1
|
Dodd MS, Ambrose L, Ball V, Clarke K, Carr CA, Tyler DJ. The age-dependent development of abnormal cardiac metabolism in the peroxisome proliferator-activated receptor α-knockout mouse. Atherosclerosis 2024; 399:118599. [PMID: 39307613 DOI: 10.1016/j.atherosclerosis.2024.118599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS Peroxisome proliferator-activated receptor α (PPARα) is crucial for regulating cardiac β-oxidation in the heart, liver, and kidney. Ageing can induce cardiac metabolic alterations, but the role of PPARα has not been extensively characterised. The aim of this research was to investigate the role of PPARα in the aged heart. METHODS Hyperpolarized [1-13C]pyruvate was used to evaluate in vivo cardiac carbohydrate metabolism in fed and fasted young (3 months) and old (20-22 months) PPARα knockout (KO) mice versus controls. Cine MRI assessed cardiac structural and functional changes. Cardiac tissue analysis included qRT-PCR and Western blotting for Pparα, medium chain acyl-CoA dehydrenase (MCAD), uncoupling protein (UCP) 3, glucose transporter (GLUT) 4 and PDH kinase (PDK) 1,2, and 4 expression. RESULTS PPARα-KO hearts from both young and old mice showed significantly reduced Pparα mRNA and a 58-59 % decrease in MCAD protein levels compared to controls. Cardiac PDH flux was similar in young control and PPARα-KO mice but 96 % higher in old PPARα-KO mice. Differences between genotypes were consistent in fed and fasted states, with reduced PDH flux when fasted. Increased PDH flux was accompanied by a 179 % rise in myocardial GLUT4 protein. No differences in PDK 1, 2, or 4 protein levels were observed between fed groups, indicating the increased PDH flux in aged PPARα-KO mice was not due to changes in PDH phosphorylation. CONCLUSIONS Aged PPARα-KO mice demonstrated higher cardiac PDH flux compared to controls, facilitated by increased myocardial GLUT4 protein levels, leading to enhanced glucose uptake and glycolysis.
Collapse
Affiliation(s)
- Michael S Dodd
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom; Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom.
| | - Lucy Ambrose
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Vicky Ball
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Kieran Clarke
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Carolyn A Carr
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Damian J Tyler
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| |
Collapse
|
2
|
Kociper B, Škorja Milić N, Ogrizek I, Miš K, Pirkmajer S. Inhibition of the ubiquitin-proteasome system reduces the abundance of pyruvate dehydrogenase kinase 1 in cultured myotubes. J Muscle Res Cell Motil 2024; 45:155-169. [PMID: 39080182 DOI: 10.1007/s10974-024-09679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/05/2024] [Indexed: 08/11/2024]
Abstract
Pyruvate dehydrogenase kinase (PDK), which phosphorylates the pyruvate dehydrogenase complex, regulates glucose metabolism in skeletal muscle. PDK1, an isozyme whose expression is controlled by hypoxia-inducible factor-1α (HIF-1α), is thought to play a role in muscle adaptation to hypoxia. While transcriptional upregulation of PDK1 by HIF-1α is well characterised, mechanisms controlling proteolysis of PDK1 in skeletal muscle have not been thoroughly investigated. Proteasome inhibitor MG132 paradoxically reduced the abundance of PDK1 in human cancer cells and rat L6 myotubes, suggesting that MG132 might direct PDK1 towards autophagic degradation. The objectives of our current study were to determine (1) whether MG132 suppresses PDK1 levels in primary human myotubes, (2) whether chloroquine, an inhibitor of autophagy, prevents MG132-induced suppression of PDK1 in L6 myotubes, and (3) whether PYR-41, an inhibitor of ubiquitination, suppresses PDK1 in L6 myotubes. Using qPCR and/or immunoblotting, we found that despite markedly upregulating HIF-1α protein, MG132 did not alter the PDK1 expression in cultured primary human myotubes, while it suppressed both PDK1 mRNA and protein in L6 myotubes. The PDK1 levels in L6 myotubes were suppressed also during co-treatment with chloroquine and MG132. PYR-41 markedly increased the abundance of HIF-1α in primary human and L6 myotubes, while reducing the abundance of PDK1. In L6 myotubes treated with PYR-41, chloroquine increased the abundance of the epidermal growth factor receptor, but did not prevent the suppression of PDK1. Collectively, our results suggest that cultured myotubes degrade PDK1 via a pathway that cannot be inhibited by MG132, PYR-41, and/or chloroquine.
Collapse
Affiliation(s)
- Blaž Kociper
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Nives Škorja Milić
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Ivana Ogrizek
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia.
| |
Collapse
|
3
|
Khang AR, Kim DH, Kim MJ, Oh CJ, Jeon JH, Choi SH, Lee IK. Reducing Oxidative Stress and Inflammation by Pyruvate Dehydrogenase Kinase 4 Inhibition Is Important in Prevention of Renal Ischemia-Reperfusion Injury in Diabetic Mice. Diabetes Metab J 2024; 48:405-417. [PMID: 38311057 PMCID: PMC11140394 DOI: 10.4093/dmj.2023.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGRUOUND Reactive oxygen species (ROS) and inflammation are reported to have a fundamental role in the pathogenesis of ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury. The present study investigated the role of pyruvate dehydrogenase kinase 4 (PDK4) in ROS production and inflammation following IR injury. METHODS We used a streptozotocin-induced diabetic C57BL6/J mouse model, which was subjected to IR by clamping both renal pedicles. Cellular apoptosis and inflammatory markers were evaluated in NRK-52E cells and mouse primary tubular cells after hypoxia and reoxygenation using a hypoxia work station. RESULTS Following IR injury in diabetic mice, the expression of PDK4, rather than the other PDK isoforms, was induced with a marked increase in pyruvate dehydrogenase E1α (PDHE1α) phosphorylation. This was accompanied by a pronounced ROS activation, as well as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1) production. Notably, sodium dichloroacetate (DCA) attenuated renal IR injury-induced apoptosis which can be attributed to reducing PDK4 expression and PDHE1α phosphorylation levels. DCA or shPdk4 treatment reduced oxidative stress and decreased TNF-α, IL-6, IL-1β, and MCP-1 production after IR or hypoxia-reoxygenation injury. CONCLUSION PDK4 inhibition alleviated renal injury with decreased ROS production and inflammation, supporting a critical role for PDK4 in IR mediated damage. This result indicates another potential target for reno-protection during IR injury; accordingly, the role of PDK4 inhibition needs to be comprehensively elucidated in terms of mitochondrial function during renal IR injury.
Collapse
Affiliation(s)
- Ah Reum Khang
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Dong Hun Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Korea
| | - Min-Ji Kim
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu, Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
4
|
Armour SL, Stanley JE, Cantley J, Dean ED, Knudsen JG. Metabolic regulation of glucagon secretion. J Endocrinol 2023; 259:e230081. [PMID: 37523232 PMCID: PMC10681275 DOI: 10.1530/joe-23-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Since the discovery of glucagon 100 years ago, the hormone and the pancreatic islet alpha cells that produce it have remained enigmatic relative to insulin-producing beta cells. Canonically, alpha cells have been described in the context of glucagon's role in glucose metabolism in liver, with glucose as the primary nutrient signal regulating alpha cell function. However, current data reveal a more holistic model of metabolic signalling, involving glucagon-regulated metabolism of multiple nutrients by the liver and other tissues, including amino acids and lipids, providing reciprocal feedback to regulate glucagon secretion and even alpha cell mass. Here we describe how various nutrients are sensed, transported and metabolised in alpha cells, providing an integrative model for the metabolic regulation of glucagon secretion and action. Importantly, we discuss where these nutrient-sensing pathways intersect to regulate alpha cell function and highlight key areas for future research.
Collapse
Affiliation(s)
- Sarah L Armour
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| | - Jade E. Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
| | - James Cantley
- Division of Cellular and systems medicine, School of Medicine, University of Dundee, UK
| | - E. Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
- Division of Diabetes, Endocrinology, & Metabolism, Vanderbilt University Medical Center school of medicine, USA
| | - Jakob G Knudsen
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| |
Collapse
|
5
|
Liu Y, Dantas E, Ferrer M, Liu Y, Comjean A, Davidson EE, Hu Y, Goncalves MD, Janowitz T, Perrimon N. Tumor Cytokine-Induced Hepatic Gluconeogenesis Contributes to Cancer Cachexia: Insights from Full Body Single Nuclei Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540823. [PMID: 37292804 PMCID: PMC10245574 DOI: 10.1101/2023.05.15.540823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A primary cause of death in cancer patients is cachexia, a wasting syndrome attributed to tumor-induced metabolic dysregulation. Despite the major impact of cachexia on the treatment, quality of life, and survival of cancer patients, relatively little is known about the underlying pathogenic mechanisms. Hyperglycemia detected in glucose tolerance test is one of the earliest metabolic abnormalities observed in cancer patients; however, the pathogenesis by which tumors influence blood sugar levels remains poorly understood. Here, utilizing a Drosophila model, we demonstrate that the tumor secreted interleukin-like cytokine Upd3 induces fat body expression of Pepck1 and Pdk, two key regulatory enzymes of gluconeogenesis, contributing to hyperglycemia. Our data further indicate a conserved regulation of these genes by IL-6/JAK-STAT signaling in mouse models. Importantly, in both fly and mouse cancer cachexia models, elevated gluconeogenesis gene levels are associated with poor prognosis. Altogether, our study uncovers a conserved role of Upd3/IL-6/JAK-STAT signaling in inducing tumor-associated hyperglycemia, which provides insights into the pathogenesis of IL-6 signaling in cancer cachexia.
Collapse
Affiliation(s)
- Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Emma E. Davidson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Marcus D. Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
- Northwell Health Cancer Institute, Northwell Health, New Hyde Park, New York, NY 11042 USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
6
|
Inhibition of Pyruvate Dehydrogenase in the Heart as an Initiating Event in the Development of Diabetic Cardiomyopathy. Antioxidants (Basel) 2023; 12:antiox12030756. [PMID: 36979003 PMCID: PMC10045649 DOI: 10.3390/antiox12030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Obesity affects a growing fraction of the population and is a risk factor for type 2 diabetes and cardiovascular disease. Even in the absence of hypertension and coronary artery disease, type 2 diabetes can result in a heart disease termed diabetic cardiomyopathy. Diminished glucose oxidation, increased reliance on fatty acid oxidation for energy production, and oxidative stress are believed to play causal roles. However, the progression of metabolic changes and mechanisms by which these changes impact the heart have not been established. Cardiac pyruvate dehydrogenase (PDH), the central regulatory site for glucose oxidation, is rapidly inhibited in mice fed high dietary fat, a model of obesity and diabetes. Increased reliance on fatty acid oxidation for energy production, in turn, enhances mitochondrial pro-oxidant production. Inhibition of PDH may therefore initiate metabolic inflexibility and oxidative stress and precipitate diabetic cardiomyopathy. We discuss evidence from the literature that supports a role for PDH inhibition in loss in energy homeostasis and diastolic function in obese and diabetic humans and in rodent models. Finally, seemingly contradictory findings highlight the complexity of the disease and the need to delineate progressive changes in cardiac metabolism, the impact on myocardial structure and function, and the ability to intercede.
