1
|
Zhang Y, Gao Y, Wang Y, Jiang Y, Xiang Y, Wang X, Wang Z, Ding Y, Chen H, Rui B, Huai W, Cai B, Ren X, Ma F, Xu S, Zhan Z, Liu X. RBM25 is required to restrain inflammation via ACLY RNA splicing-dependent metabolism rewiring. Cell Mol Immunol 2024:10.1038/s41423-024-01212-3. [PMID: 39251781 DOI: 10.1038/s41423-024-01212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Spliceosome dysfunction and aberrant RNA splicing underline unresolved inflammation and immunopathogenesis. Here, we revealed the misregulation of mRNA splicing via the spliceosome in the pathogenesis of rheumatoid arthritis (RA). Among them, decreased expression of RNA binding motif protein 25 (RBM25) was identified as a major pathogenic factor in RA patients and experimental arthritis mice through increased proinflammatory mediator production and increased hyperinflammation in macrophages. Multiomics analyses of macrophages from RBM25-deficient mice revealed that the transcriptional enhancement of proinflammatory genes (including Il1b, Il6, and Cxcl10) was coupled with histone 3 lysine 9 acetylation (H3K9ac) and H3K27ac modifications as well as hypoxia inducible factor-1α (HIF-1α) activity. Furthermore, RBM25 directly bound to and mediated the 14th exon skipping of ATP citrate lyase (Acly) pre-mRNA, resulting in two distinct Acly isoforms, Acly Long (Acly L) and Acly Short (Acly S). In proinflammatory macrophages, Acly L was subjected to protein lactylation on lysine 918/995, whereas Acly S did not, which influenced its affinity for metabolic substrates and subsequent metabolic activity. RBM25 deficiency overwhelmingly increased the expression of the Acly S isoform, enhancing glycolysis and acetyl-CoA production for epigenetic remodeling, macrophage overactivation and tissue inflammatory injury. Finally, macrophage-specific deletion of RBM25 led to inflammaging, including spontaneous arthritis in various joints of mice and inflammation in multiple organs, which could be relieved by pharmacological inhibition of Acly. Overall, targeting the RBM25-Acly splicing axis represents a potential strategy for modulating macrophage responses in autoimmune arthritis and aging-associated inflammation.
Collapse
Affiliation(s)
- Yunkai Zhang
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Ying Gao
- Department of Rheumatology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yujia Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuyu Jiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yan Xiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Xiaohui Wang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Zeting Wang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yingying Ding
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Huiying Chen
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Bing Rui
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Wanwan Huai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Boyu Cai
- Department of Otolaryngology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiaomeng Ren
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Feng Ma
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xingguang Liu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China.
| |
Collapse
|
2
|
Wu YF, Zhao ZY, Yang MJ, He YH, Zang Y, Li J, Hu JF, Xiong J. Pentacyclic triterpenoids as potential ACL inhibitors from the rare medicinal plant Semiliquidambar cathayensis. Fitoterapia 2024; 176:106018. [PMID: 38744385 DOI: 10.1016/j.fitote.2024.106018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
An extensive phytochemical investigation on the rare medicinal plant Semiliquidambar cathayensis (family: Hamamelidaceae) led to the isolation of four new (1-4, named semiliquidacids A-D, respectively) and 25 related known pentacyclic triterpenoids. The new structures with absolute configurations were elucidated by spectroscopic methods, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. Compound 1 represents the first naturally occurring ursane-type triterpenoid featuring an uncommon C-25 formyl group. Compound 4 and oleanolic acid (13) exhibited remarkable inhibitory effects against the ATP-citrate lyase (ACL, an emerging drug target for hyperlipidemia and related metabolic disorders) with IC50 values of 6.5 and 11.9 μM, respectively. The molecular interaction and binding mode between the bioactive triterpenoids and ACL were elaborated by conducting a molecular docking study. Meanwhile, the chemotaxonomic significance of the isolated triterpenoids has been briefly discussed.
Collapse
Affiliation(s)
- Yu-Fei Wu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ze-Yu Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China; Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, PR China
| | - Min-Jie Yang
- Department of Emergency Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yu-Hang He
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, PR China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, PR China.
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
3
|
Jafari M, Macho-González A, Diaz A, Lindenau K, Santiago-Fernández O, Zeng M, Massey AC, de Cabo R, Kaushik S, Cuervo AM. Calorie restriction and calorie-restriction mimetics activate chaperone-mediated autophagy. Proc Natl Acad Sci U S A 2024; 121:e2317945121. [PMID: 38889154 PMCID: PMC11214046 DOI: 10.1073/pnas.2317945121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Chaperone-mediated autophagy (CMA) is part of the mammalian cellular proteostasis network that ensures protein quality control, maintenance of proteome homeostasis, and proteome changes required for the adaptation to stress. Loss of proteostasis is one of the hallmarks of aging. CMA decreases with age in multiple rodent tissues and human cell types. A decrease in lysosomal levels of the lysosome-associated membrane protein type 2A (LAMP2A), the CMA receptor, has been identified as a main reason for declined CMA in aging. Here, we report constitutive activation of CMA with calorie restriction (CR), an intervention that extends healthspan, in old rodent livers and in an in vitro model of CR with cultured fibroblasts. We found that CR-mediated upregulation of CMA is due to improved stability of LAMP2A at the lysosome membrane. We also explore the translational value of our observations using calorie-restriction mimetics (CRMs), pharmacologically active substances that reproduce the biochemical and functional effects of CR. We show that acute treatment of old mice with CRMs also robustly activates CMA in several tissues and that this activation is required for the higher resistance to lipid dietary challenges conferred by treatment with CRMs. We conclude that part of the beneficial effects associated with CR/CRMs could be a consequence of the constitutive activation of CMA mediated by these interventions.
Collapse
Affiliation(s)
- Maryam Jafari
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, BronxNY10461
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY10461
| | - Adrián Macho-González
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, BronxNY10461
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY10461
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, BronxNY10461
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY10461
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, BronxNY10461
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY10461
| | - Olaya Santiago-Fernández
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, BronxNY10461
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY10461
| | - Mei Zeng
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, BronxNY10461
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY10461
| | - Ashish C. Massey
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, BronxNY10461
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY10461
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD21224
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, BronxNY10461
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY10461
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, BronxNY10461
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY10461
| |
Collapse
|
4
|
Masci D, Puxeddu M, Silvestri R, La Regina G. Metabolic Rewiring in Cancer: Small Molecule Inhibitors in Colorectal Cancer Therapy. Molecules 2024; 29:2110. [PMID: 38731601 PMCID: PMC11085455 DOI: 10.3390/molecules29092110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for developing effective metabolism-based therapies for cancer, particularly in the context of colorectal cancer (CRC). In this regard, the present review explores the complex field of metabolic reprogramming in tumorigenesis and progression, providing insights into the current landscape of small molecule inhibitors targeting tumorigenic metabolic pathways and their implications for CRC treatment.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| |
Collapse
|
5
|
Köberlin MS, Fan Y, Liu C, Chung M, Pinto AFM, Jackson PK, Saghatelian A, Meyer T. A fast-acting lipid checkpoint in G1 prevents mitotic defects. Nat Commun 2024; 15:2441. [PMID: 38499565 PMCID: PMC10948896 DOI: 10.1038/s41467-024-46696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Lipid synthesis increases during the cell cycle to ensure sufficient membrane mass, but how insufficient synthesis restricts cell-cycle entry is not understood. Here, we identify a lipid checkpoint in G1 phase of the mammalian cell cycle by using live single-cell imaging, lipidome, and transcriptome analysis of a non-transformed cell. We show that synthesis of fatty acids in G1 not only increases lipid mass but extensively shifts the lipid composition to unsaturated phospholipids and neutral lipids. Strikingly, acute lowering of lipid synthesis rapidly activates the PERK/ATF4 endoplasmic reticulum (ER) stress pathway that blocks cell-cycle entry by increasing p21 levels, decreasing Cyclin D levels, and suppressing Retinoblastoma protein phosphorylation. Together, our study identifies a rapid anticipatory ER lipid checkpoint in G1 that prevents cells from starting the cell cycle as long as lipid synthesis is low, thereby preventing mitotic defects, which are triggered by low lipid synthesis much later in mitosis.
Collapse
Affiliation(s)
- Marielle S Köberlin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yilin Fan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94111, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology and Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology and Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Xiang W, Lv H, Xing F, Sun X, Ma Y, Wu L, Lv G, Zong Q, Wang L, Wu Z, Feng Q, Yang W, Wang H. Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation. SCIENCE ADVANCES 2023; 9:eadi2465. [PMID: 38055816 DOI: 10.1126/sciadv.adi2465] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Adenosine 5'-triphosphate citrate lyase (ACLY) is a cytosolic enzyme that converts citrate into acetyl-coenzyme A for fatty acid and cholesterol biosynthesis. ACLY is up-regulated or activated in many cancers, and targeting ACLY by inhibitors holds promise as potential cancer therapy. However, the role of ACLY in cancer immunity regulation remains poorly understood. Here, we show that ACLY inhibition up-regulates PD-L1 immune checkpoint expression in cancer cells and induces T cell dysfunction to drive immunosuppression and compromise its antitumor effect in immunocompetent mice. Mechanistically, ACLY inhibition causes polyunsaturated fatty acid (PUFA) peroxidation and mitochondrial damage, which triggers mitochondrial DNA leakage to activate the cGAS-STING innate immune pathway. Pharmacological and genetic inhibition of ACLY overcomes cancer resistance to anti-PD-L1 therapy in a cGAS-dependent manner. Furthermore, dietary PUFA supplementation mirrors the enhanced efficacy of PD-L1 blockade by ACLY inhibition. These findings reveal an immunomodulatory role of ACLY and provide combinatorial strategies to overcome immunotherapy resistance in tumors.
Collapse
Affiliation(s)
- Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongwei Lv
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaoyan Sun
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lu Wu
- Fourth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Liang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qiyu Feng
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wen Yang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai 200438, China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai 200438, China
| | - Hongyang Wang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai 200438, China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai 200438, China
| |
Collapse
|
7
|
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res 2023; 46:855-881. [PMID: 38060103 PMCID: PMC10725365 DOI: 10.1007/s12272-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.
