1
|
Zhang F, Yang D, Li J, Du C, Sun X, Li W, Liu F, Yang Y, Li Y, Fu L, Li R, Zhang CX. Synaptotagmin-11 regulates immune functions of microglia in vivo. J Neurochem 2023; 167:680-695. [PMID: 37924268 DOI: 10.1111/jnc.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Membrane trafficking pathways mediate key microglial activities such as cell migration, cytokine secretion, and phagocytosis. However, the underlying molecular mechanism remains poorly understood. Previously, we found that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt associated with Parkinson's disease (PD) and schizophrenia, inhibits cytokine release and phagocytosis in primary microglia. Here we reported the in vivo function of Syt11 in microglial immune responses using an inducible microglia-specific Syt11-conditional-knockout (cKO) mouse strain. Syt11-cKO resulted in activation of microglia and elevated mRNA levels of IL-6, TNF-α, IL-1β, and iNOS in various brain regions under both resting state and LPS-induced acute inflammation state in adult mice. In a PD mouse model generated by microinjection of preformed α-synuclein fibrils into the striatum, a reduced number of microglia migrated toward the injection sites and an enhanced phagocytosis of α-synuclein fibrils by microglia were found in Syt11-cKO mice. To understand the molecular mechanism of Syt11 function, we identified its direct binding proteins vps10p-tail-interactor-1a (vti1a) and vti1b. The linker domain of Syt11 interacted with both proteins and a peptide derived from it competitively inhibited the interaction of Syt11 with vti1a/vti1b in vitro and in cells. Importantly, application of this peptide induced more cytokine secretion in wild-type microglia upon LPS treatment, phenocopying defects in Syt11 knockdown cells. Altogether, we propose that Syt11 inhibits microglial activation in vivo and regulates cytokine secretion through interactions with vti1a and vti1b.
Collapse
Affiliation(s)
- Feifan Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Dong Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jingchen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xinran Sun
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Wanru Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yiwei Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuhong Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Lei Fu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rena Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
2
|
Fujioka A, Nagano M, Ikegami K, Masumoto KH, Yoshikawa T, Koinuma S, Nakahama KI, Shigeyoshi Y. Circadian expression and specific localization of synaptotagmin17 in the suprachiasmatic nucleus, the master circadian oscillator in mammals. Brain Res 2023; 1798:148129. [PMID: 36332665 DOI: 10.1016/j.brainres.2022.148129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
The localization and function of synaptotagmin (syt)17 in the suprachiasmatic nucleus (SCN) of the brain, which is the master circadian oscillator, were investigated. The Syt17 mRNA-containing neurons were mainly situated in the shell region while SYT17 immunoreactive cell bodies and neural fibers were detected in the core and shell of the SCN and the subparaventricular zone (SPZ). Further, electron microscopy analysis revealed SYT17 in the rough endoplasmic reticulum (rER), Golgi apparatus (G), and large and small vesicles of neurons. Syt17 mRNA expression in the SCN showed a circadian rhythm, and light exposure at night suppressed its expression. In addition, the free running period of locomotor activity rhythm was shortened in Syt17-deletion mutant mice. These findings suggest that SYT17 is involved in the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Atsuko Fujioka
- Department of Anatomy and Neurobiology, Kindai University, Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Kindai University, Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Keisuke Ikegami
- Department of Anatomy and Neurobiology, Kindai University, Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Koh-Hei Masumoto
- Department of Anatomy and Neurobiology, Kindai University, Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Tomoko Yoshikawa
- Department of Anatomy and Neurobiology, Kindai University, Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Kindai University, Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kindai University, Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| |
Collapse
|
3
|
Wang X, Yu D, Wang H, Lei Z, Zhai Y, Sun M, Chen S, Yin P. Rab3 and synaptotagmin proteins in the regulation of vesicle fusion and neurotransmitter release. Life Sci 2022; 309:120995. [PMID: 36167148 DOI: 10.1016/j.lfs.2022.120995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Ca2+-triggered neurotransmitter release involves complex regulatory mechanisms, including a series of protein-protein interactions. Three proteins, synaptobrevin (VAMP), synaptosomal-associated protein of 25kDa (SNAP-25) and syntaxin, constitute the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex that plays key roles in controlling vesicle fusion and exocytosis. Many other proteins participate in the regulation of the processes via direct and/or indirect interaction with the SNARE complex. Although much effort has been made, the regulatory mechanism for exocytosis is still not completely clear. Accumulated evidence indicates that the small GTPase Rab3 and synaptotagmin proteins play important regulatory roles during vesicle fusion and neurotransmitter release. This review outlines our present understanding of the two regulatory proteins, with the focus on the interaction of Rab3 with synaptotagmin in the regulatory process.
Collapse
Affiliation(s)
- Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Dianmei Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Minlu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Abstract
Precise and efficient coupling of endocytosis to exocytosis is critical for neurotransmission. The activity-dependent facilitation of endocytosis has been well established for efficient membrane retrieval; however, whether neural activity clamps endocytosis to avoid excessive membrane retrieval remains debatable with the mechanisms largely unknown. The present work provides compelling evidence that synaptotagmin-1 (Syt1) functions as a primary bidirectional Ca2+ sensor to promote slow, small-sized clathrin-mediated endocytosis but inhibit the fast, large-sized bulk endocytosis during elevated neural activity, the disruption of which leads to inefficient vesicle recycling under mild stimulation but excessive membrane retrieval following sustained neurotransmission. Thus, Syt1 serves as a fine-tuning Ca2+ sensor to ensure both efficient and precise coupling of endocytosis to exocytosis in response to different neural activities. Exocytosis and endocytosis are tightly coupled. In addition to initiating exocytosis, Ca2+ plays critical roles in exocytosis–endocytosis coupling in neurons and nonneuronal cells. Both positive and negative roles of Ca2+ in endocytosis have been reported; however, Ca2+ inhibition in endocytosis remains debatable with unknown mechanisms. Here, we show that synaptotagmin-1 (Syt1), the primary Ca2+ sensor initiating exocytosis, plays bidirectional and opposite roles in exocytosis–endocytosis coupling by promoting slow, small-sized clathrin-mediated endocytosis but inhibiting fast, large-sized bulk endocytosis. Ca2+-binding ability is required for Syt1 to regulate both types of endocytic pathways, the disruption of which leads to inefficient vesicle recycling under mild stimulation and excessive membrane retrieval following intense stimulation. Ca2+-dependent membrane tubulation may explain the opposite endocytic roles of Syt1 and provides a general membrane-remodeling working model for endocytosis determination. Thus, Syt1 is a primary bidirectional Ca2+ sensor facilitating clathrin-mediated endocytosis but clamping bulk endocytosis, probably by manipulating membrane curvature to ensure both efficient and precise coupling of endocytosis to exocytosis.
Collapse
|
5
|
Henry D, Joselevitch C, Matthews GG, Wollmuth LP. Expression and distribution of synaptotagmin family members in the zebrafish retina. J Comp Neurol 2022; 530:705-728. [PMID: 34468021 PMCID: PMC8792163 DOI: 10.1002/cne.25238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022]
Abstract
Synaptotagmins belong to a large family of proteins. Although various synaptotagmins have been implicated as Ca2+ sensors for vesicle replenishment and release at conventional synapses, their roles at retinal ribbon synapses remain incompletely understood. Zebrafish is a widely used experimental model for retinal research. We therefore investigated the homology between human, rat, mouse, and zebrafish synaptotagmins 1-10 using a bioinformatics approach. We also characterized the expression and distribution of various synaptotagmin (syt) genes in the zebrafish retina using RT-PCR, qPCR, and in situhybridization, focusing on the family members whose products likely underlie Ca2+ -dependent exocytosis in the central nervous system (synaptotagmins 1, 2, 5, and 7). Most zebrafish synaptotagmins are well conserved and can be grouped in the same classes as mammalian synaptotagmins, based on crucial amino acid residues needed for coordinating Ca2+ binding and determining phospholipid binding affinity. The only exception is synaptotagmin 1b, which lacks 34 amino acid residues in the C2B domain and is therefore unlikely to bind Ca2+ there. Additionally, the products of zebrafish syt5a and syt5b genes share identity with mammalian class 1 and 5 synaptotagmins. Zebrafish syt1, syt2, syt5, and syt7 paralogues are found in the zebrafish brain, eye, and retina, excepting syt1b, which is only present in the brain. The complementary expression pattern of the remaining paralogues in the retina suggests that syt1a and syt5a may underlie synchronous release and syt7a and syt7b may mediate asynchronous release or other Ca2+ -dependent processes in different retinal neurons.