Collapse
|
7
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
8
|
Altered Left Ventricular Rat Gene Expression Induced by the Myosin Activator Omecamtiv Mecarbil. Genes (Basel) 2023; 14:genes14010122. [PMID: 36672863 PMCID: PMC9858687 DOI: 10.3390/genes14010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
To explore the impact of omecamtiv mecarbil (OM) on the gene expression profile in adult male rats. Fourteen male Wistar rats were randomly assigned to a single OM (1.2 mg/kg/h; n = 6) or placebo (n = 8) 30-min infusion. Echocardiography was performed before and after OM infusion. Seven days after infusion, rats were euthanized, and left ventricular (LV) tissues were removed for real-time quantitative polymerase chain reaction (RTq-PCR) experiments. After OM infusion, pro-apoptotic Bax-to-Bcl2 ratio was decreased, with increased Bcl2 and similar Bax gene expression. The gene expression of molecules regulating oxidative stress, including glutathione disulfide reductase (Gsr) and superoxide dismutases (Sod1/Sod2), remained unchanged, whereas the expression of antioxidant glutathione peroxidase (Gpx) increased. While LV gene expression of key energy sensors, peroxisome proliferator activator (Ppar) α and γ, AMP-activated protein kinase (Ampk), and carnitine palmitoyltransferase 1 (Cpt1) remained unchanged after OM infusion, and the expression of pyruvate dehydrogenase kinase 4 (Pdk4) increased. The LV expression of the major myocardial glucose transporter Glut1 decreased, with no changes in Glut4 expression, whereas the LV expression of oxidized low-density lipoprotein receptor 1 (Olr1) and arachidonate 15-lipoxygenase (Alox15) increased, with no changes in fatty acid transporter Cd36. An increased LV expression of angiotensin II receptors AT1 and AT2 was observed, with no changes in angiotensin I-converting enzyme expression. The Kalikrein-bradykinin system was upregulated with increased LV expression of kallikrein-related peptidases Klk8, Klk1c2, and Klk1c12 and bradykinin receptors B1 and B2 (Bdkrb1 and Bdkrb2), whereas the LV expression of inducible nitric oxide synthase 2 (Nos2) increased. LV expression in major molecular determinants involved in calcium-dependent myocardial contraction remained unchanged, except for an increased LV expression of calcium/calmodulin-dependent protein kinase II delta (Cacna1c) in response to OM. A single intravenous infusion of OM, in adult healthy rats, resulted in significant changes in the LV expression of genes regulating apoptosis, oxidative stress, metabolism, and cardiac contractility.
Collapse
|
9
|
Lee SH, Choi BY, Kho AR, Hong DK, Kang BS, Park MK, Lee SH, Choi HC, Song HK, Suh SW. Combined Treatment of Dichloroacetic Acid and Pyruvate Increased Neuronal Survival after Seizure. Nutrients 2022; 14:4804. [PMID: 36432491 PMCID: PMC9698956 DOI: 10.3390/nu14224804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
During seizure activity, glucose and Adenosine triphosphate (ATP) levels are significantly decreased in the brain, which is a contributing factor to seizure-induced neuronal death. Dichloroacetic acid (DCA) has been shown to prevent cell death. DCA is also known to be involved in adenosine triphosphate (ATP) production by activating pyruvate dehydrogenase (PDH), a gatekeeper of glucose oxidation, as a pyruvate dehydrogenase kinase (PDK) inhibitor. To confirm these findings, in this study, rats were given a per oral (P.O.) injection of DCA (100 mg/kg) with pyruvate (50 mg/kg) once per day for 1 week starting 2 h after the onset of seizures induced by pilocarpine administration. Neuronal death and oxidative stress were assessed 1 week after seizure to determine if the combined treatment of pyruvate and DCA increased neuronal survival and reduced oxidative damage in the hippocampus. We found that the combined treatment of pyruvate and DCA showed protective effects against seizure-associated hippocampal neuronal cell death compared to the vehicle-treated group. Treatment with combined pyruvate and DCA after seizure may have a therapeutic effect by increasing the proportion of pyruvate converted to ATP. Thus, the current research demonstrates that the combined treatment of pyruvate and DCA may have therapeutic potential in seizure-induced neuronal death.
Collapse
Affiliation(s)
- Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
- Institute of Sports Science, Hallym University, Chuncheon 24252, Korea
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Si Hyun Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hui Chul Choi
- College of Medicine, Neurology, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| | - Hong Ki Song
- College of Medicine, Neurology, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
10
|
Holloway C, Zhong G, Kim YK, Ye H, Sampath H, Hammerling U, Isoherranen N, Quadro L. Retinoic acid regulates pyruvate dehydrogenase kinase 4 (Pdk4) to modulate fuel utilization in the adult heart: Insights from wild-type and β-carotene 9',10' oxygenase knockout mice. FASEB J 2022; 36:e22513. [PMID: 36004605 PMCID: PMC9544431 DOI: 10.1096/fj.202101910rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
Regulation of the pyruvate dehydrogenase (PDH) complex by the pyruvate dehydrogenase kinase PDK4 enables the heart to respond to fluctuations in energy demands and substrate availability. Retinoic acid, the transcriptionally active form of vitamin A, is known to be involved in the regulation of cardiac function and growth during embryogenesis as well as under pathological conditions. Whether retinoic acid also maintains cardiac health under physiological conditions is unknown. However, vitamin A status and intake of its carotenoid precursor β-carotene have been linked to the prevention of heart diseases. Here, we provide in vitro and in vivo evidence that retinoic acid regulates cardiac Pdk4 expression and thus PDH activity. Furthermore, we show that mice lacking β-carotene 9',10'-oxygenase (BCO2), the only enzyme of the adult heart that cleaves β-carotene to generate retinoids (vitamin A and its derivatives), displayed cardiac retinoic acid insufficiency and impaired metabolic flexibility linked to a compromised PDK4/PDH pathway. These findings provide novel insights into the functions of retinoic acid in regulating energy metabolism in adult tissues, especially the heart.
Collapse
Affiliation(s)
- Chelsee Holloway
- Graduate Program in Endocrinology and Animal Bioscience, Rutgers University, New Brunswick, New Jersey, USA.,Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Guo Zhong
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Hong Ye
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Harini Sampath
- Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ulrich Hammerling
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Nina Isoherranen
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
11
|
Zumbaugh MD, Johnson SE, Shi TH, Gerrard DE. Molecular and biochemical regulation of skeletal muscle metabolism. J Anim Sci 2022; 100:6652332. [PMID: 35908794 PMCID: PMC9339271 DOI: 10.1093/jas/skac035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity. The plasticity of muscle permits continuous adaptations to changing intrinsic and extrinsic stimuli that can shift the classification of muscle fibers, which has implications on fiber size, nutrient utilization, and protein turnover rate. The purpose of this paper is to summarize the major metabolic pathways in skeletal muscle and the associated regulatory pathways.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Peng G, Zhu C, Sun Q, Li J, Chen Y, Guo Y, Ji H, Yang F, Dong W. Testicular miRNAs and tsRNAs provide insight into gene regulation during overwintering and reproduction of Onychostoma macrolepis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:481-499. [PMID: 35595880 DOI: 10.1007/s10695-022-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The late overwintering period and breeding period are two important developmental stages of testis in Onychostoma macrolepis. Small non-coding RNAs (sncRNAs) are well-known regulators of biological processes associated with numerous biological processes. This study aimed to elucidate the roles of four sncRNA classes (microRNAs [miRNAs], Piwi-interacting RNAs [piRNAs], tRNA-derived small RNAs [tsRNAs], and rRNA-derived small RNAs [rsRNAs]) across testes in the late overwintering period (in March) and breeding period (in June) by high-throughput sequencing. The testis of O. macrolepis displayed the highest levels of piRNAs and lowest levels of rsRNAs. Compared with miRNAs and tsRNAs in June, tsRNAs in March had a higher abundance, while miRNAs in March had a much lower abundance. Bioinformatics analysis identified 1,362 and 1,340 differentially expressed miRNAs and tsRNAs, respectively. Further analysis showed that miR-200-1, miR-143-1, tRFi-Lys-CTT-1, and tRFi-Glu-CTC-1 could play critical roles during the overwintering and breeding periods. Our findings provided an unprecedented insight to reveal the epigenetic mechanism underlying the overwintering and reproduction process of male O. macrolepis.
Collapse
Affiliation(s)
- Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Jincan Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Yingjie Guo
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Fangxia Yang
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Sugiura K, Hirasaka K, Maeda T, Uchida T, Kishimoto K, Oarada M, Labeit S, Ulla A, Sakakibara I, Nakao R, Sairyo K, Nikawa T. MuRF1 deficiency prevents age-related fat weight gain, possibly through accumulation of PDK4 in skeletal muscle mitochondria in older mice. J Orthop Res 2022; 40:1026-1038. [PMID: 34185335 DOI: 10.1002/jor.25131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 02/04/2023]
Abstract
Recent studies show that muscle mass and metabolic function are interlinked. Muscle RING finger 1 (MuRF1) is a critical muscle-specific ubiquitin ligase associated with muscle atrophy. Yet, the molecular target of MuRF1 in atrophy and aging remains unclear. We examined the role of MuRF1 in aging, using MuRF1-deficient (MuRF1-/- ) mice in vivo, and MuRF1-overexpressing cell in vitro. MuRF1 deficiency partially prevents age-induced skeletal muscle loss in mice. Interestingly, body weight and fat mass of more than 7-month-old MuRF1-/- mice were lower than in MuRF1+/+ mice. Serum and muscle metabolic parameters and results of indirect calorimetry suggest significantly higher energy expenditure and enhanced lipid metabolism in 3-month-old MuRF1-/- mice than in MuRF1+/+ mice, resulting in suppressed adipose tissue gain during aging. Pyruvate dehydrogenase kinase 4 (PDK4) is crucial for a switch from glucose to lipid metabolism, and the interaction between MuRF1 and PDK4 was examined. PDK4 protein levels were elevated in mitochondria from the skeletal muscle in MuRF1-/- mice. In vitro, MuRF1 interacted with PDK4 but did not induce degradation through ubiquitination. Instead, SUMO posttranscriptional modification (SUMOylation) of PDK4 was detected in MuRF1-overexpressing cells, in contrast to cells without the RING domain of MuRF1. MuRF1 deficiency enhances lipid metabolism possibly by upregulating PDK4 localization into mitochondrial through prevention of SUMOylation. Inhibition of MuRF1-mediated PDK4 SUMOylation is a potential therapeutic target for age-related dysfunction of lipid metabolism and muscle atrophy.