Collapse
Affiliation(s)
- Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, 16227, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University, Seoul, 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
8
|
Duarte Lau F, Giugliano RP. Adenosine Triphosphate Citrate Lyase and Fatty Acid Synthesis Inhibition: A Narrative Review. JAMA Cardiol 2023; 8:879-887. [PMID: 37585218 DOI: 10.1001/jamacardio.2023.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Importance Adenosine triphosphate citrate lyase (ACLY) is a key regulatory enzyme of glucose metabolism, cholesterol and fatty acid synthesis, and the inflammatory cascade. Bempedoic acid, an ACLY inhibitor, significantly reduces atherogenic lipid markers, including low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol, and apolipoprotein B. Additional effects of ACLY inhibition include antitumor growth; reduction of triglycerides and proinflammatory molecules such as high-sensitivity C-reactive protein; less insulin resistance; reduction of hepatic lipogenesis; and weight loss. Observations While numerous ACLY inhibitors have been identified, most of the clinical data have focused on bempedoic acid. The Cholesterol Lowering via Bempedoic Acid, an ACL-Inhibiting Regimen (CLEAR) program was a series of phase 3 clinical trials that evaluated its effects on lipid parameters and safety, leading to US Food and Drug Administration approval in 2020. CLEAR Outcomes was a phase 3, double-blind, randomized, placebo-controlled trial in individuals with a history of statin intolerance, serum LDL-C level of 100 mg/dL or higher, and a history of, or at high risk for, cardiovascular disease. Bempedoic acid modestly reduced the primary 4-way cardiovascular composite end point as well as the individual components of myocardial infarction and coronary revascularization but did not reduce stroke, cardiovascular death, or all-cause mortality. Rates of gout and cholelithiasis were higher with bempedoic acid, and small increases in serum creatinine, uric acid, and hepatic-enzyme levels were also observed. Conclusions and relevance ACLY inhibition with bempedoic acid has been established as a safe and effective therapy in high-risk patients who require further LDL-C lowering, particularly for those with a history of statin intolerance. The recently published CLEAR Outcomes trial revealed modest reductions in cardiovascular events with bempedoic acid, proportional to its LDL-C lowering, in high-risk individuals with statin intolerance and LDL-C levels of 100 mg/dL or higher. The additional effects of ACLY inhibition have prompted a more thorough search for novel ACLY inhibitors for conditions such as cancer, hypertriglyceridemia, chronic inflammation, type 2 diabetes, fatty liver disease, obesity, and metabolic syndrome. Similarly, therapies that reduce fatty acid synthesis are being explored for their use in cardiometabolic conditions.
Collapse
Affiliation(s)
| | - Robert P Giugliano
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
9
|
Park JK, Balarbar N, Agarwala A. Bempedoic Acid: A Contemporary Review of Its Pharmacology, Efficacy, and Safety Profile, Including Recent Data from the CLEAR Outcomes Clinical Trial. Curr Cardiol Rep 2023; 25:969-978. [PMID: 37405598 DOI: 10.1007/s11886-023-01911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
PURPOSE OF REVIEW To provide an updated review of bempedoic acid's clinical application in lowering LDL-C in the setting of statin intolerance and the recent findings in the CLEAR Outcomes trial as well as summarize and synthesize the current state of knowledge regarding bempedoic acid while providing an in-depth analysis of the drug's pharmacological properties, mechanism of action, clinical trials, safety, and efficacy. RECENT FINDINGS The CLEAR Outcomes trial has provided evidence to support bempedoic acid as a viable alternative to statins for the primary and secondary prevention of cardiovascular disease. Bempedoic acid is a promising treatment option for patients with hypercholesterolemia who are unable to tolerate statin therapy or require additional LDL-C reduction in the treatment of cardiovascular disease, with the newest lipid-lowering cardiovascular outcomes trials expanding on their generalizability particularly in the inclusion of women.
Collapse
Affiliation(s)
- Jong Kun Park
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Noah Balarbar
- Center for Cardiovascular Disease Prevention, Baylor Scott and White Health Heart Hospital Baylor Plano, Plano, TX, USA
| | - Anandita Agarwala
- Center for Cardiovascular Disease Prevention, Baylor Scott and White Health Heart Hospital Baylor Plano, Plano, TX, USA.
| |
Collapse
|
10
|
Roglans N, Laguna JC, Alegret M. Bempedoic acid for nonalcoholic fatty liver disease: evidence and mechanisms of action. Curr Opin Lipidol 2023:00041433-990000000-00034. [PMID: 36942869 DOI: 10.1097/mol.0000000000000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent progressive condition that lacks a specific pharmacological treatment. ATP-citrate lyase (ACLY) is one of the emergent targets for the treatment of NAFLD. This review aims to summarize the role of ACLY in NAFLD, provide evidences of the beneficial effects of the ACLY inhibitor bempedoic acid (BemA) in NAFLD and discuss the mechanisms involved. RECENT FINDINGS BemA is effective in reducing hepatic steatosis in several animal models that recapitulate different stages of the disease. Thus, in a dietary model of simple hepatic steatosis in female rats, BemA abrogates the accumulation of liver fat. Apart from ACLY inhibition, BemA has several functions in the liver that contribute to the antisteatotic effect: inhibition of ketohexokinase, induction of patatin-like phospholipase domain-containing protein 3 and increases in both fatty acid β-oxidation activity and hepatic H2S production. In models of the advanced phases of NAFLD, BemA reduces not only steatosis, but also ballooning, lobular inflammation and hepatic fibrosis, by mechanisms involving both hepatocytes and hepatic stellate cells. SUMMARY BemA, an ACLY inhibitor currently approved for the treatment of hypercholesterolemia, may be a useful drug to treat NAFLD through its antisteatotic, anti-inflammatory and antifibrotic effects.
Collapse
Affiliation(s)
- Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science
- Institute of Biomedicine, University of Barcelona, Barcelona
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science
- Institute of Biomedicine, University of Barcelona, Barcelona
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science
- Institute of Biomedicine, University of Barcelona, Barcelona
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
11
|
Sola-García A, Cáliz-Molina MÁ, Espadas I, Petr M, Panadero-Morón C, González-Morán D, Martín-Vázquez ME, Narbona-Pérez ÁJ, López-Noriega L, Martínez-Corrales G, López-Fernández-Sobrino R, Carmona-Marin LM, Martínez-Force E, Yanes O, Vinaixa M, López-López D, Reyes JC, Dopazo J, Martín F, Gauthier BR, Scheibye-Knudsen M, Capilla-González V, Martín-Montalvo A. Metabolic reprogramming by Acly inhibition using SB-204990 alters glucoregulation and modulates molecular mechanisms associated with aging. Commun Biol 2023; 6:250. [PMID: 36890357 PMCID: PMC9995519 DOI: 10.1038/s42003-023-04625-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023] Open
Abstract
ATP-citrate lyase is a central integrator of cellular metabolism in the interface of protein, carbohydrate, and lipid metabolism. The physiological consequences as well as the molecular mechanisms orchestrating the response to long-term pharmacologically induced Acly inhibition are unknown. We report here that the Acly inhibitor SB-204990 improves metabolic health and physical strength in wild-type mice when fed with a high-fat diet, while in mice fed with healthy diet results in metabolic imbalance and moderated insulin resistance. By applying a multiomic approach using untargeted metabolomics, transcriptomics, and proteomics, we determined that, in vivo, SB-204990 plays a role in the regulation of molecular mechanisms associated with aging, such as energy metabolism, mitochondrial function, mTOR signaling, and folate cycle, while global alterations on histone acetylation are absent. Our findings indicate a mechanism for regulating molecular pathways of aging that prevents the development of metabolic abnormalities associated with unhealthy dieting. This strategy might be explored for devising therapeutic approaches to prevent metabolic diseases.
Collapse
Affiliation(s)
- Alejandro Sola-García
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - María Ángeles Cáliz-Molina
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Isabel Espadas
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Michael Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Tracked.bio, Copenhagen, Denmark
| | - Concepción Panadero-Morón
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Daniel González-Morán
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - María Eugenia Martín-Vázquez
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Álvaro Jesús Narbona-Pérez
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Livia López-Noriega
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Guillermo Martínez-Corrales
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Raúl López-Fernández-Sobrino
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Lina M Carmona-Marin
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Oscar Yanes
- Universitat Rovira i Virgili, Department of electronic Engineering & IISPV, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Vinaixa
- Universitat Rovira i Virgili, Department of electronic Engineering & IISPV, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel López-López
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, c/Manuel Siurot s/n, 41013, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, Sevilla, 41013, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, Sevilla, 41013, Spain
| | - José Carlos Reyes
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, c/Manuel Siurot s/n, 41013, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, Sevilla, 41013, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, Sevilla, 41013, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, 42013, Spain
| | - Franz Martín
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Benoit R Gauthier
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Tracked.bio, Copenhagen, Denmark
| | - Vivian Capilla-González
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain
| | - Alejandro Martín-Montalvo
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, 41092, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Abstract
Few metabolites can claim a more central and versatile role in cell metabolism than acetyl coenzyme A (acetyl-CoA). Acetyl-CoA is produced during nutrient catabolism to fuel the tricarboxylic acid cycle and is the essential building block for fatty acid and isoprenoid biosynthesis. It also functions as a signalling metabolite as the substrate for lysine acetylation reactions, enabling the modulation of protein functions in response to acetyl-CoA availability. Recent years have seen exciting advances in our understanding of acetyl-CoA metabolism in normal physiology and in cancer, buoyed by new mouse models, in vivo stable-isotope tracing approaches and improved methods for measuring acetyl-CoA, including in specific subcellular compartments. Efforts to target acetyl-CoA metabolic enzymes are also advancing, with one therapeutic agent targeting acetyl-CoA synthesis receiving approval from the US Food and Drug Administration. In this Review, we give an overview of the regulation and cancer relevance of major metabolic pathways in which acetyl-CoA participates. We further discuss recent advances in understanding acetyl-CoA metabolism in normal tissues and tumours and the potential for targeting these pathways therapeutically. We conclude with a commentary on emerging nodes of acetyl-CoA metabolism that may impact cancer biology.
Collapse
Affiliation(s)
- David A Guertin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Jiang H, Hou T, Han Y, Lu SB, Liu L, Li DX, Zhu YH, Huang H, Li WJ, Xue XY, Liu YF, Liang XM. Preparation and identification of isoquinoline alkaloids with ATP citrate lyase inhibitory activity from Dactylicapnos scandens. Fitoterapia 2023; 165:105397. [PMID: 36539068 DOI: 10.1016/j.fitote.2022.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Three new isoquinoline alkaloids including a morphine derivative (1), two aporphine alkaloids (2-3), together with five known alkaloids (4-8) were obtained from the extract of Dactylicapnos scandens (D.Don) Hutch. (D. scandens). Their structures and absolute configurations were elucidated by extensive spectroscopic data analysis including HRESIMS, NMR and electronic circular dichroism (ECD) and ECD calculation. Compounds 1-8 were evaluated for ATP Citrate Lyase (ACLY) inhibitory activity through an enzymatic assay. Among them, 2 and 3 showed the high ACLY inhibitory activity with an IC50 value of 10.48 ± 1.59 and 10.89 ± 4.89 μM.
