1
|
Yang L, Salanga MC, Traustadóttir T, Guthrie OW. Long-term effects of acute hazardous noise on auditory and non-auditory organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025:1-17. [PMID: 39985403 DOI: 10.1080/15287394.2025.2467177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Hazardous noise is a pervasive environmental pollutant with significant adverse health impacts on auditory and non-auditory organs. It is noteworthy that even acute noise exposure might pose immediate detrimental effects to various organs. However, the long-term effects of acute noise exposure remain largely unknown. This study aimed to explore this gap by randomizing 12 Long-Evans rats into acute noise and control groups. The acute noise regimen was a single three-hr wideband noise (12.5 hz-20 kHz) at 105 dB SPLpeak. Four weeks following exposure cessation, animals from both groups were sacrificed. Genomic DNA and RNA were extracted from the cochlea, brain, heart, and liver. Long-target polymerase assays and real-time quantitative polymerase chain reactions were performed to assess DNA integrity and p53-targeted gene expression, respectively, with results being compared between the two groups. Data demonstrated that noise-induced changes in DNA integrity depended upon organ type, with significant interaction effects between treatment conditions (noise or control) and organ type for nuclear and mitochondrial DNA integrity. In addition, there were significant changes in p53-targeted gene expression between noise-exposed and control in all tested organs. In conclusion, the long-term impact of acute hazardous noise exposure on DNA integrity was complex, highlighting organ-specificity in response to noise. However, such noise significantly altered p53-targeted genes systemically, indicating ongoing cellular stress. Overall, these results suggest that acute exposure to hazardous noise may have potential long-term adverse consequences. Immediate care following exposure might mitigate possible impacts on long-term health.
Collapse
Affiliation(s)
- Li Yang
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Matthew C Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
2
|
Xu P, Nian M, Xiang J, Zhang X, Cheng P, Xu D, Chen Y, Wang X, Chen Z, Lou X, Fang M. Emerging PFAS Exposure Is More Potent in Altering Childhood Lipid Levels Mediated by Mitochondrial DNA Copy Number. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2484-2493. [PMID: 39895349 DOI: 10.1021/acs.est.4c13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose potential health risks to lipid metabolism, but the effects of emerging PFAS alternatives, particularly in children, remain unclear. This cross-sectional study investigated the association between emerging PFAS exposure and lipid levels in 294 Chinese children aged 7-10 years, analyzing blood samples for 14 PFAS and lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). Exposure to 6:2 Cl-PFESA, PFO4DA, and PFO5DoDA was associated with higher TC, TG, and LDL levels, with PFO4DA increasing the TC by 1.7% and PFO5DoDA increasing the TG by 10.7%. Weighted quantile sum (WQS) regression showed mixed PFAS exposure positively associated with TG (0.08, 95% CI: 0.007, 0.153). PFO4DA had the highest weight for TC (0.468), TG (0.327), LDL (0.57), ApoA1 (0.243), and ApoB (0.466), while PFMOAA had the highest weight for HDL (0.332). Bayesian Kernel Machine Regression (BKMR) analysis confirmed positive associations between the PFAS mixture and TC, TG, LDL, and ApoA1. Mediation analysis revealed that mtDNAcn significantly mediated PFAS exposure's effect on TG levels, explaining 27.2-74.2% of the total effect. These findings highlight the need for regulatory action to address the emerging PFAS risks.
Collapse
Affiliation(s)
- Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Min Nian
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xinhan Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming, Shanghai 200241, China
| |
Collapse
|
3
|
Tong W, Allison BJ, Brain KL, Patey OV, Niu Y, Botting KJ, Ford SG, Garrud TA, Wooding PFB, Lyu Q, Zhang L, Ma J, Sowton AP, O'Brien KA, Cindrova-Davies T, Yung HW, Burton GJ, Murray AJ, Giussani DA. Placental mitochondrial metabolic adaptation maintains cellular energy balance in pregnancy complicated by gestational hypoxia. J Physiol 2025. [PMID: 39868991 DOI: 10.1113/jp287897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy. We show that hypoxic pregnancy in sheep triggers a shift in capacity away from β-oxidation and complex I-mediated respiration, while maintaining total oxidative phosphorylation capacity. There are also complex-specific changes to electron transport chain composition and a switch in mitochondrial dynamics towards fission. Hypoxic placentas show increased activation of the non-canonical mitochondrial unfolded protein response pathway and enhanced insulin like growth factor 2 signalling. Combined, therefore, the data show that the hypoxic placenta undergoes significant metabolic and morphological adaptations to maintain cellular energy balance. Chronic hypoxia during pregnancy in sheep activated placental mitochondrial stress pathways, leading to alterations in mitochondrial respiration, mitochondrial energy metabolism and mitochondrial dynamics, as seen in the placenta of women with pre-eclampsia. KEY POINTS: Hypoxia shifts mitochondrial respiration away from β-oxidation and complex I. Complex-specific changes occur in the electron transport chain composition. Activation of the non-canonical mitochondrial unfolded protein response pathway is heightened in hypoxic placentas. Enhanced insulin like growth factor 2 signalling is observed in hypoxic placentas. Hypoxic placentas undergo significant functional adaptations for energy balance.
Collapse
Affiliation(s)
- Wen Tong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Beth J Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Kirsty L Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Olga V Patey
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Sage G Ford
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tess A Garrud
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Peter F B Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Tereza Cindrova-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Potapenko EY, Kashko ND, Knorre DA. Flow-cytometry reveals mitochondrial DNA accumulation in Saccharomyces cerevisiae cells during cell cycle arrest. Front Cell Dev Biol 2024; 12:1497652. [PMID: 39737342 PMCID: PMC11683134 DOI: 10.3389/fcell.2024.1497652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Mitochondria are semi-autonomous organelles containing their own DNA (mtDNA), which is replicated independently of nuclear DNA (nDNA). While cell cycle arrest halts nDNA replication, mtDNA replication continues. In Saccharomyces cerevisiae, flow cytometry enables semi-quantitative estimation of mtDNA levels by measuring the difference in signals between cells lacking mtDNA and those containing mtDNA. In this study, we used flow cytometry to investigate mtDNA accumulation in yeast cells under G1 and G2 phase cell cycle arrest conditions utilising thermosensitive mutants cdc4-3 and cdc15-2. In line with the previous studies, cell cycle arrest induced a several-fold accumulation of mtDNA in both mutants. The total DNA levels in arrested cells correlated with cell forward scattering, suggesting a relationship between individual cell mtDNA quantity and size. In cell cycle-arrested cells, we observed no correlation between cell size and intercellular mtDNA copy number variability. This implies that as cell size increases during arrest, the mtDNA content remains within a specific limited range for each size class. This observation suggests that mtDNA quantity control mechanisms can function in cell cycle-arrested cells.
Collapse
Affiliation(s)
- Elena Yu Potapenko
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nataliia D. Kashko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A. Knorre
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Diniz LP, Araujo APB, Carvalho CF, Matias I, de Sá Hayashide L, Marques M, Pessoa B, Andrade CBV, Vargas G, Queiroz DD, de Carvalho JJ, Galina A, Gomes FCA. Accumulation of damaged mitochondria in aging astrocytes due to mitophagy dysfunction: Implications for susceptibility to mitochondrial stress. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167470. [PMID: 39153665 DOI: 10.1016/j.bbadis.2024.167470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Aging disrupts brain function, leading to cognitive decline and neurodegenerative diseases. Senescent astrocytes, a hallmark of aging, contribute to this process through unknown mechanisms. This study investigates how senescence impacts astrocytic mitochondrial dynamics, which are critical for brain health. Our research, conducted using aged mouse brains, represents the first evidence of morphologically damaged mitochondria in astrocytes, along with functional alterations in mitochondrial respiration. In vitro experiments revealed that senescent astrocytes exhibit an increase in mitochondrial fragmentation and impaired mitophagy. Concurrently, there was an upregulation of mitochondrial biogenesis, indicating a compensatory response to mitochondrial damage. Importantly, these senescent astrocytes were more susceptible to mitochondrial stress, a vulnerability reversed by rapamycin treatment. These findings suggest a potential link between senescence, impaired mitochondrial quality control, and increased susceptibility to mitochondrial stress in astrocytes. Overall, our study highlights the importance of addressing mitochondrial dysfunction and senescence-related changes in astrocytes as a promising approach for developing therapies to counter age-related neurodegeneration and improve brain health.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ana Paula Bergamo Araujo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara Fernandes Carvalho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Sá Hayashide
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Marques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Pessoa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriele Vargas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Dias Queiroz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge José de Carvalho
- Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Vidyadharan VA, Betancourt A, Smith C, Blesson CS, Yallampalli C. Maternal Low-Protein Diet Leads to Mitochondrial Dysfunction and Impaired Energy Metabolism in the Skeletal Muscle of Male Rats. Int J Mol Sci 2024; 25:12860. [PMID: 39684571 DOI: 10.3390/ijms252312860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
A prenatal low-protein (LP) diet disrupts glucose homeostasis in adult offspring. Skeletal muscles are one of the main sites of glucose clearance, and mitochondria residing in the muscle fibers are central to glucose homeostasis. Our previous studies indicated that impaired mitochondrial health is central to dysregulated glucose metabolism in the gastrocnemius muscle of the LP-programmed female rats. In addition, dysfunctional mitochondria are often an indicator of underlying irregularities in energy metabolism and metabolic inflexibility. Therefore, this study examined the mitochondrial function and metabolic flexibility in the skeletal muscles of prenatal LP-programmed adult male rats. Pregnant Wistar rats were randomly allotted to a control diet (20% protein) or an isocaloric LP diet (6% protein). Standard laboratory rat chow was given to the dams and the pups after delivery and weaning. Gene and protein expressions, mtDNA copy number, and electron microscopy were assessed in gastrocnemius (GS) muscle, and the mitochondrial oxygen consumption rate was determined using isolated flexor digitorum brevis muscle fibers. The genes associated with mitochondrial outer membrane fusion, mitofusin1 and 2 (Mfn1 and Mfn2), fission (Fis1), and biogenesis (Pgc1B, Nrf1, and Esrra) were lower in the LP group. Further, our functional studies showed that the ATP-linked oxygen consumption rate (OCR), maximal, spare respiratory, and non-mitochondrial respiration-associated OCRs were lower in the LP rats. Further, the mRNA and protein expressions of Ndufb8, a key factor involved in the complex-I catalytic activity, were downregulated in the LP group. In addition, the expression of genes linked to mitochondrial pyruvate transport (Mpc1) and metabolism (Pdha1) was lower in the LP group. In contrast, the expression of mitochondrial fatty acid transporters (Cpt1a and Cpt2) was higher in the LP when compared to the control group. However, electron microscopic analysis exhibited no difference in the mitochondrial ultrastructure in the LP muscle compared to the control. Altogether, our results indicate that the LP diet affects the mitochondrial complex-I integrity and dynamics and leads to altered expression of genes associated with substrate oxidation and mitochondrial dysfunction in the skeletal muscle of the male LP offspring.