Collapse
Affiliation(s)
- Kosuke Sugiura
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthopedics, Institute of Medical Biosciences, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuya Hirasaka
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan.,Division of Marine Energy Utilization, Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Tasuku Maeda
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Koji Kishimoto
- Department of Bioscience and Bioindustry, Tokushima University Graduate School, Tokushima, Japan
| | - Motoko Oarada
- Department of Nutrition Health, Faculty of Nutritional Science Sagami Women's University, Sagamihara, Kanagawa, Japan
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anayt Ulla
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Iori Sakakibara
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Reiko Nakao
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Sairyo
- Department of Orthopedics, Institute of Medical Biosciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
14
|
Astaxanthin Exerts Anabolic Effects via Pleiotropic Modulation of the Excitable Tissue. Int J Mol Sci 2022; 23:ijms23020917. [PMID: 35055102 PMCID: PMC8778848 DOI: 10.3390/ijms23020917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Astaxanthin is a lipid-soluble carotenoid influencing lipid metabolism, body weight, and insulin sensitivity. We provide a systematic analysis of acute and chronic effects of astaxanthin on different organs. Changes by chronic astaxanthin feeding were analyzed on general metabolism, expression of regulatory proteins in the skeletal muscle, as well as changes of excitation and synaptic activity in the hypothalamic arcuate nucleus of mice. Acute responses were also tested on canine cardiac muscle and different neuronal populations of the hypothalamic arcuate nucleus in mice. Dietary astaxanthin significantly increased food intake. It also increased protein levels affecting glucose metabolism and fatty acid biosynthesis in skeletal muscle. Inhibitory inputs innervating neurons of the arcuate nucleus regulating metabolism and food intake were strengthened by both acute and chronic astaxanthin treatment. Astaxanthin moderately shortened cardiac action potentials, depressed their plateau potential, and reduced the maximal rate of depolarization. Based on its complex actions on metabolism and food intake, our data support the previous findings that astaxanthin is suitable for supplementing the diet of patients with disturbances in energy homeostasis.
Collapse
|
15
|
Sex differences in metabolic pathways are regulated by Pfkfb3 and Pdk4 expression in rodent muscle. Commun Biol 2021; 4:1264. [PMID: 34737380 PMCID: PMC8569015 DOI: 10.1038/s42003-021-02790-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscles display sexually dimorphic features. Biochemically, glycolysis and fatty acid β-oxidation occur preferentially in the muscles of males and females, respectively. However, the mechanisms of the selective utilization of these fuels remains elusive. Here, we obtain transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes. Analyses of the transcriptomes unveil two genes, Pfkfb3 (phosphofructokinase-2) and Pdk4 (pyruvate dehydrogenase kinase 4), that may function as switches between the two sexually dimorphic metabolic pathways. Interestingly, Pfkfb3 and Pdk4 show male-enriched and estradiol-enhanced expression, respectively. Moreover, the contribution of these genes to sexually dimorphic metabolism is demonstrated by knockdown studies with cultured type IIB muscle fibers. Considering that skeletal muscles as a whole are the largest energy-consuming organs, our results provide insights into energy metabolism in the two sexes, during the estrus cycle in women, and under pathological conditions involving skeletal muscles. Baba et al. analyzed the transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes and identified Pfkfb3 and Pdk4 as differentially regulated genes between males and diestrus females. The authors found that Pfkfb3 and Pdk4 may act as metabolic switches, showed male-enriched and estradiol-enhanced expression, respectively and contributed to sexually dimorphic metabolism.
Collapse
|
16
|
Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes 2021; 12:1622-1654. [PMID: 34754368 PMCID: PMC8554369 DOI: 10.4239/wjd.v12.i10.1622] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied essentially related to their classical estrogenic and pharmacologic functions. However, their main effect in the body is probably the sustained control of core energy metabolism. Estrogen nuclear and membrane receptors show an extraordinary flexibility in the modulation of metabolic responses, and largely explain gender and age differences in energy metabolism: part of these mechanisms is already sufficiently known to justify both. With regard to energy, the estrogen molecular species act essentially through four key functions: (1) Facilitation of insulin secretion and control of glucose availability; (2) Modulation of energy partition, favoring the use of lipid as the main energy substrate when more available than carbohydrates; (3) Functional protection through antioxidant mechanisms; and (4) Central effects (largely through neural modulation) on whole body energy management. Analyzing the different actions of estrone, estradiol and their acyl esters, a tentative classification based on structure/effects has been postulated. Either separately or as a group, estrogens provide a comprehensive explanation that not all their quite diverse actions are related solely to specific molecules. As a group, they constitute a powerful synergic action complex. In consequence, estrogens may be considered wardens of energy homeostasis.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
17
|
Nagy A, Pethő D, Gesztelyi R, Juhász B, Balla G, Szilvássy Z, Balla J, Gáll T. BGP-15 Inhibits Hyperglycemia-Aggravated VSMC Calcification Induced by High Phosphate. Int J Mol Sci 2021; 22:ijms22179263. [PMID: 34502172 PMCID: PMC8431374 DOI: 10.3390/ijms22179263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Vascular calcification associated with high plasma phosphate (Pi) level is a frequent complication of hyperglycemia, diabetes mellitus, and chronic kidney disease. BGP-15 is an emerging anti-diabetic drug candidate. This study was aimed to explore whether BGP-15 inhibits high Pi-induced calcification of human vascular smooth muscle cells (VSMCs) under normal glucose (NG) and high glucose (HG) conditions. Exposure of VSMCs to Pi resulted in accumulation of extracellular calcium, elevated cellular Pi uptake and intracellular pyruvate dehydrogenase kinase-4 (PDK-4) level, loss of smooth muscle cell markers (ACTA, TAGLN), and enhanced osteochondrogenic gene expression (KLF-5, Msx-2, Sp7, BMP-2). Increased Annexin A2 and decreased matrix Gla protein (MGP) content were found in extracellular vesicles (EVs). The HG condition markedly aggravated Pi-induced VSMC calcification. BGP-15 inhibited Pi uptake and PDK-4 expression that was accompanied by the decreased nuclear translocation of KLF-5, Msx-2, Sp7, retained VSMC markers (ACTA, TAGLN), and decreased BMP-2 in both NG and HG conditions. EVs exhibited increased MGP content and decreased Annexin A2. Importantly, BGP-15 prevented the deposition of calcium in the extracellular matrix. In conclusion, BGP-15 inhibits Pi-induced osteochondrogenic phenotypic switch and mineralization of VSMCs in vitro that make BGP-15 an ideal candidate to attenuate both diabetic and non-diabetic vascular calcification.
Collapse
Affiliation(s)
- Annamária Nagy
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.N.); (D.P.); (T.G.)
- Kálmán Laki Doctoral School, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dávid Pethő
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.N.); (D.P.); (T.G.)
- Kálmán Laki Doctoral School, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary; (R.G.); (B.J.); (Z.S.)
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary; (R.G.); (B.J.); (Z.S.)
| | - György Balla
- ELKH-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary; (R.G.); (B.J.); (Z.S.)
| | - József Balla
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.N.); (D.P.); (T.G.)
- Correspondence: ; Tel.: +36-52-255-500 (ext. 55004)
| | - Tamás Gáll
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.N.); (D.P.); (T.G.)
- ELKH-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
18
|
Mishra A, Srivastava A, Pateriya A, Tomar MS, Mishra AK, Shrivastava A. Metabolic reprograming confers tamoxifen resistance in breast cancer. Chem Biol Interact 2021; 347:109602. [PMID: 34331906 DOI: 10.1016/j.cbi.2021.109602] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common cancer among females and the leading cause of cancer-related deaths. Approximately 70 % of breast cancers are estrogen receptor (ER) positive. An ER antagonist such as tamoxifen is used as adjuvant therapy in ER-positive patients. The major problem with endocrine therapy is the emergence of acquired resistance in approximately 40 % of patients receiving tamoxifen. Metabolic alteration is one of the hallmarks of cancer cells. Rapidly proliferating cancer cells require increased nutritional support to fuel various functions such as proliferation, cell migration, and metastasis. Recent studies have established that the metabolic state of cancer cells influences their susceptibility to chemotherapeutic drugs and that cancer cells reprogram their metabolism to develop into resistant phenotypes. In this review, we discuss the major findings on metabolic pathway alterations in tamoxifen-resistant (TAMR) breast cancer and the molecular mechanisms known to regulate the expression and function of metabolic enzymes and the respective metabolite levels upon tamoxifen treatment. It is anticipated that this in-depth analysis of specific metabolic pathways in TAMR cancer might be exploited therapeutically.
Collapse
Affiliation(s)
- Alok Mishra
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Anshuman Srivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ankit Pateriya
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Anand Kumar Mishra
- Department of Endocrine Surgery, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
19
|
Nguyen T, Zheng M, Knapp M, Sladojevic N, Zhang Q, Ai L, Harrison D, Chen A, Sitikov A, Shen L, Gonzalez FJ, Zhao Q, Fang Y, Liao JJK, Wu R. Endothelial Aryl Hydrocarbon Receptor Nuclear Translocator Mediates the Angiogenic Response to Peripheral Ischemia in Mice With Type 2 Diabetes Mellitus. Front Cell Dev Biol 2021; 9:691801. [PMID: 34179020 PMCID: PMC8222825 DOI: 10.3389/fcell.2021.691801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are the master regulators of angiogenesis, a process that is impaired in patients with diabetes mellitus (DM). The transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT, also known as HIF1β) has been implicated in the development and progression of diabetes. Angiogenesis is driven primarily by endothelial cells (ECs), but both global and EC-specific loss of ARNT-cause are associated with embryonic lethality. Thus, we conducted experiments in a line of mice carrying an inducible, EC-specific ARNT-knockout mutation (Arnt Δ EC, ERT2) to determine whether aberrations in ARNT expression might contribute to the vascular deficiencies associated with diabetes. Mice were first fed with a high-fat diet to induce diabetes. Arnt Δ EC, ERT2 mice were then adminstrated with oral tamoxifen to disrupt Arnt and peripheral angiogenesis was evaluated by using laser-Doppler perfusion imaging to monitor blood flow after hindlimb ischemia. The Arnt Δ EC, ERT2 mice had impaired blood flow recovery under both non-diabetic and diabetic conditions, but the degree of impairment was greater in diabetic animals. In addition, siRNA-mediated knockdown of ARNT activity reduced measurements of tube formation, and cell viability in human umbilical vein endothelial cells (HUVECs) cultured under high-glucose conditions. The Arnt Δ EC, ERT2 mutation also reduced measures of cell viability, while increasing the production of reactive oxygen species (ROS) in microvascular endothelial cells (MVECs) isolated from mouse skeletal muscle, and the viability of Arnt Δ EC, ERT2 MVECs under high-glucose concentrations increased when the cells were treated with an ROS inhibitor. Collectively, these observations suggest that declines in endothelial ARNT expression contribute to the suppressed angiogenic phenotype in diabetic mice, and that the cytoprotective effect of ARNT expression in ECs is at least partially mediated by declines in ROS production.