Collapse
Affiliation(s)
- Diane Henry
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Christina Joselevitch
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Gary G. Matthews
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Lonnie P. Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| |
Collapse
|
6
|
Yang H, Yue B, Yang Y, Tang J, Yang S, Qi A, Qu K, Lan X, Lei C, Wei Z, Huang B, Chen H. Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. BIOLOGY 2022; 11:biology11020223. [PMID: 35205089 PMCID: PMC8869484 DOI: 10.3390/biology11020223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary It is known that many different breeds of cattle are widely distributed in China. However, due to a lengthy selection of draught direction, there are obvious shortcomings in Chinese cattle, such as less meat production, slow weight gain, poor meat quality, and a lack of specialized beef cattle breeds. Animal breeding heavily benefits from molecular technologies, among which molecular genetic markers were widely used to improve the economic traits of beef cattle. Because the copy number variation (CNV) involves a longer DNA sequence or even the entire functional gene, it may have a greater impact on the phenotype. Recent studies have indicated that CNVs are widespread in the Chinese cattle genome. By investigating the effects of CNVs on gene expression and cattle traits, we aim to find those genomic variations which could significantly affect cattle traits, and which could provide a basis for genetic selection and molecular breeding of local Chinese cattle. Abstract Currently, studies of the SYT11 gene mainly focus on neurological diseases such as schizophrenia and Parkinson’s disease. However, some studies have shown that the C2B domain of SYT11 can interact with RISC components and affect the gene regulation of miRNA, which is important for cell differentiation, proliferation, and apoptosis, and therefore has an impact on muscle growth and development in animals. The whole-genome resequencing data detected a CNV in the SYT11 gene, and this may affect cattle growth traits. In this study, CNV distribution of 672 individuals from four cattle breeds, Yunling, Pinan, Xianan, and Qinchuan, were detected by qPCR. The relationship between CNV, gene expression and growth traits was further investigated. The results showed that the proportion of multiple copy types was the largest in all cattle breeds, but there were some differences among different breeds. The normal type had higher gene expression than the abnormal copy type. The CNVs of the SYT11 gene were significantly correlated with body length, cannon circumference, chest depth, rump length, and forehead size of Yunling cattle, and was significantly correlated with the bodyweight of Xianan cattle, respectively. These data improve our understanding of the effects of CNV on cattle growth traits. Our results suggest that the CNV of SYT11 gene is a protentional molecular marker, which may be used to improve growth traits in Chinese cattle.
Collapse
Affiliation(s)
- Haiyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Binglin Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Yu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Shuling Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Ao Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China;
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Zehui Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| |
Collapse
|
7
|
Tomasello DL, Kim JL, Khodour Y, McCammon JM, Mitalipova M, Jaenisch R, Futerman AH, Sive H. 16pdel lipid changes in iPSC-derived neurons and function of FAM57B in lipid metabolism and synaptogenesis. iScience 2022; 25:103551. [PMID: 34984324 PMCID: PMC8693007 DOI: 10.1016/j.isci.2021.103551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/23/2021] [Accepted: 11/26/2021] [Indexed: 01/01/2023] Open
Abstract
The complex 16p11.2 deletion syndrome (16pdel) is accompanied by neurological disorders, including epilepsy, autism spectrum disorder, and intellectual disability. We demonstrated that 16pdel iPSC differentiated neurons from affected people show augmented local field potential activity and altered ceramide-related lipid species relative to unaffected. FAM57B, a poorly characterized gene in the 16p11.2 interval, has emerged as a candidate tied to symptomatology. We found that FAM57B modulates ceramide synthase (CerS) activity, but is not a CerS per se. In FAM57B mutant human neuronal cells and zebrafish brain, composition and levels of sphingolipids and glycerolipids associated with cellular membranes are disrupted. Consistently, we observed aberrant plasma membrane architecture and synaptic protein mislocalization, which were accompanied by depressed brain and behavioral activity. Together, these results suggest that haploinsufficiency of FAM57B contributes to changes in neuronal activity and function in 16pdel syndrome through a crucial role for the gene in lipid metabolism.
Collapse
Affiliation(s)
| | - Jiyoon L. Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yara Khodour
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Maya Mitalipova
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony H. Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
So WY, Liu WN, Teo AKK, Rutter GA, Han W. Paired box 6 programs essential exocytotic genes in the regulation of glucose-stimulated insulin secretion and glucose homeostasis. Sci Transl Med 2021; 13:13/600/eabb1038. [PMID: 34193609 DOI: 10.1126/scitranslmed.abb1038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/25/2021] [Accepted: 05/26/2021] [Indexed: 01/26/2023]
Abstract
The paired box 6 (PAX6) transcription factor is crucial for normal pancreatic islet development and function. Heterozygous mutations of PAX6 are associated with impaired insulin secretion and early-onset diabetes mellitus in humans. However, the molecular mechanism of PAX6 in controlling insulin secretion in human beta cells and its pathophysiological role in type 2 diabetes (T2D) remain ambiguous. We investigated the molecular pathway of PAX6 in the regulation of insulin secretion and the potential therapeutic value of PAX6 in T2D by using human pancreatic beta cell line EndoC-βH1, the db/db mouse model, and primary human pancreatic islets. Through loss- and gain-of-function approaches, we uncovered a mechanism by which PAX6 modulates glucose-stimulated insulin secretion (GSIS) through a cAMP response element-binding protein (CREB)/Munc18-1/2 pathway. Moreover, under diabetic conditions, beta cells and pancreatic islets displayed dampened PAX6/CREB/Munc18-1/2 pathway activity and impaired GSIS, which were reversed by PAX6 replenishment. Adeno-associated virus-mediated PAX6 overexpression in db/db mouse pancreatic beta cells led to a sustained amelioration of glycemic perturbation in vivo but did not affect insulin resistance. Our study highlights the pathophysiological role of PAX6 in T2D-associated beta cell dysfunction in humans and suggests the potential of PAX6 gene transfer in preserving and restoring beta cell function.
Collapse
Affiliation(s)
- Wing Yan So
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Adrian Kee Keong Teo
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore.,Departments of Biochemistry and Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics and Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London W12 0NN, UK
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore. .,Center for Neuro-Metabolism and Regeneration Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510700, China
| |
Collapse
|
9
|
de la Riva-Carrasco R, Perez-Pandolfo S, Suárez Freire S, Romero NM, Bhujabal Z, Johansen T, Wappner P, Melani M. The immunophilin Zonda controls regulated exocytosis in endocrine and exocrine tissues. Traffic 2021; 22:111-122. [PMID: 33336828 DOI: 10.1111/tra.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Abstract
Exocytosis is a fundamental process in physiology, that ensures communication between cells, organs and even organisms. Hormones, neuropeptides and antibodies, among other cargoes are packed in exocytic vesicles that need to reach and fuse with the plasma membrane to release their content to the extracellular milieu. Hundreds of proteins participate in this process and several others in its regulation. We report here a novel component of the exocytic machinery, the Drosophila transmembrane immunophilin Zonda (Zda), previously found to participate in autophagy. Zda is highly expressed in secretory tissues, and regulates exocytosis in at least three of them: the ring gland, insulin-producing cells and the salivary gland. Using the salivary gland as a model system, we found that Zda is required at final steps of the exocytic process for fusion of secretory granules to the plasma membrane. In a genetic screen we identified the small GTPase RalA as a crucial regulator of secretory granule exocytosis that is required, similarly to Zda, for fusion between the secretory granule and the plasma membrane.
Collapse
Affiliation(s)
| | - Sebastián Perez-Pandolfo
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sofía Suárez Freire
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Nuria M Romero
- Université Côte d'Azur, INRA, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Zambarlal Bhujabal
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Pablo Wappner
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Melani
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Nguyen HD, Allaire A, Diamandis P, Bisaillon M, Scott MS, Richer M. A machine learning analysis of a "normal-like" IDH-WT diffuse glioma transcriptomic subgroup associated with prolonged survival reveals novel immune and neurotransmitter-related actionable targets. BMC Med 2020; 18:280. [PMID: 33059718 PMCID: PMC7565364 DOI: 10.1186/s12916-020-01748-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Classification of primary central nervous system tumors according to the World Health Organization guidelines follows the integration of histologic interpretation with molecular information and aims at providing the most precise prognosis and optimal patient management. According to the cIMPACT-NOW update 3, diffuse isocitrate dehydrogenase-wild type (IDH-WT) gliomas should be graded as grade IV glioblastomas (GBM) if they possess one or more of the following molecular markers that predict aggressive clinical course: EGFR amplification, TERT promoter mutation, and whole-chromosome 7 gain combined with chromosome 10 loss. METHODS The Cancer Genome Atlas (TCGA) glioma expression datasets were reanalyzed in order to identify novel tumor subcategories which would be considered as GBM-equivalents with the current diagnostic algorithm. Unsupervised clustering allowed the identification of previously unrecognized transcriptomic subcategories. A supervised machine learning algorithm (k-nearest neighbor model) was also used to identify gene signatures specific to some of these subcategories. RESULTS We identified 14 IDH-WT infiltrating gliomas displaying a "normal-like" (NL) transcriptomic profile associated with a longer survival. Genes such as C5AR1 (complement receptor), SLC32A1 (vesicular gamma-aminobutyric acid transporter), MSR1 (or CD204, scavenger receptor A), and SYT5 (synaptotagmin 5) were differentially expressed and comprised in gene signatures specific to NL IDH-WT gliomas which were validated further using the Chinese Glioma Genome Atlas datasets. These gene signatures showed high discriminative power and correlation with survival. CONCLUSION NL IDH-WT gliomas represent an infiltrating glioma subcategory with a superior prognosis which can only be detected using genome-wide analysis. Differential expression of genes potentially involved in immune checkpoint and amino acid signaling pathways is providing insight into mechanisms of gliomagenesis and could pave the way to novel treatment targets for infiltrating gliomas.