Collapse
Affiliation(s)
- Vipin A Vidyadharan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ancizar Betancourt
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Smith
- Agilent Technologies Inc., Santa Clara, CA 95051, USA
| | - Chellakkan S Blesson
- Reproductive Endocrinology and Infertility Division, Baylor College of Medicine, Houston, TX 77030, USA
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Rivera-Ingraham GA, Martínez-Alarcón D, Theuerkauff D, Nommick A, Lignot JH. Two faces of one coin: Beneficial and deleterious effects of reactive oxygen species during short-term acclimation to hypo-osmotic stress in a decapod crab. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111700. [PMID: 39019252 DOI: 10.1016/j.cbpa.2024.111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Exposure to environmental changes often results in the production of reactive oxygen species (ROS), which, if uncontrolled, leads to loss of cellular homeostasis and oxidative distress. However, at physiological levels these same ROS are known to be key players in cellular signaling and the regulation of key biological activities (oxidative eustress). While ROS are known to mediate salinity tolerance in plants, little is known for the animal kingdom. In this study, we use the Mediterranean crab Carcinus aestuarii, highly tolerant to salinity changes in its environment, as a model to test the healthy or pathological role of ROS due to exposure to diluted seawater (dSW). Crabs were injected either with an antioxidant [N-acetylcysteine (NAC), 150 mg·kg-1] or phosphate buffered saline (PBS). One hour after the first injection, animals were either maintained in seawater (SW) or transferred to dSW and injections were carried out at 12-h intervals. After ≈48 h of salinity change, all animals were sacrificed and gills dissected for analysis. NAC injections successfully inhibited ROS formation occurring due to dSW transfer. However, this induced 55% crab mortality, as well as an inhibition of the enhanced catalase defenses and mitochondrial biogenesis that occur with decreased salinity. Crab osmoregulatory capacity under dSW condition was not affected by NAC, although it induced in anterior (non-osmoregulatory) gills a 146-fold increase in Na+/K+/2Cl- expression levels, reaching values typically observed in osmoregulatory tissues. We discuss how ROS influences the physiology of anterior and posterior gills, which have two different physiological functions and strategies during hyper-osmoregulation in dSW.
Collapse
Affiliation(s)
- Georgina A Rivera-Ingraham
- Australian Rivers Institute, Griffith University, Gold Coast, 4215 Queensland, Australia; UMR 9190-MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| | - Diana Martínez-Alarcón
- UMR 9190-MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Dimitri Theuerkauff
- UMR 9190-MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France; Université de Mayotte, 97660 Dembeni, Mayotte, France
| | - Aude Nommick
- UMR 9190-MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Jehan-Hervé Lignot
- UMR 9190-MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
8
|
Feng Y, You Y, Li M, Guan X, Fu M, Wang C, Xiao Y, He M, Guo H. Mitochondrial DNA copy number mediated the associations between perfluoroalkyl substances and breast cancer incidence: A prospective case-cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173767. [PMID: 38844220 DOI: 10.1016/j.scitotenv.2024.173767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Epidemiologic studies have reported the relationships between perfluoroalkyl substances (PFASs) and breast cancer incidence, yet the underlying mechanisms are not well understood. This study aimed to elucidate the mediation role of mitochondrial DNA copy number (mtDNAcn) in the relationships between PFASs exposure and breast cancer risk. We conducted a case-cohort study within the Dongfeng-Tongji cohort, involving 226 incident breast cancer cases and a random sub-cohort (n = 990). Their plasma concentrations of six PFASs [including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)], and peripheral blood levels of mtDNAcn, were detected at baseline by using ultraperformance liquid chromatography-tandem mass spectrometry and quantitative real-time PCR, respectively. Linear regression and Barlow-weighted Cox models were employed separately to assess the relationships of mtDNAcn with PFASs and breast cancer risk. Mediation analysis was further conducted to quantify the mediating effects of mtDNAcn on PFAS-breast cancer relationships. We observed increased blood mtDNAcn levels among participants with the highest PFNA and PFHpA exposure [Q4 vs. Q1, β(95%CI) = 0.092(0.022, 0.162) and 0.091(0.022, 0.160), respectively], while no significant associations were observed of PFOA, PFDA, PFOS, or PFHxS with mtDNAcn. Compared to participants within the lowest quartile subgroup of mtDNAcn, those with the highest mtDNAcn levels exhibited a significantly increased risk of breast cancer and postmenopausal breast cancer [Q4 vs. Q1, HR(95%CI) = 3.34(1.80, 6.20) and 3.71(1.89, 7.31)]. Furthermore, mtDNAcn could mediate 14.6 % of the PFHpA-breast cancer relationship [Indirect effect, HR(95%CI) = 1.02(1.00, 1.05)]. Our study unveiled the relationships of PFNA and the short-chain PFHpA with mtDNAcn and the mediation role of mtDNAcn in the PFHpA-breast cancer association. These findings provided insights into the potential biological mechanisms linking PFASs to breast cancer risk.
Collapse
Affiliation(s)
- Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China.
| |
Collapse
|
9
|
Toledano JM, Puche-Juarez M, Galvez-Navas JM, Moreno-Fernandez J, Diaz-Castro J, Ochoa JJ. Pregnancy Disorders: A Potential Role for Mitochondrial Altered Homeostasis. Antioxidants (Basel) 2024; 13:979. [PMID: 39199225 PMCID: PMC11351112 DOI: 10.3390/antiox13080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Pregnancy is a complex and challenging process associated with physiological changes whose objective is to adapt the maternal organism to the increasing energetic requirements due to embryo and fetal development. A failed adaptation to these demands may lead to pregnancy complications that threaten the health of both mothers and their offspring. Since mitochondria are the main organelle responsible for energy generation in the form of ATP, the adequate state of these organelles seems crucial for proper pregnancy development and healthy pregnancy outcomes. The homeostasis of these organelles depends on several aspects, including their content, biogenesis, energy production, oxidative stress, dynamics, and signaling functions, such as apoptosis, which can be modified in relation to diseases during pregnancy. The etiology of pregnancy disorders like preeclampsia, fetal growth restriction, and gestational diabetes mellitus is not yet well understood. Nevertheless, insufficient placental perfusion and oxygen transfer are characteristic of many of them, being associated with alterations in the previously cited different aspects of mitochondrial homeostasis. Therefore, and due to the capacity of these multifactorial organelles to respond to physiological and pathophysiological stimuli, it is of great importance to gather the currently available scientific information regarding the relationship between main pregnancy complications and mitochondrial alterations. According to this, the present review is intended to show clear insight into the possible implications of mitochondria in these disorders, thus providing relevant information for further investigation in relation to the investigation and management of pregnancy diseases.
Collapse
Affiliation(s)
- Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - María Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jose Maria Galvez-Navas
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
- Cáncer Registry of Granada, Andalusian School of Public Health, Cuesta del Observatorio 4, Campus Universitario de Cartuja, 18011 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| |
Collapse
|
10
|
Qiu F, Zhang H, Wang X, Jia Z, He Y, Wu Y, Li Z, Zheng T, Xia W, Xu S, Li Y. Prenatal arsenic metabolite exposure is associated with increased newborn mitochondrial DNA copy number: evidence from a birth cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38142-38152. [PMID: 38789711 DOI: 10.1007/s11356-024-32933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 05/26/2024]
Abstract
While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether maternal urinary arsenic metabolite levels in different trimesters were related to neonatal cord blood mtDNAcn. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters. We determined cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each one-unit increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the third trimester was related to 8.43% (95% CI 1.13%, 16.26%) and 12.15% (95% CI 4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the third trimester with mtDNAcn (DMA percent changes (%Δ) = 25.60 (95% CI 6.73, 47.82), for the highest vs the lowest tertile (P = 0.02); TAs %Δ = 40.31 (95% CI 19.25, 65.10), for the highest vs the lowest tertile (P = 0.0002)). These findings may prove the relationships between prenatal arsenic species levels and neonatal mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, 430023, Hubei, People's Republic of China
| | - Xin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yi Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhangpeng Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Limardi PC, Panigoro SS, Siregar NC, Sutandyo N, Witjaksono F, Priliani L, Oktavianthi S, Malik SG. Higher peripheral blood mitochondrial DNA copy number and relative telomere length in under 48 years Indonesian breast cancer patients. BMC Res Notes 2024; 17:120. [PMID: 38679744 PMCID: PMC11057172 DOI: 10.1186/s13104-024-06783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVE Breast cancer is the leading cause of cancer incidence and mortality among Indonesian women. A comprehensive investigation is required to enhance the early detection of this disease. Mitochondrial DNA copy number (mtDNA-CN) and relative telomere length (RTL) have been proposed as potential biomarkers for several cancer risks, as they are linked through oxidative stress mechanisms. We conducted a case-control study to examine peripheral blood mtDNA-CN and RTL patterns in Indonesian breast cancer patients (n = 175) and healthy individuals (n = 181). The relative ratios of mtDNA-CN and RTL were determined using quantitative real-time PCR (qPCR). RESULTS Median values of mtDNA-CN and RTL were 1.62 and 0.70 in healthy subjects and 1.79 and 0.73 in breast cancer patients, respectively. We found a positive association between peripheral blood mtDNA-CN and RTL (p < 0.001). In under 48 years old breast cancer patients, higher peripheral blood mtDNA-CN (mtDNA-CN ≥ 1.73 (median), p = 0.009) and RTL (continuous variable, p = 0.010) were observed, compared to the corresponding healthy subjects. We also found a significantly higher 'High-High' pattern of mtDNA-CN and RTL in breast cancer patients under 48 years old (p = 0.011). Our findings suggest that peripheral blood mtDNA-CN and RTL could serve as additional minimally invasive biomarkers for breast cancer risk evaluation.
Collapse
Affiliation(s)
- Prisca C Limardi
- Master's Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Genome Diversity and Diseases Division, Mochtar Riady Institute for Nanotechnology, Jl. Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| | - Sonar Soni Panigoro
- Department of Surgical Oncology, Dr. Cipto Mangunkusumo Hospital-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nurjati Chairani Siregar
- Department of Anatomical Pathology, Dr. Cipto Mangunkusumo Hospital-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Noorwati Sutandyo
- Department of Hematology and Medical Oncology, Dharmais Hospital National Cancer Center, Jakarta, Indonesia
| | - Fiastuti Witjaksono
- Department of Nutrition, Dr. Cipto Mangunkusumo Hospital-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Lidwina Priliani
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Genome Diversity and Diseases Division, Mochtar Riady Institute for Nanotechnology, Jl. Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| | - Sukma Oktavianthi
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Genome Diversity and Diseases Division, Mochtar Riady Institute for Nanotechnology, Jl. Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| | - Safarina G Malik
- Master's Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia.
- Genome Diversity and Diseases Division, Mochtar Riady Institute for Nanotechnology, Jl. Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia.
| |
Collapse
|
12
|
Seyed Aliyan SM, Roohbakhsh A, Jafari Fakhrabad M, Salmasi Z, Moshiri M, Shahbazi N, Etemad L. Evaluating the Protective Effects of Thymoquinone on Methamphetamine-induced Toxicity in an In Vitro Model Based on Differentiated PC12 Cells. Altern Lab Anim 2024; 52:94-106. [PMID: 38445454 DOI: 10.1177/02611929241237409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 μM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.
Collapse
Affiliation(s)
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Jafari Fakhrabad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahar Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niosha Shahbazi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
14
|
Borghini A, Ndreu R, Canale P, Campolo J, Marinaro I, Mercuri A, Turchi S, Andreassi MG. Telomere Length, Mitochondrial DNA, and Micronucleus Yield in Response to Oxidative Stress in Peripheral Blood Mononuclear Cells. Int J Mol Sci 2024; 25:1428. [PMID: 38338706 PMCID: PMC10855977 DOI: 10.3390/ijms25031428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Telomere shortening, chromosomal damage, and mitochondrial dysfunction are major initiators of cell aging and biomarkers of many diseases. However, the underlying correlations between nuclear and mitochondrial DNA alterations remain unclear. We investigated the relationship between telomere length (TL) and micronucleus (MN) and their association with mitochondrial DNA copy number (mtDNAcn) in peripheral blood mononuclear cells (PBMCs) in response to 100 μM and 200 μM of hydrogen peroxide (H2O2) at 44, 72, and 96 h. Significant TL shortening was observed after both doses of H2O2 and at all times (all p < 0.05). A concomitant increase in MN was found at 72 h (p < 0.01) and persisted at 96 h (p < 0.01). An increase in mtDNAcn (p = 0.04) at 200 µM of H2O2 was also found. In PBMCs treated with 200 µM H2O2, a significant inverse correlation was found between TL and MN (r = -0.76, p = 0.03), and mtDNA content was directly correlated with TL (r = 0.6, p = 0.04) and inversely related to MN (r = -0.78, p = 0.02). Telomere shortening is the main triggering mechanism of chromosomal damage in stimulated T lymphocytes under oxidative stress. The significant correlations between nuclear DNA damage and mtDNAcn support the notion of a telomere-mitochondria axis that might influence age-associated pathologies and be a target for the development of relevant anti-aging drugs.