Collapse
Affiliation(s)
- Tu Nguyen
- Biological Sciences Division – Cardiology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Mei Zheng
- Biological Sciences Division – Cardiology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Maura Knapp
- Biological Sciences Division – Cardiology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Nikola Sladojevic
- Biological Sciences Division – Cardiology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Qin Zhang
- Biological Sciences Division – Cardiology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Lizhuo Ai
- Biological Sciences Division – Cardiology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Devin Harrison
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anna Chen
- Biological Sciences Division – Cardiology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Albert Sitikov
- Biological Sciences Division – Cardiology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Le Shen
- Section of General Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Qiong Zhao
- Division of Cardiology, Department of Medicine, Inova Heart and Vascular Institute, Annandale, VA, United States
| | - Yun Fang
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - James J. K. Liao
- Biological Sciences Division – Cardiology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Rongxue Wu
- Biological Sciences Division – Cardiology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Yang M, Sun L, Jiang T, Kawabata Y, Murayama F, Maegawa T, Taniyama S, Tachibana K, Hirasaka K. Safety Evaluation and Physiological Function of Dietary Balenine Derived From Opah Lampris guttatus on Skeletal Muscle of Mice. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10236-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
PDK2: An Underappreciated Regulator of Liver Metabolism. LIVERS 2021. [DOI: 10.3390/livers1020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyruvate metabolism is critical for all mammalian cells. The pyruvate dehydrogenase complex couples the pyruvate formed as the primary product of glycolysis to the formation of acetyl-CoA required as the primary substrate of the citric acid cycle. Dysregulation of this coupling contributes to alterations in metabolic flexibility in obesity, diabetes, cancer, and more. The pyruvate dehydrogenase kinase family of isozymes phosphorylate and inactive the pyruvate dehydrogenase complex in the mitochondria. This function makes them critical mediators of mitochondrial metabolism and drug targets in a number of disease states. The liver expresses multiple PDKs, predominantly PDK1 and PDK2 in the fed state and PDK1, PDK2, and PDK4 in the starved and diabetic states. PDK4 undergoes substantial transcriptional regulation in response to a diverse array of stimuli in most tissues. PDK2 has received less attention than PDK4 potentially due to the dramatic changes in transcriptional gene regulation. However, PDK2 is more responsive than the other PDKs to feedforward and feedback regulation by substrates and products of the pyruvate dehydrogenase complex. Although underappreciated, this makes PDK2 particularly important for the minute-to-minute fine control of the pyruvate dehydrogenase complex and a major contributor to metabolic flexibility. The purpose of this review is to characterize the underappreciated role of PDK2 in liver metabolism. We will focus on known biological actions and physiological roles as well as what roles PDK2 may play in disease states. We will also define current inhibitors and address their potential as therapeutic agents in the future.
Collapse
|
22
|
The 'Jekyll and Hyde' of Gluconeogenesis: Early Life Adversity, Later Life Stress, and Metabolic Disturbances. Int J Mol Sci 2021; 22:ijms22073344. [PMID: 33805856 PMCID: PMC8037741 DOI: 10.3390/ijms22073344] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
The physiological response to a psychological stressor broadly impacts energy metabolism. Inversely, changes in energy availability affect the physiological response to the stressor in terms of hypothalamus, pituitary adrenal axis (HPA), and sympathetic nervous system activation. Glucocorticoids, the endpoint of the HPA axis, are critical checkpoints in endocrine control of energy homeostasis and have been linked to metabolic diseases including obesity, insulin resistance, and type 2 diabetes. Glucocorticoids, through the glucocorticoid receptor, activate transcription of genes associated with glucose and lipid regulatory pathways and thereby control both physiological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of glucocorticoid functions in energy metabolism and systemic metabolic dysfunction, particularly focusing on glucose and lipid metabolism. There are elements in the external environment that induce lifelong changes in the HPA axis stress response and glucocorticoid levels, and the most prominent are early life adversity, or exposure to traumatic stress. We hypothesise that when the HPA axis is so disturbed after early life adversity, it will fundamentally alter hepatic gluconeogenesis, inducing hyperglycaemia, and hence crystalise the significant lifelong risk of developing either the metabolic syndrome, or type 2 diabetes. This gives a “Jekyll and Hyde” role to gluconeogenesis, providing the necessary energy in situations of acute stress, but driving towards pathophysiological consequences when the HPA axis has been altered.
Collapse
|
23
|
Song X, Liu J, Kuang F, Chen X, Zeh HJ, Kang R, Kroemer G, Xie Y, Tang D. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep 2021; 34:108767. [PMID: 33626342 DOI: 10.1016/j.celrep.2021.108767] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/29/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Although induction of ferroptosis, an iron-dependent form of non-apoptotic cell death, has emerged as an anticancer strategy, the metabolic basis of ferroptotic death remains poorly elucidated. Here, we show that glucose determines the sensitivity of human pancreatic ductal carcinoma cells to ferroptosis induced by pharmacologically inhibiting system xc-. Mechanistically, SLC2A1-mediated glucose uptake promotes glycolysis and, thus, facilitates pyruvate oxidation, fuels the tricyclic acid cycle, and stimulates fatty acid synthesis, which finally facilitates lipid peroxidation-dependent ferroptotic death. Screening of a small interfering RNA (siRNA) library targeting metabolic enzymes leads to identification of pyruvate dehydrogenase kinase 4 (PDK4) as the top gene responsible for ferroptosis resistance. PDK4 inhibits ferroptosis by blocking pyruvate dehydrogenase-dependent pyruvate oxidation. Inhibiting PDK4 enhances the anticancer activity of system xc- inhibitors in vitro and in suitable preclinical mouse models (e.g., a high-fat diet diabetes model). These findings reveal metabolic reprogramming as a potential target for overcoming ferroptosis resistance.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Diet, High-Fat
- Drug Resistance, Neoplasm
- Energy Metabolism
- Fatty Acids/biosynthesis
- Ferroptosis/drug effects
- Gene Expression Regulation, Neoplastic
- Glucose Transporter Type 1/genetics
- Glucose Transporter Type 1/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Oxidation-Reduction
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Pyruvic Acid/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangdong, China
| | - Feimei Kuang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangdong, China
| | - Xin Chen
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France; Université Pierre et Marie Curie, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Hunan, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Yan D, Cai Y, Luo J, Liu J, Li X, Ying F, Xie X, Xu A, Ma X, Xia Z. FOXO1 contributes to diabetic cardiomyopathy via inducing imbalanced oxidative metabolism in type 1 diabetes. J Cell Mol Med 2020; 24:7850-7861. [PMID: 32450616 PMCID: PMC7348139 DOI: 10.1111/jcmm.15418] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Forkhead box protein O1 (FOXO1), a nuclear transcription factor, is preferably activated in the myocardium of diabetic mice. However, its role and mechanism in the development of diabetic cardiomyopathy in non-obese insulin-deficient diabetes are unclear. We hypothesized that cardiac FOXO1 over-activation was attributable to the imbalanced myocardial oxidative metabolism and mitochondrial and cardiac dysfunction in type 1 diabetes. FOXO1-selective inhibitor AS1842856 was administered to streptozotocin-induced diabetic (D) rats, and cardiac functions, mitochondrial enzymes PDK4 and CPT1 and mitochondrial function were assessed. Primary cardiomyocytes isolated from non-diabetic control (C) and D rats were treated with or without 1 µM AS1842856 and underwent Seahorse experiment to determine the effects of glucose, palmitate and pyruvate on cardiomyocyte bioenergetics. The results showed diabetic hearts displayed elevated FOXO1 nuclear translocation, concomitant with cardiac and mitochondrial dysfunction (manifested as elevated mtROS level and reduced mitochondrial membrane potential) and increased cell apoptosis (all P < .05, D vs C). Diabetic myocardium showed impaired glycolysis, glucose oxidation and elevated fatty acid oxidation and enhanced PDK4 and CPT1 expression. AS1842856 attenuated or prevented all these changes except for glycolysis. We concluded that FOXO1 activation, through stimulating PDK4 and CPT1, shifts substrate selection from glucose to fatty acid and causes mitochondrial and cardiac dysfunction.
Collapse
Affiliation(s)
- Dan Yan
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China.,Diabetes Center, Shenzhen University, Shenzhen, China
| | - Yin Cai
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Jierong Luo
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Jingjin Liu
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Xia Li
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Ying
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Xiang Xie
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaosong Ma
- Diabetes Center, Shenzhen University, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Bolfer L, Estrada AH, Larkin C, Conlon TJ, Lourenco F, Taggart K, Suzuki-Hatano S, Pacak CA. Functional Consequences of PDK4 Deficiency in Doberman Pinscher Fibroblasts. Sci Rep 2020; 10:3930. [PMID: 32127618 PMCID: PMC7054397 DOI: 10.1038/s41598-020-60879-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
A splice site mutation in the canine pyruvate dehydrogenase kinase 4 (PDK4) gene has been shown to be associated with the development of dilated cardiomyopathy (DCM) in Doberman Pinchers (DPs). Subsequent studies have successfully demonstrated the use of dermal fibroblasts isolated from DPs as models for PDK4 deficiency and have shown activation of the intrinsic (mitochondrial mediated) apoptosis pathway in these cells under starvation conditions. For this study, we sought to further explore the functional consequences of PDK4 deficiency in DP fibroblasts representing PDK4wt/wt, PDK4wt/del, and PDK4del/del genotypes. Our results show that starvation conditions cause increased perinuclear localization of mitochondria and decreased cell proliferation, altered expression levels of pyruvate dehydrogenase phosphatase (PDP) and pyruvate dehydrogenase (PDH), dramatically increased PDH activity, and an impaired response to mitochondrial stress in affected cells. In sum, these results show the broad impact of PDK4 deficiency and reveal mechanistic pathways used by these cells in an attempt to compensate for the condition. Our data help to elucidate the mechanisms at play in this extremely prevalent DP disorder and provide further support demonstrating the general importance of metabolic flexibility in cell health.
Collapse
Affiliation(s)
- Luiz Bolfer
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32610, USA
| | - Amara H Estrada
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32610, USA
| | - Chelsea Larkin
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32610, USA.,Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Thomas J Conlon
- CR Scientific and Compliance Consulting, LLC, Gainesville, FL, 32608, USA
| | - Francisco Lourenco
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32610, USA
| | - Kathryn Taggart
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32610, USA
| | - Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA. .,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
26
|
Makrecka‐Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, Goede P, O'Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 2020; 228:e13430. [PMID: 31840389 DOI: 10.1111/apha.13430] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Hélène Lemieux
- Department of Medicine Faculty Saint‐Jean, Women and Children's Health Research Institute University of Alberta Edmonton AB Canada
| | | | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Woo H. Han
- Faculty Saint‐Jean University of Alberta Edmonton AB Canada
| | - Paul Goede
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katie A. O'Brien
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Belma Turan
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Erkan Tuncay
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Yusuf Olgar
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Anabela P. Rolo
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Neoma T. Boardman
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| | - Rob C. I. Wüst
- Laboratory for Myology Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Terje S. Larsen
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| |
Collapse
|
27
|
Schneider J, Han WH, Matthew R, Sauvé Y, Lemieux H. Age and sex as confounding factors in the relationship between cardiac mitochondrial function and type 2 diabetes in the Nile Grass rat. PLoS One 2020; 15:e0228710. [PMID: 32084168 PMCID: PMC7034865 DOI: 10.1371/journal.pone.0228710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our study revisits the role of cardiac mitochondrial adjustments during the progression of type 2 diabetes mellitus (T2DM), while considering age and sex as potential confounding factors. We used the Nile Grass rats (NRs) as the animal model. After weaning, animals were fed either a Standard Rodent Chow Diet (SRCD group) or a Mazuri Chinchilla Diet (MCD group) consisting of high-fiber and low-fat content. Both males and females in the SRCD group, exhibited increased body mass, body mass index, and plasma insulin compared to the MCD group animals. However, the females were able to preserve their fasting blood glucose throughout the age range on both diets, while the males showed significant hyperglycemia starting at 6 months in the SRCD group. In the males, a higher citrate synthase activity-a marker of mitochondrial content-was measured at 2 months in the SRCD compared to the MCD group, and this was followed by a decline with age in the SRCD group only. In contrast, females preserved their mitochondrial content throughout the age range. In the males exclusively, the complex IV capacity expressed independently of mitochondrial content varied with age in a diet-specific pattern; the capacity was elevated at 2 months in the SRCD group, and at 6 months in the MCD group. In addition, females, but not males, were able to adjust their capacity to oxidize long-chain fatty acid in accordance with the fat content of the diet. Our results show clear sexual dimorphism in the variation of mitochondrial content and oxidative phosphorylation capacity with diet and age. The SRCD not only leads to T2DM but also exacerbates age-related cardiac mitochondrial defects. These observations, specific to male NRs, might reflect deleterious dietary-induced changes on their metabolism making them more prone to the cardiovascular consequences of aging and T2DM.