Collapse
Affiliation(s)
- Hui Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Hou
- DICP-CMC Innovation Institute of Medicine, Taizhou 225300, PR China
| | - Yan Han
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Shu-Bin Lu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Lei Liu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Ding-Xiang Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Yun-Hui Zhu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Hang Huang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Wen-Jie Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xiang-Ya Xue
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China.
| | - Yan-Fang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China.
| | - Xin-Miao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| |
Collapse
|
14
|
Fang CT, Kuo HH, Amartuvshin O, Hsu HJ, Liu SL, Yao JS, Yih LH. Inhibition of acetyl-CoA carboxylase impaired tubulin palmitoylation and induced spindle abnormalities. Cell Death Dis 2023; 9:4. [PMID: 36617578 PMCID: PMC9826786 DOI: 10.1038/s41420-023-01301-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Tubulin s-palmitoylation involves the thioesterification of a cysteine residue in tubulin with palmitate. The palmitate moiety is produced by the fatty acid synthesis pathway, which is rate-limited by acetyl-CoA carboxylase (ACC). While it is known that ACC is phosphorylated at serine 79 (pSer79) by AMPK and accumulates at the spindle pole (SP) during mitosis, a functional role for tubulin palmitoylation during mitosis has not been identified. In this study, we found that modulating pSer79-ACC level at the SP using AMPK agonist and inhibitor induced spindle defects. Loss of ACC function induced spindle abnormalities in cell lines and in germ cells of the Drosophila germarium, and palmitic acid (PA) rescued the spindle defects in the cell line treated transiently with the ACC inhibitor, TOFA. Furthermore, inhibition of protein palmitoylating or depalmitoylating enzymes also induced spindle defects. Together, these data suggested that precisely regulated cellular palmitate level and protein palmitoylation may be required for accurate spindle assembly. We then showed that tubulin was largely palmitoylated in interphase cells but less palmitoylated in mitotic cells. TOFA treatment diminished tubulin palmitoylation at doses that disrupt microtubule (MT) instability and cause spindle defects. Moreover, spindle MTs comprised of α-tubulins mutated at the reported palmitoylation site exhibited disrupted dynamic instability. We also found that TOFA enhanced the MT-targeting drug-induced spindle abnormalities and cytotoxicity. Thus, our study reveals that precise regulation of ACC during mitosis impacts tubulin palmitoylation to delicately control MT dynamic instability and spindle assembly, thereby safeguarding nuclear and cell division.
Collapse
Affiliation(s)
- Chieh-Ting Fang
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Hui Kuo
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Oyundari Amartuvshin
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Hwei-Jan Hsu
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Sih-Long Liu
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jhong-Syuan Yao
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Huei Yih
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Liang K, Dai JY. Progress of potential drugs targeted in lipid metabolism research. Front Pharmacol 2022; 13:1067652. [PMID: 36588702 PMCID: PMC9800514 DOI: 10.3389/fphar.2022.1067652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Lipids are a class of complex hydrophobic molecules derived from fatty acids that not only form the structural basis of biological membranes but also regulate metabolism and maintain energy balance. The role of lipids in obesity and other metabolic diseases has recently received much attention, making lipid metabolism one of the attractive research areas. Several metabolic diseases are linked to lipid metabolism, including diabetes, obesity, and atherosclerosis. Additionally, lipid metabolism contributes to the rapid growth of cancer cells as abnormal lipid synthesis or uptake enhances the growth of cancer cells. This review introduces the potential drug targets in lipid metabolism and summarizes the important potential drug targets with recent research progress on the corresponding small molecule inhibitor drugs. The significance of this review is to provide a reference for the clinical treatment of metabolic diseases related to lipid metabolism and the treatment of tumors, hoping to deepen the understanding of lipid metabolism and health.
Collapse
Affiliation(s)
- Kai Liang
- School of Life Science, Peking University, Beijing, China,*Correspondence: Kai Liang, ; Jian-Ye Dai,
| | - Jian-Ye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China,Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China,*Correspondence: Kai Liang, ; Jian-Ye Dai,
| |
Collapse
|
16
|
Greenwood DL, Ramsey HE, Nguyen PTT, Patterson AR, Voss K, Bader JE, Sugiura A, Bacigalupa ZA, Schaefer S, Ye X, Dahunsi DO, Madden MZ, Wellen KE, Savona MR, Ferrell PB, Rathmell JC. Acly Deficiency Enhances Myelopoiesis through Acetyl Coenzyme A and Metabolic-Epigenetic Cross-Talk. Immunohorizons 2022; 6:837-850. [PMID: 36547387 PMCID: PMC9935084 DOI: 10.4049/immunohorizons.2200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Hematopoiesis integrates cytokine signaling, metabolism, and epigenetic modifications to regulate blood cell generation. These processes are linked, as metabolites provide essential substrates for epigenetic marks. In this study, we demonstrate that ATP citrate lyase (Acly), which metabolizes citrate to generate cytosolic acetyl-CoA and is of clinical interest, can regulate chromatin accessibility to limit myeloid differentiation. Acly was tested for a role in murine hematopoiesis by small-molecule inhibition or genetic deletion in lineage-depleted, c-Kit-enriched hematopoietic stem and progenitor cells from Mus musculus. Treatments increased the abundance of cell populations that expressed the myeloid integrin CD11b and other markers of myeloid differentiation. When single-cell RNA sequencing was performed, we found that Acly inhibitor-treated hematopoietic stem and progenitor cells exhibited greater gene expression signatures for macrophages and enrichment of these populations. Similarly, the single-cell assay for transposase-accessible chromatin sequencing showed increased chromatin accessibility at genes associated with myeloid differentiation, including CD11b, CD11c, and IRF8. Mechanistically, Acly deficiency altered chromatin accessibility and expression of multiple C/EBP family transcription factors known to regulate myeloid differentiation and cell metabolism, with increased Cebpe and decreased Cebpa and Cebpb. This effect of Acly deficiency was accompanied by altered mitochondrial metabolism with decreased mitochondrial polarization but increased mitochondrial content and production of reactive oxygen species. The bias to myeloid differentiation appeared due to insufficient generation of acetyl-CoA, as exogenous acetate to support alternate compensatory pathways to produce acetyl-CoA reversed this phenotype. Acly inhibition thus can promote myelopoiesis through deprivation of acetyl-CoA and altered histone acetylome to regulate C/EBP transcription factor family activity for myeloid differentiation.
Collapse
Affiliation(s)
- Dalton L. Greenwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Haley E. Ramsey
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Phuong T. T. Nguyen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Andrew R. Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Jackie E. Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Samuel Schaefer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Debolanle O. Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Kathryn E. Wellen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael R. Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - P. Brent Ferrell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
17
|
Hao Y, Yi Q, XiaoWu X, WeiBo C, GuangChen Z, XueMin C. Acetyl-CoA: An interplay between metabolism and epigenetics in cancer. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1044585. [PMID: 39086974 PMCID: PMC11285595 DOI: 10.3389/fmmed.2022.1044585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 08/02/2024]
Abstract
Due to its high mortality and severe economic burden, cancer has become one of the most difficult medical problems to solve today. As a key node in metabolism and the main producer of energy, acetyl-coenzyme A (acetyl-CoA) plays an important role in the invasion and migration of cancer. In this review, we discuss metabolic pathways involving acetyl-CoA, the targeted therapy of cancer through acetyl-CoA metabolic pathways and the roles of epigenetic modifications in cancer. In particular, we emphasize that the metabolic pathway of acetyl-CoA exerts a great impact in cancer; this process is very different from normal cells due to the "Warburg effect". The concentration of acetyl-CoA is increased in the mitochondria of cancer cells to provide ATP for survival, hindering the growth of normal cells. Therefore, it may be possible to explore new feasible and more effective treatments through the acetyl-CoA metabolic pathway. In addition, a growing number of studies have shown that abnormal epigenetic modifications have been shown to play contributing roles in cancer formation and development. In most cancers, acetyl-CoA mediated acetylation promotes the growth of cancer cells. Thus, acetylation biomarkers can also be detected and serve as potential cancer prediction and prognostic markers.
Collapse
Affiliation(s)
- Yang Hao
- Changzhou First People’s Hospital, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Qin Yi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xu XiaoWu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen WeiBo
- Changzhou First People’s Hospital, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Zu GuangChen
- Changzhou First People’s Hospital, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Chen XueMin
- Changzhou First People’s Hospital, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| |
Collapse
|
18
|
Hatipoglu A, Menon D, Levy T, Frias MA, Foster DA. Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells. PLoS One 2022; 17:e0276579. [PMID: 36269753 PMCID: PMC9586366 DOI: 10.1371/journal.pone.0276579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming is now considered a hallmark of cancer cells. KRas-driven cancer cells use glutaminolysis to generate the tricarboxylic acid cycle intermediate α-ketoglutarate via a transamination reaction between glutamate and oxaloacetate. We reported previously that exogenously supplied unsaturated fatty acids could be used to synthesize phosphatidic acid-a lipid second messenger that activates both mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTOR complex 2 (mTORC2). A key target of mTORC2 is Akt-a kinase that promotes survival and regulates cell metabolism. We report here that mono-unsaturated oleic acid stimulates the phosphorylation of ATP citrate lyase (ACLY) at the Akt phosphorylation site at S455 in an mTORC2 dependent manner. Inhibition of ACLY in KRas-driven cancer cells in the absence of serum resulted in loss of cell viability. We examined the impact of glutamine (Gln) deprivation in combination with inhibition of ACLY on the viability of KRas-driven cancer cells. While Gln deprivation was somewhat toxic to KRas-driven cancer cells by itself, addition of the ACLY inhibitor SB-204990 increased the loss of cell viability. However, the transaminase inhibitor aminooxyacetate was minimally toxic and the combination of SB-204990 and aminooxtacetate led to significant loss of cell viability and strong cleavage of poly-ADP ribose polymerase-indicating apoptotic cell death. This effect was not observed in MCF7 breast cancer cells that do not have a KRas mutation or in BJ-hTERT human fibroblasts which have no oncogenic mutation. These data reveal a synthetic lethality between inhibition of glutamate oxaloacetate transaminase and ACLY inhibition that is specific for KRas-driven cancer cells and the apparent metabolic reprogramming induced by activating mutations to KRas.