Collapse
Affiliation(s)
- H. D. Nguyen
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec Canada
| | - A. Allaire
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec Canada
| | - P. Diamandis
- Department of Laboratory Medicine and Pathobiology and Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario Canada
| | - M. Bisaillon
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec Canada
| | - M. S. Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec Canada
| | - M. Richer
- Department of Pathology, Université de Sherbrooke, Sherbrooke, Québec Canada
| |
Collapse
|
11
|
Lu Y, Li Y, Li G, Lu H. Identification of potential markers for type 2 diabetes mellitus via bioinformatics analysis. Mol Med Rep 2020; 22:1868-1882. [PMID: 32705173 PMCID: PMC7411335 DOI: 10.3892/mmr.2020.11281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial and multigenetic disease, and its pathogenesis is complex and largely unknown. In the present study, microarray data (GSE201966) of β-cell enriched tissue obtained by laser capture microdissection were downloaded, including 10 control and 10 type 2 diabetic subjects. A comprehensive bioinformatics analysis of microarray data in the context of protein-protein interaction (PPI) networks was employed, combined with subcellular location information to mine the potential candidate genes for T2DM and provide further insight on the possible mechanisms involved. First, differential analysis screened 108 differentially expressed genes. Then, 83 candidate genes were identified in the layered network in the context of PPI via network analysis, which were either directly or indirectly linked to T2DM. Of those genes obtained through literature retrieval analysis, 27 of 83 were involved with the development of T2DM; however, the rest of the 56 genes need to be verified by experiments. The functional analysis of candidate genes involved in a number of biological activities, demonstrated that 46 upregulated candidate genes were involved in ‘inflammatory response’ and ‘lipid metabolic process’, and 37 downregulated candidate genes were involved in ‘positive regulation of cell death’ and ‘positive regulation of cell proliferation’. These candidate genes were also involved in different signaling pathways associated with ‘PI3K/Akt signaling pathway’, ‘Rap1 signaling pathway’, ‘Ras signaling pathway’ and ‘MAPK signaling pathway’, which are highly associated with the development of T2DM. Furthermore, a microRNA (miR)-target gene regulatory network and a transcription factor-target gene regulatory network were constructed based on miRNet and NetworkAnalyst databases, respectively. Notably, hsa-miR-192-5p, hsa-miR-124-5p and hsa-miR-335-5p appeared to be involved in T2DM by potentially regulating the expression of various candidate genes, including procollagen C-endopeptidase enhancer 2, connective tissue growth factor and family with sequence similarity 105, member A, protein phosphatase 1 regulatory inhibitor subunit 1 A and C-C motif chemokine receptor 4. Smad5 and Bcl6, as transcription factors, are regulated by ankyrin repeat domain 23 and transmembrane protein 37, respectively, which might also be used in the molecular diagnosis and targeted therapy of T2DM. Taken together, the results of the present study may offer insight for future genomic-based individualized treatment of T2DM and help determine the underlying molecular mechanisms that lead to T2DM.
Collapse
Affiliation(s)
- Yana Lu
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100, P.R. China
| | - Yihang Li
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100, P.R. China
| | - Guang Li
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100, P.R. China
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
12
|
Yan S, Wang Y, Zhang Y, Wang L, Zhao X, Du C, Gao P, Yan F, Liu F, Gong X, Guan Y, Cui X, Wang X, Xi Zhang C. Synaptotagmin-11 regulates the functions of caveolae and responds to mechanical stimuli in astrocytes. FASEB J 2019; 34:2609-2624. [PMID: 31908017 DOI: 10.1096/fj.201901715r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Caveolae play crucial roles in intracellular membrane trafficking and mechanosensation. In this study, we report that synaptotagmin-11 (Syt11), a synaptotagmin isoform associated with Parkinson's disease and schizophrenia, regulates both caveolae-mediated endocytosis and the caveolar response to mechanical stimuli in astrocytes. Syt11-knockout (KO) accelerated caveolae-mediated endocytosis. Interestingly, the caveolar structures on the cell surface were markedly fewer in the absence of Syt11. Caveolar disassembly in response to hypoosmotic stimuli and astrocyte swelling were both impaired in Syt11-KO astrocytes. Live imaging revealed that Syt11 left caveolar structures before cavin1 during hypoosmotic stress and returned earlier than cavin1 after isoosmotic recovery. Chronic hypoosmotic stress led to proteasome-mediated Syt11 degradation. In addition, Syt11-KO increased the turnover of cavin1 and EH domain-containing protein 2 (EHD2), accompanied by compromised membrane integrity, suggesting a mechanoprotective role of Syt11. Direct interactions between Syt11 and cavin1 and EHD2, but not caveolin-1, are found. Altogether, we propose that Syt11 stabilizes caveolar structures on the cell surface of astrocytes and regulates caveolar functions under physiological and pathological conditions through cavin1 and EHD2.
Collapse
Affiliation(s)
- Shuxin Yan
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yalong Wang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yujia Zhang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Le Wang
- Department of Neurobiology, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaofang Zhao
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Pei Gao
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Feng Yan
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoli Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Yuan Guan
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Anesthesiology, Huaxin Hospital, First Hospital of Tsinghua University, Beijing, China
| | - Xiuyu Cui
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurobiology, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Wu Z, Sun Z, Huang R, Zang D, Wang C, Yan X, Yan W. Silencing of synaptotagmin 7 regulates osteosarcoma cell proliferation, apoptosis, and migration. Histol Histopathol 2019; 35:303-312. [PMID: 31631310 DOI: 10.14670/hh-18-174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Synaptotagmin 7 (SYT7) is a component of the synaptotagmin family, which is essential in many physiological and pathological processes. In this study, we aimed to investigate the role of SYT7 in osteosarcoma. METHODS We defined the expression levels of SYT7 in osteosarcoma tissues and para-sarcoma tissues by immunohistochemistry and analyzed the possible correlation between SYT7 expression and pathological characteristics via Mann-Whitney U analysis and Spearman correlation analysis. The effects of SYT7 silencing in vitro cell growth were assessed by MTT assay. Cell cycle and cell apoptosis were assessed by flow cytometry analysis. Wound healing assay and transwell assay were applied to assess the migration and invasion capacity. RESULTS The results showed that the expression levels of SYT7 were upregulated in osteosarcoma tissues compared with para-sarcoma tissues and positively correlated with the pathological characteristics of osteosarcoma. Functional experiments demonstrated that SYT7 silencing significantly inhibited cell proliferation and colony formation capacity (P<0.001), induced cell cycle arrest which increased the proportion of G2 phase and decreased the proportion of S phase, enhanced cell apoptosis (P<0.01), and limited the capacity of migration and invasion (P<0.01), compared with shCtrl group. CONCLUSION The results indicated that SYT7 plays a crucial role in the development of osteosarcoma. SYT7 can be applied as a new diagnostic and therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.,Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China
| | - Zhengwang Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.,Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China
| | - Rui Huang
- Department of General Surgery, PLA 455 hospital, Changning District, Shanghai, China
| | - Ding Zang
- Department of Clinical Laboratory, PLA 455 hospital, Changning District, Shanghai, China
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.,Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China
| | - Xu Yan
- Department of Orthopedics, PLA 455 hospital, Changning District, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.
| |
Collapse
|
14
|
Shimojo M, Madara J, Pankow S, Liu X, Yates J, Südhof TC, Maximov A. Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. Genes Dev 2019; 33:365-376. [PMID: 30808661 PMCID: PMC6411015 DOI: 10.1101/gad.320077.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022]
Abstract
Synaptotagmin-11 (Syt11) is a Synaptotagmin isoform that lacks an apparent ability to bind calcium, phospholipids, or SNARE proteins. While human genetic studies have linked mutations in the Syt11 gene to schizophrenia and Parkinson's disease, the localization or physiological role of Syt11 remain unclear. We found that in neurons, Syt11 resides on abundant vesicles that differ from synaptic vesicles and resemble trafficking endosomes. These vesicles recycle via the plasma membrane in an activity-dependent manner, but their exocytosis is slow and desynchronized. Constitutive knockout mice lacking Syt11 died shortly after birth, suggesting Syt11-mediated membrane transport is required for survival. In contrast, selective ablation of Syt11 in excitatory forebrain neurons using a conditional knockout did not affect life span but impaired synaptic plasticity and memory. Syt11-deficient neurons displayed normal secretion of fast neurotransmitters and peptides but exhibited a reduction of long-term synaptic potentiation. Hence, Syt11 is an essential component of a neuronal vesicular trafficking pathway that differs from the well-characterized synaptic vesicle trafficking pathway but is also essential for life.
Collapse
Affiliation(s)
- Masafumi Shimojo
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
- The Dorris Neuroscience, Scripps Research, La Jolla, California 92037, USA
| | - Joseph Madara
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
- The Dorris Neuroscience, Scripps Research, La Jolla, California 92037, USA
| | - Sandra Pankow
- Department of Molecular Medicine, Scripps Research, La Jolla, California 92037, USA
| | - Xinran Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas 75235, Texas, USA
| | - John Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California 92037, USA
| | - Thomas C Südhof
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas 75235, Texas, USA
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94035, USA
| | - Anton Maximov
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
- The Dorris Neuroscience, Scripps Research, La Jolla, California 92037, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas 75235, Texas, USA
| |
Collapse
|
15
|
Rozov A, Bolshakov AP, Valiullina-Rakhmatullina F. The Ever-Growing Puzzle of Asynchronous Release. Front Cell Neurosci 2019; 13:28. [PMID: 30809127 PMCID: PMC6379310 DOI: 10.3389/fncel.2019.00028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Invasion of an action potential (AP) to presynaptic terminals triggers calcium dependent vesicle fusion in a relatively short time window, about a millisecond, after the onset of the AP. This allows fast and precise information transfer from neuron to neuron by means of synaptic transmission and phasic mediator release. However, at some synapses a single AP or a short burst of APs can generate delayed or asynchronous synaptic release lasting for tens or hundreds of milliseconds. Understanding the mechanisms underlying asynchronous release (AR) is important, since AR can better recruit extrasynaptic metabotropic receptors and maintain a high level of neurotransmitter in the extracellular space for a substantially longer period of time after presynaptic activity. Over the last decade substantial work has been done to identify the presynaptic calcium sensor that may be involved in AR. Several models have been suggested which may explain the long lasting presynaptic calcium elevation a prerequisite for prolonged delayed release. However, the presynaptic mechanisms underlying asynchronous vesicle release are still not well understood. In this review article, we provide an overview of the current state of knowledge on the molecular components involved in delayed vesicle fusion and in the maintenance of sufficient calcium concentration to trigger AR. In addition, we discuss possible alternative models that may explain intraterminal calcium dynamics underlying AR.