Collapse
Affiliation(s)
- Andrea Borghini
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Rudina Ndreu
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Paola Canale
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
- Health Science Interdisciplinary Center, Sant’Anna School of Advanced Studies, 56124 Pisa, Italy
| | - Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20142 Milan, Italy;
| | - Irene Marinaro
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Antonella Mercuri
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Stefano Turchi
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Maria Grazia Andreassi
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| |
Collapse
|
15
|
Singh D, Malhotra P, Agarwal P, Kumar R. N-acetyl-l-tryptophan (NAT) ameliorates radiation-induced cell death in murine macrophages J774A.1 via regulating redox homeostasis and mitochondrial dysfunction. J Biochem Mol Toxicol 2024; 38:e23529. [PMID: 37702290 DOI: 10.1002/jbt.23529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023]
Abstract
Ionizing radiation interacts with the immune system and induces molecular damage in the cellular milieu by generating reactive oxygen species (ROS) leading to cell death. The present study was performed to investigate the protective efficacy of N-acetyl-L-tryptophan (NAT) against gamma-radiation-induced cell death in murine macrophage J774A.1 cells. The radioprotective efficacy of NAT was evaluated in terms of cell survivability, effect on antioxidant enzyme activity, and free radicals inhibition. Radioprotective efficacy of NAT pretreatment to irradiated cells was assessed via cell cycle progression, mitochondrial membrane potential (MMP) perturbation, and apoptosis regulation using flow cytometry. Results of the study demonstrated significant radioprotective efficacy (>80%) of NAT in irradiated cells as estimated by sulforhodamine B (SRB), MTT, and clonogenic assay. Significant (p < 0.001) reduction in ROS, xanthine oxidase, and mitochondrial superoxide levels along with increment in catalase, glutathione-s-transferase, glutathione, and ATPase activities in NAT pretreated plus irradiated cells was observed as compared to the gamma-irradiated cells. Further, significant (p < 0.001) stabilization of MMP and reduction in apoptosis was also observed in NAT pretreated plus irradiated cells as compared to irradiated cells that not pretreated with NAT. The current study demonstrates that NAT pretreatment to irradiated cells protects against gamma radiation-induced cell death by reducing oxidative stress, stabilizing MMP, and inhibiting apoptosis. These observations conclusively highlight the potential of developing NAT as a prospective radioprotective agent upon further validation using in-depth preclinical assessment in cellular and animal models.
Collapse
Affiliation(s)
- Darshana Singh
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Poonam Malhotra
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Prerna Agarwal
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raj Kumar
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
16
|
Zhang Y, Jiang Y, Zhu Z, Xu X, Yang H. Polyacrylonitrile microfibers pose a significant threat to the early-stage survival of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106755. [PMID: 37944326 DOI: 10.1016/j.aquatox.2023.106755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Microplastic pollution, especially microfibers (MFs), presents a critical global environmental challenge in natural water bodies. Yet, research on the toxic effects of MFs, particularly during early fish development, is limited. This study aimed to investigate MFs' toxic effects and mechanisms on early-stage zebrafish. Zebrafish embryos were exposed to varying concentrations of polyacrylonitrile microfibers (PanMfs) for 7 days. Results revealed PanMfs adhering to the embryos' surface, with higher concentrations accelerating heart rate and causing pericardial edema in post-hatching larvae. Larvae ingested PanMfs, leading to their accumulation in the intestines and increased levels of reactive oxygen species (ROS) and mitochondrial quantity. Notably, lipid metabolism and calcium ion related signaling pathways underwent significant changes. Low concentration MFs affected glycometabolism pathways, with potential roles for aldob and cacng1a, exhibiting pronounced increases in ROS levels. High concentration of MFs had the most profound impact on signal transduction-related pathways, and possibly triggering micromitophagy and apoptosis in zebrafish intestinal epithelial cells through the Kras/MAPK signaling pathway, with potential roles for kras and mapk9. Although ROS increase was somewhat alleviated, it resulted in decreased survival rates and restricted growth in high concentration of MFs group. These findings highlight the significant threat of MFs to the early survival of fish. MFs pollution prevention and control hold great significance in the conservation of fishery resources.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China.
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Xinrui Xu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
17
|
Bi J, Song L, Wu M, Liu Q, Xu L, Fan G, Cao Z, Xiong C, Wang Y. Association of prenatal essential metal exposure with newborn mitochondrial DNA copy number: Results from a birth cohort study. Reprod Toxicol 2023; 122:108495. [PMID: 37926172 DOI: 10.1016/j.reprotox.2023.108495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Imbalance or deficiencies of essential metals can lead to oxidative stress, that can damage mitochondrial DNA (mtDNA) molecule. Knowledge on effects of exposure to essential metals and their mixture remains limited. We aimed to evaluate individual and joint associations of prenatal essential metals with neonatal mtDNA copy number. We recruited 746 mother-newborn pairs from a birth cohort study conducted in Wuhan City, China, and collected trimester-specific urine and cord blood samples. We measured the concentrations of seven urinary essential metals, include zinc (Zn), iron (Fe), selenium (Se), cobalt (Co), manganese (Mn), copper (Cu), and chromium (Cr), using inductively coupled plasma mass spectrometry, and measured cord blood mtDNA copy number using real-time quantitative polymerase chain reaction. We estimated the trimester-specific associations of individual essential metal concentrations with mtDNA copy number using a multiple informant model, and assessed their joint association using weighted quantile sum (WQS) regression. For individual essential metal, a doubling of maternal urinary Zn concentrations during the second trimester was associated with a 7.47% (95% CI: 1.17-14.17%) higher level of neonatal mtDNA copy number. For the essential metal mixture, one-unit increased in the WQS index of the essential metals mixture during the second trimester resulted in a 10.41% (95% CI: 3.04-18.30%) increase in neonatal mtDNA copy number. Our findings suggest that exposure to both Zn and essential metal mixture during the second trimester is associated with a higher neonatal mtDNA copy number. Further research should assess whether mtDNA copy number is associated with child health.
Collapse
Affiliation(s)
- Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luli Xu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Bartnik M, Sławińska-Brych A, Mizerska-Kowalska M, Zdzisińska B. Evaluation of the Biological Effect of Non-UV-Activated Bergapten on Selected Human Tumor Cells and the Insight into the Molecular Mechanism of Its Action. Int J Mol Sci 2023; 24:15555. [PMID: 37958539 PMCID: PMC10647757 DOI: 10.3390/ijms242115555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
There is some evidence that non-photoactivated psoralens may be active against breast and colon tumor cells. Therefore, we evaluated the antiproliferative, proapoptotic, and anti-migrative effect of 5-methoxypsoralen (5-MOP) isolated from Peucedanum tauricum MB fruits in human colorectal adenocarcinoma (HT-29 and SW620), osteosarcoma (Saos-2 and HOS), and multiple myeloma (RPMI8226 and U266). Dose- and cell-line-dependent effects of 5-MOP on viability and proliferation were observed, with the strongest inhibitory effect against Saos-2 and a moderate effect against the HOS, HT-29, and SW620 cells. Multiple myeloma showed low sensitivity. The high viability of human normal cell cultures (HSF and hFOB) in a wide range of 5-MOP concentrations tested (6.25-100 µM) was confirmed. Moreover, the migration of treated Saos-2, SW620, and HT-29 cell lines was impaired, as indicated via a wound healing assay. Flow cytometry analysis conducted on Saos-2 cells revealed the ability of 5-MOP to block the cell cycle in the G2 phase and trigger apoptosis, which was accompanied by a loss of mitochondrial membrane potential, caspases (-9 and -3) activation, the altered expression of the Bax and Bcl-2 proteins, and decreased AKT phosphorylation. This is the first report evaluating the antiproliferative and antimigratory impact of non-UV-activated bergapten on the abovementioned (except for HT-29) tumor cells, which provides new data on the potential role of 5-MOP in inhibiting the growth of various types of therapeutic-resistant cancers.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| |
Collapse
|
20
|
Feng Y, Wu Z, Zhao X, Chen M, Li S, Lu C, Shi D, Lu F. Epicatechin promotes oocyte quality in mice during repeated superovulation. Theriogenology 2023; 209:40-49. [PMID: 37354759 DOI: 10.1016/j.theriogenology.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
The negative impacts of repeated superovulation on mitochondrial function and oocyte quality remain unresolved. Epicatechin (EC), a polyphenolic compound found in the human diet with strong antioxidant activity, was investigated for its effects and underlying mechanism on embryonic development after repeated superovulation. The results showed that as the number of superovulation cycles increased, the number of 2-cell embryos decreased, the development of embryos in subsequent in vitro culture was delayed, the apoptosis rate of blastocyst cells increased and the number of blastocyst cells decreased. However, intraperitoneal injection of EC (10 mg/kg body-weight) for two consecutive days during repeated superovulation increased mitochondrial DNA copies in 2-cell embryos of mice. It also promoted the expression of antioxidant enzyme genes in ovaries, increased the content of glutathione (GSH) content and improved the antioxidant capacity of ovaries. Altogether, these results revealed that intraperitoneal injection of EC could increase the embryonic mitochondrial DNA copy number (mtDNA-CN) and enhance the ovary's antioxidant capacity and GSH content, ultimately promoting the quality of mouse embryos in the process of repeated superovulation.