Collapse
Affiliation(s)
- Ahmet Hatipoglu
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Biochemistry Program, Graduate Center of the City University of New York, New York, New York, United States of America
| | - Deepak Menon
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Biochemistry Program, Graduate Center of the City University of New York, New York, New York, United States of America
| | - Talia Levy
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
| | - Maria A. Frias
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Department of Biology and Health Promotion, St Francis College, Brooklyn, New York, New York, United States of America
| | - David A. Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Biochemistry Program, Graduate Center of the City University of New York, New York, New York, United States of America
- Biology Program, Graduate Center of the City University of New York, New York, New York, United States of America
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Huang SS, Tsai CH, Kuo CY, Li YS, Cheng SP. ACLY inhibitors induce apoptosis and potentiate cytotoxic effects of sorafenib in thyroid cancer cells. Endocrine 2022; 78:85-94. [PMID: 35761130 DOI: 10.1007/s12020-022-03124-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE ATP-citrate lyase (ACLY) is a critical enzyme at the intersection of glucose and lipid metabolism. ACLY is often upregulated or activated in cancer cells to accelerate lipid synthesis and promote tumor progression. In this study, we aimed to explore the possibility of utilizing ACLY inhibition as a new strategy in the treatment of thyroid cancer. METHODS Bioinformatics analysis of the public datasets was performed. Thyroid cancer cells were treated with two different ACLY inhibitors, SB-204990 and NDI-091143. RESULTS Bioinformatics analysis revealed that ACLY expression was increased in anaplastic thyroid cancer. In thyroid cancer cell lines FTC-133 and 8505C, ACLY inhibitors suppressed monolayer cell growth and clonogenic ability in a dose-dependent and time-dependent manner. Flow cytometry analysis showed that ACLY inhibitors increased the proportion of sub-G1 cells in the cell cycle and the number of annexin V-positive cells. Immunoblotting confirmed caspase-3 activation and PARP1 cleavage following treatment with ACLY inhibitors. Compromised cell viability could be partially rescued by co-treatment with the pan-caspase inhibitor Z-VAD-FMK. Additionally, we showed that ACLY inhibitors impeded three-dimensional growth and cell invasion in thyroid cancer cells. Isobolograms and combination index analysis indicated that ACLY inhibitors synergistically potentiated the cytotoxicity rendered by sorafenib. CONCLUSIONS Targeting ACLY holds the potential for being a novel therapeutic strategy for thyroid cancer.
Collapse
Affiliation(s)
- Shou-Sen Huang
- Department of Surgery, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Chung-Hsin Tsai
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Ying-Syuan Li
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
20
|
Discovery and characterization of novel ATP citrate lyase inhibitors from natural products by a luminescence-based assay. Chem Biol Interact 2022; 367:110199. [PMID: 36174740 DOI: 10.1016/j.cbi.2022.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism with therapeutic prospect for treating hyperlipidemia and various cancers. Much effort has been put into discovering ACLY inhibitors. However, current screening approaches have limitations in sensitivity, portability and high-throughput. To develop a general screening assay, we investigated series of conditions affecting the enzymatic reaction based on the ADP-Glo luminescence assay. Bovine serum albumin (0.001%) added triggered strong and stable fluorescence signal. The optimized assay was validated and applied to screen our natural product library. Two novel inhibitors were identified with IC50 values of 3.86 ± 0.62 μM (2) and 15.48 ± 2.51 μM (4). Their aggregations and target specificities were also examined. 2 was characterized as a noncompetitive inhibitor of ACLY, while 4 was a competitive inhibitor of CoA, which was also elucidated by docking studies. In anticancer activity evaluation, 2 with higher inhibition potency did not exhibit anticancer effect, probably owing to its insufficient cell-permeability. 4 showed moderate inhibition in the proliferation of A549 and PC3 cells. This study not only developed a general approach for ACLY inhibitor discovery, but also identified a new scaffold ACLY inhibitor, which could be served as a hit compound in drug design.
Collapse
|
21
|
Discovery of Flavonoids as Novel Inhibitors of ATP Citrate Lyase: Structure–Activity Relationship and Inhibition Profiles. Int J Mol Sci 2022; 23:ijms231810747. [PMID: 36142671 PMCID: PMC9504748 DOI: 10.3390/ijms231810747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022] Open
Abstract
ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism and its aberrantly high expression is closely associated with various cancers, hyperlipemia and atherosclerotic cardiovascular diseases. Prospects of ACLY inhibitors as treatments of these diseases are excellent. To date, flavonoids have not been extensively reported as ACLY inhibitors. In our study, 138 flavonoids were screened and 21 of them were subjected to concentration–response curves. A remarkable structure–activity relationship (SAR) trend was found: ortho-dihydroxyphenyl and a conjugated system maintained by a pyrone ring were critical for inhibitory activity. Among these flavonoids, herbacetin had a typical structure and showed a non–aggregated state in solution and a high inhibition potency (IC50 = 0.50 ± 0.08 μM), and therefore was selected as a representative for the ligand–protein interaction study. In thermal shift assays, herbacetin improved the thermal stability of ACLY, suggesting a direct interaction with ACLY. Kinetic studies determined that herbacetin was a noncompetitive inhibitor of ACLY, as illustrated by molecular docking and dynamics simulation. Together, this work demonstrated flavonoids as novel and potent ACLY inhibitors with a remarkable SAR trend, which may help design high–potency ACLY inhibitors. In–depth studies of herbacetin deepened our understanding of the interactions between flavonoids and ACLY.
Collapse
|
22
|
Yu Z, Zhou X, Wang X. Metabolic Reprogramming in Hematologic Malignancies: Advances and Clinical Perspectives. Cancer Res 2022; 82:2955-2963. [PMID: 35771627 PMCID: PMC9437558 DOI: 10.1158/0008-5472.can-22-0917] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer progression. Metabolic activity supports tumorigenesis and tumor progression, allowing cells to uptake essential nutrients from the environment and use the nutrients to maintain viability and support proliferation. The metabolic pathways of malignant cells are altered to accommodate increased demand for energy, reducing equivalents, and biosynthetic precursors. Activated oncogenes coordinate with altered metabolism to control cell-autonomous pathways, which can lead to tumorigenesis when abnormalities accumulate. Clinical and preclinical studies have shown that targeting metabolic features of hematologic malignancies is an appealing therapeutic approach. This review provides a comprehensive overview of the mechanisms of metabolic reprogramming in hematologic malignancies and potential therapeutic strategies to target cancer metabolism.
Collapse
Affiliation(s)
- Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| |
Collapse
|
23
|
Zang Y, Tai L, Hu Y, Wang Y, Sun H, Wen X, Yuan H, Dai L. Discovery of a Novel Macrocyclic ATP Citrate Lyase Inhibitor. J Chem Inf Model 2022; 62:3123-3132. [PMID: 35679529 DOI: 10.1021/acs.jcim.2c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP citrate lyase (ACLY) is an important metabolic enzyme involved in the synthesis of fatty acid and cholesterol. The inhibition of ACLY is considered as a promising therapeutic strategy for various metabolic diseases and numerous malignancies. In this study, a novel macrocyclic compound 2 has been identified as a potent ACLY inhibitor with the "ring closing" strategy for conformational restriction based on NDI-091143. It showed potent ACLY inhibitory activity and binding affinity comparable to the positive control. Furthermore, compared with the positive control (T1/2 = 3.36 min), the metabolic stability of 2 in HLMs (T1/2 = 531.22 min) was significantly improved. All of these results characterized 2 as a promising lead compound worthy of further study.
Collapse
Affiliation(s)
- Yongjun Zang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Luyang Tai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuanyang Hu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yu Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
24
|
Examining the expression levels of ferroptosis-related genes in angiographically determined coronary artery disease patients. Mol Biol Rep 2022; 49:7677-7686. [PMID: 35622307 DOI: 10.1007/s11033-022-07583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cardiovascular diseases are the leading cause of death worldwide, with several conditions being affected by oxidative stress. Ferroptosis, recently identified programmed cell death mechanism, is relies on oxidative stress. This study aimed to determine the expressions of the genes involved in the molecular pathways of oxidative stress and ferroptosis and the association of these genes with CAD risk factors in CAD and non-CAD individuals. METHODS AND RESULTS The blood samples of individuals who underwent coronary angiography were collected and divided according to CAD status. Total RNA isolation was performed using the PAXgene RNA isolation kit from the whole blood samples. The mRNA expression levels of RTN3, GPX4, CAT, HMOX1, ELOVL5, SLC25A1, SLC7A11, and ACSL4 genes were determined using Real-Time PCR. Biochemical analyses were done before coronary angiography, and the results were evaluated statistically. The expression levels of the CAT gene are significantly lower in the CAD group when compared to non-CAD. HMOX1 expression levels are positively correlated with stenosis percentage, Gensini, and SYNTAX scores in the CAD group. RTN3, SLC25A1, and GPX4 mRNA expressions are correlated with HDL-C levels. Moreover, HbA1c levels and BMI, correlate negatively with ACSL4 expression in non-CAD controls. Also, ELOVL5 expression is negatively correlated with total bilirubin and direct bilirubin levels in the CAD group. CONCLUSIONS In this study, the genes related to oxidative stress and ferroptosis were found associated with biochemical parameters associated with CAD risk. These preliminary results may provide a new perspective to further studies investigating the reasons behind the identified associations.
Collapse
|
25
|
Huang S, Dou J, Li Z, Hu L, Yu Y, Wang Y. Analysis of Genomic Alternative Splicing Patterns in Rat under Heat Stress Based on RNA-Seq Data. Genes (Basel) 2022; 13:genes13020358. [PMID: 35205403 PMCID: PMC8871965 DOI: 10.3390/genes13020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most severe challenges faced in livestock production in summer. Alternative splicing as an important post-transcriptional regulation is rarely studied in heat-stressed animals. Here, we performed and analyzed RNA-sequencing assays on the liver of Sprague-Dawley rats in control (22 °C, n = 5) and heat stress (4 °C for 120 min, H120; n = 5) groups, resulting in the identification of 636 differentially expressed genes. Identification analysis of the alternative splicing events revealed that heat stress-induced alternative splicing events increased by 20.18%. Compared with other types of alternative splicing events, the alternative start increased the most (43.40%) after heat stress. Twenty-eight genes were differentially alternatively spliced (DAS) between the control and H120 groups, among which Acly, Hnrnpd and mir3064 were also differentially expressed. For DAS genes, Srebf1, Shc1, Srsf5 and Ensa were associated with insulin, while Cast, Srebf1, Tmem33, Tor1aip2, Slc39a7 and Sqstm1 were enriched in the composition of the endoplasmic reticulum. In summary, our study conducts a comprehensive profile of alternative splicing in heat-stressed rats, indicating that alternative splicing is one of the molecular mechanisms of heat stress response in mammals and providing reference data for research on heat tolerance in mammalian livestock.
Collapse
Affiliation(s)
- Shangzhen Huang
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Jinhuan Dou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
- Correspondence: (J.D.); (Y.W.)
| | - Zhongshu Li
- Agricultural College, Yanbian University, Yanji 133002, China;
| | - Lirong Hu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Ying Yu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Yachun Wang
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
- Correspondence: (J.D.); (Y.W.)
| |
Collapse
|
26
|
Batchuluun B, Pinkosky SL, Steinberg GR. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2022; 21:283-305. [PMID: 35031766 PMCID: PMC8758994 DOI: 10.1038/s41573-021-00367-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Fatty acids are essential for survival, acting as bioenergetic substrates, structural components and signalling molecules. Given their vital role, cells have evolved mechanisms to generate fatty acids from alternative carbon sources, through a process known as de novo lipogenesis (DNL). Despite the importance of DNL, aberrant upregulation is associated with a wide variety of pathologies. Inhibiting core enzymes of DNL, including citrate/isocitrate carrier (CIC), ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), represents an attractive therapeutic strategy. Despite challenges related to efficacy, selectivity and safety, several new classes of synthetic DNL inhibitors have entered clinical-stage development and may become the foundation for a new class of therapeutics. De novo lipogenesis (DNL) is vital for the maintenance of whole-body and cellular homeostasis, but aberrant upregulation of the pathway is associated with a broad range of conditions, including cardiovascular disease, metabolic disorders and cancers. Here, Steinberg and colleagues provide an overview of the physiological and pathological roles of the core DNL enzymes and assess strategies and agents currently in development to therapeutically target them.