Collapse
Affiliation(s)
- Andrei Rozov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences (RAS), Moscow, Russia.,Laboratory of Electrophysiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
16
|
Tran HT, Anderson LH, Knight JD. Membrane-Binding Cooperativity and Coinsertion by C2AB Tandem Domains of Synaptotagmins 1 and 7. Biophys J 2019; 116:1025-1036. [PMID: 30795874 DOI: 10.1016/j.bpj.2019.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 02/04/2023] Open
Abstract
Synaptotagmin-1 (Syt-1) and synaptotagmin-7 (Syt-7) contain analogous tandem C2 domains, C2A and C2B, which together sense Ca2+ to bind membranes and promote the stabilization of exocytotic fusion pores. Syt-1 triggers fast release of neurotransmitters, whereas Syt-7 functions in processes that involve lower Ca2+ concentrations such as hormone secretion. Syt-1 C2 domains are reported to bind membranes cooperatively, based on the observation that they penetrate farther into membranes as the C2AB tandem than as individual C2 domains. In contrast, we previously suggested that the two C2 domains of Syt-7 bind membranes independently, based in part on measurements of their liposome dissociation kinetics. Here, we investigated C2A-C2B interdomain cooperativity with Syt-1 and Syt-7 using directly comparable measurements. Equilibrium Ca2+ titrations demonstrate that the Syt-7 C2AB tandem binds liposomes lacking phosphatidylinositol-4,5-bisphosphate (PIP2) with greater Ca2+ sensitivity than either of its individual domains and binds to membranes containing PIP2 even in the absence of Ca2+. Stopped-flow kinetic measurements show differences in cooperativity between Syt-1 and Syt-7: Syt-1 C2AB dissociates from PIP2-free liposomes much more slowly than either of its individual C2 domains, indicating cooperativity, whereas the major population of Syt-7 C2AB has a dissociation rate comparable to its C2A domain, suggesting a lack of cooperativity. A minor subpopulation of Syt-7 C2AB dissociates at a slower rate, which could be due to a small cooperative component and/or liposome clustering. Measurements using an environment-sensitive fluorescent probe indicate that the Syt-7 C2B domain inserts deeply into membranes as part of the C2AB tandem, similar to the coinsertion previously reported for Syt-1. Overall, coinsertion of C2A and C2B domains is coupled to cooperative energetic effects in Syt-1 to a much greater extent than in Syt-7. The difference can be understood in terms of the relative contributions of C2A and C2B domains toward membrane binding in the two proteins.
Collapse
Affiliation(s)
- Hai T Tran
- Department of Chemistry, University of Colorado Denver, Denver, Colorado
| | - Lauren H Anderson
- Department of Chemistry, University of Colorado Denver, Denver, Colorado
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver, Denver, Colorado.
| |
Collapse
|
17
|
δ-Opioid Receptor Activation Attenuates the Oligomer Formation Induced by Hypoxia and/or α-Synuclein Overexpression/Mutation Through Dual Signaling Pathways. Mol Neurobiol 2018; 56:3463-3475. [DOI: 10.1007/s12035-018-1316-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
|
18
|
Brunger AT, Leitz J, Zhou Q, Choi UB, Lai Y. Ca 2+-Triggered Synaptic Vesicle Fusion Initiated by Release of Inhibition. Trends Cell Biol 2018; 28:631-645. [PMID: 29706534 PMCID: PMC6056330 DOI: 10.1016/j.tcb.2018.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
Recent structural and functional studies of the synaptic vesicle fusion machinery suggest an inhibited tripartite complex consisting of neuronal soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs), synaptotagmin, and complexin prior to Ca2+-triggered synaptic vesicle fusion. We speculate that Ca2+-triggered fusion commences with the release of inhibition by Ca2+ binding to synaptotagmin C2 domains. Subsequently, fusion is assisted by SNARE complex zippering and by active membrane remodeling properties of synaptotagmin. This additional, inhibitory role of synaptotagmin may be a general principle since other recent studies suggest that Ca2+ binding to extended synaptotagmin C2 domains enables lipid transport by releasing an inhibited state of the system, and that Munc13 may nominally be in an inhibited state, which is released upon Ca2+ binding to one of its C2 domains.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
19
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
20
|
Abstract
This review summarizes current knowledge of synaptic proteins that are central to synaptic vesicle fusion in presynaptic active zones, including SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors), synaptotagmin, complexin, Munc18 (mammalian uncoordinated-18), and Munc13 (mammalian uncoordinated-13), and highlights recent insights in the cooperation of these proteins for neurotransmitter release. Structural and functional studies of the synaptic fusion machinery suggest new molecular models of synaptic vesicle priming and Ca2+-triggered fusion. These studies will be a stepping-stone toward answering the question of how the synaptic vesicle fusion machinery achieves such high speed and sensitivity.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
21
|
Ma L, Cai Y, Li Y, Jiao J, Wu Z, O'Shaughnessy B, De Camilli P, Karatekin E, Zhang Y. Single-molecule force spectroscopy of protein-membrane interactions. eLife 2017; 6:30493. [PMID: 29083305 PMCID: PMC5690283 DOI: 10.7554/elife.30493] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/29/2017] [Indexed: 12/17/2022] Open
Abstract
Many biological processes rely on protein–membrane interactions in the presence of mechanical forces, yet high resolution methods to quantify such interactions are lacking. Here, we describe a single-molecule force spectroscopy approach to quantify membrane binding of C2 domains in Synaptotagmin-1 (Syt1) and Extended Synaptotagmin-2 (E-Syt2). Syts and E-Syts bind the plasma membrane via multiple C2 domains, bridging the plasma membrane with synaptic vesicles or endoplasmic reticulum to regulate membrane fusion or lipid exchange, respectively. In our approach, single proteins attached to membranes supported on silica beads are pulled by optical tweezers, allowing membrane binding and unbinding transitions to be measured with unprecedented spatiotemporal resolution. C2 domains from either protein resisted unbinding forces of 2–7 pN and had binding energies of 4–14 kBT per C2 domain. Regulation by bilayer composition or Ca2+ recapitulated known properties of both proteins. The method can be widely applied to study protein–membrane interactions.
Collapse
Affiliation(s)
- Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yiying Cai
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States
| | - Yanghui Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Junyi Jiao
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Laboratoire de Neurophotonique, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS) UMR 8250, Université Paris Descartes, Paris, France
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
22
|
Xiao B, Li J, Fan Y, Ye M, Lv S, Xu B, Chai Y, Zhou Z, Wu M, Zhu X. Downregulation of SYT7 inhibits glioblastoma growth by promoting cellular apoptosis. Mol Med Rep 2017; 16:9017-9022. [PMID: 28990113 DOI: 10.3892/mmr.2017.7723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/17/2017] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin‑7 (SYT7) is a member of the synaptotagmin gene family, and encodes a protein that mediates the calcium‑dependent regulation of membrane trafficking during synaptic transmission. A previous study demonstrated that the expression of SYT7 is associated with prostate cancer and serves an important role in development of prostate cancer. However, the roles of SYT7 in the progression of glioma remain unknown. In the present study, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis demonstrated that SYT7 was expressed in three human glioma cell lines. Western blotting and RT‑qPCR analysis demonstrated the knockdown efficiency of SYT7 shRNA in 293T cells and U87MG cells. Celigo Image Cytometer Analysis, a caspase‑3/7 assay, flow cytometry and an MTT assay demonstrated that the proliferation of U87MG cells was inhibited as SYT7 was downregulated by a lentiviral vector expressing SYT7 shRNA, via the promotion of cellular apoptosis. The results of the present study demonstrated that the downregulation of SYT7 inhibited glioblastoma growth by promoting cellular apoptosis, and that SYT7 may therefore be a potential target for glioma intervention.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianbin Li
- Department of Neurosurgery, The Second Hospital of Nanchang, Nanchang, Jiangxi 330003, P.R. China
| | - Yanghua Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Chai
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqing Zhou
- Department of Oncology, The Second People's Hospital of Huaihua City, Huaihua, Hunan 418000, P.R. China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
23
|
Luan X, Cao Z, Xing Z, Liu M, Gao M, Meng B, Fan R. Comparative proteomic analysis of pituitary glands from Huoyan geese between pre-laying and laying periods using an iTRAQ-based approach. PLoS One 2017; 12:e0185253. [PMID: 28945779 PMCID: PMC5612699 DOI: 10.1371/journal.pone.0185253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
In this study, we performed a comprehensive evaluation of the proteomic profile of the pituitary gland of the Huoyan goose during the laying period compared to the pre-laying period using an iTRAQ-based approach. Protein samples were prepared from pituitary gland tissues of nine pre-laying period and nine laying period geese. Then the protein samples from three randomly selected geese within each period were pooled in equal amounts to generate one biological sample pool. We identified 684 differentially expressed proteins, including 418 up-regulated and 266 down-regulated proteins. GO annotation and KEGG pathway analyses of these proteins were conducted. Some of these proteins were found to be associated with hormone and neurotransmitter secretion and transport, neuropeptide signalling and GnRH signalling pathways, among others. Subsequently, the modification of the abundance of three proteins (prolactin, chromogranin-A and ITPR3) was verified using western blotting. Our results will provide a new source for mining genes and gene products related to the egg-laying performance of Huoyan geese, and may provide important information for the conservation and utilization of local goose breeds.