Collapse
Affiliation(s)
- Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Zhulian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China; Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| | - Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China; Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| | - Mosinan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Sijia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Canqiang Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
21
|
Al-Kafaji G, Jahrami HA, Alwehaidah MS, Alshammari Y, Husni M. Mitochondrial DNA copy number in autism spectrum disorder and attention deficit hyperactivity disorder: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1196035. [PMID: 37484684 PMCID: PMC10361772 DOI: 10.3389/fpsyt.2023.1196035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background Several reports suggest that altered mitochondrial DNA copy number (mtDNA-cn), a common biomarker for aberrant mitochondrial function, is implicated in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), but the results are still elusive. Methods A meta-analysis was performed to summarize the current indication and to provide a more precise assessment of the mtDNA-cn in ASD and ADHD. A search in the MEDLINE-PubMed, Scopus, and EMBASE databases was done to identify related studies up to the end of February 2023. The meta-analysis was conducted according to recommendations of the Cochrane Handbook of Systematic Reviews. Results Fourteen studies involving 666 cases with ASD and ADHD and 585 controls were collected and judged relevant for the systematic review and meta-analysis. The pooled results by a random effects meta-analysis was reported as a geometric mean of the estimated average response ratio and 95% confidence interval. Overall analysis of studies reported differences in mtDNA-cn in blood samples (k = 10) and non-blood samples (brain tissues and oral samples; k = 4) suggested significantly higher mtDNA-cn in patients compared to controls (p = 0.0275). Sub-analysis by stratifying studies based on tissue type, showed no significant increase in mtDNA-cn in blood samples among patients and controls (p = 0.284). Conversely, higher mtDNA-cn was observed in non-blood samples in patients than in controls (p = 0.0122). Further stratified analysis based on blood-cell compositions as potential confounds showed no significant difference in mtDNA-cn in peripheral blood samples of patients comparted to controls (p = 0.074). In addition, stratified analysis of aged-matched ASD and ADHD patients and controls revealed no significant difference in mtDNA-cn in blood samples between patients and controls (p = 0.214), whereas a significant increase in mtDNA-cn was observed in non-blood samples between patients and controls (p < 0.001). Finally, when the mtDNA-cn was analyzed in blood samples of aged-matched patients with ASD (peripheral blood, leukocytes, and PBMCs) or ADHD (peripheral blood), no significant difference in mtDNA-cn was observed between ASD patients and controls (p = 0.385), while a significant increase in mtDNA-cn was found between ADHD patients and controls (p = 0.033). Conclusion In this first meta-analysis of the evaluation of mtDNA-cn in ASD/ADHD, our results show elevated mtDNA-cn in ASD and ADHD, further emphasizing the implication of mitochondrial dysfunction in neurodevelopmental disorders. However, our results indicate that the mtDNA-cn in blood is not reflected in other tissues in ASD/ADHD, and the true relationship between blood-derived mtDNA-cn and ASD/ADHD remains to be defined in future studies. The importance of blood-cell compositions as confounders of blood-based mtDNA-cn measurement and the advantages of salivary mtDNA-cn should be considered in future studies. Moreover, the potential of mtDNA-cn as a biomarker for mitochondrial malfunction in neurodevelopmental disorders deserves further investigations.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Haitham Ali Jahrami
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
- Government Hospital, Manama, Bahrain
| | - Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Kuwait City, Kuwait
| | | | - Mariwan Husni
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Psychiatry, Northern Ontarion School of Medicine University, Thunder Bay, ON, Canada
| |
Collapse
|
22
|
Rizwan H, Satapathy SS, Si S, Kumar S, Kumari G, Pal A. Effect of Au@SiO 2 core shell nanoparticles on HG-induced oxidative stress triggered apoptosis in keratinocytes. Life Sci 2023; 328:121893. [PMID: 37392778 DOI: 10.1016/j.lfs.2023.121893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Growing evidences suggest that excess generation of highly reactive free oxygen/nitrogen radicals (ROS/RNS) are largely due to hyperglycemia causes oxidative stress. Further, excess accumulation of ROS/RNS in cellular compartments aggravates the development and progression of diabetes and its associated complications. Impaired wound healing in diabetic condition is a known vital complication all around the world. Thus, an antioxidant agent having the potential for hindering the oxidative/nitrosative stress triggered diabetic skin complication is required. The present investigation was carried out to understand the impact of silica coated gold nanoparticle (Au@SiO2 NPs) on high glucose (HG)-induced keratinocyte complications. We demonstrated that HG environment enhanced the ROS and RNS accumulations and reduced in cellular antioxidant capacities in keratinocte cells, however, Au@SiO2 NPs treatment restored the HG effect. Furthermore, excess production of ROS/RNS was associated with mitochondrial dysfunction, characterized by loss of mitochondrial membrane potential (ΔΨm), and increased in mitochondrial mass, which was restored by Au@SiO2 NPs treatment in keratinocyte cells. In addition, HG-induced excess production of ROS/RNA caused an increased in the biomolecules damage including lipid peroxidation (LPO), and protein carbonylation (PC), 8-oxoguanine DNA glycosylase-1 (OGG1) expression and increased 8-hydroxydeoxyguanosine (8-OHdG) accumulations in DNA, leading to activation of ERK1/2MAPK, AKT and tuberin pathway, inflammatory reaction, and finally apoptotic cell death. In conclusion, our findings showed that Au@SiO2 NPs treatment improved the HG-induced keratinocytes injury by suppressing the oxidative/nitrosative stress, elevating the antioxidant defence system, thereby inhibiting the inflammatory mediators and apoptosis, which may be a therapeutic cure for the diabetic keratinocyte problems.
Collapse
Affiliation(s)
- Huma Rizwan
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Smith Sagar Satapathy
- School of Chemical Technology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Satyabrata Si
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; School of Chemical Technology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Sonu Kumar
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Golden Kumari
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Arttatrana Pal
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India.
| |
Collapse
|
23
|
Kessi M, Chen B, Pan L, Yang L, Yang L, Peng J, He F, Yin F. Disruption of mitochondrial and lysosomal functions by human CACNA1C variants expressed in HEK 293 and CHO cells. Front Mol Neurosci 2023; 16:1209760. [PMID: 37448958 PMCID: PMC10336228 DOI: 10.3389/fnmol.2023.1209760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To investigate the pathogenesis of three novel de novo CACNA1C variants (p.E411D, p.V622G, and p.A272V) in causing neurodevelopmental disorders and arrhythmia. Methods Several molecular experiments were carried out on transfected human embryonic kidney 293 (HEK 293) and Chinese hamster ovary (CHO) cells to explore the effects of p.E411D, p.V622G, and p.A272V variants on electrophysiology, mitochondrial and lysosomal functions. Electrophysiological studies, RT-qPCR, western blot, apoptosis assay, mito-tracker fluorescence intensity, lyso-tracker fluorescence intensity, mitochondrial calcium concentration test, and cell viability assay were performed. Besides, reactive oxygen species (ROS) levels, ATP levels, mitochondrial copy numbers, mitochondrial complex I, II, and cytochrome c functions were measured. Results The p.E411D variant was found in a patient with attention deficit-hyperactive disorder (ADHD), and moderate intellectual disability (ID). This mutant demonstrated reduced calcium current density, mRNA, and protein expression, and it was localized in the nucleus, cytoplasm, lysosome, and mitochondria. It exhibited an accelerated apoptosis rate, impaired autophagy, and mitophagy. It also demonstrated compromised mitochondrial cytochrome c oxidase, complex I, and II enzymes, abnormal mitochondrial copy numbers, low ATP levels, abnormal mitochondria fluorescence intensity, impaired mitochondrial fusion and fission, and elevated mitochondrial calcium ions. The p.V622G variant was identified in a patient who presented with West syndrome and moderate global developmental delay. The p.A272V variant was found in a patient who presented with epilepsy and mild ID. Both mutants (p.V622G and p.A272V) exhibited reduced calcium current densities, decreased mRNA and protein expressions, and they were localized in the nucleus, cytoplasm, lysosome, and mitochondria. They exhibited accelerated apoptosis and proliferation rates, impaired autophagy, and mitophagy. They also exhibited abnormal mitochondrial cytochrome c oxidase, complex I and II enzymes, abnormal mitochondrial copy numbers, low ATP, high ROS levels, abnormal mitochondria fluorescence intensity, impaired mitochondrial fusion and fission, as well as elevated mitochondrial calcium ions. Conclusion The p.E411D, p.V622G and p.A272V mutations of human CACNA1C reduce the expression level of CACNA1C proteins, and impair mitochondrial and lysosomal functions. These effects induced by CACNA1C variants may contribute to the pathogenesis of CACNA1C-related disorders.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Langui Pan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Houshmand M, Zeinali V, Hosseini A, Seifi A, Danaei B, Kamfar S. Investigation of FGF21 mRNA levels and relative mitochondrial DNA copy number levels and their relation in nonalcoholic fatty liver disease: a case-control study. Front Mol Biosci 2023; 10:1203019. [PMID: 37347041 PMCID: PMC10279952 DOI: 10.3389/fmolb.2023.1203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Although the exact mechanisms of nonalcoholic fatty liver disease (NAFLD) are not fully understood, numerous pieces of evidence show that the variations in mitochondrial DNA (mtDNA) level and hepatic Fibroblast growth factor 21 (FGF21) expression may be related to NAFLD susceptibility. Objectives: The main objective of this study was to determine relative levels of mtDNA copy number and hepatic FGF21 expression in a cohort of Iranian NAFLD patients and evaluate the possible relationship. Methods: This study included 27 NAFLD patients (10 with nonalcoholic fatty liver (NAFL) and 17 with non-alcoholic steatohepatitis (NASH)) and ten healthy subjects. Total RNA and genomic DNA were extracted from liver tissue samples, and then mtDNA copy number and FGF21 expression levels were assessed by quantitative real-time PCR. Results: The relative level of hepatic mtDNA copy number was 3.9-fold higher in patients than in controls (p < 0.0001). NAFLD patients showed a 2.9-fold increase in hepatic FGF21 expression compared to controls (p < 0.013). Results showed that hepatic FGF21 expression was positively correlated with BMI, serum ALT, and AST levels (p < 0.05). The level of mitochondrial copy number and hepatic FGF21 expression was not significantly associated with stages of change in hepatic steatosis. Finally, there was a significant correlation between FGF21 expression and mitochondrial copy number in NAFLD patients (p = 0.027). Conclusion: Our findings suggest a considerable rise of hepatic FGF21 mRNA levels and mtDNA-CN and show a positive correlation between them in the liver tissue of NAFLD patients.
Collapse
Affiliation(s)
- Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Vahide Zeinali
- Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hosseini
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Seifi
- Pediatric Nephrology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bardia Danaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Kamfar
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Das A, Bank S, Chatterjee S, Paul N, Sarkar K, Chatterjee A, Chakraborty S, Banerjee C, Majumdar A, Das M, Ghosh S. Bifenthrin disrupts cytochrome c oxidase activity and reduces mitochondrial DNA copy number through oxidative damage in pool barb (Puntius sophore). CHEMOSPHERE 2023; 332:138848. [PMID: 37156291 DOI: 10.1016/j.chemosphere.2023.138848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Bifenthrin (BF), a synthetic pyrethroid is used worldwide for both agricultural and non-agricultural purposes due to its high insecticidal activity and low toxicity in mammals. However, its improper usage implies a possible risk to aquatic life. The Study was aimed to correlate the association of BF toxicity with mitochondrial DNA copy number variation in edible fish Punitus sophore. The 96-h LC 50 of BF in P. sophore was 3.4 μg/L, fish was treated with sub-lethal doses (0.34 μg/L,0.68 μg/L) of BF for 15 days. The activity and expression level of cytochrome c oxidase (Mt-COI) were measured to assess mitochondrial dysfunction caused by BF. Results showed BF reduced the level of Mt-COI mRNA in treated groups, hindered complex IV activity and increased ROS generation leading to oxidative damage. mtDNAcn was decreased in the muscle, brain and liver after BF treatment. Furthermore, BF induced neurotoxicity in brain and muscle cells through the inhibition of AchE activity. The treated groups showed elevated level of malondialdehyde (MDA) and an imbalance of antioxidant enzymes activity. Molecular docking and simulation analysis also predicted that BF binds to the active sites of the enzyme and restricts the fluctuation of active sites' residues. Hence, outcome of the study suggests reduction of mtDNAcn could be a potential biomarker to assess Bifenthrin induced toxicity in aquatic ecosystem.
Collapse
Affiliation(s)
- Anwesha Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sarbashri Bank
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Srilagna Chatterjee
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Nirvika Paul
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Kunal Sarkar
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Arindam Chatterjee
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Santanu Chakraborty
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Chaitali Banerjee
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| | - Anasuya Majumdar
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| | - Madhusudan Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| |
Collapse
|
26
|
Zhang W, Lin S, Zeng B, Chen X, Chen L, Chen M, Guo W, Lin Y, Yu L, Hou J, Li Y, Li S, Jin X, Cai W, Zhang K, Nie Q, Chen H, Li J, He P, Cai Q, Qiu Y, Wang C, Fu F. High leukocyte mitochondrial DNA copy number contributes to poor prognosis in breast cancer patients. BMC Cancer 2023; 23:377. [PMID: 37098487 PMCID: PMC10131463 DOI: 10.1186/s12885-023-10838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/12/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Compelling evidence has indicated a significant association between leukocyte mitochondrial DNA copy number (mtDNAcn) and prognosis of several malignancies in a cancer-specific manner. However, whether leukocyte mtDNAcn can predict the clinical outcome of breast cancer (BC) patients has not been well investigated. METHODS The mtDNA copy number of peripheral blood leukocytes from 661 BC patients was measured using a Multiplex AccuCopy™Kit based on a multiplex fluorescence competitive PCR principle. Kaplan-Meier curves and Cox proportional hazards regression model were applied to investigate the association of mtDNAcn with invasive disease-free survival (iDFS), distant disease-free survival (DDFS), breast cancer special survival (BCSS), and overall survival (OS) of patients. The possible mtDNAcn-environment interactions were also evaluated by the Cox proportional hazard regression models. RESULTS BC patients with higher leukocyte mtDNA-CN exhibited a significantly worse iDFS than those with lower leukocyte mtDNAcn (5-year iDFS: fully-adjusted model: HR = 1.433[95%CI 1.038-1.978], P = 0.028). Interaction analyses showed that mtDNAcn was significantly associated with hormone receptor status (adjusted p for interaction: 5-year BCSS: 0.028, 5-year OS: 0.022), so further analysis was mainly in the HR subgroup. Multivariate Cox regression analysis demonstrated that mtDNAcn was an independent prognostic factor for both BCSS and OS in HR-positive patients (HR+: 5-year BCSS: adjusted HR (aHR) = 2.340[95% CI 1.163-4.708], P = 0.017 and 5-year OS: aHR = 2.446 [95% CI 1.218-4.913], P = 0.011). CONCLUSIONS For the first time, our study demonstrated that leukocyte mtDNA copy number might influence the outcome of early-stage breast cancer patients depending on intrinsic tumor subtypes in Chinese women.