Collapse
Affiliation(s)
- Jillian Schneider
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Matthew
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Mitochondrial MUL1 E3 ubiquitin ligase regulates Hypoxia Inducible Factor (HIF-1α) and metabolic reprogramming by modulating the UBXN7 cofactor protein. Sci Rep 2020; 10:1609. [PMID: 32005965 PMCID: PMC6994496 DOI: 10.1038/s41598-020-58484-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/18/2019] [Indexed: 11/15/2022] Open
Abstract
MUL1 is a multifunctional E3 ubiquitin ligase anchored in the outer mitochondrial membrane with its RING finger domain facing the cytoplasm. MUL1 participates in various biological pathways involved in apoptosis, mitochondrial dynamics, and innate immune response. The unique topology of MUL1 enables it to “sense” mitochondrial stress in the intermembrane mitochondrial space and convey these signals through the ubiquitination of specific cytoplasmic substrates. We have identified UBXN7, the cofactor protein of the CRL2VHL ligase complex, as a specific substrate of MUL1 ligase. CRL2VHL ligase complex regulates HIF-1α protein levels under aerobic (normoxia) or anaerobic (hypoxia) conditions. Inactivation of MUL1 ligase leads to accumulation of UBXN7, with concomitant increase in HIF-1α protein levels, reduction in oxidative phosphorylation, and increased glycolysis. We describe a novel pathway that originates in the mitochondria and operates upstream of the CRL2VHL ligase complex. Furthermore, we delineate the mechanism by which the mitochondria, through MUL1 ligase, can inhibit the CRL2VHL complex leading to high HIF-1α protein levels and a metabolic shift to glycolysis under normoxic conditions.
Collapse
|
29
|
Segura-Cerda CA, López-Romero W, Flores-Valdez MA. Changes in Host Response to Mycobacterium tuberculosis Infection Associated With Type 2 Diabetes: Beyond Hyperglycemia. Front Cell Infect Microbiol 2019; 9:342. [PMID: 31637222 PMCID: PMC6787561 DOI: 10.3389/fcimb.2019.00342] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) remains as the first cause of death among infectious diseases worldwide. Global incidence of tuberculosis is in part coincident with incidence of type 2 diabetes (T2D). Incidence of T2D is recognized as a high-risk factor that may contribute to tuberculosis dissemination. However, mechanisms which favor infection under T2D are just starting to emerge. Here, we first discuss the evidences that are available to support a metabolic connection between TB and T2D. Then, we analyze the evidences of metabolic changes which occur during T2D gathered thus far for its influence on susceptibility to M. tuberculosis infection and TB progression, such as hyperglycemia, increase of 1AC levels, increase of triglycerides levels, reduction of HDL-cholesterol levels, increased concentration of lipoproteins, and modification of the activity of some hormones related to the control of metabolic homeostasis. Finally, we recognize possible advantages of metabolic management of immunity to develop new strategies for treatment, diagnosis, and prevention of tuberculosis.
Collapse
Affiliation(s)
- Cristian Alfredo Segura-Cerda
- Doctorado en Farmacología, Universidad de Guadalajara, Guadalajara, Mexico.,Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Wendy López-Romero
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
30
|
Effect of flaxseed oil on muscle protein loss and carbohydrate oxidation impairment in a pig model after lipopolysaccharide challenge. Br J Nutr 2019; 123:859-869. [PMID: 31524111 DOI: 10.1017/s0007114519002393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flaxseed oil is rich in α-linolenic acid (ALA), which is the metabolic precursor of EPA and DHA. The present study investigated the effect of flaxseed oil supplementation on lipopolysaccharide (LPS)-induced muscle atrophy and carbohydrate oxidation impairment in a piglet model. Twenty-four weaned pigs were used in a 2 × 2 factorial experiment including dietary treatment (5 % maize oil v. 5 % flaxseed oil) and LPS challenge (saline v. LPS). On day 21 of treatment, the pigs were injected intraperitoneally with 100 μg/kg body weight LPS or sterile saline. At 4 h after injection, blood, gastrocnemius muscle and longissimus dorsi muscle were collected. Flaxseed oil supplementation increased ALA, EPA, total n-3 PUFA contents, protein:DNA ratio and pyruvate dehydrogenase complex quantity in muscles (P < 0·05). In addition, flaxseed oil reduced mRNA expression of toll-like receptor (TLR) 4 and nucleotide-binding oligomerisation domain protein (NOD) 2 and their downstream signalling molecules in muscles and decreased plasma concentrations of TNF-α, IL-6 and IL-8, and mRNA expression of TNF-α, IL-1β and IL-6 (P < 0·05). Moreover, flaxseed oil inclusion increased the ratios of phosphorylated protein kinase B (Akt) 1:total Akt1 and phosphorylated Forkhead box O (FOXO) 1:total FOXO1 and reduced mRNA expression of FOXO1, muscle RING finger (MuRF) 1 and pyruvate dehydrogenase kinase 4 in muscles (P < 0·05). These results suggest that flaxseed oil might have a positive effect on alleviating muscle protein loss and carbohydrates oxidation impairment induced by LPS challenge through regulation of the TLR4/NOD and Akt/FOXO signalling pathways.
Collapse
|
31
|
The Effects of Sodium Dichloroacetate on Mitochondrial Dysfunction and Neuronal Death Following Hypoglycemia-Induced Injury. Cells 2019; 8:cells8050405. [PMID: 31052436 PMCID: PMC6562710 DOI: 10.3390/cells8050405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022] Open
Abstract
Our previous studies demonstrated that some degree of neuronal death is caused by hypoglycemia, but a subsequent and more severe wave of neuronal cell death occurs due to glucose reperfusion, which results from the rapid restoration of low blood glucose levels. Mitochondrial dysfunction caused by hypoglycemia leads to increased levels of pyruvate dehydrogenase kinase (PDK) and suppresses the formation of ATP by inhibiting pyruvate dehydrogenase (PDH) activation, which can convert pyruvate into acetyl-coenzyme A (acetyl-CoA). Sodium dichloroacetate (DCA) is a PDK inhibitor and activates PDH, the gatekeeper of glucose oxidation. However, no studies about the effect of DCA on hypoglycemia have been published. In the present study, we hypothesized that DCA treatment could reduce neuronal death through improvement of glycolysis and prevention of reactive oxygen species production after hypoglycemia. To test this, we used an animal model of insulin-induced hypoglycemia and injected DCA (100 mg/kg, i.v., two days) following hypoglycemic insult. Histological evaluation was performed one week after hypoglycemia. DCA treatment reduced hypoglycemia-induced oxidative stress, microglial activation, blood–brain barrier disruption, and neuronal death compared to the vehicle-treated hypoglycemia group. Therefore, our findings suggest that DCA may have the therapeutic potential to reduce hippocampal neuronal death after hypoglycemia.
Collapse
|
32
|
Sukonina V, Ma H, Zhang W, Bartesaghi S, Subhash S, Heglind M, Foyn H, Betz MJ, Nilsson D, Lidell ME, Naumann J, Haufs-Brusberg S, Palmgren H, Mondal T, Beg M, Jedrychowski MP, Taskén K, Pfeifer A, Peng XR, Kanduri C, Enerbäck S. FOXK1 and FOXK2 regulate aerobic glycolysis. Nature 2019; 566:279-283. [PMID: 30700909 DOI: 10.1038/s41586-019-0900-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
Adaptation to the environment and extraction of energy are essential for survival. Some species have found niches and specialized in using a particular source of energy, whereas others-including humans and several other mammals-have developed a high degree of flexibility1. A lot is known about the general metabolic fates of different substrates but we still lack a detailed mechanistic understanding of how cells adapt in their use of basic nutrients2. Here we show that the closely related fasting/starvation-induced forkhead transcription factors FOXK1 and FOXK2 induce aerobic glycolysis by upregulating the enzymatic machinery required for this (for example, hexokinase-2, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase), while at the same time suppressing further oxidation of pyruvate in the mitochondria by increasing the activity of pyruvate dehydrogenase kinases 1 and 4. Together with suppression of the catalytic subunit of pyruvate dehydrogenase phosphatase 1 this leads to increased phosphorylation of the E1α regulatory subunit of the pyruvate dehydrogenase complex, which in turn inhibits further oxidation of pyruvate in the mitochondria-instead, pyruvate is reduced to lactate. Suppression of FOXK1 and FOXK2 induce the opposite phenotype. Both in vitro and in vivo experiments, including studies of primary human cells, show how FOXK1 and/or FOXK2 are likely to act as important regulators that reprogram cellular metabolism to induce aerobic glycolysis.