Collapse
Affiliation(s)
- Xinhong Luan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
- * E-mail:
| | - Zhongzan Cao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Zhe Xing
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Mei Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Ming Gao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Bo Meng
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Ruiming Fan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| |
Collapse
|
24
|
Hamilton DJ, Coffman MD, Knight JD, Reed SM. Lipid-Coated Gold Nanoparticles and FRET Allow Sensitive Monitoring of Liposome Clustering Mediated by the Synaptotagmin-7 C2A Domain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9222-9230. [PMID: 28850236 DOI: 10.1021/acs.langmuir.7b01397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synaptotagmin (Syt) family proteins contain tandem C2 domains, C2A and C2B, which insert into anionic membranes in response to increased cytosolic Ca2+ concentration and facilitate exocytosis in neuronal and endocrine cells. The C2A domain from Syt7 binds lipid membranes much more tightly than the corresponding domain from Syt1, but the implications of this difference for protein function are not yet clear. In particular, the ability of the isolated Syt7 C2A domain to initiate membrane apposition and/or aggregation has been previously unexplored. Here, we demonstrate that Syt7 C2A induces apposition and aggregation of liposomes using Förster resonance energy transfer (FRET) assays, dynamic light scattering, and spectroscopic techniques involving lipid-coated gold nanoparticles (LCAuNPs). Protein-membrane binding, membrane apposition, and macroscopic aggregation are three separate phenomena with distinct Ca2+ requirements: the threshold Ca2+ concentration for membrane binding is lowest, followed by apposition and aggregation. However, aggregation is highly sensitive to protein concentration and can occur even at submicromolar Syt7 C2A; thus, highly sensitive assays are needed for measuring apposition without complications arising from aggregation. Notably, the localized surface plasmon resonance of the LCAuNP is sensitive to ≤10 nM Syt7 C2A concentrations. Furthermore, when the LCAuNPs were added into a FRET-based liposome apposition assay, the resultant energy transfer increased; possible explanations are discussed. Overall, LCAuNP-based methods allow for highly sensitive detection of protein-induced membrane apposition under conditions that miminize large-scale aggregation.
Collapse
Affiliation(s)
- Desmond J Hamilton
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Matthew D Coffman
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Scott M Reed
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| |
Collapse
|
25
|
Jin H, Xu G, Zhang Q, Pang Q, Fang M. Synaptotagmin-7 is overexpressed in hepatocellular carcinoma and regulates hepatocellular carcinoma cell proliferation via Chk1-p53 signaling. Onco Targets Ther 2017; 10:4283-4293. [PMID: 28919777 PMCID: PMC5587153 DOI: 10.2147/ott.s143619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Synaptotagmin-7 (Syt-7) is a member of the synaptotagmin (Syt) family, which plays an important role in many physiological and pathological processes. However, to the best of our knowledge, there is no study describing its function in tumors, particularly in hepatocellular carcinoma (HCC). Therefore, in this study, we examined the role of Syt-7 in HCC and attempted to elucidate its underlying mechanism. Materials and methods We examined the expression levels of Syt-7 in HCC cell lines and normal hepatocytes by real-time quantitative polymerase chain reaction analysis. The effects of Syt-7 knockdown on in vitro cell growth were assessed by Celigo image cytometry, MTT assay, colony formation assay, and cell cycle analysis. In vivo tumorigenesis was evaluated using a nude mouse model. The underlying molecular mechanism was evaluated using a PathScan Stress Signaling Antibody Array. Results Syt-7 mRNA levels were highly expressed in Huh-7 and Hep3B cells; moderately expressed in SMMC-7721, HepG2, and BEL-7402 cells; and lowly expressed in normal hepatocytes L-O2. Functional experiments demonstrated that Syt-7 knockdown significantly suppressed cell proliferation and induced cell cycle arrest by increasing phosphorylation of Chk1 and p53. Furthermore, Syt-7 knockdown remarkably reduced the growth of xenograft tumors in mice. Conclusion The results of this study suggest that Syt-7 plays a vital role in tumorigenesis and in the development of HCC. Syt-7 can be used as a new diagnostic and therapeutic target in HCC.
Collapse
Affiliation(s)
- Hao Jin
- School of Medicine, Shandong University, Jinan.,Department of Hepatic Surgery, Anhui Provincial Hospital, Hefei.,Department of Hepatobiliary Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Geliang Xu
- Department of Hepatic Surgery, Anhui Provincial Hospital, Hefei
| | - Qiang Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Qing Pang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Meifang Fang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| |
Collapse
|
26
|
The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis. Nature 2017; 548:420-425. [PMID: 28813412 DOI: 10.1038/nature23484] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022]
Abstract
Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE-complexin-synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for the primed pre-fusion state. Ca2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. The tripartite SNARE-complexin-synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.
Collapse
|
27
|
Wang YL, Zhang CX. Putting a brake on synaptic vesicle endocytosis. Cell Mol Life Sci 2017; 74:2917-2927. [PMID: 28361181 PMCID: PMC11107501 DOI: 10.1007/s00018-017-2506-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/14/2017] [Accepted: 03/14/2017] [Indexed: 01/16/2023]
Abstract
In chemical synapses, action potentials evoke synaptic vesicle fusion with the presynaptic membrane at the active zone to release neurotransmitter. Synaptic vesicle endocytosis (SVE) then follows exocytosis to recapture vesicle proteins and lipid components for recycling and the maintenance of membrane homeostasis. Therefore, SVE plays an essential role during neurotransmission and is one of the most precisely regulated biological processes. Four modes of SVE have been characterized and both positive and negative regulators have been identified. However, our understanding of SVE regulation remains unclear, especially the identity of negative regulators and their mechanisms of action. Here, we review the current knowledge of proteins that function as inhibitors of SVE and their modes of action in different forms of endocytosis. We also propose possible physiological roles of such negative regulation. We believe that a better understanding of SVE regulation, especially the inhibitory mechanisms, will shed light on neurotransmission in health and disease.
Collapse
Affiliation(s)
- Ya-Long Wang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Beijing, China
| | - Claire Xi Zhang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Beijing, China.
| |
Collapse
|
28
|
Du C, Wang Y, Zhang F, Yan S, Guan Y, Gong X, Zhang T, Cui X, Wang X, Zhang CX. Synaptotagmin-11 inhibits cytokine secretion and phagocytosis in microglia. Glia 2017; 65:1656-1667. [PMID: 28686317 DOI: 10.1002/glia.23186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/18/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Cytokine secretion and phagocytosis are key functions of activated microglia. However, the molecular mechanisms underlying their regulation in microglia remain largely unknown. Here, we report that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt implicated in Parkinson disease and schizophrenia, inhibits cytokine secretion and phagocytosis in microglia. We found Syt11 expression in microglia in brain slices and primary microglia. Interestingly, Syt11-knockdown (KD) increased cytokine secretion and NO release in primary microglia both in the absence and presence of lipopolysaccharide. NF-κB was activated in untreated KD microglia together with enhanced synthesis of IL-6, TNF-α, IL-1β, and iNOS. When the release capacity was assessed by the ratio of extracellular to intracellular levels, only the IL-6 and TNF-α secretion capacity was increased in Syt11-KD cells, suggesting that Syt11 specifically regulates conventional secretion. Consistently, Syt11 localized to the trans-Golgi network and recycling endosomes. In addition, Syt11 was recruited to phagosomes and its deficiency enhanced microglial phagocytosis. All the KD phenotypes were rescued by expression of an shRNA-resistant Syt11, while overexpression of Syt11 suppressed cytokine secretion and phagocytosis. Importantly, Syt11 also inhibited microglial phagocytosis of α-synuclein fibrils, supporting its association with Parkinson disease. Taken together, we propose that Syt11 suppresses microglial activation under both physiological and pathological conditions through the inhibition of cytokine secretion and phagocytosis.
Collapse
Affiliation(s)
- Cuilian Du
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurobiology, School of Basic Medical Science, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Capital Medical University, Beijing, China
| | - Yalong Wang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Feifan Zhang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Shuxin Yan
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuan Guan
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoli Gong
- Department of Physiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ting Zhang
- Department of Neurobiology, School of Basic Medical Science, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Capital Medical University, Beijing, China
| | - Xiuyu Cui
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurobiology, School of Basic Medical Science, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Molecular regulation of insulin granule biogenesis and exocytosis. Biochem J 2017; 473:2737-56. [PMID: 27621482 DOI: 10.1042/bcj20160291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia, insulin resistance and hyperinsulinemia in early disease stages but a relative insulin insufficiency in later stages. Insulin, a peptide hormone, is produced in and secreted from pancreatic β-cells following elevated blood glucose levels. Upon its release, insulin induces the removal of excessive exogenous glucose from the bloodstream primarily by stimulating glucose uptake into insulin-dependent tissues as well as promoting hepatic glycogenesis. Given the increasing prevalence of T2DM worldwide, elucidating the underlying mechanisms and identifying the various players involved in the synthesis and exocytosis of insulin from β-cells is of utmost importance. This review summarizes our current understanding of the route insulin takes through the cell after its synthesis in the endoplasmic reticulum as well as our knowledge of the highly elaborate network that controls insulin release from the β-cell. This network harbors potential targets for anti-diabetic drugs and is regulated by signaling cascades from several endocrine systems.