Collapse
Affiliation(s)
- Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
27
|
Zhan Z, Li A, Zhang W, Wu X, He J, Li Z, Li Y, Sun J, Zhang H. ATP-citrate lyase inhibitor improves ectopic lipid accumulation in the kidney in a db/db mouse model. Front Endocrinol (Lausanne) 2022; 13:914865. [PMID: 36568100 PMCID: PMC9771989 DOI: 10.3389/fendo.2022.914865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
AIM We evaluated a novel treatment for obesity-related renal, an ATP-citrate lyase (ACL) inhibitor, to attenuate ectopic lipid accumulation (ELA) in the kidney and the ensuing inflammation. MATERIALS AND METHODS An ACL inhibitor was administered intragastrically to 12-week-old db/db mice for 30 days. The appearance of ELA was observed by staining kidney sections with Oil Red O, and the differences in tissue lipid metabolites were assessed by mass spectrometry. The anti-obesity and renoprotection effects of ACL inhibitors were observed by histological examination and multiple biochemical assays. RESULTS Using the AutoDock Vina application, we determined that among the four known ACL inhibitors (SB-204990, ETC-1002, NDI-091143, and BMS-303141), BMS-303141 had the highest affinity for ACL and reduced ACL expression in the kidneys of db/db mice. We reported that BMS-303141 administration could decrease the levels of serum lipid and renal lipogenic enzymes acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), HMG-CoA reductase (HMGCR), and diminish renal ELA in db/db mice. In addition, we found that reducing ELA improved renal injuries, inflammation, and tubulointerstitial fibrosis. CONCLUSION ACL inhibitor BMS-303141 protects against obesity-related renal injuries.
Collapse
Affiliation(s)
- Zishun Zhan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Aimei Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Jinrong He
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Zhi Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
| | - Yanchun Li
- Division of Biological Sciences, Department of Medicine, University of Chicago, Chicago, Chicago, IL, United States
| | - Jian Sun
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
- Department of Rheumatology and Immunology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Hao Zhang, ; Jian Sun,
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, Hunan, China
- *Correspondence: Hao Zhang, ; Jian Sun,
| |
Collapse
|
28
|
Vacek L, Dvorak A, Bechynska K, Kosek V, Elkalaf M, Trinh MD, Fiserova I, Pospisilova K, Slovakova L, Vitek L, Hajslova J, Polak J. Hypoxia Induces Saturated Fatty Acids Accumulation and Reduces Unsaturated Fatty Acids Independently of Reverse Tricarboxylic Acid Cycle in L6 Myotubes. Front Endocrinol (Lausanne) 2022; 13:663625. [PMID: 35360057 PMCID: PMC8963465 DOI: 10.3389/fendo.2022.663625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Obstructive sleep apnea syndrome, characterized by repetitive episodes of tissue hypoxia, is associated with several metabolic impairments. Role of fatty acids and lipids attracts attention in its pathogenesis for their metabolic effects. Parallelly, hypoxia-induced activation of reverse tricarboxylic acid cycle (rTCA) with reductive glutamine metabolism provides precursor molecules for de novo lipogenesis. Gas-permeable cultureware was used to culture L6-myotubes in chronic hypoxia (12%, 4% and 1% O2) with 13C labelled glutamine and inhibitors of glutamine uptake or rTCA-mediated lipogenesis. We investigated changes in lipidomic profile, 13C appearance in rTCA-related metabolites, gene and protein expression of rTCA-related proteins and glutamine transporters, glucose uptake and lactate production. Lipid content increased by 308% at 1% O2, predominantly composed of saturated fatty acids, while triacylglyceroles containing unsaturated fatty acids and membrane lipids (phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositol) decreased by 20-70%. rTCA labelling of malate, citrate and 2-hydroxyglutarate increased by 4.7-fold, 2.2-fold and 1.9-fold in 1% O2, respectively. ATP-dependent citrate lyase inhibition in 1% O2 decreased lipid amount by 23% and increased intensity of triacylglyceroles containing unsaturated fatty acids by 56-80%. Lactate production increased with hypoxia. Glucose uptake dropped by 75% with progression of hypoxia from 4% to 1% O2. Protein expression remained unchanged. Altogether, hypoxia modified cell metabolism leading to lipid composition alteration and rTCA activation.
Collapse
Affiliation(s)
- Lukas Vacek
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ales Dvorak
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Kamila Bechynska
- Institute of Food and Nutrition Analysis, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Vit Kosek
- Institute of Food and Nutrition Analysis, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Moustafa Elkalaf
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - Minh Duc Trinh
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ivana Fiserova
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Katerina Pospisilova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lucie Slovakova
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czechia
- 4 Department of Internal Medicine, Faculty General Hospital and 1Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Hajslova
- Institute of Food and Nutrition Analysis, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Jan Polak
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Jan Polak,
| |
Collapse
|
29
|
ACLY Nuclear Translocation in Human Macrophages Drives Proinflammatory Gene Expression by NF-κB Acetylation. Cells 2021; 10:cells10112962. [PMID: 34831186 PMCID: PMC8616537 DOI: 10.3390/cells10112962] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophage stimulation by pathogen-associated molecular patterns (PAMPs) like lipopolysaccharide (LPS) or lipoteichoic acid (LTA) drives a proinflammatory phenotype and induces a metabolic reprogramming to sustain the cell’s function. Nevertheless, the relationship between metabolic shifts and gene expression remains poorly explored. In this context, the metabolic enzyme ATP citrate lyase (ACLY), the producer of citrate-derived acetyl-coenzyme A (CoA), plays a critical role in supporting a proinflammatory response. Through immunocytochemistry and cytosol–nucleus fractionation, we found a short-term ACLY nuclear translocation. Protein immunoprecipitation unveiled the role of nuclear ACLY in NF-κB acetylation and in turn its full activation in human PBMC-derived macrophages. Notably, sepsis in the early hyperinflammatory phase triggers ACLY-mediated NF-κB acetylation. The ACLY/NF-κB axis increases the expression levels of proinflammatory genes, including SLC25A1—which encodes the mitochondrial citrate carrier—and ACLY, thus promoting the existence of a proinflammatory loop involving SLC25A1 and ACLY genes.
Collapse
|
30
|
Lee Y, Lee J, Lee MS, Chang E, Kim Y. Chrysanthemum morifolium Flower Extract Ameliorates Obesity-Induced Inflammation and Increases the Muscle Mitochondria Content and AMPK/SIRT1 Activities in Obese Rats. Nutrients 2021; 13:3660. [PMID: 34684660 PMCID: PMC8539674 DOI: 10.3390/nu13103660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Decreased energy expenditure and chronically positive energy balance contribute to the prevalence of obesity and associated metabolic dysfunctions, such as dyslipidemia, hepatic fat accumulation, inflammation, and muscle mitochondrial defects. We investigated the effects of Chrysanthemum morifolium Ramat flower extract (CE) on obesity-induced inflammation and muscle mitochondria changes. Sprague-Dawley rats were randomly divided into four groups and fed either a normal diet, 45% high-fat diet (HF), HF containing 0.2% CE, or 0.4% CE for 13 weeks. CE alleviated HF-increased adipose tissue mass and size, dyslipidemia, hepatic fat deposition, and systematic inflammation, and increased energy expenditure. CE significantly decreased gene expression involved in adipogenesis, pro-inflammation, and the M1 macrophage phenotype, as well as glycerol-3-phosphate dehydrogenase (GPDH) and nuclear factor-kappa B (NF-kB) activities in epididymal adipose tissue. Moreover, CE supplementation improved hepatic fat accumulation and modulated gene expression related to fat synthesis and oxidation with an increase in adenosine monophosphate-activated protein kinase (AMPK) activity in the liver. Furthermore, CE increased muscle mitochondrial size, mitochondrial DNA (mtDNA) content, and gene expression related to mitochondrial biogenesis and function, including sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and PGC-1α-target genes, along with AMPK-SIRT1 activities in the skeletal muscle. These results suggest that CE attenuates obesity-associated inflammation by modulating the muscle AMPK-SIRT1 pathway.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipogenesis/drug effects
- Adipogenesis/genetics
- Adipose Tissue, White/metabolism
- Animals
- Body Weight/drug effects
- Chrysanthemum/chemistry
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Diet, High-Fat
- Dyslipidemias/complications
- Energy Metabolism/drug effects
- Flowers/chemistry
- Gene Expression Regulation/drug effects
- Hypertrophy
- Inflammation/drug therapy
- Inflammation/etiology
- Liver/drug effects
- Liver/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Obesity/complications
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Sirtuin 1/metabolism
- Rats
Collapse
Affiliation(s)
- Yoonjin Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (J.L.); (M.-S.L.)
| | - Jaerin Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (J.L.); (M.-S.L.)
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (J.L.); (M.-S.L.)
| | - Eugene Chang
- Department of Food and Nutrition, Gangneung-Wonju National University, Gangneung-si 25457, Korea;
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (J.L.); (M.-S.L.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
31
|
Ballantyne CM, Bays H, Catapano AL, Goldberg A, Ray KK, Saseen JJ. Role of Bempedoic Acid in Clinical Practice. Cardiovasc Drugs Ther 2021; 35:853-864. [PMID: 33818688 PMCID: PMC8266788 DOI: 10.1007/s10557-021-07147-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Many patients do not achieve optimal low-density lipoprotein cholesterol (LDL-C) levels with statins alone; others are unable to tolerate statin therapy. Additional non-statin treatment options including ezetimibe, proprotein convertase subtilisin/kexin type 9 inhibitors, and bile acid sequestrants are often necessary to further reduce the risk of atherosclerotic cardiovascular disease. This review provides practical guidance as to the use of bempedoic acid to lower LDL-C and includes direction as to which patients may benefit and advice for safety monitoring during treatment. Bempedoic acid, a new class of agent, is a prodrug converted to bempedoyl-CoA by very long-chain acyl-CoA synthetase 1, an enzyme with high expression in the liver but that is undetectable in the skeletal muscle. Bempedoic acid inhibits the enzyme adenosine triphosphate (ATP)-citrate lyase, which lies two steps upstream from β-hydroxy β-methylglutaryl-CoA reductase in the cholesterol biosynthesis pathway. In clinical trials conducted in patients with or at risk for atherosclerotic cardiovascular disease or familial heterozygous hypercholesterolemia, bempedoic acid in combination with statins and/or ezetimibe significantly reduced LDL-C, apolipoprotein B, and high-sensitivity C-reactive protein compared with placebo. Bempedoic acid is generally well tolerated with no clinically meaningful increase in muscle-related symptoms relative to placebo, even in patients taking maximally tolerated statins. A small increase in serum uric acid (mean increase 0.8 mg/dL) is the most noteworthy adverse effect. Bempedoic acid provides an effective and generally well-tolerated medication to further reduce LDL-C in patients taking maximally tolerated statins or manage LDL-C levels in those who are unable to take statins. The potential for a reduced incidence of major cardiovascular events with bempedoic acid is being investigated in the CLEAR Outcomes trial, with results expected in 2023.