Collapse
Affiliation(s)
- Valentina Sukonina
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Haixia Ma
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Wei Zhang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Bartesaghi
- Diabetes Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZenca, Gothenburg, Sweden
| | - Santhilal Subhash
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Heglind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Håvard Foyn
- Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Matthias J Betz
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Endocrinology, University Hospital Basel, Basel, Switzerland
| | - Daniel Nilsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin E Lidell
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer Naumann
- Institute of Pharmacology and Toxicology, University Hospital Bonn, Bonn, Germany.,PharmaCenter, University of Bonn, Bonn, Germany
| | - Saskia Haufs-Brusberg
- Institute of Pharmacology and Toxicology, University Hospital Bonn, Bonn, Germany.,PharmaCenter, University of Bonn, Bonn, Germany
| | - Henrik Palmgren
- Diabetes Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZenca, Gothenburg, Sweden
| | - Tanmoy Mondal
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Muheeb Beg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard University Medical School, Boston, MA, USA
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, Bonn, Germany.,PharmaCenter, University of Bonn, Bonn, Germany
| | - Xiao-Rong Peng
- Diabetes Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZenca, Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
33
|
Lee D, Pagire HS, Pagire SH, Bae EJ, Dighe M, Kim M, Lee KM, Jang YK, Jaladi AK, Jung KY, Yoo EK, Gim HE, Lee S, Choi WI, Chi YI, Song JS, Bae MA, Jeon YH, Lee GH, Liu KH, Lee T, Park S, Jeon JH, Lee IK, Ahn JH. Discovery of Novel Pyruvate Dehydrogenase Kinase 4 Inhibitors for Potential Oral Treatment of Metabolic Diseases. J Med Chem 2019; 62:575-588. [DOI: 10.1021/acs.jmedchem.8b01168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dahye Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haushabhau S. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Suvarna H. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Eun Jung Bae
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Mahesh Dighe
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Minhee Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kyu Myung Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yoon Kyung Jang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Ashok Kumar Jaladi
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kwan-Young Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Eun Kyung Yoo
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Hee Eon Gim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Seungmi Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Won-Il Choi
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Young-In Chi
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Jin Sook Song
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yong Hyun Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Ga-Hyun Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Taeho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
34
|
Klyuyeva A, Tuganova A, Kedishvili N, Popov KM. Tissue-specific kinase expression and activity regulate flux through the pyruvate dehydrogenase complex. J Biol Chem 2018; 294:838-851. [PMID: 30482839 DOI: 10.1074/jbc.ra118.006433] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/23/2018] [Indexed: 01/15/2023] Open
Abstract
The pyruvate dehydrogenase complex (PDC) is a multienzyme assembly that converts pyruvate to acetyl-CoA. As pyruvate and acetyl-CoA play central roles in cellular metabolism, understanding PDC regulation is pivotal to understanding the larger metabolic network. The activity of mammalian PDC is regulated through reversible phosphorylation governed by at least four isozymes of pyruvate dehydrogenase kinase (PDK). Deciphering which kinase regulates PDC in organisms at specific times or places has been challenging. In this study, we analyzed mouse strains carrying targeted mutations of individual isozymes to explore their role in regulating PDC activity. Analysis of protein content of PDK isozymes in major metabolic tissues revealed that PDK1 and PDK2 were ubiquitously expressed, whereas PDK3 and PDK4 displayed a rather limited tissue distribution. Measurement of kinase activity showed that PDK1 is the principal isozyme regulating hepatic PDC. PDK2 was largely responsible for inactivation of PDC in tissues of muscle origin and brown adipose tissue (BAT). PDK3 was the principal kinase regulating pyruvate dehydrogenase activity in kidney and brain. In a well-fed state, the tissue levels of PDK4 protein were fairly low. In most tissues tested, PDK4 ablation had little effect on the overall rates of inactivation of PDC in kinase reaction. Taken together, these data strongly suggest that the activity of PDC is regulated by different isozymes in different tissues. Furthermore, it appears that the overall flux through PDC in a given tissue largely reflects the properties of the PDK isozyme that is principally responsible for the regulation of PDC activity in that tissue.
Collapse
Affiliation(s)
- Alla Klyuyeva
- From the Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Alina Tuganova
- From the Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Natalia Kedishvili
- From the Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kirill M Popov
- From the Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
35
|
Miyazaki T, Nakamura Y, Ebina K, Mizushima T, Ra SG, Ishikura K, Matsuzaki Y, Ohmori H, Honda A. Increased N-Acetyltaurine in the Skeletal Muscle After Endurance Exercise in Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:403-411. [PMID: 28849471 DOI: 10.1007/978-94-024-1079-2_33] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Taurine is metabolized to a novel metabolite, N-acetyltaurine (NAT), through N-acetylation with acetate. Furthermore, NAT production increases when the endogenous production of acetate is elevated in some situations, such as alcohol catabolism and endurance exercise. We have previously reported that both the serum concentration and urinary excretion of NAT from humans were increased after endurance exercise, and that NAT was secreted by cultured skeletal muscle cells exposed to both acetate and taurine. The present study evaluated the hypothesis that NAT is synthesized in the skeletal muscle after endurance exercise. Normal rats were loaded to a transient treadmill running until exhaustion. Serum, skeletal muscle, and liver were collected immediately after the exercise. The NAT concentration in the plasma and in the soleus muscle from the exercised rats was significantly increased compared to that in the samples from the sedentary control rats. There was a significant positive correlation in the NAT concentration between the plasma and soleus muscle. The NAT concentration in the liver was unchanged after the endurance exercise. These results confirm that the significantly increased NAT in both the serum and urine after endurance exercise is derived from NAT synthesis in the skeletal muscle.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.
| | | | | | | | | | | | | | | | - Akira Honda
- Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
36
|
Park BY, Jeon JH, Go Y, Ham HJ, Kim JE, Yoo EK, Kwon WH, Jeoung NH, Jeon YH, Koo SH, Kim BG, He L, Park KG, Harris RA, Lee IK. PDK4 Deficiency Suppresses Hepatic Glucagon Signaling by Decreasing cAMP Levels. Diabetes 2018; 67:2054-2068. [PMID: 30065033 PMCID: PMC6463749 DOI: 10.2337/db17-1529] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
In fasting or diabetes, gluconeogenic genes are transcriptionally activated by glucagon stimulation of the cAMP-protein kinase A (PKA)-CREB signaling pathway. Previous work showed pyruvate dehydrogenase kinase (PDK) inhibition in skeletal muscle increases pyruvate oxidation, which limits the availability of gluconeogenic substrates in the liver. However, this study found upregulation of hepatic PDK4 promoted glucagon-mediated expression of gluconeogenic genes, whereas knockdown or inhibition of hepatic PDK4 caused the opposite effect on gluconeogenic gene expression and decreased hepatic glucose production. Mechanistically, PDK4 deficiency decreased ATP levels, thus increasing phosphorylated AMPK (p-AMPK), which increased p-AMPK-sensitive phosphorylation of cyclic nucleotide phosphodiesterase 4B (p-PDE4B). This reduced cAMP levels and consequently p-CREB. Metabolic flux analysis showed that the reduction in ATP was a consequence of a diminished rate of fatty acid oxidation (FAO). However, overexpression of PDK4 increased FAO and increased ATP levels, which decreased p-AMPK and p-PDE4B and allowed greater accumulation of cAMP and p-CREB. The latter were abrogated by the FAO inhibitor etomoxir, suggesting a critical role for PDK4 in FAO stimulation and the regulation of cAMP levels. This finding strengthens the possibility of PDK4 as a target against diabetes.
Collapse
Affiliation(s)
- Bo-Yoon Park
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Younghoon Go
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Hye Jin Ham
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jeong-Eun Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Eun Kyung Yoo
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Woong Hee Kwon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Nam-Ho Jeoung
- Department of Pharmaceutical Science and Technology, Catholic University of Daegu, Gyeongsan, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, UNIST, Ulsan, Republic of Korea
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
37
|
Lado-Abeal J, Martinez-Sánchez N, Cocho JA, Martín-Pastor M, Castro-Piedras I, Couce-Pico ML, Saha AK, López M. Lipopolysaccharide (LPS)-induced septic shock causes profound changes in myocardial energy metabolites in pigs. Metabolomics 2018; 14:131. [PMID: 30830414 DOI: 10.1007/s11306-018-1433-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Energy deficiency is a cause for myocardial dysfunction during septic shock. In rodents, septic shock decreases the oxidation of long-chain fatty acids and glucose in the myocardium causing energy deficiency. However, the effect of septic shock on myocardial energy metabolites in large animals and human is unknown. OBJECTIVES Investigate the effects of septic shock on myocardial energy metabolites in domestic pigs. METHODS Seventeen female pigs divided into control and lipopolysaccharide (LPS)-induced septic shock groups. Myocardial metabolites were analyzed ex vivo by 1H nuclear magnetic resonance spectroscopy and liquid chromatography-tandem mass spectrometry. Gene and protein expression analysis were analyzed by real-time PCR and western blot. RESULTS Septic shock was associated with an increase in myocardial levels of short- and medium-chain acylcarnitines, lactate, alanine, and pyruvate dehydrogenase kinase 4 gene expression. COX-2 and prostaglandin E4 receptor gene expression also increased in the septic myocardium, although the only elevated eicosanoid in the septic animals was thromboxane B2. Myocardial levels of niacin, taurine, glutamate, glutamine, and glutathione were higher, and hypoxanthine levels lower in septic pigs than controls. CONCLUSIONS In pigs, septic shock induced by LPS caused myocardial changes directed to decrease the oxidation of medium- and short-chain fatty acid without an effect on long-chain fatty acid oxidation. The increase in myocardial levels of lactate, alanine, and pyruvate dehydrogenase kinase 4 gene expression suggest that septic shock decreases pyruvate dehydrogenase complex activity and glucose oxidation. Homeostasis of niacin, taurine, glutamate, glutamine, glutathione, hypoxanthine and thromboxane B2 is also affected in the septic myocardium.
Collapse
Affiliation(s)
- Joaquin Lado-Abeal
- Division of Endocrinology, Department of Internal Medicine, Texas Tech University Health Sciences Center-School of Medicine, Lubbock, TX, USA.
- Unidade de Enfermedades Tiroideas e Metabolicas (UETeM), Department of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine Truman Medical Centers, University of Missouri-Kansas City School of Medicine, 2301 Holmes Street, Kansas City, MO, 64108, USA.
| | - Noelia Martinez-Sánchez
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Jose Angel Cocho
- Unidad de Diagnóstico y Tratamiento de las Enfermedades Metabólicas, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Martín-Pastor
- Unidade de Resonancia Magnética (RIAIDT), Edif, CACTUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Isabel Castro-Piedras
- Division of Endocrinology, Department of Internal Medicine, Texas Tech University Health Sciences Center-School of Medicine, Lubbock, TX, USA
| | - M Luz Couce-Pico
- Unidad de Diagnóstico y Tratamiento de las Enfermedades Metabólicas, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Asish K Saha
- Division of Endocrinology, Diabetes and Nutrition, Boston University Medical Center, Boston, MA, USA
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| |
Collapse
|
38
|
Hiramoto S, Yahata N, Saitoh K, Yoshimura T, Wang Y, Taniyama S, Nikawa T, Tachibana K, Hirasaka K. Dietary supplementation with alkylresorcinols prevents muscle atrophy through a shift of energy supply. J Nutr Biochem 2018; 61:147-154. [PMID: 30236871 DOI: 10.1016/j.jnutbio.2018.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022]
Abstract
It has been reported that phytoextracts that contain alkylresorcinols (ARs) protect against severe myofibrillar degeneration found in isoproterenol-induced myocardial infarction. In this study, we examined the effect of dietary ARs derived from wheat bran extracts on muscle atrophy in denervated mice. The mice were divided into the following four groups: (1) sham-operated (control) mice fed with normal diet (S-ND), (2) denervated mice fed with normal diet (D-ND), (3) control mice fed with ARs-supplemented diet (S-AR) and (4) denervated mice fed with ARs-supplemented diet (D-AR). The intake of ARs prevented the denervation-induced reduction of the weight of the hind limb muscles and the myofiber size. However, the expression of ubiquitin ligases and autophagy-related genes, which is associated with muscle proteolysis, was slightly higher in D-AR than in D-ND. Moreover, the abundance of the autophagy marker p62 was significantly higher in D-AR than in D-ND. Muscle atrophy has been known to be associated with a disturbed energy metabolism. The expression of pyruvate dehydrogenase kinase 4 (PDK4), which is related to fatty acid metabolism, was decreased in D-ND as compared with that in S-ND. In contrast, dietary supplementation with ARs inhibited the decrease of PDK4 expression caused by denervation. Furthermore, the abnormal expression pattern of genes related to the abundance of lipid droplets-coated proteins that was induced by denervation was improved by ARs. These results raise the possibility that dietary supplementation with ARs modifies the disruption of fatty acid metabolism induced by lipid autophagy, resulting in the prevention of muscle atrophy.
