1
|
Marvian AT, Strauss T, Tang Q, Tuck BJ, Keeling S, Rüdiger D, Mirzazadeh Dizaji N, Mohammad-Beigi H, Nuscher B, Chakraborty P, Sutherland DS, McEwan WA, Köglsperger T, Zahler S, Zweckstetter M, Lichtenthaler SF, Wurst W, Schwarz S, Höglinger G. Distinct regulation of Tau Monomer and aggregate uptake and intracellular accumulation in human neurons. Mol Neurodegener 2024; 19:100. [PMID: 39736627 DOI: 10.1186/s13024-024-00786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates. However, similarities or differences in neuronal transport mechanisms between Tau species remain elusive. METHOD Monomers, oligomers, and fibrils of recombinant 2N4R Tau were produced and characterized by biochemical and biophysical methods. A neuronal eTau uptake and accumulation assay was developed for human induced pluripotent stem cell-derived neurons (iPSCNs) and Lund human mesencephalic cells (LUHMES)-derived neurons. Mechanisms of uptake and cellular accumulation of eTau species were studied by using small molecule inhibitors of endocytic mechanisms and siRNAs targeting Tau uptake mediators. RESULTS Extracellular Tau aggregates accumulated more than monomers in human neurons, mainly due to the higher efficiency of small fibrillar and soluble oligomeric aggregates in intraneuronal accumulation. A competition assay revealed a distinction in the neuronal accumulation between physiological eTau Monomers and pathology-relevant aggregates, suggesting differential transport mechanisms. Blocking heparan sulfate proteoglycans (HSPGs) with heparin only inhibited the accumulation of eTau aggregates, whereas monomers' uptake remained unaltered. At the molecular level, the downregulation of genes involved in HSPG synthesis exclusively blocked neuronal accumulation of eTau aggregates but not monomers, suggesting its role in the transport of pathologic Tau. Moreover, the knockdown of LRP1, as a receptor of Tau, mainly reduced the accumulation of monomeric form, confirming its involvement in Tau's physiological transport. CONCLUSION These data propose that despite the similarity in the cellular mechanism, the uptake and accumulation of eTau Monomers and aggregates in human neurons are regulated by different molecular mediators. Thus, they address the possibility of targeting the pathological spreading of Tau aggregates without disturbing the probable physiological or non-pathogenic transport of Tau Monomers.
Collapse
Affiliation(s)
- Amir T Marvian
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Tabea Strauss
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
| | - Qilin Tang
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
| | - Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel Rüdiger
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Negar Mirzazadeh Dizaji
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Hossein Mohammad-Beigi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Brigitte Nuscher
- Division of Metabolic Biochemistry, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Gӧttingen, Germany
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas Köglsperger
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Gӧttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Gӧttingen, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Freising, Germany
| | - Sigrid Schwarz
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Haag, Geriatric Clinic Haag, Oberbayern, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Department of Neurology, Hanover Medical School, Hanover, Germany.
- Center for Systems Neuroscience, Hanover, Germany.
| |
Collapse
|
2
|
Jaramillo-Martinez V, Sennoune SR, Tikhonova EB, Karamyshev AL, Ganapathy V, Urbatsch IL. Molecular Phenotypes Segregate Missense Mutations in SLC13A5 Epilepsy. J Mol Biol 2024; 436:168820. [PMID: 39442909 DOI: 10.1016/j.jmb.2024.168820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
The sodium-coupled citrate transporter (NaCT, SLC13A5) mediates citrate uptake across the plasma membrane via an inward Na+ gradient. Mutations in SLC13A5 cause early infantile epileptic encephalopathy type-25 (EIEE25, SLC13A5 Epilepsy) due to impaired citrate uptake in neurons and astrocytes. Despite clinical identification of disease-causing mutations, underlying mechanisms and cures remain elusive. Here we mechanistically classify six frequent SLC13A5 mutations by phenotyping their protein cell surface expression and citrate transport functions. Mutants C50R, T142M, and T227M exhibit impaired citrate transport despite normal expression at the cell surface. In contrast, mutations G219R, S427L, and L488P show low total protein expression levels, absence of mature, glycosylated proteins at the cell surface, retention of the proteins in the endoplasmic reticulum, and diminished transport activity. This mechanistic classification divides SLC13A5 mutants into two groups, Class I (C50R, T142M, and T227M) and Class II (G219R, S427L, and L488P). Importantly, mutants' mRNA levels resemble wildtype, suggesting post-translational defects. Class II mutations display immature core-glycosylation and shortened half-lives, indicating protein folding defects. Together, these experiments provide a comprehensive understanding of the disease-causing mutation's defects in SLC13A5 Epilepsy at the biochemical and molecular level and shed light into the trafficking pathway(s) of NaCT. The two classes of mutations will require fundamentally different approaches for treatment to either restore transport function of the mutant protein that is capable of reaching the cell surface (Class I), or therapies that enable the correction of protein folding defects to enable escape to the cell surface where it may restore transport function (Class II).
Collapse
Affiliation(s)
- Valeria Jaramillo-Martinez
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Souad R Sennoune
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Choi JA, Seo BR, Koh JY, Yoon YH. Protective effect of zinc against A2E-induced toxicity in ARPE-19 cells: Possible involvement of lysosomal acidification. Heliyon 2024; 10:e39100. [PMID: 39524844 PMCID: PMC11550603 DOI: 10.1016/j.heliyon.2024.e39100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
A key pathogenic mechanism of dry age-related macular degeneration (AMD) is lysosomal dysfunction in retinal pigment epithelium (RPE) cells, which results in the accumulation of lipofuscins such as A2E (N-retinylidene-N-retinylethanolamine) that further compromises lysosomal function. This vicious cycle leads to cell death and poor visual acuity. Here, we established an in vitro model of AMD by treating a human RPE cell line (ARPE-19) with A2E and examined whether raising zinc levels confers protective effects against lysosomal dysfunction and cytotoxicity. MTT assay showed that A2E induced apoptosis in ARPE-19 cells. pHrodo™ Red fluorescence staining showed that lysosomal pH increased in A2E-treated ARPE-19 cells. Treatment with a zinc ionophore (clioquinol) reduced A2E accumulation, restored lysosomal pH to the acidic range, and reduced A2E-induced cell death, all of which were reversed by the addition of a zinc chelator (TPEN). Consistent with the in vitro results, subretinal injections of A2E in mouse eyes resulted in the death of RPE cells as well as lysosomal dysfunction, all of which were reversed by co-treatment with clioquinol. Our results suggest that restoring the levels of intracellular zinc, especially in lysosomes, would be helpful in mitigating A2E-induced cytotoxic changes including lysosomal dysfunction in RPE cells in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Jeong A. Choi
- Neural Injury Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Bo-Ra Seo
- Neural Injury Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Hee Yoon
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Johnson D, Colijn S, Richee J, Yano J, Burns M, Davis AE, Pham VN, Saric A, Jain A, Yin Y, Castranova D, Melani M, Fujita M, Grainger S, Bonifacino JS, Weinstein BM, Stratman AN. Angiogenesis is limited by LIC1-mediated lysosomal trafficking. Angiogenesis 2024; 27:943-962. [PMID: 39356418 DOI: 10.1007/s10456-024-09951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.
Collapse
Affiliation(s)
- Dymonn Johnson
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah Colijn
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Jahmiera Richee
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph Yano
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Burns
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew E Davis
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Van N Pham
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amra Saric
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Akansha Jain
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Yin
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Castranova
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mariana Melani
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Misato Fujita
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Kanagawa University, Kanagawa, 221-8686, Japan
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Juan S Bonifacino
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Amber N Stratman
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Kench U, Sologova S, Smolyarchuk E, Prassolov V, Spirin P. Pharmaceutical Agents for Targeting Autophagy and Their Applications in Clinics. Pharmaceuticals (Basel) 2024; 17:1355. [PMID: 39458996 PMCID: PMC11510022 DOI: 10.3390/ph17101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Autophagy is the process by which damaged regions of the cytoplasm and intracellular pathogens are degraded. This mechanism often serves an adaptive role in cells, enhancing their survival. It plays a direct or indirect role in the development of various pathological conditions within the body. This phenomenon is common in various malignant diseases, where autophagy is associated with the resistance of transformed cells to chemotherapy. Conversely, abnormal activation of autophagy can trigger cell death, a process often seen in neurodegenerative conditions. Given that dysregulation of autophagy is associated with the progression of numerous pathological conditions, this is of significant interest to the developers of drugs that can effectively modulate autophagy for both basic research and clinical applications. Here, we provide a brief description of the mechanism of macroautophagy, the most prevalent form of autophagy identified in humans. We also discuss the clinical potential of drugs that can modulate autophagy, highlighting their use in combating diseases associated with direct or indirect dysregulation of this essential process.
Collapse
Affiliation(s)
- Ulash Kench
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia (V.P.)
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia
| | - Susanna Sologova
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia
| | - Elena Smolyarchuk
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| |
Collapse
|
6
|
Díaz-Castro F, Tuñón-Suárez M, Rivera P, Botella J, Cancino J, Figueroa AM, Gutiérrez J, Cantin C, Deldicque L, Zbinden-Foncea H, Nielsen J, Henríquez-Olguín C, Morselli E, Castro-Sepúlveda M. A single bout of resistance exercise triggers mitophagy, potentially involving the ejection of mitochondria in human skeletal muscle. Acta Physiol (Oxf) 2024; 240:e14203. [PMID: 39023008 DOI: 10.1111/apha.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
AIM The present study aimed to investigate the effects of a single bout of resistance exercise on mitophagy in human skeletal muscle (SkM). METHODS Eight healthy men were recruited to complete an acute bout of one-leg resistance exercise. SkM biopsies were obtained one hour after exercise in the resting leg (Rest-leg) and the contracting leg (Ex-leg). Mitophagy was assessed using protein-related abundance, transmission electron microscopy (TEM), and fluorescence microscopy. RESULTS Our results show that acute resistance exercise increased pro-fission protein phosphorylation (DRP1Ser616) and decreased mitophagy markers such as PARKIN and BNIP3L/NIX protein abundance in the Ex-leg. Additionally, mitochondrial complex IV decreased in the Ex-leg when compared to the Rest-leg. In the Ex-leg, TEM and immunofluorescence images showed mitochondrial cristae abnormalities, a mitochondrial fission phenotype, and increased mitophagosome-like structures in both subsarcolemmal and intermyofibrillar mitochondria. We also observed increased mitophagosome-like structures on the subsarcolemmal cleft and mitochondria in the extracellular space of SkM in the Ex-leg. We stimulated human primary myotubes with CCCP, which mimics mitophagy induction in the Ex-leg, and found that BNIP3L/NIX protein abundance decreased independently of lysosomal degradation. Finally, in another human cohort, we found a negative association between BNIP3L/NIX protein abundance with both mitophagosome-like structures and mitochondrial cristae density in the SkM. CONCLUSION The findings suggest that a single bout of resistance exercise can initiate mitophagy, potentially involving mitochondrial ejection, in human skeletal muscle. BNIP3L/NIX is proposed as a sensitive marker for assessing mitophagy flux in SkM.