Collapse
Affiliation(s)
- Christie M Ballantyne
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, BCM 285, Houston, TX, 77030, USA.
| | - Harold Bays
- Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Milan, Italy
| | - Anne Goldberg
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Joseph J Saseen
- Departments of Clinical Pharmacy and Family Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
32
|
Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2021; 13:877-919. [PMID: 34050894 PMCID: PMC9243210 DOI: 10.1007/s13238-021-00846-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.
Collapse
Affiliation(s)
- Linchong Sun
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Huafeng Zhang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China. .,CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China. .,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
33
|
Guan S, Pu Q, Liu Y, Wu H, Yu W, Pi Z, Liu S, Song F, Li J, Guo DA. Scale-Up Preparation of Crocins I and II from Gardeniajasminoides by a Two-Step Chromatographic Approach and Their Inhibitory Activity Against ATP Citrate Lyase. Molecules 2021; 26:molecules26113137. [PMID: 34073936 PMCID: PMC8197369 DOI: 10.3390/molecules26113137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Crocins are highly valuable natural compounds for treating human disorders, and they are also high-end spices and colorants in the food industry. Due to the limitation of obtaining this type of highly polar compound, the commercial prices of crocins I and II are expensive. In this study, macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was used to purify crocins I and II from natural sources. With only two chromatographic steps, both compounds were simultaneously isolated from the dry fruit of Gardenia jasminoides, which is a cheap herbal medicine distributed in a number of countries. In an effort to shorten the isolation time and reduce solvent usage, forward and reverse rotations were successively utilized in the HSCCC isolation procedure. Crocins I and II were simultaneously obtained from a herbal resource with high recoveries of 0.5% and 0.1%, respectively, and high purities of 98.7% and 99.1%, respectively, by HPLC analysis. The optimized preparation method was proven to be highly efficient, convenient, and cost-effective. Crocins I and II exhibited inhibitory activity against ATP citrate lyase, and their IC50 values were determined to be 36.3 ± 6.24 and 29.7 ± 7.41 μM, respectively.
Collapse
Affiliation(s)
- Shuguang Guan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
| | - Qiaoli Pu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
| | - Yinan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.L.); (J.L.)
| | - Honghong Wu
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Wenbo Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
| | - Zifeng Pi
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
- Changchun Sunnytech Co., Ltd., Changchun 130061, China
- Correspondence: (Z.P.); (D.-A.G.); Tel.: +86-21-50271516 (D.-A.G.); Fax: +86-21-50271516 (D.-A.G.)
| | - Shu Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
| | - Fengrui Song
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
| | - Jingya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.L.); (J.L.)
| | - De-An Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.L.); (J.L.)
- Correspondence: (Z.P.); (D.-A.G.); Tel.: +86-21-50271516 (D.-A.G.); Fax: +86-21-50271516 (D.-A.G.)
| |
Collapse
|
34
|
Agarwala A, Quispe R, Goldberg AC, Michos ED. Bempedoic Acid for Heterozygous Familial Hypercholesterolemia: From Bench to Bedside. Drug Des Devel Ther 2021; 15:1955-1963. [PMID: 34007155 PMCID: PMC8121276 DOI: 10.2147/dddt.s251865] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
Bempedoic acid is a first-in-class, oral, inhibitor of cholesterol biosynthesis that is approved for use in patients with atherosclerotic cardiovascular disease (ASCVD) and for primary prevention in individuals with heterozygous familial hypercholesterolemia (HeFH) by the United States Food and Drug Administration. Pooled data from the phase III clinical trials, CLEAR Harmony and CLEAR Wisdom, have demonstrated the safety and efficacy of bempedoic acid with regard to lowering of low-density lipoprotein cholesterol (LDL-C) in patients with HeFH as an adjunct or alternative to currently existing lipid-lowering therapies. CLEAR Outcomes is a cardiovascular outcomes trial that is currently underway that will provide additional insight as to where bempedoic acid will fit into treatment regimens among the non-statin lipid-lowering therapy options. Patients who might particularly benefit from bempedoic acid are those with HeFH and those unable to take adequate doses of statins or take any statin therapy altogether who need additional LDL-C lowering. In this review, we will discuss the profile of bempedoic acid from its design, development, and its place in therapy for the management of LDL-C for the purposes of ASCVD prevention.
Collapse
Affiliation(s)
- Anandita Agarwala
- Division of Cardiology, Baylor Scott and White Health, Heart Hospital Baylor Plano, Plano, TX, USA
| | - Renato Quispe
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne C Goldberg
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Erin D Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Wei X, Shi J, Lin Q, Ma X, Pang Y, Mao H, Li R, Lu W, Wang Y, Liu P. Targeting ACLY Attenuates Tumor Growth and Acquired Cisplatin Resistance in Ovarian Cancer by Inhibiting the PI3K-AKT Pathway and Activating the AMPK-ROS Pathway. Front Oncol 2021; 11:642229. [PMID: 33816292 PMCID: PMC8011496 DOI: 10.3389/fonc.2021.642229] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Ovarian cancer is the most lethal female genital malignancy. Although cisplatin is the first-line chemotherapy to treat ovarian cancer patients along with debulking surgeries, its efficacy is limited due to the high incidence of cisplatin resistance. ATP citrate lyase (ACLY) has been shown to be a key metabolic enzyme and is associated with poor prognosis in various cancers, including ovarian cancer. Nevertheless, no studies have probed the mechanistic relationship between ACLY and cisplatin resistance. Methods: Survival analysis was mainly carried out online. Bioinformatic analysis was performed in R/R studio. Proliferative activity was measured by MTT and colony formation assays. Cell cycle and apoptosis analysis were performed by flow cytometry. The acquired-cisplatin-resistant cell line A2780/CDDP was generated by exposing A2780 to cisplatin at gradually elevated concentrations. MTT assay was used to calculate IC50 values of cisplatin. A xenograft tumor assay was used test cell proliferation in vivo. Results: Higher expression of ACLY was found in ovarian cancer tissue and related to poor prognosis. Knockdown of ACLY in A2780, SKOV3, and HEY cells inhibited cell proliferation, caused cell-cycle arrest by modulating the P16–CDK4–CCND1 pathway, and induced apoptosis probably by inhibiting p-AKT activity. Bioinformatic analysis of the GSE15709 dataset revealed upregulation of ACLY and activation of PI3K–AKT pathway in cells with acquired cisplatin resistance, in line with observations on A2780/CDDP cells that we generated. Knockdown of ACLY alleviated cisplatin resistance, and works synergistically with cisplatin treatment to induce apoptosis in A2780/CDDP cells by inhibiting the PI3K–AKT pathway and activating AMPK–ROS pathway. The ACLY-specific inhibitor SB-204990 showed the same effect. In A2780/CDDP cells, AKT overexpression could attenuate cisplatin re-sensitization caused by ACLY knockdown. Conclusions: Knockdown of ACLY attenuated cisplatin resistance by inhibiting the PI3K–AKT pathway and activating the AMPK–ROS pathway. These findings suggest that a combination of ACLY inhibition and cisplatin might be an effective strategy for overcoming cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Juanjuan Shi
- Department of Gynecology and Obstetrics, Affiliated Tengzhou Center People's Hospital of Jining Medical University, Tengzhou, China
| | - Qianhan Lin
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Hongluan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
36
|
Eriau E, Paillet J, Kroemer G, Pol JG. Metabolic Reprogramming by Reduced Calorie Intake or Pharmacological Caloric Restriction Mimetics for Improved Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13061260. [PMID: 33809187 PMCID: PMC7999281 DOI: 10.3390/cancers13061260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Caloric restriction and fasting have been known for a long time for their health- and life-span promoting effects, with coherent observations in multiple model organisms as well as epidemiological and clinical studies. This holds particularly true for cancer. The health-promoting effects of caloric restriction and fasting are mediated at least partly through their cellular effects-chiefly autophagy induction-rather than reduced calorie intake per se. Interestingly, caloric restriction has a differential impact on cancer and healthy cells, due to the atypical metabolic profile of malignant tumors. Caloric restriction mimetics are non-toxic compounds able to mimic the biochemical and physiological effects of caloric restriction including autophagy induction. Caloric restriction and its mimetics induce autophagy to improve the efficacy of some cancer treatments that induce immunogenic cell death (ICD), a type of cellular demise that eventually elicits adaptive antitumor immunity. Caloric restriction and its mimetics also enhance the therapeutic efficacy of chemo-immunotherapies combining ICD-inducing agents with immune checkpoint inhibitors targeting PD-1. Collectively, preclinical data encourage the application of caloric restriction and its mimetics as an adjuvant to immunotherapies. This recommendation is subject to confirmation in additional experimental settings and in clinical trials. In this work, we review the preclinical and clinical evidence in favor of such therapeutic interventions before listing ongoing clinical trials that will shed some light on this subject.
Collapse
Affiliation(s)
- Erwan Eriau
- Centre de Cancérologie de Lyon, Université de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, 69008 Lyon, France; or
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
| | - Juliette Paillet
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Institut Universitaire de France, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique–Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215163, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jonathan G. Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-44-27-76-66
| |
Collapse
|
37
|
Weighted gene co-expression network analysis to identify key modules and hub genes related to hyperlipidaemia. Nutr Metab (Lond) 2021; 18:24. [PMID: 33663541 PMCID: PMC7934476 DOI: 10.1186/s12986-021-00555-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The purpose of this study was to explore the potential molecular targets of hyperlipidaemia and the related molecular mechanisms. METHODS The microarray dataset of GSE66676 obtained from patients with hyperlipidaemia was downloaded. Weighted gene co-expression network (WGCNA) analysis was used to analyse the gene expression profile, and the royal blue module was considered to have the highest correlation. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were implemented for the identification of genes in the royal blue module using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool (version 6.8; http://david.abcc.ncifcrf.gov ). A protein-protein interaction (PPI) network was established by using the online STRING tool. Then, several hub genes were identified by the MCODE and cytoHubba plug-ins in Cytoscape software. RESULTS The significant module (royal blue) identified was associated with TC, TG and non-HDL-C. GO and KEGG enrichment analyses revealed that the genes in the royal blue module were associated with carbon metabolism, steroid biosynthesis, fatty acid metabolism and biosynthesis pathways of unsaturated fatty acids. SQLE (degree = 17) was revealed as a key molecule associated with hypercholesterolaemia (HCH), and SCD was revealed as a key molecule associated with hypertriglyceridaemia (HTG). RT-qPCR analysis also confirmed the above results based on our HCH/HTG samples. CONCLUSIONS SQLE and SCD are related to hyperlipidaemia, and SQLE/SCD may be new targets for cholesterol-lowering or triglyceride-lowering therapy, respectively.
