1
|
Song C, Jung D, Kendi AT, Rho JK, Kim EJ, Horn I, Curran GL, Ghattamaneni S, Shim JY, Kang PS, Kang D, Thakkar JB, Dewan S, Lowe VJ, Lee SB. Metformin Prevents Tumor Cell Growth and Invasion of Human Hormone Receptor-Positive Breast Cancer (HR+ BC) Cells via FOXA1 Inhibition. Int J Mol Sci 2024; 25:7494. [PMID: 39000600 PMCID: PMC11242876 DOI: 10.3390/ijms25137494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Women with type 2 diabetes (T2D) have a higher risk of being diagnosed with breast cancer and have worse survival than non-diabetic women if they do develop breast cancer. However, more research is needed to elucidate the biological underpinnings of these relationships. Here, we found that forkhead box A1 (FOXA1), a forkhead family transcription factor, and metformin (1,1-dimethylbiguanide hydrochloride), a medication used to treat T2D, may impact hormone-receptor-positive (HR+) breast cancer (BC) tumor cell growth and metastasis. Indeed, fourteen diabetes-associated genes are highly expressed in only three HR+ breast cancer cell lines but not the other subtypes utilizing a 53,805 gene database obtained from NCBI GEO. Among the diabetes-related genes, FOXA1, MTA3, PAK4, FGFR3, and KIF22 were highly expressed in HR+ breast cancer from 4032 breast cancer patient tissue samples using the Breast Cancer Gene Expression Omnibus. Notably, elevated FOXA1 expression correlated with poorer overall survival in patients with estrogen-receptor-positive/progesterone-receptor-positive (ER+/PR+) breast cancer. Furthermore, experiments demonstrated that loss of the FOXA1 gene inhibited tumor proliferation and invasion in vitro using MCF-7 and T47D HR+ breast cancer cell lines. Metformin, an anti-diabetic medication, significantly suppressed tumor cell growth in MCF-7 cells. Additionally, either metformin treatment or FOXA1 gene deletion enhanced tamoxifen-induced tumor growth inhibition in HR+ breast cancer cell lines within an ex vivo three-dimensional (3D) organoid model. Therefore, the diabetes-related medicine metformin and FOXA1 gene inhibition might be a new treatment for patients with HR+ breast cancer when combined with tamoxifen, an endocrine therapy.
Collapse
Affiliation(s)
- Christine Song
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
- Harvard University, Cambridge, MA 02138, USA
| | - Dawa Jung
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Ayse Tuba Kendi
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Jin Kyung Rho
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Eun-Joo Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Chungcheongnam, Republic of Korea;
| | - Ian Horn
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Geoffry L. Curran
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Sujala Ghattamaneni
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Ji Yeon Shim
- College of Nursing, Dankook University, Cheonan 31116, Chungcheongnam, Republic of Korea;
| | - Pil Soo Kang
- U&Hang Clinic, Asan 31514, Chungcheongnam, Republic of Korea;
| | - Daehun Kang
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Jay B. Thakkar
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Sannidhi Dewan
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Val J. Lowe
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Seung Baek Lee
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Mattos Pereira V, Nair S. Targeting Mitochondrial ATP-Synthase: Evolving Role of Chromium as a Regulator of Carbohydrate and Fat Metabolism. Biol Trace Elem Res 2024; 202:1318-1324. [PMID: 38133723 DOI: 10.1007/s12011-023-04017-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The micronutrient trivalent chromium, 3 + (Cr(III)), is postulated to play a role in carbohydrate, lipid, and protein metabolism. Although the mechanisms by which chromium mediates its actions are largely unknown, previous studies have suggested that pharmacological doses of chromium improve cardiometabolic symptoms by augmenting carbohydrate and lipid metabolism. Activation of AMP-activated protein kinase (AMPK) was among the many mechanisms proposed to explain the salutary actions of chromium on carbohydrate metabolism. However, the molecular pathways leading to the activation of AMPK by chromium remained elusive. In an elegant series of studies, Sun and coworkers recently demonstrated that chromium augments AMPK activation by binding to the beta-subunit of ATP synthase and inhibiting its enzymatic activity. This mini-review attempts to trace the evolving understanding of the molecular mechanisms of chromium leading to the hitherto novel pathway unraveled by Sun and coworkers and its potential implication to our understanding of the biological actions of chromium.