Collapse
Affiliation(s)
- Francisco Díaz-Castro
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory of Autophagy and Metabolism, Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Mauro Tuñón-Suárez
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Patricia Rivera
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory of Autophagy and Metabolism, Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Javier Botella
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jorge Cancino
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Ana María Figueroa
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Juan Gutiérrez
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Claudette Cantin
- Departamento de Odontología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Puerto Montt, Chile
| | - Louise Deldicque
- Institute of Neuroscience, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Hermann Zbinden-Foncea
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Madrid, Spain
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Carlos Henríquez-Olguín
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Mauricio Castro-Sepúlveda
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
7
|
Eubanks E, VanderSleen K, Mody J, Patel N, Sacks B, Farahani MD, Wang J, Elliott J, Jaber N, Akçimen F, Bandres-Ciga S, Helweh F, Liu J, Archakam S, Kimelman R, Sharma B, Socha P, Guntur A, Bartels T, Dettmer U, Mouradian MM, Bahrami AH, Dai W, Baum J, Shi Z, Hardy J, Kara E. Increased burden of rare risk variants across gene expression networks predisposes to sporadic Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610195. [PMID: 39257816 PMCID: PMC11384021 DOI: 10.1101/2024.08.30.610195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease and forms intraneuronal inclusions called Lewy Bodies. While the mechanism underlying the dysregulation of αSyn in Parkinson's disease is unclear, it is thought that prionoid cell-to-cell propagation of αSyn has an important role. Through a high throughput screen, we recently identified 38 genes whose knock down modulates αSyn propagation. Follow up experiments were undertaken for two of those genes, TAX1BP1 and ADAMTS19, to study the mechanism with which they regulate αSyn homeostasis. We used a recently developed M17D neuroblastoma cell line expressing triple mutant (E35K+E46K+E61K) "3K" αSyn under doxycycline induction. 3K αSyn spontaneously forms inclusions that show ultrastructural similarities to Lewy Bodies. Experiments using that cell line showed that TAX1BP1 and ADAMTS19 regulate how αSyn interacts with lipids and phase separates into inclusions, respectively, adding to the growing body of evidence implicating those processes in Parkinson's disease. Through RNA sequencing, we identified several genes that are differentially expressed after knock-down of TAX1BP1 or ADAMTS19. Burden analysis revealed that those differentially expressed genes (DEGs) carry an increased frequency of rare risk variants in Parkinson's disease patients versus healthy controls, an effect that was independently replicated across two separate cohorts (GP2 and AMP-PD). Weighted gene co-expression network analysis (WGCNA) showed that the DEGs cluster within modules in regions of the brain that develop high degrees of αSyn pathology (basal ganglia, cortex). We propose a novel model for the genetic architecture of sporadic Parkinson's disease: increased burden of risk variants across genetic networks dysregulates pathways underlying αSyn homeostasis, thereby leading to pathology and neurodegeneration.
Collapse
Affiliation(s)
- Elena Eubanks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Katelyn VanderSleen
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Jiya Mody
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Neha Patel
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Benjamin Sacks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | | | - Jinying Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Nora Jaber
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Fulya Akçimen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Fadel Helweh
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | - Jun Liu
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Sanjana Archakam
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Robert Kimelman
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Socha
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Ananya Guntur
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - M. Maral Mouradian
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Amir Houshang Bahrami
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - John Hardy
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Eleanna Kara
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Ren J, Ren X, Ma L, Liu J, Yuan S, Wang G. Pharmacokinetics and antioxidant activity of dihydrocaffeic acid grafted chitosan nanomicelles loaded with chicoric acid in broilers. Poult Sci 2024; 103:103776. [PMID: 38688136 PMCID: PMC11077034 DOI: 10.1016/j.psj.2024.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
Chicoric acid (CA) is a natural nutrient found in plants, showcasing diverse biological activities, including anti-inflammatory and antioxidant properties. Despite its valuable properties, CA faces limitations in bioavailability and susceptibility to oxidative breakdown during utilization. Previous research introduced synthesized dihydrocaffeic acid grafted chitosan self-assembled nanomicelles (DA-g-CS), demonstrating its potential to enhance CA absorption. This study aims to investigate the pharmacokinetics, tissue distribution, and antioxidant activity of both CA and DA-g-CS loaded CA (DA-g-CS/CA) in broilers. An IPEC-J2 cell model was established and evaluated to delve deeper into the transport mechanism and antioxidant potential. The in vivo pharmacokinetic analysis in broilers highlighted a substantial difference: the maximum plasma concentration (Cmax) of DA-g-CS/CA exceeded CA by 2.6-fold, yielding a notable increased relative bioavailability to 214%. This evidence underscores the significant enhancement in CA's oral absorption, facilitated by DA-g-CS. The collective evaluation outcomes affirm the successful development of the cell model, indicating its suitability for drug transporter experiments. The findings from the intestinal transit analysis revealed that both CA and DA-g-CS/CA underwent passive entry into IPEC-J2 cells. Notably, the cellular uptake rate of DA-g-CS loaded with CA was significantly amplified, reaching 2.1 times higher than that of CA alone. Intracellular transport mechanisms involved microtubules, lysosomes, and the endoplasmic reticulum, with an additional pathway involving the endoplasmic reticulum observed specifically for DA-g-CS/CA, distinguishing it from CA. Moreover, the results from both in vivo and in vitro antioxidant assessments highlight the potent antioxidant activity of DA-g-CS/CA, showcasing its efficacy in preventing and treating cellular damage induced by oxidative stress. In summary, these findings underscore the significant enhancement of CA's efficacy facilitated by DA-g-CS, establishing a robust theoretical foundation for the prospective application of CA within livestock and poultry farming.
Collapse
Affiliation(s)
- Juan Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, People's Republic of China
| | - Xin Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, People's Republic of China
| | - Leying Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, People's Republic of China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, People's Republic of China
| | - Sikun Yuan
- Baoding Institute for Food and Drug Control, Baoding, Hebei 071000, People's Republic of China
| | - Gengnan Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, People's Republic of China.
| |
Collapse
|
9
|
Agostini F, Pereyra L, Dale J, Yambire KF, Maglioni S, Schiavi A, Ventura N, Milosevic I, Raimundo N. Upregulation of cholesterol synthesis by lysosomal defects requires a functional mitochondrial respiratory chain. J Biol Chem 2024; 300:107403. [PMID: 38782205 PMCID: PMC11254723 DOI: 10.1016/j.jbc.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Although there are functional impairments in both cases, the signaling consequences of primary mitochondrial dysfunction and lysosomal defects are dissimilar. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects to identify the global cellular consequences associated with mitochondrial or lysosomal dysfunction. We used these data to determine the pathways affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. We observed a transcriptional upregulation of this pathway in cellular and murine models of lysosomal defects, while it is transcriptionally downregulated in cellular and murine models of mitochondrial defects. We identified a role for the posttranscriptional regulation of transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, we found that retention of Ca2+ in lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo, using a model of mitochondria-associated disease in Caenorhabditis elegans that normalization of lysosomal Ca2+ levels results in partial rescue of the developmental delay induced by the respiratory chain deficiency.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Leonardo Pereyra
- Department of Cellular Biochemistry, University Medical Center, Goettingen, Germany
| | - Justin Dale
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - King Faisal Yambire
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York, USA
| | - Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Ira Milosevic
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Multidisciplinary Institute for Ageing, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
10
|
Ferretti GDS, Quaas CE, Bertolini I, Zuccotti A, Saatci O, Kashatus JA, Sharmin S, Lu DY, Poli ANR, Quesnelle AF, Rodriguez-Blanco J, de Cubas AA, Hobbs GA, Liu Q, O'Bryan JP, Salvino JM, Kashatus DF, Sahin O, Barnoud T. HSP70-mediated mitochondrial dynamics and autophagy represent a novel vulnerability in pancreatic cancer. Cell Death Differ 2024; 31:881-896. [PMID: 38802657 PMCID: PMC11239841 DOI: 10.1038/s41418-024-01310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is one of the deadliest forms of cancer with limited therapy options. Overexpression of the heat shock protein 70 (HSP70) is a hallmark of cancer that is strongly associated with aggressive disease and worse clinical outcomes. However, the underlying mechanisms by which HSP70 allows tumor cells to thrive under conditions of continuous stress have not been fully described. Here, we report that PDAC has the highest expression of HSP70 relative to normal tissue across all cancers analyzed. Furthermore, HSP70 expression is associated with tumor grade and is further enhanced in metastatic PDAC. We show that genetic or therapeutic ablation of HSP70 alters mitochondrial subcellular localization, impairs mitochondrial dynamics, and promotes mitochondrial swelling to induce apoptosis. Mechanistically, we find that targeting HSP70 suppresses the PTEN-induced kinase 1 (PINK1) mediated phosphorylation of dynamin-related protein 1 (DRP1). Treatment with the HSP70 inhibitor AP-4-139B was efficacious as a single agent in primary and metastatic mouse models of PDAC. In addition, we demonstrate that HSP70 inhibition promotes the AMP-activated protein kinase (AMPK) mediated phosphorylation of Beclin-1, a key regulator of autophagic flux. Accordingly, we find that the autophagy inhibitor hydroxychloroquine (HCQ) enhances the ability of AP-4-139B to mediate anti-tumor activity in vivo. Collectively, our results suggest that HSP70 is a multi-functional driver of tumorigenesis that orchestrates mitochondrial dynamics and autophagy. Moreover, these findings support the rationale for concurrent inhibition of HSP70 and autophagy as a novel therapeutic approach for HSP70-driven PDAC.
Collapse
Affiliation(s)
- Giulia D S Ferretti
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Colleen E Quaas
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Irene Bertolini
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Alessandro Zuccotti
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer A Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Salma Sharmin
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - David Y Lu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Abigail F Quesnelle
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jezabel Rodriguez-Blanco
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Aguirre A de Cubas
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - G Aaron Hobbs
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - John P O'Bryan
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David F Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
11
|
Li Y, Zhou Y, Ma T, Dai J, Li H, Pan Q, Luo W. Research progress on the role of autophagy in the development of varicocele. Reprod Biol 2024; 24:100894. [PMID: 38776742 DOI: 10.1016/j.repbio.2024.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Varicocele (VC) is a common cause of infertility in men. Pathophysiological changes caused by VC, such as testicular hypoxia, high temperatures, oxidative stress, abnormal reproductive hormones, and Cd accumulation, can induce autophagy, thus affecting the reproductive function in patients with this condition. Autophagy regulators can be classified as activators or inhibitors. Autophagy activators upregulate autophagy, reduce the damage to the testis and epididymis, inhibit spermatogenic cell apoptosis, and protect fertility. In contrast, autophagy inhibitors block autophagy and aggravate the damage to the reproductive functions. Therefore, elucidating the role of autophagy in the occurrence, development, and regulation of VC may provide additional therapeutic options for men with infertility and VC. In this review, we briefly describe the progress made in autophagy research in the context of VC.