Collapse
Grants
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
Collapse
Affiliation(s)
- Wenzhe Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Songping Lin
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Bangwei Zeng
- Nosocomial Infection Control Branch, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiaobin Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Lili Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Minyan Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Wenhui Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Liuwen Yu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jialin Hou
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yan Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Shengmei Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Xuan Jin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Weifeng Cai
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Kun Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qian Nie
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Hanxi Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jing Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Peng He
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qindong Cai
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yibin Qiu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
27
|
Yu JH, Jung YJ, Kim MS, Cho SR, Kim YH. Differential Expression of NME4 in Trophoblast Stem-Like Cells and Peripheral Blood Mononuclear Cells of Normal Pregnancy and Preeclampsia. J Korean Med Sci 2023; 38:e128. [PMID: 37096311 PMCID: PMC10125796 DOI: 10.3346/jkms.2023.38.e128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is known to arise from insufficient trophoblast invasion as uterine spiral arteries lack remodeling. A significant reduction in placental perfusion induces an ischemic placental microenvironment due to reduced oxygen delivery to the placenta and fetus, leading to oxidative stress. Mitochondria are involved in the regulation of cellular metabolism and the production of reactive oxygen species (ROS). NME/NM23 nuceloside diphosphate kinase 4 (NME4) gene is known to have the ability to supply nucleotide triphosphate and deoxynucleotide triphosphate for replication and transcription of mitochondria. Our study aimed to investigate changes in NME4 expression in PE using trophoblast stem-like cells (TSLCs) from induced pluripotent stem cells (iPSCs) as a model of early pregnancy and peripheral blood mononuclear cells (PBMNCs) as a model of late preterm pregnancy. METHODS Transcriptome analysis using TSLCs was performed to identify the candidate gene associated with the possible pathophysiology of PE. Then, the expression of NME4 associated with mitochondrial function, p53 associated with cell death, and thioredoxin (TRX) linked to ROS were investigated through qRT-PCR, western blotting and deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labelling (TUNEL) assay. RESULTS In patients with PE, NME4 was significantly downregulated in TSLCs but upregulated in PBMNCs. p53 was shown to be upregulated in TSLCs and PBMNCs of PE. In addition, western blot analysis confirmed that TRX expression had the tendency to increase in TSLCs of PE. Similarly, TUNEL analysis confirmed that the dead cells were higher in PE than in normal pregnancy. CONCLUSION Our study showed that the expression of the NME4 differed between models of early and late preterm pregnancy of PE, and suggests that this expression pattern may be a potential biomarker for early diagnosis of PE.
Collapse
Affiliation(s)
- Ji Hea Yu
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University Medical College, Seoul, Korea
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Yun Ji Jung
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Myung-Sun Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Sung-Rae Cho
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University Medical College, Seoul, Korea.
| | - Young-Han Kim
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University Medical College, Seoul, Korea.
| |
Collapse
|
28
|
Sun Z, Wen Y, Zhang F, Fu Z, Yuan Y, Kuang H, Kuang X, Huang J, Zheng L, Zhang D. Exposure to nanoplastics induces mitochondrial impairment and cytomembrane destruction in Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114796. [PMID: 36948006 DOI: 10.1016/j.ecoenv.2023.114796] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Plastic particle pollution poses an emerging threat to ecological and human health. Laboratory animal studies have illustrated that nano-sized plastics can accumulate in the testis and cause testosterone deficiency and spermatogenic impairment. In this study, TM3 mouse Leydig cells were in vitro exposed to polystyrene nanoparticles (PS-NPs, size 20 nm) at dosages of 50, 100 and 150 μg/mL to investigate their cytotoxicity. Our results demonstrated that PS-NPs can be internalized into TM3 Leydig cells and led to a concentration-dependent decline in cell viability. Furthermore, PS-NPs stimulation amplified ROS generation and initiated cellular oxidative stress and apoptosis. Moreover, PS-NPs treatment affected the mitochondrial DNA copy number and collapsed the mitochondrial membrane potential, accompanied by a disrupted energy metabolism. The cells exposed to PS-NPs also displayed a down-regulated expression of steroidogenesis-related genes StAR, P450scc and 17β-HSD, along with a decrease in testosterone secretion. In addition, treatment with PS-NPs destructed plasma membrane integrity, as presented by increase in lactate dehydrogenase release and depolarization of cell membrane potential. In summary, these data indicated that exposure to PS-NPs in vitro produced cytotoxic effect on Leydig cells by inducing oxidative injury, mitochondrial impairment, apoptosis, and cytomembrane destruction. Our results provide new insights into male reproductive toxicity caused by NPs.
Collapse
Affiliation(s)
- Zhangbei Sun
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Yiqian Wen
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Fan Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Zhendong Fu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Yangyang Yuan
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China
| | - Haibin Kuang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Xiaodong Kuang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Jian Huang
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China
| | - Liping Zheng
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| | - Dalei Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| |
Collapse
|
29
|
Nishida Y, Yagi H, Ota M, Tanaka A, Sato K, Inoue T, Yamada S, Arakawa N, Ishige T, Kobayashi Y, Arakawa H, Takizawa T. Oxidative stress induces MUC5AC expression through mitochondrial damage-dependent STING signaling in human bronchial epithelial cells. FASEB Bioadv 2023; 5:171-181. [PMID: 37020748 PMCID: PMC10068767 DOI: 10.1096/fba.2022-00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress increases the production of the predominant mucin MUC5AC in airway epithelial cells and is implicated in the pathogenesis of bronchial asthma and chronic obstructive pulmonary disease. Oxidative stress impairs mitochondria, releasing mitochondrial DNA into the cytoplasm and inducing inflammation through the intracytoplasmic DNA sensor STING (stimulator of interferon genes). However, the role of innate immunity in mucin production remains unknown. We aimed to elucidate the role of innate immunity in mucin production in airway epithelial cells under oxidative stress. Human airway epithelial cell line (NCI-H292) and normal human bronchial epithelial cells were used to confirm MUC5AC expression levels by real-time PCR when stimulated with hydrogen peroxide (H2O2). MUC5AC transcriptional activity was increased and mitochondrial DNA was released into the cytosol by H2O2. Mitochondrial antioxidants were used to confirm the effects of mitochondrial oxidative stress where antioxidants inhibited the increase in MUC5AC transcriptional activity. Cyclic GMP-AMP synthase (cGAS) or STING knockout (KO) cells were generated to investigate their involvement. H2O2-induced MUC5AC expression was suppressed in STING KO cells, but not in cGAS KO cells. The epidermal growth factor receptor was comparably expressed in STING KO and wild-type cells. Thus, mitochondria and STING play important roles in mucin production in response to oxidative stress in airway epithelial cells.
Collapse
Affiliation(s)
- Yutaka Nishida
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Hisako Yagi
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Masaya Ota
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
- Department of PediatricsNiigata University Graduate School of MedicineNiigataJapan
| | - Atsushi Tanaka
- Department of Medicine, Research Institute of Medical SciencesYamagata UniversityYamagataJapan
| | - Koichiro Sato
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takaharu Inoue
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Satoshi Yamada
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Naoya Arakawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takashi Ishige
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Yasuko Kobayashi
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Hirokazu Arakawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takumi Takizawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| |
Collapse
|
30
|
Wang D, Lin D, Feng G, Yang X, Deng L, Li P, Zhang Z, Zhang W, Guo Y, Wang Y, Fu S, Zhang N. Impact of chronic benzene poisoning on aberrant mitochondrial DNA methylation: A prospective observational study. Front Public Health 2023; 11:990051. [PMID: 36817889 PMCID: PMC9937586 DOI: 10.3389/fpubh.2023.990051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Benzene is used as an industrial solvent, which may result in chronic benzene poisoning (CBP). Several studies suggested that CBP was associated with mitochondrial epigenetic regulation. This study aimed to explore the potential relation between CBP and mitochondrial DNA (mtDNA) methylation. This prospective observational study enrolled CBP patients admitted to Shenzhen Prevention and Treatment Center for Occupational Diseases hospital and healthy individuals between 2018 and 2021. The white blood cell (WBC), red blood cell (RBC), hemoglobin (HB), and platelet (PLT) counts and mtDNA methylation levels were measured using blood flow cytometry and targeted bisulfite sequencing, respectively. A total of 90 participants were recruited, including 30 cases of CBP (20 females, mean age 43.0 ± 8.0 years) and 60 healthy individuals (42 females, mean age 43.5 ± 11.5 years). This study detected 168 mitochondrial methylation sites >0 in all study subjects. The mtDNA methylation levels in the CBP cases were lower than the healthy individuals [median ± interquartile-range (IQR), 25th percentile, 75th percentile: (1.140 ± 0.570, 0.965, 1.535)% vs. median ± IQR, 25th percentile, 75th percentile: (1.705 ± 0.205,1.240,2.445)%, P < 0.05]. Additionally, the spearman correlation analysis showed that the mtDNA methylation levels were positively correlated with the counts of circulating leukocytes [WBC (r = 0.048, P = 0.036)] and platelets [PLT (r = 0.129, P < 0.01)]. We provided solid evidence of association between CBP and aberrant mtDNA methylation.
Collapse
Affiliation(s)
- Dianpeng Wang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China,*Correspondence: Dianpeng Wang ✉
| | - Dafeng Lin
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Gangquan Feng
- Medical Laboratory College, Hebei North University in China, Zhangjiakou, Hebei, China
| | - Xiangli Yang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lidan Deng
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Peimao Li
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Zhimin Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Wen Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yue Wang
- Medical Laboratory College, Hebei North University in China, Zhangjiakou, Hebei, China
| | - Song Fu
- Medical Laboratory College, Hebei North University in China, Zhangjiakou, Hebei, China
| | - Naixing Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China,Naixing Zhang ✉
| |
Collapse
|
31
|
Guan X, Li M, Bai Y, Feng Y, Li G, Wei W, Fu M, Li H, Wang C, Jie J, Meng H, Wu X, Deng Q, Li F, Yang H, Zhang X, He M, Guo H. Associations of mitochondrial DNA copy number with incident risks of gastrointestinal cancers: A prospective case-cohort study. Mol Carcinog 2023; 62:224-235. [PMID: 36250641 DOI: 10.1002/mc.23478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023]
Abstract
Epidemiological investigations implied that mitochondrial DNA copy number (mtDNAcn) variations could trigger predisposition to multiple cancers, but evidence regarding gastrointestinal cancers (GICs) was still uncertain. We conducted a case-cohort study within the prospective Dongfeng-Tongji cohort, including incident cases of colorectal cancer (CRC, n = 278), gastric cancer (GC, n = 138), and esophageal cancer (EC, n = 72) as well as a random subcohort (n = 1173), who were followed up from baseline to the end of 2018. We determined baseline blood mtDNAcn and associations of mtDNAcn with the GICs risks were estimated by using weighted Cox proportional hazards models. Significant U-shaped associations were observed between mtDNAcn and GICs risks. Compared to subjects within the second quartile (Q2) mtDNAcn subgroup, those within the 1st (Q1), 3rd (Q3), and 4th (Q4) quartile subgroups showed increased risks of CRC (hazard ratio [HR] [95% confidence interval, CI] = 2.27 [1.47-3.52], 1.65 [1.04-2.62], and 2.81 [1.85-4.28], respectively) and total GICs (HR [95%CI] = 1.84 [1.30-2.60], 1.47 [1.03-2.10], and 2.51 [1.82-3.47], respectively], and those within Q4 subgroup presented elevated GC and EC risks (HR [95% CI] = 2.16 [1.31-3.54] and 2.38 [1.13-5.02], respectively). Similar associations of mtDNAcn with CRC and total GICs risks remained in stratified analyzes by age, gender, smoking, and drinking status. This prospective case-cohort study showed U-shaped associations between mtDNAcn and GICs risks, but further research works are needed to uncover underlying biological mechanisms.