Collapse
|
38
|
Hritani R, Hussain A, Saeed A, Agarwala A. A lipid lover's guide to novel therapeutics for lipid and cardiovascular risk reduction. Future Cardiol 2021; 17:507-520. [PMID: 33599534 DOI: 10.2217/fca-2020-0216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lipids and lipoproteins are the target of many novel therapeutics and are an area with great potential for the prevention and treatment of cardiovascular disease (CVD). Reduction of low-density lipoprotein cholesterol has been the mainstay of reducing the burden of CVD, however, several other atherogenic particles have more recently come into the spotlight as potential avenues for primary and/or secondary prevention of CVD. These include triglycerides, high sensitivity C-reactive protein, apolipoprotein A, apolipoprotein C3 and lipoprotein(a). In this review, we showcase novel therapeutics to target lipid and cardiovascular risk reduction that are either in development or that have recently been approved for use. We discuss the mechanisms of action, data from clinical trials and expected effects of each therapy based on the current body of literature.
Collapse
Affiliation(s)
- Rama Hritani
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Aliza Hussain
- Department of Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Anum Saeed
- Heart & Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anandita Agarwala
- Cardiovascular Division, Baylor Scott & White Health Heart Hospital Baylor Plano, Plano, TX 75093, USA
| |
Collapse
|
39
|
Targeting Cancer Metabolism and Current Anti-Cancer Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:15-48. [PMID: 33725343 DOI: 10.1007/978-3-030-55035-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies have exploited the metabolic hallmarks that distinguish between normal and cancer cells, aiming at identifying specific targets of anti-cancer drugs. It has become apparent that metabolic flexibility allows cancer cells to survive during high anabolic demand or the depletion of nutrients and oxygen. Cancers can reprogram their metabolism to the microenvironments by increasing aerobic glycolysis to maximize ATP production, increasing glutaminolysis and anabolic pathways to support bioenergetic and biosynthetic demand during rapid proliferation. The increased key regulatory enzymes that support the relevant pathways allow us to design small molecules which can specifically block activities of these enzymes, preventing growth and metastasis of tumors. In this review, we discuss metabolic adaptation in cancers and highlight the crucial metabolic enzymes involved, specifically those involved in aerobic glycolysis, glutaminolysis, de novo fatty acid synthesis, and bioenergetic pathways. Furthermore, we also review the success and the pitfalls of the current anti-cancer drugs which have been applied in pre-clinical and clinical studies.
Collapse
|
40
|
Li K, Zhang K, Wang H, Wu Y, Chen N, Chen J, Qiu C, Cai P, Li M, Liang X, Su D. Hrd1-mediated ACLY ubiquitination alleviate NAFLD in db/db mice. Metabolism 2021; 114:154349. [PMID: 32888949 DOI: 10.1016/j.metabol.2020.154349] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The functions of Acly in regulating nonalcoholic fatty liver disease (NAFLD) have been identified; however, the dynamic control of Acly expression under the pathological state of metabolic disorders has not been fully elucidated. Previous studies reported an ubiquitin-proteasome-mediated degradation of Acly, but the mechanism is still largely unknown. METHODS Co-IP-based mass spectrum (MS/MS) assays were performed in HepG2 and Hepa1-6 hepatocytes and mouse liver tissue. The protein-protein interaction and ubiquitin modification of Hrd1 on Acly were confirmed by co-IP based immuno-blotting. Acetyl-CoA levels and lipogenesis rates were determined. The roles of Hrd1 on NAFLD and insulin resistance were tested by adenovirus-mediated overexpression in db/db mice or in separated primary hepatocytes. RESULTS Hrd1, a subunit of the endoplasmic reticulum-associated degradation (ERAD) complex, interacted with and ubiquitinated Acly, thereby reducing its protein level. Hrd1 suppressed the acetyl-CoA level and inhibited lipogenesis through an Acly-dependent pathway. The expression of hepatic Hrd1 was negatively associated with NAFLD, whereas overexpression of Hrd1 ameliorated hepatic steatosis and enhanced insulin sensitivity, both in db/db mice and in separated mouse primary hepatocytes. CONCLUSIONS Our results suggest that Acly, a master enzyme that regulates lipogenesis, is degraded by Hrd1 through ubiquitin modification. The activation of Hrd1 in hepatocytes might therefore represent a strategic approach for NAFLD therapy.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Kaini Zhang
- Department of Pathology, Nanjing Medical University, Nanjing 211166, China
| | - Hai Wang
- Department of Pathology, Nanjing Medical University, Nanjing 211166, China
| | - Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Nuoqi Chen
- Department of Endocrinology, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, China
| | - Jinfeng Chen
- Department of Endocrinology, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, China
| | - Chen Qiu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of the Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| | - Pengpeng Cai
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Min Li
- Department of Pathology, Nanjing Medical University, Nanjing 211166, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing 211166, China; Department of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
41
|
Sciarretta S, Forte M, Castoldi F, Frati G, Versaci F, Sadoshima J, Kroemer G, Maiuri MC. Caloric restriction mimetics for the treatment of cardiovascular diseases. Cardiovasc Res 2020; 117:1434-1449. [PMID: 33098415 DOI: 10.1093/cvr/cvaa297] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
Caloric restriction mimetics (CRMs) are emerging as potential therapeutic agents for the treatment of cardiovascular diseases. CRMs include natural and synthetic compounds able to inhibit protein acetyltransferases, to interfere with acetyl coenzyme A biosynthesis, or to activate (de)acetyltransferase proteins. These modifications mimic the effects of caloric restriction, which is associated with the activation of autophagy. Previous evidence demonstrated the ability of CRMs to ameliorate cardiac function and reduce cardiac hypertrophy and maladaptive remodelling in animal models of ageing, mechanical overload, chronic myocardial ischaemia, and in genetic and metabolic cardiomyopathies. In addition, CRMs were found to reduce acute ischaemia-reperfusion injury. In many cases, these beneficial effects of CRMs appeared to be mediated by autophagy activation. In the present review, we discuss the relevant literature about the role of different CRMs in animal models of cardiac diseases, emphasizing the molecular mechanisms underlying the beneficial effects of these compounds and their potential future clinical application.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesca Castoldi
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Versaci
- Division of Cardiology, S. Maria Goretti Hospital, 04100 Latina, Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, G-609, Newark, NJ 07103, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou Jiangsu 215163, China.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| |
Collapse
|
42
|
Zheng ZQ, Li ZX, Guan JL, Liu X, Li JY, Chen Y, Lin L, Kou J, Lv JW, Zhang LL, Zhou GQ, Liu RQ, Chen F, He XJ, Li YQ, Li F, Xu SS, Ma J, Liu N, Sun Y. Long Noncoding RNA TINCR-Mediated Regulation of Acetyl-CoA Metabolism Promotes Nasopharyngeal Carcinoma Progression and Chemoresistance. Cancer Res 2020; 80:5174-5188. [PMID: 33067266 DOI: 10.1158/0008-5472.can-19-3626] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 12/09/2022]
Abstract
Frontier evidence suggests that dysregulation of long noncoding RNAs (lncRNA) is ubiquitous in all human tumors, indicating that lncRNAs might have essential roles in tumorigenesis. Therefore, an in-depth study of the roles of lncRNA in nasopharyngeal carcinoma (NPC) carcinogenesis might be helpful to provide novel therapeutic targets. Here we report that lncRNA TINCR was significantly upregulated in NPC and was associated positively with poor survival. Silencing TINCR inhibited NPC progression and cisplatin resistance. Mechanistically, TINCR bound ACLY and protected it from ubiquitin degradation to maintain total cellular acetyl-CoA levels. Accumulation of cellular acetyl-CoA promoted de novo lipid biosynthesis and histone H3K27 acetylation, which ultimately regulated the peptidyl arginine deiminase 1 (PADI1)-MAPK-MMP2/9 pathway. In addition, insulin-like growth factor 2 mRNA-binding protein 3 interacted with TINCR and slowed its decay, which partially accounted for TINCR upregulation in NPC. These findings demonstrate that TINCR acts as a crucial driver of NPC progression and chemoresistance and highlights the newly identified TINCR-ACLY-PADI1-MAPK-MMP2/9 axis as a potential therapeutic target in NPC. SIGNIFICANCE: TINCR-mediated regulation of a PADI1-MAPK-MMP2/9 signaling pathway plays a critical role in NPC progression and chemoresistance, marking TINCR as a viable therapeutic target in this disease.
Collapse
Affiliation(s)
- Zi-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Li Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yue Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Li Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia Kou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Wei Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lu-Lu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Guan-Qun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Rui-Qi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - FoPing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Jun He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Feng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Si-Si Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
43
|
Alannan M, Fayyad-Kazan H, Trézéguet V, Merched A. Targeting Lipid Metabolism in Liver Cancer. Biochemistry 2020; 59:3951-3964. [PMID: 32930581 DOI: 10.1021/acs.biochem.0c00477] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cells are highly dependent on different metabolic pathways for sustaining their survival, growth, and proliferation. Lipid metabolism not only provides the energetic needs of the cells but also provides the raw material for cellular growth and the signaling molecules for many oncogenic pathways. Mainly processed in the liver, lipids play an essential role in the physiology of this organ and in the pathological progression of many diseases such as metabolic syndrome and hepatocellular carcinoma (HCC). The progression of HCC is associated with inflammation and complex metabolic reprogramming, and its prognosis remains poor because of the lack of effective therapies despite many years of dedicated research. Defects in hepatic lipid metabolism induce abnormal gene expression and rewire many cellular pathways involved in oncogenesis and metastasis, implying that interfering with lipid metabolism within the tumor and the surrounding microenvironment may be a novel therapeutic approach for treating liver cancer patients. Therefore, this review focuses on the latest advances in drugs targeting lipid metabolism and leading to promising outcomes in preclinical studies and some ongoing clinical trials.
Collapse
Affiliation(s)
- Malak Alannan
- miRCaDe team, Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France.,Faculty of Sciences I, Lebanese University, Rafik Hariri Campus, Hadath, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Véronique Trézéguet
- miRCaDe team, Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France
| | - Aksam Merched
- miRCaDe team, Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France
| |
Collapse
|
44
|
Agarwala A, Goldberg AC. Bempedoic acid: a promising novel agent for LDL-C lowering. Future Cardiol 2020; 16:361-371. [DOI: 10.2217/fca-2020-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bempedoic acid (ETC-1002) is a novel, first-in-class, oral, small molecule that inhibits cholesterol biosynthesis in the same pathway as statins, thereby lowering low-density lipoprotein cholesterol (LDL-C) by upregulating LDL receptors. Preclinical and completed Phase II and III clinical trials have demonstrated promising results regarding its safety and efficacy across a variety of patient characteristics including statin intolerance and on a background of lipid-lowering therapy. Bempedoic acid is currently being evaluated in a cardiovascular outcomes trial to evaluate its effect on major cardiovascular events in patients with or at high risk for cardiovascular disease and with statin intolerance. In this review, we will discuss the history and development of bempedoic acid, relevant clinical trials, and its potential role as a lipid-lowering medication in the context of other currently available lipid-lowering therapies.