Collapse
Affiliation(s)
- Yunqing Li
- Reproductive Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yulan Zhou
- Reproductive Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tianzhong Ma
- Reproductive Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiaze Dai
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hongbo Li
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingjun Pan
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Wenying Luo
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
12
|
Jaramillo-Martinez V, Sennoune SR, Tikhonova EB, Karamyshev AL, Ganapathy V, Urbatsch IL. Molecular phenotypes segregate missense mutations in SLC13A5 Epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.594637. [PMID: 38826402 PMCID: PMC11142175 DOI: 10.1101/2024.05.23.594637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The sodium-coupled citrate transporter (NaCT, SLC13A5) mediates citrate uptake across the plasma membrane via an inward Na + gradient. Mutations in SLC13A5 cause early infantile epileptic encephalopathy type-25 (EIEE25, SLC13A5 Epilepsy) due to impaired citrate uptake in neurons. Despite clinical identification of disease-causing mutations, underlying mechanisms and cures remain elusive. We mechanistically classify the molecular phenotypes of six mutations. C50R, T142M, and T227M exhibit impaired citrate transport despite normal expression at the cell surface. G219R, S427L, and L488P are hampered by low protein expression, ER retention, and reduced transport. Mutants' mRNA levels resemble wildtype, suggesting post-translational defects. Class II mutations display immature core-glycosylation and shortened half-lives, indicating protein folding defects. These experiments provide a comprehensive understanding of the mutation's defects in SLC13A5 Epilepsy at the biochemical and molecular level and shed light into the trafficking pathway(s) of NaCT. The two classes of mutations will require fundamentally different treatment approaches to either restore transport function, or enable correction of protein folding defects. Summary Loss-of-function mutations in the SLC13A5 causes SLC13A5-Epilepsy, a devastating disease characterized by neonatal epilepsy. Currently no cure is available. We clarify the molecular-level defects to guide future developments for phenotype-specific treatment of disease-causing mutations.
Collapse
|
13
|
Pickard A, Garva R, Adamson A, Calverley BC, Hoyle A, Hayward CE, Spiller D, Lu Y, Hodson N, Mandolfo O, Kim KK, Bou-Gharios G, Swift J, Bigger B, Kadler KE. Collagen fibril formation at the plasma membrane occurs independently from collagen secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593302. [PMID: 38766096 PMCID: PMC11100796 DOI: 10.1101/2024.05.09.593302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Collagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis. Notably, we differentiate the processes of collagen secretion and fibril assembly and identify the crucial involvement of endocytosis in regulating fibril formation. By employing Col1a1 knockout fibroblasts we demonstrate the incorporation of exogenous collagen into nucleation sites at the plasma membrane through these recycling mechanisms. Our study sheds light on the assembly process and its regulation in health and disease. Mass spectrometry data are available via ProteomeXchange with identifier PXD036794.
Collapse
|
14
|
Singh S, Bensalem J, Hein LK, Casey A, Mäkinen VP, Sargeant TJ. epHero - a tandem-fluorescent probe to track the fate of apoptotic cells during efferocytosis. Cell Death Discov 2024; 10:179. [PMID: 38632247 PMCID: PMC11024195 DOI: 10.1038/s41420-024-01952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The efficient removal of apoptotic cells via efferocytosis is critical for maintaining optimal tissue function. This involves the binding and engulfment of apoptotic cells by phagocytes and the subsequent maturation of the phagosome, culminating in lysosomal fusion and cargo destruction. However, current approaches to measure efferocytosis rely on labelling apoptotic targets with fluorescent dyes, which do not sufficiently distinguish between changes to the engulfment and acidification of apoptotic material. To address this limitation, we have developed a genetically coded ratiometric probe epHero which when expressed in the cytoplasm of target cells, bypasses the need for additional labelling steps. We demonstrate that epHero is a pH-sensitive reporter for efferocytosis and can be used to simultaneously track changes to apoptotic cell uptake and acidification, both in vitro and in mice. As proof-of-principle, we modify extracellular nutrition to show how epHero can distinguish between changes to cargo engulfment and acidification. Thus, tracking efferocytosis with epHero is a simple, cost-effective improvement on conventional techniques.
Collapse
Affiliation(s)
- Sanjna Singh
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- University of Adelaide, Adelaide, SA, Australia
| | - Julien Bensalem
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Leanne K Hein
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Aaron Casey
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Ville-Petteri Mäkinen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Timothy J Sargeant
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
15
|
Libberecht K, Dirkx N, Vangansewinkel T, Vandendries W, Lambrichts I, Wolfs E. The Influence of Lysosomal Stress on Dental Pulp Stem Cell-Derived Schwann Cells. Biomolecules 2024; 14:405. [PMID: 38672423 PMCID: PMC11048368 DOI: 10.3390/biom14040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Dysregulation of the endo-lysosomal-autophagy pathway has been identified as a critical factor in the pathology of various demyelinating neurodegenerative diseases, including peripheral neuropathies. This pathway plays a crucial role in transporting newly synthesized myelin proteins to the plasma membrane in myelinating Schwann cells, making these cells susceptible to lysosome-related dysfunctions. Nevertheless, the specific impact of lysosomal dysfunction in Schwann cells and its contribution to neurodegeneration remain poorly understood. METHODS We aim to mimic lysosomal dysfunction in Schwann cells using chloroquine, a lysosomal dysfunction inducer, and to monitor lysosomal leakiness, Schwann cell viability, and apoptosis over time. Additionally, due to the ethical and experimental issues associated with cell isolation and the culturing of human Schwann cells, we use human dental pulp stem cell-derived Schwann cells (DPSC-SCs) as a model in our study. RESULTS Chloroquine incubation boosts lysosomal presence as demonstrated by an increased Lysotracker signal. Further in-depth lysosomal analysis demonstrated an increased lysosomal size and permeability as illustrated by a TEM analysis and GAL3-LAMP1 staining. Moreover, an Alamar blue assay and Caspase-3 staining demonstrates a reduced viability and increased apoptosis, respectively. CONCLUSIONS Our data indicate that prolonged lysosomal dysfunction leads to lysosomal permeability, reduced viability, and eventually apoptosis in human DPSC-SCs.
Collapse
Affiliation(s)
- Karen Libberecht
- Laboratory for Functional Imaging & Research on Stem Cells, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (K.L.); (N.D.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Nathalie Dirkx
- Laboratory for Functional Imaging & Research on Stem Cells, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (K.L.); (N.D.)
| | - Tim Vangansewinkel
- Laboratory for Functional Imaging & Research on Stem Cells, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (K.L.); (N.D.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
- Laboratory for Histology and Regeneration, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Wendy Vandendries
- Laboratory for Functional Imaging & Research on Stem Cells, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (K.L.); (N.D.)
| | - Ivo Lambrichts
- Laboratory for Histology and Regeneration, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Esther Wolfs
- Laboratory for Functional Imaging & Research on Stem Cells, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (K.L.); (N.D.)
| |
Collapse
|
16
|
Moriwaki T, Terawaki S, Otomo T. Impaired lysosomal acidity maintenance in acid lipase-deficient cells leads to defective autophagy. J Biol Chem 2024; 300:105743. [PMID: 38354786 PMCID: PMC10933554 DOI: 10.1016/j.jbc.2024.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
The lysosome is an acid organelle that contains a variety of hydrolytic enzymes and plays a significant role in intracellular degradation to maintain cellular homeostasis. Genetic variants in lysosome-related genes can lead to severe congenital diseases, such as lysosomal storage diseases. In the present study, we investigated the impact of depleting lysosomal acid lipase A (LIPA), a lysosomal esterase that metabolizes esterified cholesterol or triglyceride, on lysosomal function. Under nutrient-rich conditions, LIPA gene KO (LIPAKO) cells exhibited impaired autophagy, whereas, under starved conditions, they showed normal autophagy. The cause underlying the differential autophagic activity was increased sensitivity of LIPAKO cells to ammonia, which was produced from l-glutamine in the medium. Further investigation revealed that ammonia did not affect upstream signals involved in autophagy induction, autophagosome-lysosome fusion, and hydrolytic enzyme activities in LIPAKO cells. On the other hand, LIPAKO cells showed defective lysosomal acidity upon ammonia loading. Microscopic analyses revealed that lysosomes of LIPAKO cells enlarged, whereas the amount of lysosomal proton pump V-ATPase did not proportionally increase. Since the enlargement of lysosomes in LIPAKO cells was not normalized under starved conditions, this is the primary change that occurred in the LIPAKO cells, and autophagy was affected by impaired lysosomal function under the specific conditions. These findings expand our comprehension of the pathogenesis of Wolman's disease, which is caused by a defect in the LIPA gene, and suggest that conditions, such as hyperlipidemia, may easily disrupt lysosomal functions.
Collapse
Affiliation(s)
- Takahito Moriwaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Seigo Terawaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takanobu Otomo
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
17
|
Chen X, Wang Z, Zheng P, Dongol A, Xie Y, Ge X, Zheng M, Dang X, Seyhan ZB, Nagaratnam N, Yu Y, Huang X. Impaired mitophagosome-lysosome fusion mediates olanzapine-induced aging. Aging Cell 2023; 22:e14003. [PMID: 37828862 PMCID: PMC10652317 DOI: 10.1111/acel.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
The lifespan of schizophrenia patients is significantly shorter than the general population. Olanzapine is one of the most commonly used antipsychotic drugs (APDs) for treating patients with psychosis, including schizophrenia and bipolar disorder. Despite their effectiveness in treating positive and negative symptoms, prolonged exposure to APDs may lead to accelerated aging and cognitive decline, among other side effects. Here we report that dysfunctional mitophagy is a fundamental mechanism underlying accelerated aging induced by olanzapine, using in vitro and in vivo (Caenorhabditis elegans) models. We showed that the aberrant mitophagy caused by olanzapine was via blocking mitophagosome-lysosome fusion. Furthermore, olanzapine can induce mitochondrial damage and hyperfragmentation of the mitochondrial network. The mitophagosome-lysosome fusion in olanzapine-induced aging models can be restored by a mitophagy inducer, urolithin A, which alleviates defective mitophagy, mitochondrial damage, and fragmentation of the mitochondrial network. Moreover, the mitophagy inducer ameliorated behavioral changes induced by olanzapine, including shortened lifespan, and impaired health span, learning, and memory. These data indicate that olanzapine impairs mitophagy, leading to the shortened lifespan, impaired health span, and cognitive deficits. Furthermore, this study suggests the potential application of mitophagy inducers as therapeutic strategies to reverse APD-induced adverse effects associated with accelerated aging.
Collapse
Affiliation(s)
- Xi Chen
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Zhizhen Wang
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Peng Zheng
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Anjila Dongol
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Yuanyi Xie
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Xuemei Dang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Zehra Boz Seyhan
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Nathan Nagaratnam
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Yinghua Yu
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Xu‐Feng Huang
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
18
|
Rachubik P, Rogacka D, Audzeyenka I, Typiak M, Wysocka M, Szrejder M, Lesner A, Piwkowska A. Role of lysosomes in insulin signaling and glucose uptake in cultured rat podocytes. Biochem Biophys Res Commun 2023; 679:145-159. [PMID: 37696068 DOI: 10.1016/j.bbrc.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St, Gdansk, 80-308, Poland.