Collapse
Affiliation(s)
- Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Deng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangqing Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation, Hubei University of Medicine, Shiyan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Abstract
Regular physical activity improves cardiometabolic and musculoskeletal health, helps with weight management, improves cognitive and psychosocial functioning, and is associated with reduced mortality related to cancer and diabetes mellitus. However, turnover rates of glucose in the blood increase dramatically during exercise, which often results in either hypoglycaemia or hyperglycaemia as well as increased glycaemic variability in individuals with type 1 diabetes mellitus (T1DM). A complex neuroendocrine response to an acute exercise session helps to maintain circulating levels of glucose in a fairly tight range in healthy individuals, while several abnormal physiological processes and limitations of insulin therapy limit the capacity of people with T1DM to exercise in a normoglycaemic state. Knowledge of the acute and chronic effects of exercise and regular physical activity is critical for the formulation of clinical strategies for the management of insulin and nutrition for active patients with T1DM. Emerging diabetes-related technologies, such as continuous glucose monitors, automated insulin delivery systems and the administration of solubilized glucagon, are demonstrating efficacy for preserving glucose homeostasis during and after exercise in this population of patients. This Review highlights the beneficial effects of regular exercise and details the complex endocrine and metabolic responses to different types of exercise for adults with T1DM. An overview of basic clinical strategies for the preservation of glucose homeostasis using emerging technologies is also provided.
Collapse
Affiliation(s)
- Michael C Riddell
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
- LMC Diabetes and Endocrinology, Toronto, Ontario, Canada.
| | - Anne L Peters
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Paolini E, Longo M, Corsini A, Dongiovanni P. The Non-Invasive Assessment of Circulating D-Loop and mt-ccf Levels Opens an Intriguing Spyhole into Novel Approaches for the Tricky Diagnosis of NASH. Int J Mol Sci 2023; 24:ijms24032331. [PMID: 36768654 PMCID: PMC9916898 DOI: 10.3390/ijms24032331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest liver disease worldwide affecting both adults and children. Nowadays, no therapeutic strategies have been approved for NAFLD management, and hepatic biopsy remains the gold standard procedure for its diagnosis. NAFLD is a multifactorial disease whose pathogenesis is affected by environmental and genetic factors, and it covers a spectrum of conditions ranging from simple steatosis up to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several studies underlined the urgent need to develop an NAFLD risk prediction model based on genetics, biochemical indicators, and metabolic disorders. The loss of mitochondrial dynamics represents a typical feature of progressive NAFLD. The imbalance of mitochondrial lifecycle together with the impairment of mitochondrial biomass and function trigger oxidative stress, which in turn damages mitochondrial DNA (mtDNA). We recently demonstrated that the main genetic predictors of NAFLD led to mitochondrial dysfunction. Moreover, emerging evidence shows that variations in the displacement loop (D-loop) region impair mtDNA replication, and they have been associated with advanced NAFLD. Finally, lower levels of mitophagy foster the overload of damaged mitochondria, resulting in the release of cell-free circulating mitochondrial DNA (mt-ccf) that exacerbates liver injury. Thus, in this review we summarized what is known about D-loop region alterations and mt-ccf content during NAFLD to propose them as novel non-invasive biomarkers.
Collapse
Affiliation(s)
- Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- IRCCS Multimedica, 20099 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5032-0296
| |
Collapse
|
34
|
Fu M, Wang C, Hong S, Guan X, Meng H, Feng Y, Xiao Y, Zhou Y, Liu C, Zhong G, You Y, Wu T, Yang H, Zhang X, He M, Guo H. Multiple metals exposure and blood mitochondrial DNA copy number: A cross-sectional study from the Dongfeng-Tongji cohort. ENVIRONMENTAL RESEARCH 2023; 216:114509. [PMID: 36208786 DOI: 10.1016/j.envres.2022.114509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Mitochondria are essential organelles that execute fundamental biological processes, while mitochondrial DNA is vulnerable to environmental insults. The aim of this study was to investigate the individual and mixture effect of plasma metals on blood mitochondria DNA copy number (mtDNAcn). METHODS This study involved 1399 randomly selected subcohort participants from the Dongfeng-Tongji cohort. The blood mtDNAcn and plasma levels of 23 metals were determined by using quantitative real-time polymerase chain reaction (qPCR) and inductively coupled plasma mass spectrometer (ICP-MS), respectively. The multiple linear regression was used to explore the association between each metal and mtDNAcn, and the LASSO penalized regression was performed to select the most significant metals. We also used the quantile g-computation analysis to assess the mixture effect of multiple metals. RESULTS Based on multiple linear regression models, each 1% increase in plasma concentration of copper (Cu), rubidium (Rb), and titanium (Ti) was associated with a separate 0.16% [β(95% CI) = 0.158 (0.066, 0.249), P = 0.001], 0.20% [β(95% CI) = 0.196 (0.073, 0.318), P = 0.002], and 0.25% [β(95% CI) = 0.245 (0.081, 0.409), P = 0.003] increase in blood mtDNAcn. The LASSO regression also confirmed Cu, Rb, and Ti as significant predictors for mtDNAcn. There was a significant mixture effect of multiple metals on increasing mtDNAcn among the elder participants (aged ≥65), with an approximately 11% increase in mtDNAcn for each quartile increase in all metal concentrations [β(95% CI) = 0.146 (0.048, 0.243), P = 0.004]. CONCLUSIONS Our results show that plasma Cu, Rb and Ti were associated with increased blood mtDNA, and we further revealed a significant mixture effect of all metals on mtDNAcn among elder population. These findings may provide a novel perspective on the effect of metals on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Zhang X, Sun C, Wan J, Zhang X, Jia Y, Zhou C. Compartmentalized activities of HMGCS1 control cervical cancer radiosensitivity. Cell Signal 2023; 101:110507. [PMID: 36328117 DOI: 10.1016/j.cellsig.2022.110507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
The underlying mechanisms by which cellular metabolism affects cervical cancer cell radiosensitivity remain poorly understood. Here, we found that loss of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 (HMGCS1), a key enzyme catalyzing the conversion of acetoacetyl-CoA to HMG-CoA in the cholesterol biosynthesis pathway, sensitizes the cervical cancer cells to radiation. We observed a compartmentalized cellular distribution of HMGCS1 in nuclei, cytosol, and mitochondria of cervical cancer cells and found that cytosolic HMGCS1 and mitochondrial HMGCS1 contribute together to the regulation of radiosensitivity. Mechanistically, we show that cytosolic HMGCS1 regulates radiosensitivity via manipulating the cholesterol metabolism, while mitochondrial HMGCS1 controls mitochondrial gene expression, thereby sustaining the mitochondrial function of cervical cancer cells. Together, our study identifies HMGCS1 as a novel regulator of radiosensitivty in cervical cancer cells, providing a molecular link between altered cholesterol metabolism, mitochondrial respiration, and radiosensitivity. Thus, targeting HMGCS1 may improve the therapeutic outcome of cervical cancer radiotherapy.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Jinliang Wan
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Xiaoxue Zhang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Yanhan Jia
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Chao Zhou
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China.
| |
Collapse
|
36
|
Giulivi C, Wang JY, Hagerman RJ. Artificial neural network applied to fragile X-associated tremor/ataxia syndrome stage diagnosis based on peripheral mitochondrial bioenergetics and brain imaging outcomes. Sci Rep 2022; 12:21382. [PMID: 36496525 PMCID: PMC9741636 DOI: 10.1038/s41598-022-25615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
No proven prognosis is available for the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Artificial neural network analyses (ANN) were used to predict FXTAS progression using data from 127 adults (noncarriers and FMR1 premutation carriers with and without FXTAS) with five outcomes from brain MRI imaging and 22 peripheral bioenergetic outcomes from two cell types. Diagnosis accuracy by ANN predictions ranged from 41.7 to 86.3% (depending on the algorithm used), and those misclassified usually presented a higher FXTAS stage. ANN prediction of FXTAS stages was based on a combination of two imaging findings (white matter hyperintensity and whole-brain volumes adjusted for intracranial volume) and four bioenergetic outcomes. Those at Stage 3 vs. 0-2 showed lower mitochondrial mass, higher oxidative stress, and an altered electron transfer consistent with mitochondrial unfolded protein response activation. Those at Stages 4-5 vs. 3 had higher oxidative stress and glycerol-3-phosphate-linked ATP production, suggesting that targeting mGPDH activity may prevent a worse prognosis. This was confirmed by the bioenergetic improvement of inhibiting mGPDH with metformin in affected fibroblasts. ANN supports the prospect of an unbiased molecular definition in diagnosing FXTAS stages while identifying potential targets for personalized medicine.
Collapse
Affiliation(s)
- Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA.
| | - Jun Yi Wang
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Randi J Hagerman
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Department of Pediatrics, University of California at Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
37
|
Environmental Chemical Exposures and Mitochondrial Dysfunction: a Review of Recent Literature. Curr Environ Health Rep 2022; 9:631-649. [PMID: 35902457 PMCID: PMC9729331 DOI: 10.1007/s40572-022-00371-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Mitochondria play various roles that are important for cell function and survival; therefore, significant mitochondrial dysfunction may have chronic consequences that extend beyond the cell. Mitochondria are already susceptible to damage, which may be exacerbated by environmental exposures. Therefore, the aim of this review is to summarize the recent literature (2012-2022) looking at the effects of six ubiquitous classes of compounds on mitochondrial dysfunction in human populations. RECENT FINDINGS The literature suggests that there are a number of biomarkers that are commonly used to identify mitochondrial dysfunction, each with certain advantages and limitations. Classes of environmental toxicants such as polycyclic aromatic hydrocarbons, air pollutants, heavy metals, endocrine-disrupting compounds, pesticides, and nanomaterials can damage the mitochondria in varied ways, with changes in mtDNA copy number and measures of oxidative damage the most commonly measured in human populations. Other significant biomarkers include changes in mitochondrial membrane potential, calcium levels, and ATP levels. This review identifies the biomarkers that are commonly used to characterize mitochondrial dysfunction but suggests that emerging mitochondrial biomarkers, such as cell-free mitochondria and blood cardiolipin levels, may provide greater insight into the impacts of exposures on mitochondrial function. This review identifies that the mtDNA copy number and measures of oxidative damage are commonly used to characterize mitochondrial dysfunction, but suggests using novel approaches in addition to well-characterized ones to create standardized protocols. We identified a dearth of studies on mitochondrial dysfunction in human populations exposed to metals, endocrine-disrupting chemicals, pesticides, and nanoparticles as a gap in knowledge that needs attention.