Collapse
Affiliation(s)
- Vitoria Mattos Pereira
- University of Wyoming, School of Pharmacy, and the Biomedical Sciences Graduate Program, College of Health Sciences, Laramie, WY, 82072, USA
| | - Sreejayan Nair
- University of Wyoming, School of Pharmacy, and the Biomedical Sciences Graduate Program, College of Health Sciences, Laramie, WY, 82072, USA.
| |
Collapse
|
3
|
She L, Sun J, Xiong L, Li A, Li L, Wu H, Ren J, Wang W, Liang G, Zhao X. Ginsenoside RK1 improves cognitive impairments and pathological changes in Alzheimer's disease via stimulation of the AMPK/Nrf2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155168. [PMID: 37925892 DOI: 10.1016/j.phymed.2023.155168] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/30/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The pathogenesis of Alzheimer's disease (AD) is complex, resulting in unsatisfactory effects of single-target therapeutic drugs. Accumulation evidence suggests that low toxicity multi-target drugs may play effective roles in AD. Ginseng is the root and rhizome of Panax ginseng Meyer, which can be used not only as herbal medicine but also as a functional food to support body functions. Ginsenoside RK1 (RK1), obtained from ginseng plants through high-temperature treatment, has antiapoptotic, antioxidant, anti-inflammatory effects and these events are involved in the development of AD. So, we believe that RK1 may be an effective drug for the treatment of AD. HYPOTHESIS/PURPOSE We aimed to investigate the potential protective effects and mechanisms of RK1 in AD. METHODS Neuronal damage was detected by MTT assay, LDH assay, immunofluorescence and western blotting. Oxidative stress was measured by JC-1 staining, reactive oxygen species (ROS) staining, superoxide dismutase (SOD) and malonaldehyde (MDA). The cognitive deficit was measured through morris water maze (MWM) and novel object recognition (NOR) tests. RESULTS RK1 attenuated Aβ-induced apoptosis, restored mitochondrial membrane potential (ΔΨm), and reduced intracellular levels of ROS in both PC12 cells and primary cultured neurons. In vivo, RK1 significantly improved cognitive deficits and mitigated AD-like pathological features. Notably, RK1 demonstrated superior efficacy compared to the positive control drug, donepezil. Mechanistically, our study elucidates that RK1 modulates the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target, NF-E2-related factor 2 (Nrf2), leading to the optimization of mitochondrial membrane potential, reduction of ROS levels, and mitigation of AD-like pathology. It's noteworthy that blocking the AMPK signaling pathway attenuated the protective effects of RK1. CONCLUSION RK1 demonstrates superior efficacy in alleviating cognitive deficits and mitigating pathological changes compared to donepezil. These findings suggest the potential utility of RK1-based therapies in the development of treatments for AD.
Collapse
Affiliation(s)
- Lingyu She
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Li Xiong
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ankang Li
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, Zhejiang 321399, China
| | - Liwei Li
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Haibin Wu
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Juan Ren
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Wei Wang
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, Zhejiang 321399, China
| | - Guang Liang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Xia Zhao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
4
|
Baek H, Sanjay, Park M, Lee HJ. Cyanidin-3-O-glucoside protects the brain and improves cognitive function in APPswe/PS1ΔE9 transgenic mice model. J Neuroinflammation 2023; 20:268. [PMID: 37978414 PMCID: PMC10655395 DOI: 10.1186/s12974-023-02950-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is a natural anthocyanin with antioxidant, anti-inflammatory, and antitumor properties. However, as the effects of C3G on the amyloidogenic pathway, autophagy, tau phosphorylation, neuronal cell death, and synaptic plasticity in Alzheimer's disease models have not been reported, we attempted to investigate the same in the brains of APPswe/PS1ΔE9 mice were analyzed. After oral administration of C3G (30 mg/kg/day) for 16 weeks, the cortical and hippocampal regions in the brains of APPswe/PS1ΔE9 mice were analyzed. C3G treatment reduced the levels of soluble and insoluble Aβ (Aβ40 and Aβ42) peptides and reduced the protein expression of the amyloid precursor protein, presenilin-1, and β-secretase in the cortical and hippocampal regions. And C3G treatment upregulated the expression of autophagy-related markers, LC3B-II, LAMP-1, TFEB, and PPAR-α and downregulated that of SQSTM1/p62, improving the autophagy of Aβ plaques and neurofibrillary tangles. In addition, C3G increased the protein expression of phosphorylated-AMPK/AMPK and Sirtuin 1 and decreased that of mitogen-activated protein kinases, such as phosphorylated-Akt/Akt and phosphorylated-ERK/ERK, thus demonstrating its neuroprotective effects. Furthermore, C3G regulated the PI3K/Akt/GSK3β signaling by upregulating phosphorylated-Akt/Akt and phosphorylated-GSK3β/GSK3β expression. C3G administration mitigated tau phosphorylation and improved synaptic function and plasticity by upregulating the expression of synapse-associated proteins synaptophysin and postsynaptic density protein-95. Although the potential of C3G in the APPswe/PS1ΔE9 mouse models has not yet been reported, oral administration of the C3G is shown to protect the brain and improve cognitive behavior.