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| |
Collapse
|
19
|
Zhang Y, Tang W, Zheng Z, Nie G, Zhan Y, Mu X, Liu Y, Wang K. Metabolic degradation of polysaccharides from Lentinus edodes by Kupffer cells via the Dectin-1/Syk signaling pathway. Carbohydr Polym 2023; 317:121108. [PMID: 37364942 DOI: 10.1016/j.carbpol.2023.121108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
It had been shown that lentinan (LNT) was mainly distributed in the liver after intravenous administration. The study aimed to investigate the integrated metabolic processes and mechanisms of LNT in the liver, as these have not been thoroughly explored. In current work, 5-([4,6-dichlorotriazin-2-yl] amino) fluorescein and cyanine 7 were used to label LNT for tracking its metabolic behavior and mechanisms. Near-infrared imaging demonstrated that LNT was captured mainly by the liver. Kupffer cell (KC) depletion reduced LNT liver localization and degradation in BALB/c mice. Moreover, experiments with Dectin-1 siRNA and Dectin-1/Syk signaling pathway inhibitors showed that LNT was mainly taken up by KCs via the Dectin-1/Syk pathway and promoted lysosomal maturation in KCs via this same pathway, which in turn promoted LNT degradation. These empirical findings offer novel insights into the metabolism of LNT in vivo and in vitro, which will facilitate the further application of LNT and other β-glucans.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Wenqi Tang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Gang Nie
- Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 430019 Wuhan, China
| | - Yuxue Zhan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xu Mu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yuxuan Liu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
20
|
Li N, Rao L, Zhao X, Shen J, Su D, Ma G, Sun S, Ma Q, Zhang L, Dong C, Tam KY, Prehn JHM, Wang H, Ying Z. Chlorpromazine affects autophagy in association with altered Rag GTPase-mTORC1-TFEB signaling. Front Cell Dev Biol 2023; 11:1266198. [PMID: 37745295 PMCID: PMC10514517 DOI: 10.3389/fcell.2023.1266198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Autophagy is a critical protein and organelle quality control system, which regulates cellular homeostasis and survival. Growing pieces of evidence suggest that autophagic dysfunction is strongly associated with many human diseases, including neurological diseases and cancer. Among various autophagic regulators, microphthalmia (MiT)/TFE transcription factors, including transcription factor EB (TFEB), have been shown to act as the master regulators of autophagosome and lysosome biogenesis in both physiological and pathological conditions. According to the previous studies, chlorpromazine (CPZ), an FDA-approved antipsychotic drug, affects autophagy in diverse cell lines, but the underlying mechanism remains elusive. In our present study, we find that CPZ treatment induces TFEB nuclear translocation through Rag GTPases, the upstream regulators of mechanistic target of rapamycin complex 1 (mTORC1) signaling. Meanwhile, CPZ treatment also blocks autophagosome-lysosome fusion. Notably, we find a significant accumulation of immature autophagosome vesicles in CPZ-treated cells, which may impede cellular homeostasis due to the dysfunction of the autophagy-lysosome pathway. Interestingly and importantly, our data suggest that the expression of the active form of Rag GTPase heterodimers helps in reducing the accumulation of autophagosomes in CPZ-treated cells, further suggesting a major contribution of the Rag GTPase-mTORC1-TFEB signaling axis in CPZ-induced autophagic impairment.
Collapse
Affiliation(s)
- Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Lingling Rao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xueqing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Junwen Shen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Dan Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guoqiang Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shan Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Department of Physiology and Medical Physics and Future-Neuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Li Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Chunsheng Dong
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics and Future-Neuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hongfeng Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Ye X, Chen L. Protective role of autophagy in triptolide-induced apoptosis of TM3 Leydig cells. J Transl Int Med 2023; 11:265-274. [PMID: 37662886 PMCID: PMC10474888 DOI: 10.2478/jtim-2021-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background and Objectives Triptolide (TP) is known to impair testicular development and spermatogenesis in mammals, but the mechanism of the side effects still needs to be investigated. The aim of the research is to confirm whether TP can cause autophagy in TM3 Leydig cells and the potential molecular pathway in vitro. Methods TM3 Leydig cells are used to investigate the molecular pathway through Western blot, detection of apoptosis, transmission electron microscopy for autophagosomes and so on. Results The data show that TP treatment resulted in the decreasing of the viability of TM3 cells due to the increased apoptosis. Treated with TP, the formation of autophagosomes, the decrease in P62, and the increase in the conversion of LC3-I to LC3-II suggested the induction of autophagy. The induction of autophagy has accompanied the activation of the mTOR/P70S6K signal pathway. The viability of the TM3 cells was further inhibited when they were co-treated with autophagy inhibitor, chloroquine (CQ). Conclusion All these data suggest that autophagy plays a very important role in antagonizing TM3 cell apoptosis during the TP exposure.
Collapse
Affiliation(s)
- Xiaoyun Ye
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing100034, China
| | - Liang Chen
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing100034, China
| |
Collapse
|
22
|
Smith M, Meliopoulos V, Tan S, Bub T, Brigleb PH, Sharp B, Crawford JC, Prater MS, Pruett-Miller SM, Schultz-Cherry S. The β6 Integrin Negatively Regulates TLR7-Mediated Epithelial Immunity via Autophagy During Influenza A Virus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555098. [PMID: 37693589 PMCID: PMC10491108 DOI: 10.1101/2023.08.28.555098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integrins are essential surface receptors that sense extracellular changes to initiate various intracellular signaling cascades. The rapid activation of the epithelial-intrinsic β6 integrin during influenza A virus (IAV) infection has been linked to innate immune impairments. Yet, how β6 regulates epithelial immunity remains undefined. Here, we identify the role of β6 in mediating the Toll-like receptor 7 (TLR7) through the regulation of intracellular trafficking. We demonstrate that deletion of the β6 integrin in lung epithelial cells significantly enhances the TLR7-mediated activation of the type I interferon (IFN) response during homeostasis and respiratory infection. IAV-induced β6 facilitates TLR7 trafficking to lysosome-associated membrane protein (LAMP2a) components, leading to a reduction in endosomal compartments and associated TLR7 signaling. Our findings reveal an unappreciated role of β6-induced autophagy in influencing epithelial immune responses during influenza virus infection.
Collapse
|
23
|
Jiao HS, Yuan P, Yu JT. TMEM106B aggregation in neurodegenerative diseases: linking genetics to function. Mol Neurodegener 2023; 18:54. [PMID: 37563705 PMCID: PMC10413548 DOI: 10.1186/s13024-023-00644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Mutations of the gene TMEM106B are risk factors for diverse neurodegenerative diseases. Previous understanding of the underlying mechanism focused on the impairment of lysosome biogenesis caused by TMEM106B loss-of-function. However, mutations in TMEM106B increase its expression level, thus the molecular process linking these mutations to the apparent disruption in TMEM106B function remains mysterious. MAIN BODY Recent new studies reported that TMEM106B proteins form intracellular amyloid filaments which universally exist in various neurodegenerative diseases, sometimes being the dominant form of protein aggregation. In light of these new findings, in this review we systematically examined previous efforts in understanding the function of TMEM106B in physiological and pathological conditions. We propose that TMEM106B aggregations could recruit normal TMEM106B proteins and interfere with their function. CONCLUSIONS TMEM106B mutations could lead to lysosome dysfunction by promoting the aggregation of TMEM106B and reducing these aggregations may restore lysosomal function, providing a potential therapeutic target for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Hai-Shan Jiao
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Peng Yuan
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
24
|
Konings SC, Nyberg E, Martinsson I, Torres-Garcia L, Klementieva O, Guimas Almeida C, Gouras GK. Apolipoprotein E intersects with amyloid-β within neurons. Life Sci Alliance 2023; 6:e202201887. [PMID: 37290814 PMCID: PMC10250689 DOI: 10.26508/lsa.202201887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Apolipoprotein E4 (ApoE4) is the most important genetic risk factor for Alzheimer's disease (AD). Among the earliest changes in AD is endosomal enlargement in neurons, which was reported as enhanced in ApoE4 carriers. ApoE is thought to be internalized into endosomes of neurons, whereas β-amyloid (Aβ) accumulates within neuronal endosomes early in AD. However, it remains unknown whether ApoE and Aβ intersect intracellularly. We show that internalized astrocytic ApoE localizes mostly to lysosomes in neuroblastoma cells and astrocytes, whereas in neurons, it preferentially localizes to endosomes-autophagosomes of neurites. In AD transgenic neurons, astrocyte-derived ApoE intersects intracellularly with amyloid precursor protein/Aβ. Moreover, ApoE4 increases the levels of endogenous and internalized Aβ42 in neurons. Taken together, we demonstrate differential localization of ApoE in neurons, astrocytes, and neuron-like cells, and show that internalized ApoE intersects with amyloid precursor protein/Aβ in neurons, which may be of considerable relevance to AD.
Collapse
Affiliation(s)
- Sabine C Konings
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emma Nyberg
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Isak Martinsson
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oxana Klementieva
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Claudia Guimas Almeida
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Armoza-Eilat S, Malis Y, Caspi M, Shomron O, Hirschberg K, Rosin-Arbesfeld R. Title: The C-terminal amphipathic helix of Carboxypeptidase E mediates export from the ER and secretion via lysosomes. J Mol Biol 2023:168171. [PMID: 37285900 DOI: 10.1016/j.jmb.2023.168171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Carboxypeptidase E (CPE), an essential enzyme in the biosynthetic production line of most peptide hormones and neuropeptides, is predominantly expressed in endocrine tissues and in the nervous system. CPE is active in acidic environments where it cleaves the C'-terminal basic residues of peptide precursors to generate their bioactive form. Consequently, this highly conserved enzyme regulates numerous fundamental biological processes. Here, we combined live-cell microscopy and molecular analysis to examine the intracellular distribution and secretion dynamics of fluorescently tagged CPE. We show that, in non-endocrine cells, tagged-CPE is a soluble luminal protein that is efficiently exported from the ER via the Golgi apparatus to lysosomes. The C'-terminal conserved amphipathic helix serves as a lysosomal and secretory granule targeting and a secretion motif. Following secretion, CPE may be reinternalized into the lysosomes of neighboring cells.