Collapse
|
30
|
Sonoda K, Ohno S, Otuki S, Kato K, Yagihara N, Watanabe H, Makiyama T, Minamino T, Horie M. Quantitative analysis of PKP2 and neighbouring genes in a patient with arrhythmogenic right ventricular cardiomyopathy caused by heterozygous PKP2 deletion. Europace 2017; 19:644-650. [PMID: 28431057 DOI: 10.1093/europace/euw038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/02/2016] [Indexed: 10/13/2023] Open
Abstract
AIMS Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disease mainly caused by desmosome gene mutations. The genetic culprit, however, remains elusive in ∼50% of ARVC patients. One of the reasons for missing genetic abnormalities is the difficulty in detecting large deletions/duplications, which are called as copy number variation (CNV) by the Sanger sequencing method. This study aimed to identify CNVs in PKP2 and a part of other desmosome genes in ARVC patients. METHODS AND RESULTS The study cohort consisted of 71 ARVC probands who were diagnosed as definite or borderline cases based on 2010 Task Force Criteria. Among them, 32 (45%) carried at least one mutation in desmosome genes detected by the Sanger method. Using the multiplex ligation-dependent probe amplification method, we identified a male proband (1.4%) with a complete deletion of all PKP2 coding exons. He was 31 years old and showed exercise-induced sustained ventricular tachycardia with superior axis and left bundle-branch block pattern. His cardiac magnetic resonance imaging and computed tomography showed right ventricular dilatation and reduced ejection fraction. His 12-lead electrocardiogram showed T-wave inversion in V1-V3, and late potentials were positive, indicating definite ARVC. To confirm the precise location of the deletion, we performed relative quantitative PCR. We found complete deletion of both SYT10 and ALG10 located in 3' of PKP2; the total deletion size was at least 1.23 Mb. CONCLUSION Screening for CNVs in desmosome genes is useful to identify the genetic basis of disease in clinically suspected ARVC patients.
Collapse
Affiliation(s)
- Keiko Sonoda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Tsukiwa-cho, Seta, Otsu 520-2192, Japan
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Tsukiwa-cho, Seta, Otsu 520-2192, Japan
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sou Otuki
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Kato
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Tsukiwa-cho, Seta, Otsu 520-2192, Japan
| | - Nobue Yagihara
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Watanabe
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Tsukiwa-cho, Seta, Otsu 520-2192, Japan
| |
Collapse
|
31
|
Xie Z, Long J, Liu J, Chai Z, Kang X, Wang C. Molecular Mechanisms for the Coupling of Endocytosis to Exocytosis in Neurons. Front Mol Neurosci 2017; 10:47. [PMID: 28348516 PMCID: PMC5346583 DOI: 10.3389/fnmol.2017.00047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022] Open
Abstract
Neuronal communication and brain function mainly depend on the fundamental biological events of neurotransmission, including the exocytosis of presynaptic vesicles (SVs) for neurotransmitter release and the subsequent endocytosis for SV retrieval. Neurotransmitters are released through the Ca2+- and SNARE-dependent fusion of SVs with the presynaptic plasma membrane. Following exocytosis, endocytosis occurs immediately to retrieve SV membrane and fusion machinery for local recycling and thus maintain the homeostasis of synaptic structure and sustained neurotransmission. Apart from the general endocytic machinery, recent studies have also revealed the involvement of SNARE proteins (synaptobrevin, SNAP25 and syntaxin), synaptophysin, Ca2+/calmodulin, and members of the synaptotagmin protein family (Syt1, Syt4, Syt7 and Syt11) in the balance and tight coupling of exo-endocytosis in neurons. Here, we provide an overview of recent progress in understanding how these neuron-specific adaptors coordinate to ensure precise and efficient endocytosis during neurotransmission.
Collapse
Affiliation(s)
- Zhenli Xie
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China; State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Zuying Chai
- State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Xinjiang Kang
- State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China; College of Life Sciences, Liaocheng UniversityLiaocheng, China; Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical UniversityLuzhou, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China; State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| |
Collapse
|
32
|
Tang X, Xie C, Wang Y, Wang X. Localization of Rab3A-binding site on C2A domain of synaptotagmin I to reveal its regulatory mechanism. Int J Biol Macromol 2017; 96:736-742. [DOI: 10.1016/j.ijbiomac.2016.12.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
33
|
Kim JL, La Gamma EF, Estabrook T, Kudrick N, Nankova BB. Whole genome expression profiling associates activation of unfolded protein response with impaired production and release of epinephrine after recurrent hypoglycemia. PLoS One 2017; 12:e0172789. [PMID: 28234964 PMCID: PMC5325535 DOI: 10.1371/journal.pone.0172789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/09/2017] [Indexed: 12/25/2022] Open
Abstract
Recurrent hypoglycemia can occur as a major complication of insulin replacement therapy, limiting the long-term health benefits of intense glycemic control in type 1 and advanced type 2 diabetic patients. It impairs the normal counter-regulatory hormonal and behavioral responses to glucose deprivation, a phenomenon known as hypoglycemia associated autonomic failure (HAAF). The molecular mechanisms leading to defective counter-regulation are not completely understood. We hypothesized that both neuronal (excessive cholinergic signaling between the splanchnic nerve fibers and the adrenal medulla) and humoral factors contribute to the impaired epinephrine production and release in HAAF. To gain further insight into the molecular mechanism(s) mediating the blunted epinephrine responses following recurrent hypoglycemia, we utilized a global gene expression profiling approach. We characterized the transcriptomes during recurrent (defective counter-regulation model) and acute hypoglycemia (normal counter-regulation group) in the adrenal medulla of normal Sprague-Dawley rats. Based on comparison analysis of differentially expressed genes, a set of unique genes that are activated only at specific time points after recurrent hypoglycemia were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network indicated activation of the unfolded protein response. Furthermore, at least three additional pathways/interaction networks altered in the adrenal medulla following recurrent hypoglycemia were identified, which may contribute to the impaired epinephrine secretion in HAAF: greatly increased neuropeptide signaling (proenkephalin, neuropeptide Y, galanin); altered ion homeostasis (Na+, K+, Ca2+) and downregulation of genes involved in Ca2+-dependent exocytosis of secretory vesicles. Given the pleiotropic effects of the unfolded protein response in different organs, involved in maintaining glucose homeostasis, these findings uncover broader general mechanisms that arise following recurrent hypoglycemia which may afford clinicians an opportunity to modulate the magnitude of HAAF syndrome.
Collapse
Affiliation(s)
- Juhye Lena Kim
- The Regional Neonatal Center, Maria Fareri Children’s Hospital at Westchester Medical Center, Valhalla, New York, United States of America
| | - Edmund F. La Gamma
- The Regional Neonatal Center, Maria Fareri Children’s Hospital at Westchester Medical Center, Valhalla, New York, United States of America
- Departments of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Todd Estabrook
- New York Medical College School of Medicine, Valhalla, New York, United States of America
| | - Necla Kudrick
- The Regional Neonatal Center, Maria Fareri Children’s Hospital at Westchester Medical Center, Valhalla, New York, United States of America
| | - Bistra B. Nankova
- Departments of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kabayama H, Tokushige N, Takeuchi M, Kabayama M, Fukuda M, Mikoshiba K. Parkin promotes proteasomal degradation of synaptotagmin IV by accelerating polyubiquitination. Mol Cell Neurosci 2017; 80:89-99. [PMID: 28254618 DOI: 10.1016/j.mcn.2017.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
Parkin is an E3 ubiquitin ligase whose mutations cause autosomal recessive juvenile Parkinson's disease (PD). Unlike the human phenotype, parkin knockout (KO) mice show no apparent dopamine neuron degeneration, although they demonstrate reduced expression and activity of striatal mitochondrial proteins believed to be necessary for neuronal survival. Instead, parkin-KO mice show reduced striatal evoked dopamine release, abnormal synaptic plasticity, and non-motor symptoms, all of which appear to mimic the preclinical features of Parkinson's disease. Extensive studies have screened candidate synaptic proteins responsible for reduced evoked dopamine release, and synaptotagmin XI (Syt XI), an isoform of Syt family regulating membrane trafficking, has been identified as a substrate of parkin in humans. However, its expression level is unaltered in the striatum of parkin-KO mice. Thus, the target(s) of parkin and the molecular mechanisms underlying the impaired dopamine release in parkin-KO mice remain unknown. In this study, we focused on Syt IV because of its highly homology to Syt XI, and because they share an evolutionarily conserved lack of Ca2+-binding capacity; thus, Syt IV plays an inhibitory role in Ca2+-dependent neurotransmitter release in PC12 cells and neurons in various brain regions. We found that a proteasome inhibitor increased Syt IV protein, but not Syt XI protein, in neuron-like, differentiated PC12 cells, and that parkin interacted with and polyubiquitinated Syt IV, thereby accelerating its protein turnover. Parkin overexpression selectively degraded Syt IV protein, but not Syt I protein (indispensable for Ca2+-dependent exocytosis), thus enhancing depolarization-dependent exocytosis. Furthermore, in parkin-KO mice, the level of striatal Syt IV protein was increased. Our data indicate a crucial role for parkin in the proteasomal degradation of Syt IV, and provide a potential mechanism of parkin-regulated, evoked neurotransmitter release.
Collapse
Affiliation(s)
- Hiroyuki Kabayama
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Naoko Tokushige
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Takeuchi
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Miyuki Kabayama
- Division of Functional Morphology, Department of Basic Veterinary Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonantyo, Musashino, Tokyo 180-8602, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
35
|
Guo T, Duan Z, Chen J, Xie C, Wang Y, Chen P, Wang X. Pull-down combined with proteomic strategy reveals functional diversity of synaptotagmin I. PeerJ 2017; 5:e2973. [PMID: 28194317 PMCID: PMC5301975 DOI: 10.7717/peerj.2973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 12/05/2022] Open
Abstract
Synaptotagmin I (Syt I) is most abundant in the brain and is involved in multiple cellular processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our present study employed a pull-down combined with proteomic strategy to identify the C2 domain-interacting proteins to comprehensively understand the biological roles of the C2 domains and thus the functional diversity of Syt I. A total of 135 non-redundant proteins interacting with the C2 domains of Syt I were identified. Out of them, 32 and 64 proteins only bound to C2A or C2B domains, respectively, and 39 proteins bound to both of them. Compared with C2A, C2B could bind to many more proteins particularly those involved in synaptic transmission and metabolic regulation. Functional analysis indicated that Syt I may exert impacts by interacting with other proteins on multiple cellular processes, including vesicular membrane trafficking, synaptic transmission, metabolic regulation, catalysis, transmembrane transport and structure formation, etc. These results demonstrate that the functional diversity of Syt I is higher than previously expected, that its two domains may mediate the same and different cellular processes cooperatively or independently, and that C2B domain may play even more important roles than C2A in the functioning of Syt I. This work not only further deepened our understanding of the functional diversity of Syt I and the functional differences between its two C2 domains, but also provided important clues for the further related researches.