Collapse
|
38
|
Sun B, Hou J, Ye YX, Chen HG, Duan P, Chen YJ, Xiong CL, Wang YX, Pan A. Sperm mitochondrial DNA copy number in relation to semen quality: A cross-sectional study of 1164 potential sperm donors. BJOG 2022; 129:2098-2106. [PMID: 35274799 DOI: 10.1111/1471-0528.17139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the association between mitochondrial DNA copy number (mtDNAcn) and semen quality. DESIGN A cross-sectional study. SETTING Hubei Province Human Sperm Bank of China (from April 2017 to July 2018). POPULATION A total of 1164 healthy male sperm donors with 5739 specimens. MAIN OUTCOME MEASURES Real-time quantitative polymerase chain reaction (RT-PCR) was used to measure sperm mtDNAcn. We also determined semen volume, concentration and motility parameters (progressive motility, nonprogressive motility and immotility). METHODS Mixed-effect models and general linear models were uses. RESULTS After adjusting for relevant confounding factors, mixed-effect models revealed diminished sperm motility (progressive and total), concentration, and total count across the quartiles of mtDNAcn (all P < 0.05). Compared with men in the lowest quartile, men in the highest quartile of mtDNAcn had lower progressive sperm motility, total motility, concentration and total count of -8.9% (95% CI -12.7% to -5.0%), -8.0% (95% CI -11.6% to -4.4%), -42.8% (95% CI -47.7% to -37.4%), and - 44.3% (95% CI -50.1% to -37.7%), respectively. These inverse dose-response relationships were further confirmed in the cubic spline models, where mtDNAcn was modelled as a continuous variable. CONCLUSIONS We found that mtDNAcn was inversely associated with semen quality in a dose-dependent manner. Our results provide novel clues that sperm mtDNAcn may serve as a useful predictor of human semen characteristics. TWEETABLE ABSTRACT Sperm mitochondrial DNA copy number was markedly associated with diminished sperm motility (progressive and total), concentration and total count.
Collapse
Affiliation(s)
- Bin Sun
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Xiang Ye
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng-Gui Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Clinical Research and Translation Centre, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Peng Duan
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Ying-Jun Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng-Liang Xiong
- Centre for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Human Sperm Bank, Wuhan, Hubei, China
| | - Yi-Xin Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
39
|
Molecular Mechanisms Underlying Twin-to-Twin Transfusion Syndrome. Cells 2022; 11:cells11203268. [PMID: 36291133 PMCID: PMC9600593 DOI: 10.3390/cells11203268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Twin-to-twin transfusion syndrome is a unique disease and a serious complication occurring in 10–15% of monochorionic multiple pregnancies with various placental complications, including hypoxia, anemia, increased oxidative stress, and ischemia-reperfusion injury. Fetoscopic laser photocoagulation, a minimally invasive surgical procedure, seals the placental vascular anastomoses between twins and dramatically improves the survival rates in twin-to-twin transfusion syndrome. However, fetal demise still occurs, suggesting the presence of causes other than placental vascular anastomoses. Placental insufficiency is considered as the main cause of fetal demise in such cases; however, little is known about its underlying molecular mechanisms. Indeed, the further association of the pathogenic mechanisms involved in twin-to-twin transfusion syndrome placenta with several molecules and pathways, such as vascular endothelial growth factor and the renin–angiotensin system, makes it difficult to understand the underlying pathological conditions. Currently, there are no effective strategies focusing on these mechanisms in clinical practice. Certain types of cell death due to oxidative stress might be occurring in the placenta, and elucidation of the molecular mechanism underlying this cell death can help manage and prevent it. This review reports on the molecular mechanisms underlying the development of twin-to-twin transfusion syndrome for effective management and prevention of fetal demise after fetoscopic laser photocoagulation.
Collapse
|
40
|
Brief exposure of neuronal cells to levels of SCFAs observed in human systemic circulation impair lipid metabolism resulting in apoptosis. Sci Rep 2022; 12:14355. [PMID: 35999262 PMCID: PMC9399085 DOI: 10.1038/s41598-022-18363-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Communication between gut microbiota and the brain is an enigma. Alterations in the gut microbial community affects enteric metabolite levels, such as short chain fatty acids (SCFAs). SCFAs have been proposed as a possible mechanism through which the gut microbiome modulate brain health and function. This study analyzed for the first time the effects of SCFAs at levels reported in human systemic circulation on SH-SY5Y human neuronal cell energy metabolism, viability, survival, and the brain lipidome. Cell and rat brain lipidomics was done using high resolution mass spectrometry (HRMS). Neuronal cells viability, survival and energy metabolism were analyzed via flow cytometer, immunofluorescence, and SeahorseXF platform. Lipidomics analysis demonstrated that SCFAs significantly remodeled the brain lipidome in vivo and in vitro. The most notable remodulation was observed in the metabolism of phosphatidylethanolamine plasmalogens, and mitochondrial lipids carnitine and cardiolipin. Increased mitochondrial mass, fragmentation, and hyperfusion occurred concomitant with the altered mitochondrial lipid metabolism resulting in decreased neuronal cell respiration, adenosine triphosphate (ATP) production, and increased cell death. This suggests SCFAs at levels observed in human systemic circulation can adversely alter the brain lipidome and neuronal cell function potentially negatively impacting brain health outcomes.
Collapse
|
41
|
Flemming N, Pernoud L, Forbes J, Gallo L. Mitochondrial Dysfunction in Individuals with Diabetic Kidney Disease: A Systematic Review. Cells 2022; 11:cells11162481. [PMID: 36010558 PMCID: PMC9406893 DOI: 10.3390/cells11162481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of diabetic kidney disease (DKD). Compared to the vast body of evidence from preclinical in vitro and in vivo studies, evidence from human studies is limited. In a comprehensive search of the published literature, findings from studies that reported evidence of mitochondrial dysfunction in individuals with DKD were examined. Three electronic databases (PubMed, Embase, and Scopus) were searched in March 2022. A total of 1339 articles were identified, and 22 articles met the inclusion criteria. Compared to non-diabetic controls (NDC) and/or individuals with diabetes but without kidney disease (DC), individuals with DKD (age ~55 years; diabetes duration ~15 years) had evidence of mitochondrial dysfunction. Individuals with DKD had evidence of disrupted mitochondrial dynamics (11 of 11 articles), uncoupling (2 of 2 articles), oxidative damage (8 of 8 articles), decreased mitochondrial respiratory capacity (1 of 1 article), decreased mtDNA content (5 of 6 articles), and decreased antioxidant capacity (3 of 4 articles) compared to ND and/or DC. Neither diabetes nor glycemic control explained these findings, but rather presence and severity of DKD may better reflect degree of mitochondrial dysfunction in this population. Future clinical studies should include individuals closer to diagnosis of diabetes to ascertain whether mitochondrial dysfunction is implicated in the development of, or is a consequence of, DKD.
Collapse
Affiliation(s)
- Nicole Flemming
- School of Medicine and Dentistry, Griffith University, Birtinya 4556, Australia
- Faculty of Medicine, University of Queensland, Brisbane 4072, Australia
- Mater Research Institute, The University of Queensland (MRI-UQ), Brisbane 4072, Australia
- Correspondence:
| | - Laura Pernoud
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore 4558, Australia
| | - Josephine Forbes
- Mater Research Institute, The University of Queensland (MRI-UQ), Brisbane 4072, Australia
| | - Linda Gallo
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore 4558, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
42
|
Zhang R, Du J, Xiao Z, Jiang Y, Jin L, Weng Q. Association between the peripartum maternal and fetal telomere lengths and mitochondrial DNA copy numbers and preeclampsia: a prospective case-control study. BMC Pregnancy Childbirth 2022; 22:483. [PMID: 35698093 PMCID: PMC9195426 DOI: 10.1186/s12884-022-04801-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose To explore changes in telomere length (TL) and mitochondrial copy number (mtDNA-CN) in preeclampsia (PE) and to evaluate the combined effect of maternal TL and mtDNA-CN on PE risk. Methods A case–control study of 471 subjects (130 PE cases and 341 age frequency matched controls with gestational age rank from 24 to 42 weeks) was conducted in Nanjing Drum Tower Hospital, Jiangsu Province of China. Relative telomere length (RTL) and mtDNA-CN were measured using quantitative polymerase chain reaction (qPCR), and PE risk was compared between groups by logistic regression analyses. Results PE patients displayed longer RTL (0.48 versus 0.30) and higher mtDNA-CN (3.02 versus 2.00) in maternal blood as well as longer RTL (0.61 versus 0.35) but lower mtDNA-CN (1.69 versus 5.49) in cord blood (all p < 0.001). Exercise during pregnancy exerted an obvious effect of maternal telomere length prolongation. Multiparous women with folic acid intake during early pregnancy and those who delivered vaginally showed longer telomere length, while those factors imposed no or opposite effect on RTL in PE cases. Furthermore, RTL and mtDNA-CN were positively correlated in controls (in maternal blood r = 0.18, p < 0.01; in cord blood r = 0.19, p < 0.001), but this correlation was disrupted in PE patients in both maternal blood and cord blood. Longer maternal RTL and higher mtDNA-CN were associated with a higher risk of PE, and the ROC curve of RTL and mtDNA-CN for predicting PE risk presented an AUC of 0.755 (95% CI: 0.698–0.812). Conclusions The interaction of TL and mtDNA-CN may play an important role in the pathogenesis of PE and could be a potential biomarker of PE risk. Supplementary information The online version contains supplementary material available at 10.1186/s12884-022-04801-0.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Department of Obstetrics & Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China.,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,StateKey Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhendong Xiao
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuan Jiang
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Liang Jin
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qiao Weng
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Obstetrics & Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China. .,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China. .,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China.
| |
Collapse
|
43
|
Avilés-Ramírez C, Moreno-Godínez ME, Bonner MR, Parra-Rojas I, Flores-Alfaro E, Ramírez M, Huerta-Beristain G, Ramírez-Vargas MA. Effects of exposure to environmental pollutants on mitochondrial DNA copy number: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43588-43606. [PMID: 35399130 DOI: 10.1007/s11356-022-19967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Exposure to environmental pollutants has been associated with alteration on relative levels of mitochondrial DNA copy number (mtDNAcn). However, the results obtained from epidemiological studies are inconsistent. This meta-analysis aimed to evaluate whether environmental pollutant exposure can modify the relative levels of mtDNAcn in humans. We performed a literature search using PubMed, Scopus, and Web of Science databases. We selected and reviewed original articles performed in humans that analyzed the relationship between environmental pollutant exposure and the relative levels of mtDNAcn; the selection of the included studies was based on inclusion and exclusion criteria. Only twenty-two studies fulfilled our inclusion criteria. A total of 6011 study participants were included in this systematic review and meta-analysis. We grouped the included studies into four main categories according to the type of environmental pollutant: (1) heavy metals, (2) polycyclic aromatic hydrocarbons (PAHs), (3) particulate matter (PM), and (4) cigarette smoking. Inconclusive results were observed in all categories; the pooled analysis shows a marginal increase of relative levels of mtDNAcn in response to environmental pollutant exposure. The trial sequential analysis and rate confidence in body evidence showed the need to perform new studies. Therefore, a large-scale cohort and mechanistic studies in this area are required to probe the possible use of relative levels of mtDNAcn as biomarkers linked to environmental pollution exposure.