Collapse
Affiliation(s)
- Shir Armoza-Eilat
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehonathan Malis
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Olga Shomron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Kendall RL, Holian A. Cholesterol-dependent molecular mechanisms contribute to cationic amphiphilic drugs' prevention of silica-induced inflammation. Eur J Cell Biol 2023; 102:151310. [PMID: 36934670 PMCID: PMC10330738 DOI: 10.1016/j.ejcb.2023.151310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Silicosis is considered an irreversible chronic inflammatory disease caused by the inhalation of crystalline silica (cSiO2). The cycle of inflammation that drives silicosis and other particle-caused respiratory diseases is mediated by NLRP3 inflammasome activity in macrophages resulting in the release of IL-1β. Lysosomal membrane permeability (LMP) initiated by inhaled particles is the key regulatory step in leading to NLRP3 activity. In addition to its role in LMP, the lysosome is crucial to cellular cholesterol trafficking. Lysosomal cholesterol has been demonstrated to regulate LMP while cationic amphiphilic drugs (CADs) reduce cholesterol trafficking from lysosomes and promote endolysosomal cholesterol accumulation as seen in Niemann Pick disease. Using a bone marrow derived macrophage (BMdM) model, four CADs were examined for their potential to reduce cSiO2-induced inflammation. Here we found that FDA-approved CAD drugs imipramine, hydroxychloroquine, fluvoxamine, and fluoxetine contributed to reduced LMP and IL-1β release in cSiO2 treated BMdM. These drugs inhibited lysosomal enzymatic activity of acid sphingomyelinase, decreased lysosomal proteolytic function, and increased lysosomal pH. CADs also demonstrated a significant increase in lysosomal-associated free cholesterol. Increased lysosomal cholesterol was associated with a significant reduction in cSiO2 induced LMP and IL-1β release. In contrast, reduced lysosomal cholesterol significantly exacerbated cSiO2-induced IL-1β release and reduced the protective effect of CADs on IL-1β release following cSiO2 exposure. Taken together, these results suggest that CAD modification of lysosomal cholesterol may be used to reduce LMP and cSiO2-induced inflammation and could prove an effective therapeutic for silicosis and other particle-caused respiratory diseases.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Center for Environmental Health Science, University of Montana, 32 Campus Way, Missoula, MT 59812, USA.
| | - Andrij Holian
- Center for Environmental Health Science, University of Montana, 32 Campus Way, Missoula, MT 59812, USA
| |
Collapse
|
27
|
Smith M, Zhang L, Jin Y, Yang M, Bade A, Gillis KD, Jana S, Bypaneni RN, Glass TE, Lin H. A Turn-On Fluorescent Amino Acid Sensor Reveals Chloroquine's Effect on Cellular Amino Acids via Inhibiting Cathepsin L. ACS CENTRAL SCIENCE 2023; 9:980-991. [PMID: 37252359 PMCID: PMC10214525 DOI: 10.1021/acscentsci.2c01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Indexed: 05/31/2023]
Abstract
Maintaining homeostasis of metabolites such as amino acids is critical for cell survival. Dysfunction of nutrient balance can result in human diseases such as diabetes. Much remains to be discovered about how cells transport, store, and utilize amino acids due to limited research tools. Here we developed a novel, pan-amino acid fluorescent turn-on sensor, NS560. It detects 18 of the 20 proteogenic amino acids and can be visualized in mammalian cells. Using NS560, we identified amino acids pools in lysosomes, late endosomes, and surrounding the rough endoplasmic reticulum. Interestingly, we observed amino acid accumulation in large cellular foci after treatment with chloroquine, but not with other autophagy inhibitors. Using a biotinylated photo-cross-linking chloroquine analog and chemical proteomics, we identified Cathepsin L (CTSL) as the chloroquine target leading to the amino acid accumulation phenotype. This study establishes NS560 as a useful tool to study amino acid regulation, identifies new mechanisms of action of chloroquine, and demonstrates the importance of CTSL regulation of lysosomes.
Collapse
Affiliation(s)
- Michael
R. Smith
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Le Zhang
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yizhen Jin
- Graduate
Program of Biochemistry, Molecular and Cell Biology, Department of
Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Min Yang
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Anusha Bade
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kevin D. Gillis
- Dalton
Cardiovascular Research Center, Department of Bioengineering and Department
of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211, United States
| | - Sadhan Jana
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Ramesh Naidu Bypaneni
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Timothy E. Glass
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Howard
Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
28
|
Kumar M, Sharma S, Mazumder S. Role of UPR mt and mitochondrial dynamics in host immunity: it takes two to tango. Front Cell Infect Microbiol 2023; 13:1135203. [PMID: 37260703 PMCID: PMC10227438 DOI: 10.3389/fcimb.2023.1135203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The immune system of a host contains a group of heterogeneous cells with the prime aim of restraining pathogenic infection and maintaining homeostasis. Recent reports have proved that the various subtypes of immune cells exploit distinct metabolic programs for their functioning. Mitochondria are central signaling organelles regulating a range of cellular activities including metabolic reprogramming and immune homeostasis which eventually decree the immunological fate of the host under pathogenic stress. Emerging evidence suggests that following bacterial infection, innate immune cells undergo profound metabolic switching to restrain and countervail the bacterial pathogens, promote inflammation and restore tissue homeostasis. On the other hand, bacterial pathogens affect mitochondrial structure and functions to evade host immunity and influence their intracellular survival. Mitochondria employ several mechanisms to overcome bacterial stress of which mitochondrial UPR (UPRmt) and mitochondrial dynamics are critical. This review discusses the latest advances in our understanding of the immune functions of mitochondria against bacterial infection, particularly the mechanisms of mitochondrial UPRmt and mitochondrial dynamics and their involvement in host immunity.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, India
| |
Collapse
|
29
|
Kim HJ, Lee Y, Lee S, Park B. HCMV-encoded viral protein US12 promotes autophagy by inducing autophagy flux. Biochem Biophys Res Commun 2023; 654:94-101. [PMID: 36898229 DOI: 10.1016/j.bbrc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The human cytomegalovirus (HCMV)-encoded US12 gene family is a group of ten predicted seven-transmembrane domain proteins that are structurally similar to G-protein-coupled receptors or transmembrane Bax inhibitor-1 motif-containing proteins; however, the roles of US12 family proteins in virus-host interactions remain to be discovered. Here, we suggest a new function of the US12 protein in regulating cellular autophagy. US12 is predominantly located to the lysosome and interacts with the lysosomal membrane protein 2 (LAMP2). A liquid chromatography-mass spectrometry (MS)/MS-based targeted proteomics analysis shows that US12 is tightly correlated with autophagy. US12 induces autophagy via upregulating ULK1 phosphorylation and subsequent LC3-II conversion, thereby accelerating autophagic flux. Moreover, HeLa cells overexpressing US12 displays intense LC3-specific staining and autolysosome formation even under nutrient-sufficient conditions. Furthermore, the physical interaction of p62/SQSTM1 with US12 is involved in the resistance to the degradation of p62/SQSTM1 by autophagy, despite the induction of both autolysosome formation and autophagic flux. Although the effect of US12 expression in HCMV infection on autophagy remains undetermined, these findings provide new insights into the viral drivers of host autophagy during HCMV evolution and pathogenesis.
Collapse
Affiliation(s)
- Hyung Jin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Yoora Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sungwook Lee
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
30
|
Krzystek TJ, White JA, Rathnayake R, Thurston L, Hoffmar-Glennon H, Li Y, Gunawardena S. HTT (huntingtin) and RAB7 co-migrate retrogradely on a signaling LAMP1-containing late endosome during axonal injury. Autophagy 2023; 19:1199-1220. [PMID: 36048753 PMCID: PMC10012955 DOI: 10.1080/15548627.2022.2119351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/09/2022] Open
Abstract
ABBREVIATIONS Atg5: Autophagy-related 5; Atg8a: Autophagy-related 8a; AL: autolysosome; AP: autophagosome; BAF1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BMP: bone morphogenetic protein; Cyt-c-p: Cytochrome c proximal; CQ: chloroquine; DCTN1: dynactin 1; Dhc: dynein heavy chain; EE: early endosome; DYNC1I1: dynein cytoplasmic 1 intermediate chain 1; HD: Huntington disease; HIP1/Hip1: huntingtin interacting protein 1; HTT/htt: huntingtin; iNeuron: iPSC-derived human neurons; IP: immunoprecipitation; Khc: kinesin heavy chain; KIF5C: kinesin family member 5C; LAMP1/Lamp1: lysosomal associated membrane protein 1; LE: late endosome; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K12/DLK: mitogen-activated protein kinase kinase kinase 12; MAPK8/JNK/bsk: mitogen-activated protein kinase 8/basket; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; NGF: nerve growth factor; NMJ: neuromuscular junction; NTRK1/TRKA: neurotrophic receptor tyrosine kinase 1; NRTK2/TRKB: neurotrophic receptor tyrosine kinase 2; nuf: nuclear fallout; PG: phagophore; PtdIns3P: phosphatidylinositol-3-phosphate; puc: puckered; ref(2)P: refractory to sigma P; Rilpl: Rab interacting lysosomal protein like; Rip11: Rab11 interacting protein; RTN1: reticulon 1; syd: sunday driver; SYP: synaptophysin; SYT1/Syt1: synaptotagmin 1; STX17/Syx17: syntaxin 17; tkv: thickveins; VF: vesicle fraction; wit: wishful thinking; wnd: wallenda.
Collapse
Affiliation(s)
- Thomas J. Krzystek
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Joseph A. White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Rasika Rathnayake
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Layne Thurston
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hayley Hoffmar-Glennon
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Yichen Li
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
31
|
Papini N, Todisco R, Giussani P, Dei Cas M, Paroni R, Giallanza C, Tringali C. Impaired Autophagy in Krabbe Disease: The Role of BCL2 and Beclin-1 Phosphorylation. Int J Mol Sci 2023; 24:ijms24065984. [PMID: 36983059 PMCID: PMC10051825 DOI: 10.3390/ijms24065984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagic impairment was identified in many lysosomal storage diseases and adult neurodegenerative diseases. It seems that this defect could be directly related to the appearance of a neurodegenerative phenotype and could contribute to worsen metabolite accumulation and lysosomal distress. Thus, autophagy is becoming a promising target for supportive therapies. Autophagy alterations were recently identified also in Krabbe disease. Krabbe disease is characterized by extensive demyelination and dysmyelination and it is due to the genetic loss of function of the lysosomal enzyme galactocerebrosidase (GALC). This enzyme leads to the accumulation of galactosylceramide, psychosine, and secondary substrates such as lactosylceramide. In this paper, we induced autophagy through starvation and examined the cellular response occurring in fibroblasts isolated from patients. We demonstrated that the inhibitory AKT-mediated phosphorylation of beclin-1 and the BCL2-beclin-1 complex concur to reduce autophagosomes formation in response to starvation. These events were not dependent on the accumulation of psychosine, which was previously identified as a possible player in autophagic impairment in Krabbe disease. We believe that these data could better elucidate the capability of response to autophagic stimuli in Krabbe disease, in order to identify possible molecules able to stimulate the process.