Collapse
Affiliation(s)
- Shigeru Hiramoto
- Healthcare Research Center, Nisshin Pharma Inc., Saitama, Japan 3568511
| | - Nobuhiro Yahata
- Healthcare Research Center, Nisshin Pharma Inc., Saitama, Japan 3568511
| | - Kanae Saitoh
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521
| | - Tomohiro Yoshimura
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521
| | - Yao Wang
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521
| | - Shigeto Taniyama
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Medical School, Tokushima, Japan 7708503
| | - Katsuyasu Tachibana
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521
| | - Katsuya Hirasaka
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521; Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan 8528521.
| |
Collapse
|
39
|
Small L, Brandon AE, Quek LE, Krycer JR, James DE, Turner N, Cooney GJ. Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake. Am J Physiol Endocrinol Metab 2018; 315:E258-E266. [PMID: 29406780 DOI: 10.1152/ajpendo.00386.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pyruvate dehydrogenase (PDH) activity is a key component of the glucose/fatty acid cycle hypothesis for the regulation of glucose uptake and metabolism. We have investigated whether acute activation of PDH in muscle can alleviate the insulin resistance caused by feeding animals a high-fat diet (HFD). The importance of PDH activity in muscle glucose disposal under insulin-stimulated conditions was determined by infusing the PDH kinase inhibitor dichloroacetate (DCA) into HFD-fed Wistar rats during a hyperinsulinemic-euglycemic clamp. Acute DCA infusion did not alter glucose infusion rate, glucose disappearance, or hepatic glucose production but did decrease plasma lactate levels. DCA substantially increased muscle PDH activity; however, this did not improve insulin-stimulated glucose uptake in insulin-resistant muscle of HFD rats. DCA infusion increased the flux of pyruvate to acetyl-CoA and reduced glucose incorporation into glycogen and alanine in muscle. Similarly, in isolated muscle, DCA treatment increased glucose oxidation and decreased glycogen synthesis without changing glucose uptake. These results suggest that, although PDH activity controls the conversion of pyruvate to acetyl-CoA for oxidation, this has little effect on glucose uptake into muscle under insulin-stimulated conditions.
Collapse
Affiliation(s)
- Lewin Small
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
| | - Amanda E Brandon
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
- School of Medical Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - James R Krycer
- School of Life and Environmental Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - David E James
- School of Life and Environmental Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Science, University of New South Wales , Sydney, New South Wales , Australia
| | - Gregory J Cooney
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
- School of Medical Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| |
Collapse
|
40
|
Rohm M, Savic D, Ball V, Curtis MK, Bonham S, Fischer R, Legrave N, MacRae JI, Tyler DJ, Ashcroft FM. Cardiac Dysfunction and Metabolic Inflexibility in a Mouse Model of Diabetes Without Dyslipidemia. Diabetes 2018; 67:1057-1067. [PMID: 29610263 DOI: 10.2337/db17-1195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/12/2018] [Indexed: 11/13/2022]
Abstract
Diabetes is a well-established risk factor for heart disease, leading to impaired cardiac function and a metabolic switch toward fatty acid usage. In this study, we investigated if hyperglycemia/hypoinsulinemia in the absence of dyslipidemia is sufficient to drive these changes and if they can be reversed by restoring euglycemia. Using the βV59M mouse model, in which diabetes can be rapidly induced and reversed, we show that stroke volume and cardiac output were reduced within 2 weeks of diabetes induction. Flux through pyruvate dehydrogenase was decreased, as measured in vivo by hyperpolarized [1-13C]pyruvate MRS. Metabolomics showed accumulation of pyruvate, lactate, alanine, tricarboxyclic acid cycle metabolites, and branched-chain amino acids. Myristic and palmitoleic acid were decreased. Proteomics revealed proteins involved in fatty acid metabolism were increased, whereas those involved in glucose metabolism decreased. Western blotting showed enhanced pyruvate dehydrogenase kinase 4 (PDK4) and uncoupling protein 3 (UCP3) expression. Elevated PDK4 and UCP3 and reduced pyruvate usage were present 24 h after diabetes induction. The observed effects were independent of dyslipidemia, as mice showed no evidence of elevated serum triglycerides or lipid accumulation in peripheral organs (including the heart). The effects of diabetes were reversible, as glibenclamide therapy restored euglycemia, cardiac metabolism and function, and PDK4/UCP3 levels.
Collapse
Affiliation(s)
- Maria Rohm
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Oxford, U.K
| | - Dragana Savic
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Vicky Ball
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - M Kate Curtis
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Sarah Bonham
- Discovery Proteomics Facility, Target Discovery Institute, University of Oxford, Oxford, U.K
| | - Roman Fischer
- Discovery Proteomics Facility, Target Discovery Institute, University of Oxford, Oxford, U.K
| | | | | | - Damian J Tyler
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Oxford, U.K.
| |
Collapse
|
41
|
Wu CY, Satapati S, Gui W, Wynn RM, Sharma G, Lou M, Qi X, Burgess SC, Malloy C, Khemtong C, Sherry AD, Chuang DT, Merritt ME. A novel inhibitor of pyruvate dehydrogenase kinase stimulates myocardial carbohydrate oxidation in diet-induced obesity. J Biol Chem 2018; 293:9604-9613. [PMID: 29739849 DOI: 10.1074/jbc.ra118.002838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/23/2018] [Indexed: 11/06/2022] Open
Abstract
The pyruvate dehydrogenase complex (PDC) is a key control point of energy metabolism and is subject to regulation by multiple mechanisms, including posttranslational phosphorylation by pyruvate dehydrogenase kinase (PDK). Pharmacological modulation of PDC activity could provide a new treatment for diabetic cardiomyopathy, as dysregulated substrate selection is concomitant with decreased heart function. Dichloroacetate (DCA), a classic PDK inhibitor, has been used to treat diabetic cardiomyopathy, but the lack of specificity and side effects of DCA indicate a more specific inhibitor of PDK is needed. This study was designed to determine the effects of a novel and highly selective PDK inhibitor, 2((2,4-dihydroxyphenyl)sulfonyl) isoindoline-4,6-diol (designated PS10), on pyruvate oxidation in diet-induced obese (DIO) mouse hearts compared with DCA-treated hearts. Four groups of mice were studied: lean control, DIO, DIO + DCA, and DIO + PS10. Both DCA and PS10 improved glucose tolerance in the intact animal. Pyruvate metabolism was studied in perfused hearts supplied with physiological mixtures of long chain fatty acids, lactate, and pyruvate. Analysis was performed using conventional 1H and 13C isotopomer methods in combination with hyperpolarized [1-13C]pyruvate in the same hearts. PS10 and DCA both stimulated flux through PDC as measured by the appearance of hyperpolarized [13C]bicarbonate. DCA but not PS10 increased hyperpolarized [1-13C]lactate production. Total carbohydrate oxidation was reduced in DIO mouse hearts but increased by DCA and PS10, the latter doing so without increasing lactate production. The present results suggest that PS10 is a more suitable PDK inhibitor for treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Cheng-Yang Wu
- From the Department of Biochemistry.,Advanced Imaging Research Center
| | | | | | - R Max Wynn
- From the Department of Biochemistry.,Department of Internal Medicine, and
| | | | - Mingliang Lou
- Chemistry Center, National Institute of Biological Science, Beijing 102206, China, and.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiangbing Qi
- Chemistry Center, National Institute of Biological Science, Beijing 102206, China, and.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | - Craig Malloy
- Advanced Imaging Research Center.,Department of Internal Medicine, and.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chalermchai Khemtong
- Advanced Imaging Research Center.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - A Dean Sherry
- Advanced Imaging Research Center.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080
| | - David T Chuang
- From the Department of Biochemistry, .,Department of Internal Medicine, and
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610,
| |
Collapse
|
42
|
Lou PH, Lucchinetti E, Scott KY, Huang Y, Gandhi M, Hersberger M, Clanachan AS, Lemieux H, Zaugg M. Alterations in fatty acid metabolism and sirtuin signaling characterize early type-2 diabetic hearts of fructose-fed rats. Physiol Rep 2018; 5:5/16/e13388. [PMID: 28830979 PMCID: PMC5582268 DOI: 10.14814/phy2.13388] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the fact that skeletal muscle insulin resistance is the hallmark of type‐2 diabetes mellitus (T2DM), inflexibility in substrate energy metabolism has been observed in other tissues such as liver, adipose tissue, and heart. In the heart, structural and functional changes ultimately lead to diabetic cardiomyopathy. However, little is known about the early biochemical changes that cause cardiac metabolic dysregulation and dysfunction. We used a dietary model of fructose‐induced T2DM (10% fructose in drinking water for 6 weeks) to study cardiac fatty acid metabolism in early T2DM and related signaling events in order to better understand mechanisms of disease. In early type‐2 diabetic hearts, flux through the fatty acid oxidation pathway was increased as a result of increased cellular uptake (CD36), mitochondrial uptake (CPT1B), as well as increased β‐hydroxyacyl‐CoA dehydrogenase and medium‐chain acyl‐CoA dehydrogenase activities, despite reduced mitochondrial mass. Long‐chain acyl‐CoA dehydrogenase activity was slightly decreased, resulting in the accumulation of long‐chain acylcarnitine species. Cardiac function and overall mitochondrial respiration were unaffected. However, evidence of oxidative stress and subtle changes in cardiolipin content and composition were found in early type‐2 diabetic mitochondria. Finally, we observed decreased activity of SIRT1, a pivotal regulator of fatty acid metabolism, despite increased protein levels. This indicates that the heart is no longer capable of further increasing its capacity for fatty acid oxidation. Along with increased oxidative stress, this may represent one of the earliest signs of dysfunction that will ultimately lead to inflammation and remodeling in the diabetic heart.
Collapse
Affiliation(s)
- Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Katrina Y Scott
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Yiming Huang
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Manoj Gandhi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Zurich, Switzerland
| | | | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Zaugg
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada .,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Schafer C, Young ZT, Makarewich CA, Elnwasany A, Kinter C, Kinter M, Szweda LI. Coenzyme A-mediated degradation of pyruvate dehydrogenase kinase 4 promotes cardiac metabolic flexibility after high-fat feeding in mice. J Biol Chem 2018. [PMID: 29540486 DOI: 10.1074/jbc.ra117.000268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac energy is produced primarily by oxidation of fatty acids and glucose, with the relative contributions of each nutrient being sensitive to changes in substrate availability and energetic demand. A major contributor to cardiac metabolic flexibility is pyruvate dehydrogenase (PDH), which converts glucose-derived pyruvate to acetyl-CoA within the mitochondria. PDH is inhibited by phosphorylation dependent on the competing activities of pyruvate dehydrogenase kinases (PDK1-4) and phosphatases (PDP1-2). A single high-fat meal increases cardiac PDK4 content and subsequently inhibits PDH activity, reducing pyruvate utilization when abundant fatty acids are available. In this study, we demonstrate that diet-induced increases in PDK4 are reversible and characterize a novel pathway that regulates PDK4 degradation in response to the cardiac metabolic environment. We found that PDK4 degradation is promoted by CoA (CoASH), the levels of which declined in mice fed a high-fat diet and normalized following transition to a control diet. We conclude that CoASH functions as a metabolic sensor linking the rate of PDK4 degradation to fatty acid availability in the heart. However, prolonged high-fat feeding followed by return to a low-fat diet resulted in persistent in vitro sensitivity of PDH to fatty acid-induced inhibition despite reductions in PDK4 content. Moreover, increases in the levels of proteins responsible for β-oxidation and rates of palmitate oxidation by isolated cardiac mitochondria following long-term consumption of high dietary fat persisted after transition to the control diet. We propose that these changes prime PDH for inhibition upon reintroduction of fatty acids.