Collapse
Affiliation(s)
- Tianyao Guo
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Jia Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Ying Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Ping Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| |
Collapse
|
36
|
Banerjee S, Hsieh YJ, Liu CR, Yeh NH, Hung HH, Lai YS, Chou AC, Chen YT, Pan CY. Differential Releases of Dopamine and Neuropeptide Y from Histamine-Stimulated PC12 Cells Detected by an Aptamer-Modified Nanowire Transistor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5524-5529. [PMID: 27551968 DOI: 10.1002/smll.201601370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/21/2016] [Indexed: 05/24/2023]
Abstract
Silicon nanowire field-effect transistors modified with specific aptamers can directly detect the minute dopamine and neuropeptide Y released from cells. The binding of these molecules to the aptamers results in a conductance change of the transistor biosensor and illustrates the differential releasing mechanisms of these molecules stored in various vesicle pools.
Collapse
Affiliation(s)
- Subhasree Banerjee
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei, 106, Taiwan
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Ying-Jhu Hsieh
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Chia-Rung Liu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Nai-Hsing Yeh
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Hui-Hsing Hung
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Yew-Seng Lai
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Ai-Chuan Chou
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Yit-Tsong Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei, 106, Taiwan.
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| |
Collapse
|
37
|
Identification of Synaptotagmin 10 as Effector of NPAS4-Mediated Protection from Excitotoxic Neurodegeneration. J Neurosci 2016; 36:2561-70. [PMID: 26936998 DOI: 10.1523/jneurosci.2027-15.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Neuronal degeneration represents a pathogenetic hallmark after different brain insults, such as ischemia and status epilepticus (SE). Excessive release of glutamate triggered by pathophysiologic synaptic activity has been put forward as key mechanism in this context. In response to pathophysiologic synaptic activity, multiple signaling cascades are activated that ultimately initiate expression of specific sets of genes, which may decide between neuronal survival versus death. Recently, a core set of genes ["activity-regulated inhibitor of death" (AID) genes] including the transcription factor (TF) NPAS4 (neuronal PAS domain protein 4) has been found to provide activity-induced protection against neuronal death caused by excitotoxic stimulation. However, the downstream targets of AID action mediating neuroprotection remained so far unknown. Here, we have identified synaptotagmin 10 (Syt10), a vesicular Ca(2+) sensor, as the first neuroprotective effector protein downstream of the TF NPAS4. The expression of Syt10 is strongly upregulated by pathophysiologic synaptic activity after kainic acid (KA) exposure and its absence renders mouse hippocampal neurons highly susceptible to excitotoxic insults. We found NPAS4 as critical for the increase in Syt10 levels and in turn the ability of NPAS4 to confer neuroprotection against KA-induced excitotoxicity to be severely diminished in Syt10 knock-out neurons. In summary, our results point to an important role for signaling of the NPAS4-Syt10 pathway in the neuronal response to strong synaptic activity as a consequence of excitotoxic insults. SIGNIFICANCE STATEMENT Aberrant synaptic activity is observed in many neurological disorders and has been suggested as an important factor contributing to the pathophysiology. Intriguingly, pathophysiologic activity can also trigger signaling cascades mediating potentially compensatory neuroprotection against excitotoxic insult. Here, we identify a new neuroprotective signaling cascade involving the activity-induced transcriptional regulator NPAS4 and the vesicular Ca(2+)-sensor protein synaptotagmin 10 (Syt10). Syt10 is required for NPAS4 to protect hippocampal neurons against excitotoxic cell death. NPAS4 in turn controls the activity of the Syt10 gene, which is strongly induced by pathophysiologic activity. Our results uncover an entirely unexpected, novel function of Syt10 underlying the response of neurons to pathophysiologic activity and provide new therapeutic perspectives for neurological disorders.
Collapse
|
38
|
Liu J, Pang ZP. Glucagon-like peptide-1 drives energy metabolism on the synaptic highway. FEBS J 2016; 283:4413-4423. [DOI: 10.1111/febs.13785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/16/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Ji Liu
- Child Health Institute of New Jersey; Rutgers University Robert Wood Johnson Medical School; New Brunswick NJ USA
- Department of Neuroscience and Cell Biology; Rutgers University Robert Wood Johnson Medical School; New Brunswick NJ USA
| | - Zhiping P. Pang
- Child Health Institute of New Jersey; Rutgers University Robert Wood Johnson Medical School; New Brunswick NJ USA
- Department of Neuroscience and Cell Biology; Rutgers University Robert Wood Johnson Medical School; New Brunswick NJ USA
| |
Collapse
|
39
|
Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion. Biochem J 2016; 473:1791-803. [PMID: 27095850 PMCID: PMC4901359 DOI: 10.1042/bcj20160137] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/18/2016] [Indexed: 01/03/2023]
Abstract
Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes.
Collapse
|
40
|
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016; 48:e219. [PMID: 26964835 PMCID: PMC4892884 DOI: 10.1038/emm.2016.6] [Citation(s) in RCA: 474] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed.
Collapse
Affiliation(s)
- Pia V Röder
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| | - Bingbing Wu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Yixian Liu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Weiping Han
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| |
Collapse
|
41
|
Wang C, Wang Y, Hu M, Chai Z, Wu Q, Huang R, Han W, Zhang CX, Zhou Z. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep 2015; 17:47-63. [PMID: 26589353 DOI: 10.15252/embr.201540689] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis.
Collapse
Affiliation(s)
- Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China College of Life Sciences, Forestry and Agriculture, Qiqihar University, Qiqihar, China
| | - Yeshi Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Meiqin Hu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qihui Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rong Huang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore City, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Claire Xi Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
42
|
Sex-specific regulation of follicle-stimulating hormone secretion by synaptotagmin 9. Nat Commun 2015; 6:8645. [PMID: 26482442 PMCID: PMC4620939 DOI: 10.1038/ncomms9645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022] Open
Abstract
The anterior pituitary releases six different hormones that control virtually all aspects of vertebrate physiology, yet the molecular mechanisms underlying their Ca(2+)-triggered release remain unknown. A subset of the synaptotagmin (syt) family of proteins serve as Ca(2+) sensors for exocytosis in neurons and neuroendocrine cells, and are thus likely to regulate pituitary hormone secretion. Here we show that numerous syt isoforms are highly expressed in the pituitary gland in a lobe, and sex-specific manner. We further investigated a Ca(2+)-activated isoform, syt-9, and found that it is expressed in a subpopulation of anterior pituitary cells, the gonadotropes. Follicle-stimulating hormone (FSH) and syt-9 are highly co-localized in female, but not male, mice. Loss of syt-9 results in diminished basal and stimulated FSH secretion only in females, resulting in alterations in the oestrus cycle. This work uncovers a new function for syt-9 and reveals a novel sex difference in reproductive hormone secretion.
Collapse
|
43
|
Bacaj T, Wu D, Burré J, Malenka RC, Liu X, Südhof TC. Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles. PLoS Biol 2015; 13:e1002267. [PMID: 26437117 PMCID: PMC4593569 DOI: 10.1371/journal.pbio.1002267] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/27/2015] [Indexed: 12/29/2022] Open
Abstract
In forebrain neurons, Ca(2+) triggers exocytosis of readily releasable vesicles by binding to synaptotagmin-1 and -7, thereby inducing fast and slow vesicle exocytosis, respectively. Loss-of-function of synaptotagmin-1 or -7 selectively impairs the fast and slow phase of release, respectively, but does not change the size of the readily-releasable pool (RRP) of vesicles as measured by stimulation of release with hypertonic sucrose, or alter the rate of vesicle priming into the RRP. Here we show, however, that simultaneous loss-of-function of both synaptotagmin-1 and -7 dramatically decreased the capacity of the RRP, again without altering the rate of vesicle priming into the RRP. Either synaptotagmin-1 or -7 was sufficient to rescue the RRP size in neurons lacking both synaptotagmin-1 and -7. Although maintenance of RRP size was Ca(2+)-independent, mutations in Ca(2+)-binding sequences of synaptotagmin-1 or synaptotagmin-7--which are contained in flexible top-loop sequences of their C2 domains--blocked the ability of these synaptotagmins to maintain the RRP size. Both synaptotagmins bound to SNARE complexes; SNARE complex binding was reduced by the top-loop mutations that impaired RRP maintenance. Thus, synaptotagmin-1 and -7 perform redundant functions in maintaining the capacity of the RRP in addition to nonredundant functions in the Ca(2+) triggering of different phases of release.