Collapse
Affiliation(s)
- Anandita Agarwala
- Division of Cardiology, Washington University School of Medicine, 660 S. Euclid, Campus Box 8086, St Louis, MO 63110, USA
| | - Anne C Goldberg
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, 660 S. Euclid, Campus Box 8127, St Louis, MO 63110, USA
| |
Collapse
|
45
|
Jha V, Galati S, Volpi V, Ciccone L, Minutolo F, Rizzolio F, Granchi C, Poli G, Tuccinardi T. Discovery of a new ATP-citrate lyase (ACLY) inhibitor identified by a pharmacophore-based virtual screening study. J Biomol Struct Dyn 2020; 39:3996-4004. [PMID: 32448086 DOI: 10.1080/07391102.2020.1773314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ATP citrate lyase (ACLY) is an important enzyme that catalyzes the conversion of citrate to acetyl-CoA in normal cells, facilitating the de novo fatty acid synthesis. Lipids and fatty acids were found to be accumulated in different types of tumors, such as brain, breast, rectal and ovarian cancer, representing a great source of energy for cancer cell growth and metabolism. Since ACLY-mediated conversion of citrate to acetyl-CoA constitutes the basis for fatty acid synthesis, ACLY seems to be quite an unexplored and promising therapeutic target for anticancer drug design. A pharmacophore-based virtual screening (VS) protocol with the aid of hierarchical docking, consensus docking (CD), molecular dynamics (MD) simulations and ligand-protein binding free energy calculations led to the identification of compound VS1, which showed a moderate but promising inhibitory activity, demonstrating to be 2.5 times more potent than reference inhibitor 2-hydroxycitrate. These results validate the reliability of our VS workflow and pave the way for the design of novel and more potent ACLY inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vibhu Jha
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Valerio Volpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.,Department of Molecular science and Nanosystems, University Ca' Foscari of Venice, Venice, Italy
| | | | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
46
|
Infantino V, Pierri CL, Iacobazzi V. Metabolic Routes in Inflammation: The Citrate Pathway and its Potential as Therapeutic Target. Curr Med Chem 2020; 26:7104-7116. [PMID: 29745322 DOI: 10.2174/0929867325666180510124558] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Significant metabolic changes occur in inflammation to respond to the new energetic needs of cells. Mitochondria are addressed not only to produce ATP, but also to supply substrates, such citrate, to produce pro-inflammatory molecules. In this context, most of the citrate is diverted from Krebs cycle and channeled into the "citrate pathway" leading to the increase in the export of citrate into cytosol by the Mitochondrial Citrate Carrier (CIC) followed by its cleavage into acetyl-CoA and oxaloacetate by ATP Citrate Lyase (ACLY). Acetyl- CoA is used to produce PGE2 and oxaloacetate to make NADPH needed for NO and ROS production. In addition, cytosolic citrate also provides precursors for itaconate synthesis. Citrate- derived itaconate acts as a negative regulator of inflammation by modulating the synthesis of the inflammatory mediators. Inhibition of CIC or ACLY by different synthetic and natural molecules results in the reduction of NO, ROS and PGE2 levels suggesting that the citrate pathway can be a new target to be addressed in inflammation. Beneficial effects can be obtained also in the oxidative stress and inflammatory conditions observed in Down syndrome.
Collapse
Affiliation(s)
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
47
|
The vital role of ATP citrate lyase in chronic diseases. J Mol Med (Berl) 2019; 98:71-95. [PMID: 31858156 DOI: 10.1007/s00109-019-01863-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Chronic or non-communicable diseases are the leading cause of death worldwide; they usually result in long-term illnesses and demand long-term care. Despite advances in molecular therapeutics, specific biomarkers and targets for the treatment of these diseases are required. The dysregulation of de novo lipogenesis has been found to play an essential role in cell metabolism and is associated with the development and progression of many chronic diseases; this confirms the link between obesity and various chronic diseases. The main enzyme in this pathway-ATP-citrate lyase (ACLY), a lipogenic enzyme-catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis. Increasing lines of evidence suggest that the modulation of ACLY expression correlates with the development and progressions of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, obesity, inflammation, and cancer. Recent studies suggest that the inhibition of ACLY activity modulates the glycolysis and lipogenesis processes and stimulates normal physiological functions. This comprehensive review aimed to critically evaluate the role of ACLY in the development and progression of different diseases and the effects of its downregulation in the prevention and treatment of these diseases.
Collapse
|
48
|
Huang L, Wang C, Xu H, Peng G. Targeting citrate as a novel therapeutic strategy in cancer treatment. Biochim Biophys Acta Rev Cancer 2019; 1873:188332. [PMID: 31751601 DOI: 10.1016/j.bbcan.2019.188332] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023]
Abstract
An important feature shared by many cancer cells is drastically altered metabolism that is critical for rapid growth and proliferation. The distinctly reprogrammed metabolism in cancer cells makes it possible to manipulate the levels of metabolites for cancer treatment. Citrate is a key metabolite that bridges many important metabolic pathways. Recent studies indicate that manipulating the level of citrate can impact the behaviors of both cancer and immune cells, resulting in induction of cancer cell apoptosis, boosting immune responses, and enhanced cancer immunotherapy. In this review, we discuss the recent developments in this emerging area of targeting citrate in cancer treatment. Specifically, we summarize the molecular basis of altered citrate metabolism in both tumors and immune cells, explore the seemingly conflicted growth promoting and growth inhibiting roles of citrate in various tumors, discuss the use of citrate in the clinic as a novel biomarker for cancer progression and outcomes, and highlight the new development of combining citrate with other therapeutic strategies in cancer therapy. An improved understanding of complex roles of citrate in the suppressive tumor microenvironment should open new avenues for cancer therapy.
Collapse
Affiliation(s)
- Lan Huang
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; Department of Immunology, Jiangsu University School of Medicine, Zhenjiang 212013, PR China
| | - Cindy Wang
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Huaxi Xu
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang 212013, PR China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| |
Collapse
|
49
|
Feng X, Zhang L, Xu S, Shen AZ. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: An updated review. Prog Lipid Res 2019; 77:101006. [PMID: 31499095 DOI: 10.1016/j.plipres.2019.101006] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
Abstract
ATP citrate lyase (ACLY) is an important enzyme linking carbohydrate to lipid metabolism by generating acetyl-CoA from citrate for fatty acid and cholesterol biosynthesis. Mendelian randomization of large human cohorts has validated ACLY as a promising target for low-density-lipoprotein-cholesterol (LDL-C) lowering and cardiovascular protection. Among current ACLY inhibitors, Bempedoic acid (ETC-1002) is a first-in-class, prodrug-based direct competitive inhibitor of ACLY which regulates lipid metabolism by upregulating hepatic LDL receptor (LDLr) expression and activity. ACLY deficiency in hepatocytes protects from hepatic steatosis and dyslipidemia. In addition, pharmacological inhibition of ACLY by bempedoic acid, prevents dyslipidemia and attenuates atherosclerosis in hypercholesterolemic ApoE-/- mice, LDLr-/- mice, and LDLr-/- miniature pigs. Convincing data from clinical trials have revealed that bempedoic acid significantly lowers LDL-C as monotherapy, combination therapy, and add-on with statin therapy in statin-intolerant patients. More recently, a phase 3 CLEAR Harmony clinical trial ("Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol") has shown that bempedoic acid reduces the level of LDL-C in hypercholesterolemic patients receiving guideline-recommended statin therapy with a good safety profile. Hereby, we provide a updated review of the expression, regulation, genetics, functions of ACLY in lipid metabolism and atherosclerosis, and highlight the therapeutic potential of ACLY inhibitors (such as bempedoic acid, SB-204990, and other naturally-occuring inhibitors) to treat atherosclerotic cardiovascular diseases. It must be pointed out that long-term large-scale clinical trials in high-risk patients, are warranted to validate whether ACLY represent a promising therapeutic target for pharmaceutic intervention of dyslipidemia and atherosclerosis; and assess the safety and efficacy profile of ACLY inhibitors in improving cardiovascular outcome of patients.
Collapse
Affiliation(s)
- Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Ai-Zong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China.
| |
Collapse
|
50
|
Chen Y, Deb DK, Fu X, Yi B, Liang Y, Du J, He L, Li YC. ATP-citrate lyase is an epigenetic regulator to promote obesity-related kidney injury. FASEB J 2019; 33:9602-9615. [PMID: 31150280 PMCID: PMC6662982 DOI: 10.1096/fj.201900213r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
Abstract
Obesity is a leading cause of chronic kidney disease (CKD), but how obesity promotes renal injury remains poorly understood. Here we showed that ATP-citrate lyase (ACL), an enzyme converting citrate to acetyl-CoA, is highly induced in the kidney of overweight or obese patients with CKD and ob/ob BTBR mice. ACL induction is associated with increased ectopic lipid accumulation (ELA), glomerulosclerosis, and albuminuria. Acetyl-CoA is the substrate for de novo lipogenesis as well as for histone acetylation. By raising acetyl-CoA concentration ACL promotes H3K9/14 and H3K27 hyperacetylation leading to up-regulation of several rate-limiting lipogenic enzymes and fibrogenic factors. On the other hand, the excess acetyl-CoA generated as a result of ACL induction provides the substrate for these lipogenic enzymes to drive de novo lipogenesis leading to ELA, a detrimental event toward renal injury. In mesangial cells, ACL is synergistically induced by high glucose, palmitate, and TNF-α via NF-κB and PKA pathways. Under these conditions, H3K9/14 and H3K27 hyperacetylation, as well as the induction of the lipogenic and fibrogenic proteins, are completely blocked in the presence of an ACL inhibitor. Collectively, these data suggest that ACL is an epigenetic regulator that promotes renal ELA and fibrogenesis leading to renal injury in obesity.-Chen, Y., Deb, D. K., Fu, X., Yi, B., Liang, Y., Du, J., He, L., Li, Y. C. ATP-citrate lyase is an epigenetic regulator to promote obesity-related kidney injury.
Collapse
Affiliation(s)
- Yinyin Chen
- Division of Biological Sciences, Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, China
| | - Dilip K. Deb
- Division of Biological Sciences, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Xiao Fu
- Division of Biological Sciences, Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Division of Biological Sciences, Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yumei Liang
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, China
| | - Jie Du
- Division of Biological Sciences, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Lei He
- Division of Biological Sciences, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Yan Chun Li
- Division of Biological Sciences, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|