Collapse
Affiliation(s)
- Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, MI, Italy
| | - Roberta Todisco
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, MI, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, MI, Italy
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Chiara Giallanza
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, MI, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, MI, Italy
| |
Collapse
|
32
|
Zudeh G, Franca R, Lucafò M, Bonten EJ, Bramuzzo M, Sgarra R, Lagatolla C, Franzin M, Evans WE, Decorti G, Stocco G. PACSIN2 as a modulator of autophagy and mercaptopurine cytotoxicity: mechanisms in lymphoid and intestinal cells. Life Sci Alliance 2023; 6:e202201610. [PMID: 36596605 PMCID: PMC9811133 DOI: 10.26508/lsa.202201610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
PACSIN2 variants are associated with gastrointestinal effects of thiopurines and thiopurine methyltransferase activity through an uncharacterized mechanism that is postulated to involve autophagy. This study aims to clarify the role of PACSIN2 in autophagy and in thiopurine cytotoxicity in leukemic and intestinal models. Higher autophagy and lower PACSIN2 levels were observed in inflamed compared with non-inflamed colon biopsies of inflammatory bowel disease pediatric patients at diagnosis. PACSIN2 was identified as an inhibitor of autophagy, putatively through inhibition of autophagosome formation by a protein-protein interaction with LC3-II, mediated by a LIR motif. Moreover, PACSIN2 resulted a modulator of mercaptopurine-induced cytotoxicity in intestinal cells, suggesting that PACSIN2-regulated autophagy levels might influence thiopurine sensitivity. However, PACSIN2 modulates cellular thiopurine methyltransferase activity via mechanisms distinct from its modulation of autophagy.
Collapse
Affiliation(s)
- Giulia Zudeh
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Erik J Bonten
- Department of Chemical Biology and Therapeutics, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Matteo Bramuzzo
- Department of Gastroenterology, Digestive Endoscopy and Nutrition Unit, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Martina Franzin
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - William E Evans
- Department of Pharmaceutical Sciences, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Giuliana Decorti
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
33
|
Hirao H, Kojima H, Dery KJ, Nakamura K, Kadono K, Zhai Y, Farmer DG, Kaldas FM, Kupiec-Weglinski JW. Neutrophil CEACAM1 determines susceptibility to NETosis by regulating the S1PR2/S1PR3 axis in liver transplantation. J Clin Invest 2023; 133:e162940. [PMID: 36719377 PMCID: PMC9888387 DOI: 10.1172/jci162940] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/17/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophils, the largest innate immune cell population in humans, are the primary proinflammatory sentinel in the ischemia-reperfusion injury (IRI) mechanism in orthotopic liver transplantation (OLT). Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, CC1, or CD66a) is essential in neutrophil activation and serves as a checkpoint regulator of innate immune-driven IRI cascade in OLT. Although CC1 alternative splicing generates two functionally distinct short and long cytoplasmic isoforms, their role in neutrophil activation remains unknown. Here, we undertook molecular and functional studies to interrogate the significance of neutrophil CC1 signaling in mouse and human OLT recipients. In the experimental arm, we employed a mouse OLT model to document that ablation of recipient-derived neutrophil CC1-long (CC1-L) isotype aggravated hepatic IRI by promoting neutrophil extracellular traps (NETs). Notably, by regulating the S1P-S1PR2/S1PR3 axis, neutrophil CC1-L determined susceptibility to NET formation via autophagy signaling. In the clinical arm, liver grafts from 55 transplant patients selectively enriched for neutrophil CC1-L showed relative resistance to ischemia-reperfusion (IR) stress/tissue damage, improved hepatocellular function, and clinical outcomes. In conclusion, despite neutrophils being considered a principal villain in peritransplant tissue injury, their CC1-L isoform may serve as a regulator of IR stress resistance/NETosis in human and mouse OLT recipients.
Collapse
Affiliation(s)
- Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hidenobu Kojima
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kenneth J. Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kojiro Nakamura
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Kadono
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yuan Zhai
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Douglas G. Farmer
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Fady M. Kaldas
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
34
|
Li TY, Gao AW, Li X, Li H, Liu YJ, Lalou A, Neelagandan N, Naef F, Schoonjans K, Auwerx J. V-ATPase/TORC1-mediated ATFS-1 translation directs mitochondrial UPR activation in C. elegans. J Cell Biol 2023; 222:e202205045. [PMID: 36314986 PMCID: PMC9623136 DOI: 10.1083/jcb.202205045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
To adapt mitochondrial function to the ever-changing intra- and extracellular environment, multiple mitochondrial stress response (MSR) pathways, including the mitochondrial unfolded protein response (UPRmt), have evolved. However, how the mitochondrial stress signal is sensed and relayed to UPRmt transcription factors, such as ATFS-1 in Caenorhabditis elegans, remains largely unknown. Here, we show that a panel of vacuolar H+-ATPase (v-ATPase) subunits and the target of rapamycin complex 1 (TORC1) activity are essential for the cytosolic relay of mitochondrial stress to ATFS-1 and for the induction of the UPRmt. Mechanistically, mitochondrial stress stimulates v-ATPase/Rheb-dependent TORC1 activation, subsequently promoting ATFS-1 translation. Increased translation of ATFS-1 upon mitochondrial stress furthermore relies on a set of ribosomal components but is independent of GCN-2/PEK-1 signaling. Finally, the v-ATPase and ribosomal subunits are required for mitochondrial surveillance and mitochondrial stress-induced longevity. These results reveal a v-ATPase-TORC1-ATFS-1 signaling pathway that links mitochondrial stress to the UPRmt through intimate crosstalks between multiple organelles.
Collapse
Affiliation(s)
- Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hao Li
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yasmine J. Liu
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nagammal Neelagandan
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
González K, Gangapurwala G, Alex J, Vollrath A, Cseresnyés Z, Weber C, Czaplewska JA, Hoeppener S, Svensson CM, Orasch T, Heinekamp T, Guerrero-Sánchez C, Figge MT, Schubert US, Brakhage AA. Targeting of phagolysosomes containing conidia of the fungus Aspergillus fumigatus with polymeric particles. Appl Microbiol Biotechnol 2023; 107:819-834. [PMID: 36480041 PMCID: PMC9842589 DOI: 10.1007/s00253-022-12287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Conidia of the airborne human-pathogenic fungus Aspergillus fumigatus are inhaled by humans. In the lung, they are phagocytosed by alveolar macrophages and intracellularly processed. In macrophages, however, conidia can interfere with the maturation of phagolysosomes to avoid their elimination. To investigate whether polymeric particles (PPs) can reach this intracellular pathogen in macrophages, we formulated dye-labeled PPs with a size allowing for their phagocytosis. PPs were efficiently taken up by RAW 264.7 macrophages and were found in phagolysosomes. When macrophages were infected with conidia prior to the addition of PPs, we found that they co-localized in the same phagolysosomes. Mechanistically, the fusion of phagolysosomes containing PPs with phagolysosomes containing conidia was observed. Increasing concentrations of PPs increased fusion events, resulting in 14% of phagolysosomes containing both conidia and PPs. We demonstrate that PPs can reach conidia-containing phagolysosomes, making these particles a promising carrier system for antimicrobial drugs to target intracellular pathogens. KEY POINTS: • Polymer particles of a size larger than 500 nm are internalized by macrophages and localized in phagolysosomes. • These particles can be delivered to Aspergillus fumigatus conidia-containing phagolysosomes of macrophages. • Enhanced phagolysosome fusion by the use of vacuolin1 can increase particle delivery.
Collapse
Affiliation(s)
- Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07745 Jena, Germany
| | - Gauri Gangapurwala
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Julien Alex
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Justyna A. Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Thomas Orasch
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Marc Thilo Figge
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07745 Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07745 Jena, Germany
| |
Collapse
|
36
|
Wen QX, Luo B, Xie XY, Zhou GF, Chen J, Song L, Liu Y, Xie SQ, Chen L, Li KY, Xiang XJ, Chen GJ. AP2S1 regulates APP degradation through late endosome-lysosome fusion in cells and APP/PS1 mice. Traffic 2023; 24:20-33. [PMID: 36412210 PMCID: PMC10107530 DOI: 10.1111/tra.12874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
AP2S1 is the sigma 2 subunit of adaptor protein 2 (AP2) that is essential for endocytosis. In this study, we investigated the potential role of AP2S1 in intracellular processing of amyloid precursor protein (APP), which contributes to the pathogenesis of Alzheimer disease (AD) by generating the toxic β-amyloid peptide (Aβ). We found that knockdown or overexpression of AP2S1 decreased or increased the protein levels of APP and Aβ in cells stably expressing human full-length APP695, respectively. This effect was unrelated to endocytosis but involved lysosomal degradation. Morphological studies revealed that silencing of AP2S1 promoted the translocalization of APP from RAB9-positive late endosomes (LE) to LAMP1-positive lysosomes, which was paralleled by the enhanced LE-lysosome fusion. In support, silencing of vacuolar protein sorting-associated protein 41 (VPS41) that is implicated in LE-lyso fusion prevented AP2S1-mediated regulation of APP degradation and translocalization. In APP/PS1 mice, an animal model of AD, AAV-mediated delivery of AP2S1 shRNA in the hippocampus significantly reduced the protein levels of APP and Aβ, with the concomitant APP translocalization, LE-lyso fusion and the improved cognitive functions. Taken together, these data uncover a LE-lyso fusion mechanism in APP degradation and suggest a novel role for AP2S1 in the pathophysiology of AD.
Collapse
Affiliation(s)
- Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yue Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Shi-Qi Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Long Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Kun-Yi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Jiao Xiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Mucopolysaccharidoses: Cellular Consequences of Glycosaminoglycans Accumulation and Potential Targets. Int J Mol Sci 2022; 24:ijms24010477. [PMID: 36613919 PMCID: PMC9820209 DOI: 10.3390/ijms24010477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) constitute a heterogeneous group of lysosomal storage disorders characterized by the lysosomal accumulation of glycosaminoglycans (GAGs). Although lysosomal dysfunction is mainly affected, several cellular organelles such as mitochondria, endoplasmic reticulum, Golgi apparatus, and their related process are also impaired, leading to the activation of pathophysiological cascades. While supplying missing enzymes is the mainstream for the treatment of MPS, including enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), or gene therapy (GT), the use of modulators available to restore affected organelles for recovering cell homeostasis may be a simultaneous approach. This review summarizes the current knowledge about the cellular consequences of the lysosomal GAGs accumulation and discusses the use of potential modulators that can reestablish normal cell function beyond ERT-, HSCT-, or GT-based alternatives.
Collapse
|
38
|
Kita S, Shimomura I. Extracellular Vesicles as an Endocrine Mechanism Connecting Distant Cells. Mol Cells 2022; 45:771-780. [PMID: 36380729 PMCID: PMC9676990 DOI: 10.14348/molcells.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The field of extracellular vesicles (EVs) has expanded tremendously over the last decade. The role of cell-to-cell communication in neighboring or distant cells has been increasingly ascribed to EVs generated by various cells. Initially, EVs were thought to a means of cellular debris or disposal system of unwanted cellular materials that provided an alternative to autolysis in lysosomes. Intercellular exchange of information has been considered to be achieved by well-known systems such as hormones, cytokines, and nervous networks. However, most research in this field has searched for and found evidence to support paracrine or endocrine roles of EV, which inevitably leads to a new concept that EVs are synthesized to achieve their paracrine or endocrine purposes. Here, we attempted to verify the endocrine role of EV production and their contents, such as RNAs and bioactive proteins, from the regulation of biogenesis, secretion, and action mechanisms while discussing the current technical limitations. It will also be important to discuss how blood EV concentrations are regulated as if EVs are humoral endocrine machinery.
