, brevican, and neurocan, and can be stimulated to produce NG2, meningeal cells produce NG2 and other proteoglycans, and activated microglia produce free radicals, nitric oxide, and arachidonic acid derivatives. Many of these molecules must participate in rendering the damaged CNS inhibitory for axon regeneration. Demyelinated plaques in multiple sclerosis consists mostly of scar-type astrocytes and naked axons. The extent to which the astrocytosis is responsible for blocking remyelination is not established, but astrocytes inhibit the migration of both oligodendrocyte precursors and Schwann cells which must restrict their access to demyelinated axons.
Collapse
Affiliation(s)
- J W Fawcett
- Department of Physiology and MRC Cambridge Centre for Brain Repair, University of Cambridge, UK.
| | | |
Collapse
|
49
|
Lemire JM, Braun KR, Maurel P, Kaplan ED, Schwartz SM, Wight TN. Versican/PG-M isoforms in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19:1630-9. [PMID: 10397680 DOI: 10.1161/01.atv.19.7.1630] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The expression of increased amounts of proteoglycans in the extracellular matrix may play a role in vascular stenosis and lipid retention. The large chondroitin sulfate proteoglycan versican is synthesized by vascular smooth muscle cells (SMCs), accumulates during human atherosclerosis and restenosis, and has been shown to bind LDLs. We recently demonstrated that adult rat aortic SMCs express several versican mRNAs. Four versican splice variants, V0, V1, V2, and V3, have recently been described, which differ dramatically in length. These variants differ in the extent of modification by glycosaminoglycan chains, and V3 may lack glycosaminoglycan chains. In this study, we characterized versican RNAs from rat SMCs by cloning, sequencing, and hybridization with domain-specific probes. DNA sequence was obtained for the V3 isoform, and for a truncated V0 isoform. By hybridization of polyadenylated RNA with domain-specific probes, we determined that the V0, V1, and V3 isoforms are present in vascular SMCs. We confirmed the presence of the V3 isoform in polyadenylated RNA and in RT-PCR products by hybridization with an oligonucleotide that spans the splice junction between the hyaluronan-binding domain and the epidermal growth factor-like domain. In addition, a novel splice variant was cloned by PCR amplification from both rat and human SMC RNA. This appears to be an incompletely spliced variant, retaining the final intron. PCR analysis shows that this intron can be retained in both V1 and V3 isoforms. The predicted translation product of this variant would have a different carboxy-terminus than previously described versican isoforms.
Collapse
Affiliation(s)
- J M Lemire
- Department of Pathology, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Kawashima H, Li YF, Watanabe N, Hirose J, Hirose M, Miyasaka M. Identification and characterization of ligands for L-selectin in the kidney. I. Versican, a large chondroitin sulfate proteoglycan, is a ligand for L-selectin. Int Immunol 1999; 11:393-405. [PMID: 10221651 DOI: 10.1093/intimm/11.3.393] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ligands for a leukocyte adhesion molecule, L-selectin, are expressed not only in the specific vascular endothelium in lymph nodes and Peyer's patches but also in the extravascular tissues such as the brain white matter, choroid plexus and the kidney distal straight tubuli. However, the biological significance of these extravascular ligands is currently unknown. We now report the purification and characterization of a novel extravascular ligand for L-selectin in the kidney using a tubule-derived cell line, ACHN. Binding of L-selectin-IgG chimera (LEC-IgG) to the isolated ligand was specifically blocked with either (i) anti-L-selectin mAb, (ii) EDTA, (iii) fucoidan, (iv) chondroitin sulfate (CS) B or CS E, or (v) treatment with chondroitinases. Partial amino acid sequencing, Western blotting and immunoprecipitation analyses showed that a major ligand for L-selectin in ACHN cells is versican of 1600 kDa. Histochemical as well as biochemical analyses verified that a versican subspecies in the kidney was indeed reactive with L-selectin. Studies with cell lines including those derived from the kidney indicated that a certain glycoform and/or splice form of versican is reactive with L-selectin. Under pathological conditions such as those induced by unilateral ureteral obstruction, versican was shed from the distal straight tubuli and became localized in the adjacent vascular bundles around which a substantial leukocyte infiltration was concomitantly observed. Possible involvement of versican in leukocyte trafficking into the kidney under diseased conditions is discussed.
Collapse
Affiliation(s)
- H Kawashima
- Department of Bioregulation, Biomedical Research Center, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | |
Collapse
|