Collapse
Affiliation(s)
- Taulant Bacaj
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Dick Wu
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, California, United States of America
| | - Jacqueline Burré
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, California, United States of America
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Yang QG, Chen GH, Wang F, Wang LH. Hippocampal synaptotagmin-4 is correlated with impaired spatial learning and memory in SAMP8 mice. Neurosci Lett 2015; 607:7-12. [DOI: 10.1016/j.neulet.2015.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/16/2015] [Accepted: 09/08/2015] [Indexed: 01/20/2023]
|
45
|
Chon NL, Osterberg JR, Henderson J, Khan HM, Reuter N, Knight JD, Lin H. Membrane Docking of the Synaptotagmin 7 C2A Domain: Computation Reveals Interplay between Electrostatic and Hydrophobic Contributions. Biochemistry 2015; 54:5696-711. [DOI: 10.1021/acs.biochem.5b00422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nara Lee Chon
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - J. Ryan Osterberg
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Jack Henderson
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hanif M. Khan
- Department
of Molecular Biology, University of Bergen, 5008 Bergen, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Nathalie Reuter
- Department
of Molecular Biology, University of Bergen, 5008 Bergen, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Jefferson D. Knight
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hai Lin
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| |
Collapse
|
46
|
Osterberg JR, Chon NL, Boo A, Maynard FA, Lin H, Knight JD. Membrane Docking of the Synaptotagmin 7 C2A Domain: Electron Paramagnetic Resonance Measurements Show Contributions from Two Membrane Binding Loops. Biochemistry 2015; 54:5684-95. [PMID: 26322740 DOI: 10.1021/acs.biochem.5b00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synaptotagmin (Syt) family of proteins plays an important role in vesicle docking and fusion during Ca(2+)-induced exocytosis in a wide variety of cell types. Its role as a Ca(2+) sensor derives primarily from its two C2 domains, C2A and C2B, which insert into anionic lipid membranes upon binding Ca(2+). Syt isoforms 1 and 7 differ significantly in their Ca(2+) sensitivity; the C2A domain from Syt7 binds Ca(2+) and membranes much more tightly than the C2A domain from Syt1, at least in part because of greater contributions from the hydrophobic effect. While the structure and membrane activity of Syt1 have been extensively studied, the structural origins of differences between Syt1 and Syt7 are unknown. This study used site-directed spin labeling and electron paramagnetic resonance spectroscopy to determine depth parameters for the Syt7 C2A domain, for comparison to analogous previous measurements with the Syt1 C2A domain. In a novel approach, the membrane docking geometry of both Syt1 and Syt7 C2A was modeled by mapping depth parameters onto multiple molecular dynamics-simulated structures of the Ca(2+)-bound protein. The models reveal membrane penetration of Ca(2+) binding loops 1 (CBL1) and 3 (CBL3), and membrane binding is more sensitive to mutations in CBL3. On average, Syt7 C2A inserts more deeply into the membrane than Syt1 C2A, although depths vary among the different structural models. This observation provides a partial structural explanation for the hydrophobically driven membrane docking of Syt7 C2A.
Collapse
Affiliation(s)
- J Ryan Osterberg
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Nara Lee Chon
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Arthur Boo
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Favinn A Maynard
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| |
Collapse
|
47
|
Synaptotagmin-7 phosphorylation mediates GLP-1-dependent potentiation of insulin secretion from β-cells. Proc Natl Acad Sci U S A 2015. [PMID: 26216970 DOI: 10.1073/pnas.1513004112] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucose stimulates insulin secretion from β-cells by increasing intracellular Ca(2+). Ca(2+) then binds to synaptotagmin-7 as a major Ca(2+) sensor for exocytosis, triggering secretory granule fusion and insulin secretion. In type-2 diabetes, insulin secretion is impaired; this impairment is ameliorated by glucagon-like peptide-1 (GLP-1) or by GLP-1 receptor agonists, which improve glucose homeostasis. However, the mechanism by which GLP-1 receptor agonists boost insulin secretion remains unclear. Here, we report that GLP-1 stimulates protein kinase A (PKA)-dependent phosphorylation of synaptotagmin-7 at serine-103, which enhances glucose- and Ca(2+)-stimulated insulin secretion and accounts for the improvement of glucose homeostasis by GLP-1. A phospho-mimetic synaptotagmin-7 mutant enhances Ca(2+)-triggered exocytosis, whereas a phospho-inactive synaptotagmin-7 mutant disrupts GLP-1 potentiation of insulin secretion. Our findings thus suggest that synaptotagmin-7 is directly activated by GLP-1 signaling and may serve as a drug target for boosting insulin secretion. Moreover, our data reveal, to our knowledge, the first physiological modulation of Ca(2+)-triggered exocytosis by direct phosphorylation of a synaptotagmin.
Collapse
|
48
|
Sancho-Knapik S, Guillén N, Osada J. Cloning and expression of hepatic synaptotagmin 1 in mouse. Gene 2015; 562:236-43. [PMID: 25735570 DOI: 10.1016/j.gene.2015.02.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/17/2015] [Accepted: 02/27/2015] [Indexed: 11/29/2022]
Abstract
Mouse hepatic synaptotagmin 1 (SYT1) cDNA was cloned, characterized and compared to the brain one. The hepatic transcript was 1807 bp in length, smaller than the brain, and only encoded by 9 of 11 gene exons. In this regard, 5'-and 3'-untranslated regions were 66 and 476 bp, respectively; the open reading frame of 1266 bp codified for a protein of 421 amino acids, identical to the brain, with a predicted molecular mass of 47.4 kDa and highly conserved across different species. Immunoblotting of protein showed two isoforms of higher molecular masses than the theoretical prediction based on amino acid sequence suggesting posttranslational modifications. Subcellular distribution of protein isoforms corresponded to plasma membrane, lysosomes and microsomes and was identical between the brain and liver. Nonetheless, the highest molecular weight isoform was smaller in the liver, irrespective of subcellular location. Quantitative mRNA tissue distribution showed that it was widely expressed and that the highest values corresponded to the brain, followed by the liver, spleen, abdominal fat, intestine and skeletal muscle. These findings indicate tissue-specific splicing of the gene and posttranslational modification and the variation in expression in the different tissues might suggest a different requirement of SYT1 for the specific function in each organ.
Collapse
Affiliation(s)
- Sara Sancho-Knapik
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Spain
| | - Natalia Guillén
- Departamento de Toxicología, Facultad de Veterinaria, Universidad de Zaragoza, Spain
| | - Jesús Osada
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
49
|
Li H, Liu T, Lim J, Gounko NV, Hong W, Han W. Increased biogenesis of glucagon-containing secretory granules and glucagon secretion in BIG3-knockout mice. Mol Metab 2015; 4:246-52. [PMID: 25737957 PMCID: PMC4338310 DOI: 10.1016/j.molmet.2015.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 12/24/2014] [Accepted: 01/03/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Although both insulin and glucagon are intimately involved in the regulation of glucose homeostasis, the intrinsic control of glucagon secretion, including the biogenesis and exocytosis of glucagon-containing granules, is far less understood compared with that of insulin. As Brefeldin A-inhibited guanine nucleotide exchange protein 3 (BIG3) is a negative regulator of insulin-granule biogenesis and insulin secretion, we investigated whether BIG3 plays any role in alpha-cells and glucagon secretion. METHODS We examined the expression of BIG3 in islet cells by immuno-fluorescence and confocal microscopy, and measured glucagon production and secretion in BIG3-depleted and wild-type mice, islets and cells. RESULTS BIG3 is highly expressed in pancreatic alpha-cells in addition to beta-cells, but is absent in delta-cells. Depletion of BIG3 in alpha-cells leads to elevated glucagon production and secretion. Consistently, BIG3-knockout (BKO) mice display increased glucagon release under hypoglycemic conditions. CONCLUSIONS Together with our previous studies, the current data reveal a conserved role for BIG3 in regulating alpha- and beta-cell functions. We propose that BIG3 negatively regulates hormone production at the secretory granule biogenesis stage and that such regulatory mechanism may be used in secretory pathways of other endocrine cells.
Collapse
Affiliation(s)
- Hongyu Li
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Tao Liu
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Joy Lim
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Natalia V Gounko
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138667, Singapore ; Joint IMB-IMCB Electron Microscopy Suite, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138667, Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| |
Collapse
|
50
|
Vasquez JK, Chantranuvatana K, Giardina DT, Coffman MD, Knight JD. Lateral diffusion of proteins on supported lipid bilayers: additive friction of synaptotagmin 7 C2A-C2B tandem domains. Biochemistry 2014; 53:7904-13. [PMID: 25437758 PMCID: PMC4278679 DOI: 10.1021/bi5012223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
The
synaptotagmin (Syt) family of proteins contains tandem C2 domains,
C2A and C2B, which bind membranes in the presence of Ca2+ to trigger vesicle fusion during exocytosis. Despite recent progress,
the role and extent of interdomain interactions between C2A and C2B
in membrane binding remain unclear. To test whether the two domains
interact on a planar lipid bilayer (i.e., experience thermodynamic
interdomain contacts), diffusion of fluorescent-tagged C2A, C2B, and
C2AB domains from human Syt7 was measured using total internal reflection
fluorescence microscopy with single-particle tracking. The C2AB tandem
exhibits a lateral diffusion constant approximately half the value
of the isolated single domains and does not change when additional
residues are engineered into the C2A–C2B linker. This is the
expected result if C2A and C2B are separated when membrane-bound;
theory predicts that C2AB diffusion would be faster if the two domains
were close enough together to have interdomain contact. Stopped-flow
measurements of membrane dissociation kinetics further support an
absence of interdomain interactions, as dissociation kinetics of the
C2AB tandem remain unchanged when rigid or flexible linker extensions
are included. Together, the results suggest that the two C2 domains
of Syt7 bind independently to planar membranes, in contrast to reported
interdomain cooperativity in Syt1.
Collapse
Affiliation(s)
- Joseph K Vasquez
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | | | | | | | | |
Collapse
|