Collapse
Affiliation(s)
- Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Adipose Management, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Babataheri S, Malekinejad H, Mosarrezaii A, Soraya H. Pre-treatment or post-treatment with hydroxychloroquine demonstrates neuroprotective effects in cerebral ischemia/reperfusion. Fundam Clin Pharmacol 2022; 37:589-598. [PMID: 36433900 DOI: 10.1111/fcp.12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022]
Abstract
Stroke is a serious life-threatening medical condition and is one of the principal reasons for death and disabilities worldwide. The aim of the present study was to determine the neuroprotective effects of hydroxychloroquine (HCQ) and the timing of its administration in cerebral ischemia/reperfusion (I/R) in rats. A global I/R model was used, and HCQ was administered in either pre- or post-treatment doses of 25 and 50 mg/kg. Effects of HCQ on infarct size, histological changes, oxidative stress, and learning and memory were evaluated. Phospho-AMPK and SQSTM1/p62 protein levels were also measured to elucidate the possible mechanisms involved. HCQ in both pre- (at doses of 25 and 50 mg/kg) or post-treatment (at a dose of 50 mg/kg) protocols reduces brain infarct size and histopathological changes and improves learning and memory after cerebral I/R. Pre-treatment with HCQ reduced AMPK activity with no significant effect on SQSTM1/p62 increment. Post-treatment with HCQ increased AMPK activity and SQSTM1/p62 protein levels. Our results show the neuroprotective effects of HCQ on cerebral I/R through the reduction in infarct size, histopathological changes, and improvement in memory and learning functions. Moreover, AMPK and autophagy may play a role in this protective effect.
Collapse
Affiliation(s)
- Shabnam Babataheri
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Arash Mosarrezaii
- Department of Neurology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
40
|
Luis LB, Ana GT, Carlos GE, Abraham GG, Iris EG, Martha ML, Vianney ON. Salmonella Promotes Its Own Survival in B Cells by Inhibiting Autophagy. Cells 2022; 11:cells11132061. [PMID: 35805144 PMCID: PMC9266210 DOI: 10.3390/cells11132061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella is a Gram-negative bacterium known to be the major cause of gastrointestinal diseases and systemic infections. During infection of murine B cells, Salmonella activates the PI3K/Akt pathway through its effector, SopB. This signaling pathway induces the downregulation of NLRC4 transcription, resulting in reduced secretion of IL-1β. Thus, Salmonella-infected B cells do not progress to pyroptosis; consequently, the bacteria can survive inside these cells. However, the mechanism by which Salmonella evades the control of B cells has not yet been elucidated. In this study, we found that SopB activates mTORC1, which is necessary for bacterial survival, since B cells cultured with the mTORC1 inhibitor rapamycin and B cells lacking raptor can control Salmonella infection. A similar result was observed in B cells when they were infected with the Salmonella SopB mutant (Δsopb). Salmonella also promoted the phosphorylation of the ULK1 complex at serine 757 (Ser757) by mTORC1, resulting in decreased levels of LC3-II in infected B cells. In this study, we did not observe these results when B cells were infected with Δsopb Salmonella. Our results demonstrated that Salmonella survival within B cells depends on the inhibition of autophagy by mTORC1 activation.
Collapse
Affiliation(s)
- Lopez-Bailon Luis
- Departamento y Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico 11350, Mexico; (L.-B.L.); (E.-G.I.); (M.-L.M.)
| | - Gonzalez-Telona Ana
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico 07360, Mexico; (G.-T.A.); (G.-E.C.); (G.-G.A.)
| | - Galán-Enríquez Carlos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico 07360, Mexico; (G.-T.A.); (G.-E.C.); (G.-G.A.)
| | - García-Gil Abraham
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico 07360, Mexico; (G.-T.A.); (G.-E.C.); (G.-G.A.)
| | - Estrada-García Iris
- Departamento y Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico 11350, Mexico; (L.-B.L.); (E.-G.I.); (M.-L.M.)
| | - Moreno-Lafont Martha
- Departamento y Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico 11350, Mexico; (L.-B.L.); (E.-G.I.); (M.-L.M.)
| | - Ortiz-Navarrete Vianney
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico 07360, Mexico; (G.-T.A.); (G.-E.C.); (G.-G.A.)
- Correspondence:
| |
Collapse
|
41
|
Xu F, Tautenhahn HM, Dirsch O, Dahmen U. Blocking autophagy with chloroquine aggravates lipid accumulation and reduces intracellular energy synthesis in hepatocellular carcinoma cells, both contributing to its anti-proliferative effect. J Cancer Res Clin Oncol 2022; 148:3243-3256. [PMID: 35695930 DOI: 10.1007/s00432-022-04074-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The autophagy inhibitor chloroquine enhances the effect of targeted therapy using tyrosine kinase inhibitor in liver cancer. We would like to further understand the specific mechanism by which chloroquine inhibits the proliferation of tumor cells. METHODS We used a human hepatocarcinoma cell line (HepG2) as cell culture model. In contrast to the control groups (treated only with complete medium), cells in experimental groups were treated either with complete medium + 40 ng/ml Hepatocyte growth factor (HGF), or with complete medium + 60 μM chloroquine or with complete medium + 40 ng/ml HGF + 60 μM chloroquine for 24 h. Cell number and ATP content were investigated using spectrophotometric assays. Cell proliferation and apoptosis were detected by immunohistochemistry. Cell morphological alterations were examined by Giemsa and H&E staining. Cellular lipid content was determined by Oil Red O staining and Triglyceride quantification assay. Autophagy-related proteins (LC3B and p62) and hepatocyte proliferation-related protein (S6K1) were examined using western blot. The autophagic flux of cells was assessed by mRFP-EGFP-LC3 transfection assay. RESULTS We found that chloroquine inhibited the proliferation of HepG2 cells, as evidenced by a decrease in cellular ATP content, Ki-67 and S6K1 protein expression and a reduction in cell number. This finding was associated with an increase in lipid content. As expected, chloroquine inhibited autophagy of HepG2 cells, as evidenced by the accumulation of LC3B-II and the significant upregulation of p62. mRFP-EGFP-LC3 transfection assay showed that indeed chloroquine blocked the autophagic flux in HepG2 cells. CONCLUSION Chloroquine impaired proliferation of HepG2 cells might be due to intracellular accumulation of lipids and inhibition of energy synthesis.
Collapse
Affiliation(s)
- Fengming Xu
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany
- Else Kröner Graduate School for Medical Students "JSAM", Jena University Hospital, 07747, Jena, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany
- Else Kröner Research Schools for Physicians "AntiAge", Jena University Hospital, 07747, Jena, Germany
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, 09111, Chemnitz, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany.
| |
Collapse
|
42
|
Liang K, Mei S, Gao X, Peng S, Zhan J. Dynamics of Endocytosis and Degradation of Antibody-Drug Conjugate T-DM1 in HER2 Positive Cancer Cells. Drug Des Devel Ther 2022; 15:5135-5150. [PMID: 34992350 PMCID: PMC8713712 DOI: 10.2147/dddt.s344052] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose T-DM1 is an antibody–drug conjugate (ADC) consisting of trastuzumab and DM1 linked together. T-DM1 binds to human epidermal growth factor receptor-2 (HER2) in tumors and then triggers the endocytosis of T-DM1 and release of payload. Therefore, endocytosis efficacy is considered as a critical step for the initiation of T-DM1 therapy; however, the endocytosis mechanism of T-DM1 remains poorly understood. Meanwhile, HER2 is regarded as an internalization-resistant receptor, which hinders the endocytosis and effectiveness of T-DM1. The present study is to explore the T-DM1 endocytosis pathway, which may provide insights into the internalization mechanism of ADCs and help to improve efficacy. Methods Confocal microscopy and flow cytometry were used to analyse T-DM1 intracellular trafficking and endocytosis efficiency, while Western blot assay was performed to detect T-DM1 degradation. Results We found that intracellular T-DM1 was increased to 50% within 12 h. T-DM1 was colocalized with cholera toxin B (CTxB), a lipid raft marker, within 2 h and then degraded in lysosome. Upon overexpression of caveolin-1 (CAV-1) and utilization of caveolae/lipid-raft disruptors, we found that temporal CAV-1 upregulation significantly facilitated T-DM1 endocytosis and degradation, whereas nystatin and lovastatin disrupted caveolae/lipid-raft structure and inhibited T-DM1 degradation. We demonstrate that T-DM1 internalizes through the lipid raft-mediated endocytosis in a CAV-1 dependent manner, rather than through the clathrin-mediated endocytosis in HER2-positive cancer cells. Conclusion Our findings suggest that modulation of the caveolae/lipid-raft mediated endocytosis may be a possible option for improving the clinical therapeutic effect of T-DM1 because it plays a key role in regulating T-DM1 internalization.
Collapse
Affiliation(s)
- Keying Liang
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shengsheng Mei
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiangzheng Gao
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shanshan Peng
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jinbiao Zhan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
43
|
Giles J, Lopez V, McConnaha E, Hayden M, Kragenbring C, Carli D, Wauson E, Tran QK. Regulation of basal autophagy by calmodulin availability. FEBS J 2022; 289:5322-5340. [PMID: 35285161 DOI: 10.1111/febs.16432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 01/18/2023]
Abstract
Macroautophagy (hereafter autophagy) is a process that degrades cellular components to maintain homeostasis. The Ca2+ sensor calmodulin (CaM) regulates numerous cell functions but is a limiting factor due to its insufficient availability for all target proteins. However, evidence that CaM availability regulates basal autophagy is lacking. Here, we have tested this hypothesis. CaM antagonists W-7, trifluoperazine and CGS9343b cause autophagosome accumulation and inhibit basal autophagic flux in the same manner as does chloroquine. These reagents promote the activity of AMP-activated protein kinase (AMPK) but not that of the mechanistic target of rapamycin (mTOR). Competitive binding assays using CaM sensors with different Ca2+ dependencies showed that chloroquine directly binds CaM in a Ca2+ -dependent fashion. The CaM antagonists have disparate effects on cytoplasmic Ca2+ , triggering from none to robust signals, indicating that their consistent inhibition of autophagy is due to inhibition of CaM and not Ca2+ . Chelating intracellular Ca2+ reduces the effect of the CaM antagonists to accumulate LC3-II, indicating that they do so by inhibiting CaM-dependent activities at basal Ca2+ level. The CaM antagonists cause lysosomal alkalinisation. Consistently, buffering CaM with a high-affinity CaM-binding protein that binds CaM at resting Ca2+ level increases lysosomal pH. Enhanced CaM buffering using a chimeric protein that contains two high-affinity CaM-binding sites that can collectively bind CaM at a large range of Ca2+ further increases lysosomal pH and increases LC3-II accumulation and AMPK activity, but not that of mTOR. These data demonstrate that CaM availability is required for basal autophagy.