Collapse
Affiliation(s)
- Christopher Schafer
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Zachary T Young
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Catherine A Makarewich
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Abdallah Elnwasany
- the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| | - Caroline Kinter
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Michael Kinter
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Luke I Szweda
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, .,the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| |
Collapse
|
44
|
Lock MC, Botting KJ, Tellam RL, Brooks D, Morrison JL. Adverse Intrauterine Environment and Cardiac miRNA Expression. Int J Mol Sci 2017; 18:ijms18122628. [PMID: 29210999 PMCID: PMC5751231 DOI: 10.3390/ijms18122628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022] Open
Abstract
Placental insufficiency, high altitude pregnancies, maternal obesity/diabetes, maternal undernutrition and stress can result in a poor setting for growth of the developing fetus. These adverse intrauterine environments result in physiological changes to the developing heart that impact how the heart will function in postnatal life. The intrauterine environment plays a key role in the complex interplay between genes and the epigenetic mechanisms that regulate their expression. In this review we describe how an adverse intrauterine environment can influence the expression of miRNAs (a sub-set of non-coding RNAs) and how these changes may impact heart development. Potential consequences of altered miRNA expression in the fetal heart include; Hypoxia inducible factor (HIF) activation, dysregulation of angiogenesis, mitochondrial abnormalities and altered glucose and fatty acid transport/metabolism. It is important to understand how miRNAs are altered in these adverse environments to identify key pathways that can be targeted using miRNA mimics or inhibitors to condition an improved developmental response.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Ross L Tellam
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
- CSIRO Agriculture, 306 Carmody Rd, St. Lucia, QLD 4067, Australia.
| | - Doug Brooks
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Janna L Morrison
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
45
|
Bockus LB, Matsuzaki S, Vadvalkar SS, Young ZT, Giorgione JR, Newhardt MF, Kinter M, Humphries KM. Cardiac Insulin Signaling Regulates Glycolysis Through Phosphofructokinase 2 Content and Activity. J Am Heart Assoc 2017; 6:e007159. [PMID: 29203581 PMCID: PMC5779029 DOI: 10.1161/jaha.117.007159] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/23/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Diabetes mellitus disrupts this metabolic flexibility and promotes cardiomyopathy through mechanisms that are not completely understood. Phosphofructokinase 2 (PFK-2) is a primary regulator of cardiac glycolysis and substrate selection, yet its regulation under normal and pathological conditions is unknown. This study was undertaken to determine how changes in insulin signaling affect PFK-2 content, activity, and cardiac metabolism. METHODS AND RESULTS Streptozotocin-induced diabetes mellitus, high-fat diet feeding, and fasted mice were used to identify how decreased insulin signaling affects PFK-2 and cardiac metabolism. Primary adult cardiomyocytes were used to define the mechanisms that regulate PFK-2 degradation. Both type 1 diabetes mellitus and a high-fat diet induced a significant decrease in cardiac PFK-2 protein content without affecting its transcript levels. Overnight fasting also induced a decrease in PFK-2, suggesting it is rapidly degraded in the absence of insulin signaling. An unbiased metabolomic study demonstrated that decreased PFK-2 in fasted animals is accompanied by an increase in glycolytic intermediates upstream of phosphofructokianse-1, whereas those downstream are diminished. Mechanistic studies using cardiomyocytes showed that, in the absence of insulin signaling, PFK-2 is rapidly degraded via both proteasomal- and chaperone-mediated autophagy. CONCLUSIONS The loss of PFK-2 content as a result of reduced insulin signaling impairs the capacity to dynamically regulate glycolysis and elevates the levels of early glycolytic intermediates. Although this may be beneficial in the fasted state to conserve systemic glucose, it represents a pathological impairment in diabetes mellitus.
Collapse
MESH Headings
- Animals
- Autophagy
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/pathology
- Diabetic Cardiomyopathies/blood
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/etiology
- Diet, Fat-Restricted
- Diet, High-Fat
- Down-Regulation
- Enzyme Stability
- Fasting/blood
- Glycolysis
- Insulin/blood
- Mice, Inbred C57BL
- Molecular Chaperones/metabolism
- Myocardium/enzymology
- Myocardium/pathology
- Phosphofructokinase-2/genetics
- Phosphofructokinase-2/metabolism
- Phosphorylation
- Proteasome Endopeptidase Complex/metabolism
- Proteolysis
- Signal Transduction
- Streptozocin
- Time Factors
Collapse
Affiliation(s)
- Lee B Bockus
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Shraddha S Vadvalkar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Zachary T Young
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jennifer R Giorgione
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Maria F Newhardt
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
46
|
Li T, Xu J, Qin X, Hou Z, Guo Y, Liu Z, Wu J, Zheng H, Zhang X, Gao F. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion. Am J Physiol Endocrinol Metab 2017; 313:E577-E585. [PMID: 28325730 DOI: 10.1152/ajpendo.00014.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 01/31/2023]
Abstract
Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia-reperfusion (I/R) injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. We found that glucose uptake was remarkably diminished in the myocardium following reperfusion in Sprague-Dawley rats as detected by 18F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by threefold and GLUT4 translocation remained unchanged compared with those of sham-treated rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated I/R injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, whereas its knockdown increased glucose uptake, suggesting that PDK4 has a role in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial I/R. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in the myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial I/R injury.
Collapse
Affiliation(s)
- Tingting Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Jie Xu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Xinghua Qin
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Zuoxu Hou
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Yongzheng Guo
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Zhenhua Liu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Jianjiang Wu
- Department of Anesthesiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong Zheng
- Department of Anesthesiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| |
Collapse
|
47
|
Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2835-2847. [DOI: 10.1016/j.bbadis.2017.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
|
48
|
Wijenayake S, Tessier SN, Storey KB. Regulation of pyruvate dehydrogenase (PDH) in the hibernating ground squirrel, ( Ictidomys tridecemlineatus ). J Therm Biol 2017; 69:199-205. [DOI: 10.1016/j.jtherbio.2017.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022]
|
49
|
Jensen SR, Schoof EM, Wheeler SE, Hvid H, Ahnfelt-Rønne J, Hansen BF, Nishimura E, Olsen GS, Kislinger T, Brubaker PL. Quantitative Proteomics of Intestinal Mucosa From Male Mice Lacking Intestinal Epithelial Insulin Receptors. Endocrinology 2017; 158:2470-2485. [PMID: 28591806 DOI: 10.1210/en.2017-00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
The goal of the present study was to determine whether loss of the insulin receptor alters the molecular landscape of the intestinal mucosa, using intestinal-epithelial insulin receptor knockout (IE-irKO) mice and both genetic (IRfl/fl and Villin-cre) controls. Quantitative proteomic analysis by liquid chromatography mass spectrometry was applied to jejunal and colonic mucosa from mice fed a normal chow diet and mice fed a Western diet (WD). Jejunal mucosa from IE-irKO mice demonstrated alterations in all intestinal cell lineages: Paneth, goblet, absorptive, and enteroendocrine cells. Only goblet and absorptive cells were affected in the colon. Also, a marked effect of WD consumption was found on the gut proteome. A substantial reduction was detected in Paneth cell proteins with antimicrobial activity, including lysozyme C-1, angiogenin-4, cryptdin-related sequence 1C-3 and -2, α-defensin 17, and intelectin-1a. The key protein expressed by goblet cells, mucin-2, was also reduced in the IE-irKO mice. Proteins involved in lipid metabolism, including aldose reductase-related protein 1, 15-hydroxyprostaglandin dehydrogenase, apolipoprotein A-II, and pyruvate dehydrogenase kinase isozyme 4, were increased in the mucosa of WD-fed IE-irKO mice compared with controls. In contrast, expression of the nutrient-responsive gut hormones, glucose-dependent insulinotropic polypeptide and neurotensin, was reduced in the jejunal mucosa of IE-irKO mice, and the expression of proteins of the P-type adenosine triphosphatases and the solute carrier-transporter family was reduced in the colon of WD-fed IE-irKO mice. In conclusion, IE-irKO mice display a distinct molecular phenotype, suggesting a biological role of insulin and its receptor in determining differentiated cell specificity in the intestinal epithelium.
Collapse
Affiliation(s)
- Stina Rikke Jensen
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | - Erwin M Schoof
- Princess Margaret Hospital Cancer Centre, University Health Network, Ontario M5G 2M9, Canada
| | - Sarah E Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Henning Hvid
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | | | - Bo Falck Hansen
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | - Erica Nishimura
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | | | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
50
|
Vadvalkar SS, Matsuzaki S, Eyster CA, Giorgione JR, Bockus LB, Kinter CS, Kinter M, Humphries KM. Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart: ROLE OF MITOCHONDRIAL PYRUVATE CARRIER 2 (MPC2) ACETYLATION. J Biol Chem 2017; 292:4423-4433. [PMID: 28154187 DOI: 10.1074/jbc.m116.753509] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Alterations in mitochondrial function contribute to diabetic cardiomyopathy. We have previously shown that heart mitochondrial proteins are hyperacetylated in OVE26 mice, a transgenic model of type 1 diabetes. However, the universality of this modification and its functional consequences are not well established. In this study, we demonstrate that Akita type 1 diabetic mice exhibit hyperacetylation. Functionally, isolated Akita heart mitochondria have significantly impaired maximal (state 3) respiration with physiological pyruvate (0.1 mm) but not with 1.0 mm pyruvate. In contrast, pyruvate dehydrogenase activity is significantly decreased regardless of the pyruvate concentration. We found that there is a 70% decrease in the rate of pyruvate transport in Akita heart mitochondria but no decrease in the mitochondrial pyruvate carriers 1 and 2 (MPC1 and MPC2). The potential role of hyperacetylation in mediating this impaired pyruvate uptake was examined. The treatment of control mitochondria with the acetylating agent acetic anhydride inhibits pyruvate uptake and pyruvate-supported respiration in a similar manner to the pyruvate transport inhibitor α-cyano-4-hydroxycinnamate. A mass spectrometry selective reactive monitoring assay was developed and used to determine that acetylation of lysines 19 and 26 of MPC2 is enhanced in Akita heart mitochondria. Expression of a double acetylation mimic of MPC2 (K19Q/K26Q) in H9c2 cells was sufficient to decrease the maximal cellular oxygen consumption rate. This study supports the conclusion that deficient pyruvate transport activity, mediated in part by acetylation of MPC2, is a contributor to metabolic inflexibility in the diabetic heart.
Collapse
Affiliation(s)
- Shraddha S Vadvalkar
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Satoshi Matsuzaki
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Craig A Eyster
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Jennifer R Giorgione
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Lee B Bockus
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and.,the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Caroline S Kinter
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Michael Kinter
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Kenneth M Humphries
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and .,the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|