Collapse
Affiliation(s)
- Cristian Avilés-Ramírez
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Ma Elena Moreno-Godínez
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Investigación en Obesidad Y Diabetes, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eugenia Flores-Alfaro
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Epidemiología Clínica Y Molecular, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Mónica Ramírez
- Facultad de Ciencias Químico-Biológicas, CONACyT, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Gerardo Huerta-Beristain
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Marco Antonio Ramírez-Vargas
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México.
| |
Collapse
|
44
|
Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23031776. [PMID: 35163697 PMCID: PMC8836100 DOI: 10.3390/ijms23031776] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
In healthy kidneys, interstitial fibroblasts are responsible for the maintenance of renal architecture. Progressive interstitial fibrosis is thought to be a common pathway for chronic kidney diseases (CKD). Diabetes is one of the boosters of CKD. There is no effective treatment to improve kidney function in CKD patients. The kidney is a highly demanding organ, rich in redox reactions occurring in mitochondria, making it particularly vulnerable to oxidative stress (OS). A dysregulation in OS leads to an impairment of the Electron transport chain (ETC). Gene deficiencies in the ETC are closely related to the development of kidney disease, providing evidence that mitochondria integrity is a key player in the early detection of CKD. The development of novel CKD therapies is needed since current methods of treatment are ineffective. Antioxidant targeted therapies and metabolic approaches revealed promising results to delay the progression of some markers associated with kidney disease. Herein, we discuss the role and possible origin of fibroblasts and the possible potentiators of CKD. We will focus on the important features of mitochondria in renal cell function and discuss their role in kidney disease progression. We also discuss the potential of antioxidants and pharmacologic agents to delay kidney disease progression.
Collapse
|
45
|
Kim SY, Chiara V, Álvarez-Quintero N, Velando A. Mitochondrial DNA content in eggs as a maternal effect. Proc Biol Sci 2022; 289:20212100. [PMID: 35042411 PMCID: PMC8767187 DOI: 10.1098/rspb.2021.2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
The transmission of detrimental mutations in animal mitochondrial DNA (mtDNA) to the next generation is avoided by a high level of mtDNA content in mature oocytes. Thus, this maternal genetic material has the potential to mediate adaptive maternal effects if mothers change mtDNA level in oocytes in response to their environment or body condition. Here, we show that increased mtDNA abundance in mature oocytes was associated with fast somatic growth during early development but at the cost of increased mortality in three-spined sticklebacks. We also examined whether oocyte mtDNA and sperm DNA damage levels have interacting effects because they can determine the integrity of mitochondrial and nuclear genes in offspring. The level of oxidative DNA damage in sperm negatively affected fertility, but there was no interacting effect of oocyte mtDNA abundance and sperm DNA damage. Oocyte mtDNA level increased towards the end of the breeding season, and the females exposed to warmer temperatures during winter produced eggs with increased mtDNA copies. Our results suggest that oocyte mtDNA level can vary according to the expected energy demands for offspring during embryogenesis and early growth. Thus, mothers can affect offspring development and viability through the context-dependent effects of oocyte mtDNA abundance.
Collapse
Affiliation(s)
- Sin-Yeon Kim
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Violette Chiara
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Náyade Álvarez-Quintero
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Alberto Velando
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
46
|
Placental mtDNA copy number and methylation in association with macrosomia in healthy pregnancy. Placenta 2021; 118:1-9. [PMID: 34972066 DOI: 10.1016/j.placenta.2021.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Fetal growth and development depend on metabolic energy from placental mitochondria. However, the impact of placental mitochondria on the occurrence of macrosomia remains unclear. We aimed to explore the association between macrosomia without gestational diabetes mellitus (non-GDM) and changes in placental mitochondrial DNA (mtDNA) copy number and methylation. METHODS Fifty-four newborns with macrosomia and 54 normal birthweight controls were enrolled in this study. Placental mtDNA copy number and mRNA expression of nuclear genes related to mitochondrial replication or ATP synthesis-related genes were measured by real-time quantitative polymerase chain reaction (qPCR). Methylation levels of the non-coding regulatory region D-loop and ATP synthesis-related genes were detected by targeted bisulfite sequencing. RESULTS Newborns with macrosomia had lower placental mtDNA copy number and higher methylation rates of the CpG15 site in the D-loop region (D-CpG15) and CpG6 site in the cytochrome C oxidase III (COX3) gene (COX3-CpG6) than normal birth weight newborns. After adjusting for potential covariates (gestational age, prepregnancy BMI, and infant sex), decreased placental mtDNA copy number (adjusted odds ratio [aOR] = 2.09, 95% confidence interval [CI] 1.03-4.25), elevated methylation rate of D-CpG15 (aOR = 2.06, 95% CI 1.03-4.09) and COX3-CpG6 (aOR = 2.13, 95% CI 1.08-4.20) remained significantly associated with a higher risk of macrosomia. DISCUSSION Reduced mtDNA copy number and increased methylation levels of specific loci at mtDNA would increase the risk of macrosomia. However, the detailed molecular mechanism needs further identification.
Collapse
|
47
|
Kan S, Duan M, Liu Y, Wang C, Xie J. Role of Mitochondria in Physiology of Chondrocytes and Diseases of Osteoarthritis and Rheumatoid Arthritis. Cartilage 2021; 13:1102S-1121S. [PMID: 34894777 PMCID: PMC8804744 DOI: 10.1177/19476035211063858] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE OF REVIEW Mitochondria are recognized to be one of the most important organelles in chondrocytes for their role in triphosphate (ATP) generation through aerobic phosphorylation. Mitochondria also participate in many intracellular processes involving modulating reactive oxygen species (ROS), responding to instantaneous hypoxia stress, regulating cytoplasmic transport of calcium ion, and directing mitophagy to maintain the homeostasis of individual chondrocytes. DESIGNS To summarize the specific role of mitochondria in chondrocytes, we screened related papers in PubMed database and the search strategy is ((mitochondria) AND (chondrocyte)) AND (English [Language]). The articles published in the past 5 years were included and 130 papers were studied. RESULTS In recent years, the integrity of mitochondrial structure has been regarded as a prerequisite for normal chondrocyte survival and defect in mitochondrial function has been found in cartilage-related diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, the understanding of mitochondria in cartilage is still largely limited. The mechanism on how the changes in mitochondrial structure and function directly lead to the occurrence and development of cartilage-related diseases remains to be elusive. CONCLUSION This review aims to summarize the role of mitochondria in chondrocytes under the physiological and pathological changes from ATP generation, calcium homeostasis, redox regulation, mitophagy modulation, mitochondria biogenesis to immune response activation. The enhanced understanding of molecular mechanisms in mitochondria might offer some new cues for cartilage remodeling and pathological intervention.
Collapse
Affiliation(s)
- Shiyi Kan
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunli Wang
- “111” Project Laboratory of
Biomechanics and Tissue Repair, Bioengineering College, Chongqing University,
Chongqing, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China,“111” Project Laboratory of
Biomechanics and Tissue Repair, Bioengineering College, Chongqing University,
Chongqing, China,Lab of Bone & Joint Disease, State
Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan
University, Chengdu, China,Jing Xie, Lab of Bone & Joint Disease,
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,
Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
48
|
Dial AG, Grafham GK, Monaco CMF, Voth J, Brandt L, Tarnopolsky MA, Hawke TJ. Alterations in skeletal muscle repair in young adults with type 1 diabetes mellitus. Am J Physiol Cell Physiol 2021; 321:C876-C883. [PMID: 34586898 DOI: 10.1152/ajpcell.00322.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Though preclinical models of type 1 diabetes (T1D) exhibit impaired muscle regeneration, this has yet to be investigated in humans with T1D. Here, we investigated the impact of damaging exercise (eccentric quadriceps contractions) in 18 physically active young adults with and without T1D. Pre- and postexercise (48 h and 96 h), the participants provided blood samples, vastus lateralis biopsies, and performed maximal voluntary quadriceps contractions (MVCs). Skeletal muscle sarcolemmal integrity, extracellular matrix (ECM) content, and satellite cell (SC) content/proliferation were assessed by immunofluorescence. Transmission electron microscopy was used to quantify ultrastructural damage. MVC was comparable between T1D and controls before exercise. Postexercise, MVC was decreased in both groups, but subjects with T1D exhibited moderately lower strength recovery at both 48 h and 96 h. Serum creatine kinase, an indicator of muscle damage, was moderately higher in participants with T1D at rest and exhibited a small elevation 96 h postexercise. Participants with T1D showed lower SC content at all timepoints and demonstrated a moderate delay in SC proliferation after exercise. A greater number of myofibers exhibited sarcolemmal damage (disrupted dystrophin) and increased ECM (laminin) content in participants with T1D despite no differences between groups in ultrastructural damage as assessed by electron microscopy. Finally, transcriptomic analyses revealed dysregulated gene networks involving RNA translation and mitochondrial respiration, providing potential explanations for previous observations of mitochondrial dysfunction in similar cohorts with T1D. Our findings indicate that skeletal muscle in young adults with moderately controlled T1D is altered after damaging exercise, suggesting that longer recovery times following intense exercise may be necessary.
Collapse
Affiliation(s)
- Athan G Dial
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grace K Grafham
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Cynthia M F Monaco
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Voth
- Research and Evaluation Services Department, Hôtel-Dieu Grace Healthcare, Windsor, Ontario, Canada
| | - Linda Brandt
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
49
|
Ciesielska EJ, Kim S, Bisimwa HGM, Grier C, Rahman MM, Young CKJ, Young MJ, Oliveira MT, Ciesielski GL. Remdesivir triphosphate blocks DNA synthesis and increases exonucleolysis by the replicative mitochondrial DNA polymerase, Pol γ. Mitochondrion 2021; 61:147-158. [PMID: 34619353 PMCID: PMC8595818 DOI: 10.1016/j.mito.2021.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic prompted the FDA to authorize a new nucleoside analogue, remdesivir, for emergency use in affected individuals. We examined the effects of its active metabolite, remdesivir triphosphate (RTP), on the activity of the replicative mitochondrial DNA polymerase, Pol γ. We found that while RTP is not incorporated by Pol γ into a nascent DNA strand, it remains associated with the enzyme impeding its synthetic activity and stimulating exonucleolysis. In spite of that, we found no evidence for deleterious effects of remdesivir treatment on the integrity of the mitochondrial genome in human cells in culture.
Collapse
Affiliation(s)
- Elena J Ciesielska
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | - Shalom Kim
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | | | - Cody Grier
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | - Md Mostafijur Rahman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, United States
| | - Carolyn K J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, United States
| | - Matthew J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, United States
| | - Marcos T Oliveira
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States.
| |
Collapse
|
50
|
Gvozdjáková A, Sumbalová Z, Kucharská J, Szamosová M, Čápová L, Rausová Z, Vančová O, Mojto V, Langsjoen P, Palacka P. Platelet mitochondrial respiration and coenzyme Q10 could be used as new diagnostic strategy for mitochondrial dysfunction in rheumatoid diseases. PLoS One 2021; 16:e0256135. [PMID: 34582480 PMCID: PMC8478238 DOI: 10.1371/journal.pone.0256135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic inflammatory autoimunne disorder affecting both small and large synovial joints, leading to their destruction. Platelet biomarkers are involved in inflammation in RA patients. Increased circulating platelet counts in RA patients may contribute to platelet hyperactivity and thrombosis. In this pilot study we evaluated platelet mitochondrial bioenergy function, CoQ10 levels and oxidative stress in RA patients. Methods Twenty-one RA patients and 19 healthy volunteers participated in the study. High resolution respirometry (HRR) was used for analysis of platelet mitochondrial bioenergetics. CoQ10 was determined by HPLC method; TBARS were detected spectrophotometrically. Results Slight dysfunction in platelet mitochondrial respiration and reduced platelet CoQ10 levels were observed in RA patients compared with normal controls. Conclusions The observed decrease in platelet CoQ10 levels may lead to platelet mitochondrial dysfunction in RA diseases. Determination of platelet mitochondrial function and platelet CoQ10 levels could be used as new diagnostic strategies for mitochondrial bioenergetics in rheumatoid diseases.
Collapse
Affiliation(s)
- Anna Gvozdjáková
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Sumbalová
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Monika Szamosová
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lubica Čápová
- Department of Rheumatology, University Hospital in Bratislava, Bratislava, Slovakia
| | - Zuzana Rausová
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Oľga Vančová
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Viliam Mojto
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Langsjoen
- Private Cardiology Practice, Tyler, TX, United States of America
| | - Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|