Collapse
Affiliation(s)
- Jennifer Giles
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Vanessa Lopez
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Elizabeth McConnaha
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Matthew Hayden
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Caleb Kragenbring
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - David Carli
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Eric Wauson
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| |
Collapse
|
44
|
Basu I, Bar S, Prasad M, Datta R. Adipose deficiency and aberrant autophagy in a Drosophila model of MPS VII is corrected by pharmacological stimulators of mTOR. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166399. [DOI: 10.1016/j.bbadis.2022.166399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
45
|
Wang F, Li S, Cheng KW, Rosencrans WM, Chou TF. The p97 Inhibitor UPCDC-30245 Blocks Endo-Lysosomal Degradation. Pharmaceuticals (Basel) 2022; 15:ph15020204. [PMID: 35215314 PMCID: PMC8880557 DOI: 10.3390/ph15020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The diverse modes of action of small molecule inhibitors provide versatile tools to investigate basic biology and develop therapeutics. However, it remains a challenging task to evaluate their exact mechanisms of action. We identified two classes of inhibitors for the p97 ATPase: ATP competitive and allosteric. We showed that the allosteric p97 inhibitor, UPCDC-30245, does not affect two well-known cellular functions of p97, endoplasmic-reticulum-associated protein degradation and the unfolded protein response pathway; instead, it strongly increases the lipidated form of microtubule-associated proteins 1A/1B light chain 3B (LC3-II), suggesting an alteration of autophagic pathways. To evaluate the molecular mechanism, we performed proteomic analysis of UPCDC-30245 treated cells. Our results revealed that UPCDC-30245 blocks endo-lysosomal degradation by inhibiting the formation of early endosome and reducing the acidity of the lysosome, an effect not observed with the potent p97 inhibitor CB-5083. This unique effect allows us to demonstrate UPCDC-30245 exhibits antiviral effects against coronavirus by blocking viral entry.
Collapse
Affiliation(s)
- Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
- Correspondence: (F.W.); (T.-F.C.); Tel.: +1 626-395-6772 (T.-F.C.)
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - William M. Rosencrans
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (F.W.); (T.-F.C.); Tel.: +1 626-395-6772 (T.-F.C.)
| |
Collapse
|
46
|
Danger signal extracellular calcium initiates differentiation of monocytes into SPP1/osteopontin-producing macrophages. Cell Death Dis 2022; 13:53. [PMID: 35022393 PMCID: PMC8755842 DOI: 10.1038/s41419-022-04507-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The danger signal extracellular calcium is pathophysiologically increased in the synovial fluid of patients with rheumatoid arthritis (RA). Calcium activates the NLRP3-inflammasome via the calcium-sensing receptor in monocytes/macrophages primed by lipopolysaccharide, and this effect is mediated by the uptake of calciprotein particles (CPPs) formed out of calcium, phosphate, and fetuin-A. Aim of the study was to unravel the influence of calcium on monocytes when the priming signal is not present. Monocytes were isolated from the blood of healthy controls and RA patients. Macrophages were characterized using scRNA-seq, DNA microarray, and proteomics. Imaging flow cytometry was utilized to study intracellular events. Here we show that extracellular calcium and CPPs lead to the differentiation of monocytes into calcium-macrophages when the priming signal is absent. Additional growth factors are not needed, and differentiation is triggered by calcium-dependent CPP-uptake, lysosomal alkalization due to CPP overload, and TFEB- and STAT3-dependent increased transcription of the lysosomal gene network. Calcium-macrophages have a needle-like shape, are characterized by excessive, constitutive SPP1/osteopontin production and a strong pro-inflammatory cytokine response. Calcium-macrophages differentiated out of RA monocytes show a stronger manifestation of this phenotype, suggesting the differentiation process might lead to the pro-inflammatory macrophage response seen in the RA synovial membrane.
Collapse
|
47
|
Robust LC3B lipidation analysis by precisely adjusting autophagic flux. Sci Rep 2022; 12:79. [PMID: 34996966 PMCID: PMC8742033 DOI: 10.1038/s41598-021-03875-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagic flux can be quantified based on the accumulation of lipidated LC3B in the presence of late-stage autophagy inhibitors. This method has been widely applied to identify novel compounds that activate autophagy. Here we scrutinize this approach and show that bafilomycin A1 (BafA) but not chloroquine is suitable for flux quantification due to the stimulating effect of chloroquine on non-canonical LC3B-lipidation. Significant autophagic flux increase by rapamycin could only be observed when combining it with BafA concentrations not affecting basal flux, a condition which created a bottleneck, rather than fully blocking autophagosome-lysosome fusion, concomitant with autophagy stimulation. When rapamycin was combined with saturating concentrations of BafA, no significant further increase of LC3B lipidation could be detected over the levels induced by the late-stage inhibitor. The large assay window obtained by this approach enables an effective discrimination of autophagy activators based on their cellular potency. To demonstrate the validity of this approach, we show that a novel inhibitor of the acetyltransferase EP300 activates autophagy in a mTORC1-dependent manner. We propose that the creation of a sensitized background rather than a full block of autophagosome progression is required to quantitatively capture changes in autophagic flux.
Collapse
|
48
|
Zimmann N, Rada P, Žárský V, Smutná T, Záhonová K, Dacks J, Harant K, Hrdý I, Tachezy J. Proteomic Analysis of Trichomonas vaginalis Phagolysosome, Lysosomal Targeting, and Unconventional Secretion of Cysteine Peptidases. Mol Cell Proteomics 2022; 21:100174. [PMID: 34763061 PMCID: PMC8717582 DOI: 10.1016/j.mcpro.2021.100174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
The lysosome represents a central degradative compartment of eukaryote cells, yet little is known about the biogenesis and function of this organelle in parasitic protists. Whereas the mannose 6-phosphate (M6P)-dependent system is dominant for lysosomal targeting in metazoans, oligosaccharide-independent sorting has been reported in other eukaryotes. In this study, we investigated the phagolysosomal proteome of the human parasite Trichomonas vaginalis, its protein targeting and the involvement of lysosomes in hydrolase secretion. The organelles were purified using Percoll and OptiPrep gradient centrifugation and a novel purification protocol based on the phagocytosis of lactoferrin-covered magnetic nanoparticles. The analysis resulted in a lysosomal proteome of 462 proteins, which were sorted into 21 classes. Hydrolases represented the largest functional class and included proteases, lipases, phosphatases, and glycosidases. Identification of a large set of proteins involved in vesicular trafficking (80) and turnover of actin cytoskeleton rearrangement (29) indicate a dynamic phagolysosomal compartment. Several cysteine proteases such as TvCP2 were previously shown to be secreted. Our experiments showed that secretion of TvCP2 was strongly inhibited by chloroquine, which increases intralysosomal pH, thus indicating that TvCP2 secretion occurs through lysosomes rather than the classical secretory pathway. Unexpectedly, we identified divergent homologues of the M6P receptor TvMPR in the phagolysosomal proteome, although T. vaginalis lacks enzymes for M6P formation. To test whether oligosaccharides are involved in lysosomal targeting, we selected the lysosome-resident cysteine protease CLCP, which possesses two glycosylation sites. Mutation of any of the sites redirected CLCP to the secretory pathway. Similarly, the introduction of glycosylation sites to secreted β-amylase redirected this protein to lysosomes. Thus, unlike other parasitic protists, T. vaginalis seems to utilize glycosylation as a recognition marker for lysosomal hydrolases. Our findings provide the first insight into the complexity of T. vaginalis phagolysosomes, their biogenesis, and role in the unconventional secretion of cysteine peptidases.
Collapse
Affiliation(s)
- Nadine Zimmann
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tamara Smutná
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kristína Záhonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Joel Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karel Harant
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
49
|
Drosophila D-idua Reduction Mimics Mucopolysaccharidosis Type I Disease-Related Phenotypes. Cells 2021; 11:cells11010129. [PMID: 35011691 PMCID: PMC8750945 DOI: 10.3390/cells11010129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/21/2023] Open
Abstract
Deficit of the IDUA (α-L-iduronidase) enzyme causes the lysosomal storage disorder mucopolysaccharidosis type I (MPS I), a rare pediatric neurometabolic disease, due to pathological variants in the IDUA gene and is characterized by the accumulation of the undegraded mucopolysaccharides heparan sulfate and dermatan sulfate into lysosomes, with secondary cellular consequences that are still mostly unclarified. Here, we report a new fruit fly RNAi-mediated knockdown model of a IDUA homolog (D-idua) displaying a phenotype mimicking some typical molecular features of Lysosomal Storage Disorders (LSD). In this study, we showed that D-idua is a vital gene in Drosophila and that ubiquitous reduction of its expression leads to lethality during the pupal stage, when the precise degradation/synthesis of macromolecules, together with a functional autophagic pathway, are indispensable for the correct development to the adult stage. Tissue-specific analysis of the D-idua model showed an increase in the number and size of lysosomes in the brain and muscle. Moreover, the incorrect acidification of lysosomes led to dysfunctional lysosome-autophagosome fusion and the consequent block of autophagy flux. A concomitant metabolic drift of glycolysis and lipogenesis pathways was observed. After starvation, D-idua larvae showed a quite complete rescue of both autophagy/lysosome phenotypes and metabolic alterations. Metabolism and autophagy are strictly interconnected vital processes that contribute to maintain homeostatic control of energy balance, and little is known about this regulation in LSDs. Our results provide new starting points for future investigations on the disease’s pathogenic mechanisms and possible pharmacological manipulations.
Collapse
|
50
|
Catch me if you can - the crosstalk of ZIKV and the restriction factor Tetherin. J Virol 2021; 96:e0211721. [PMID: 34935441 DOI: 10.1128/jvi.02117-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is a flavivirus that is mainly transmitted by Aedes mosquitos and normally causes mild symptoms. During the outbreak in the Americas in 2015, it was associated with more severe implications, like microcephaly in new-borns and the Gullain-Barré syndrome. The lack of specific vaccines and cures strengthen the need for a deeper understanding of the virus life cycle and virus-host interactions. The restriction factor tetherin (THN) is an interferon-inducible cellular protein with broad antiviral properties. It is known to inhibit the release of various enveloped viruses by tethering them to each other and to the cell membrane, thereby preventing their further spread. On the other hand, different viruses have developed various escape strategies against THN. Analysis of the crosstalk between ZIKV and THN revealed that in spite of a strong induction of THN mRNA expression in ZIKV-infected cells, this is not reflected by an elevated protein level of THN. Contrariwise, the THN protein level is decreased due to a reduced half-life. The increased degradation of THN in ZIKV infected cells involves the endo-lysosomal system, but does not depend on the early steps of autophagy. Enrichment of THN by depletion of the ESCRT-0 protein HRS diminishes ZIKV release and spread, which points out the capacity of THN to restrict ZIKV and explains the enhanced THN degradation in infected cells as an effective viral escape strategy. Importance Although tetherin expression is strongly induced by ZIKV infection there is a reduction in the amount of tetherin protein. This is due to an enhanced lysosomal degradation. However, if tetherin level is rescued release of ZIKV is impaired. This shows that tetherin is a restriction factor for ZIKV and the induction of an efficient degradation represents a viral escape strategy. To our knowledge this is the first study that describes and characterizes tetherin as an restriction factor for ZIKV life cycle.
Collapse
|