Collapse
Affiliation(s)
- Hana Baek
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Sanjay
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
5
|
Gao C, Chen J, Bai J, Zhang H, Tao Y, Wu S, Li H, Wu H, Shen Q, Yin T. High glucose-upregulated PD-L1 expression through RAS signaling-driven downregulation of PTRH1 leads to suppression of T cell cytotoxic function in tumor environment. J Transl Med 2023; 21:461. [PMID: 37434177 DOI: 10.1186/s12967-023-04302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Nearly 80% of patients with pancreatic cancer suffer from glucose intolerance or diabetes. Pancreatic cancer complicated by diabetes has a more immunosuppressive tumor microenvironment (TME) and is associated with a worse prognosis. The relationship between glucose metabolism and programmed cell death-Ligand 1 (PD-L1) is close and complex. It is important to explore the regulation of high glucose on PD-L1 expression in pancreatic cancer and its effect on infiltrating immune effectors in the tumor microenvironment. METHODS Diabetic murine models (C57BL/6) were used to reveal different immune landscape in euglycemic and hyperglycemic pancreatic tumor microenvironment. Bioinformatics, WB, iRIP [Improved RNA Binding Protein (RBP) Immunoprecipitation]-seq were used to confirm the potential regulating role of peptidyl-tRNA hydrolase 1 homolog (PTRH1) on the stability of the PD-L1 mRNA. Postoperative specimens were used to identify the expression of PD-L1 and PTRH1 in pancreatic cancer. Co-culturing T cells with pancreatic cancer cells to explore the immunosuppressive effect of pancreatic tumor cells. RESULTS Our results revealed that a high dose of glucose enhanced the stability of the PD-L1 mRNA in pancreatic tumor cells by downregulating PTRH1 through RAS signaling pathway activation following epidermal growth factor receptor (EGFR) stimulation. PTRH1 overexpression significantly suppressed PD-L1 expression in pancreatic cells and improved the proportion and cytotoxic function of CD8+ T cells in the pancreatic TME of diabetic mice. CONCLUSIONS PTRH1, an RBP, plays a key role in the regulation of PD-L1 by high glucose and is closely related to anti-tumor immunity in the pancreatic TME.
Collapse
Affiliation(s)
- Chenggang Gao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianwei Bai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haoxiang Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanyi Tao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shihong Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hehe Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Shen
- Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Wu H, Lin T, Chen Y, Chen F, Zhang S, Pang H, Huang L, Yu C, Wang G, Wu C. Ethanol Extract of Rosa laevigata Michx. Fruit Inhibits Inflammatory Responses through NF-κB/MAPK Signaling Pathways via AMPK Activation in RAW 264.7 Macrophages. Molecules 2023; 28:molecules28062813. [PMID: 36985786 PMCID: PMC10054580 DOI: 10.3390/molecules28062813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The fruit of Rosa laevigata Michx. (FR), a traditional Chinese herb utilized for the treatment of a variety diseases, has notably diverse pharmacological activities including hepatoprotective, anti-oxidant, and anti-inflammatory effects. Despite ongoing research on illustrating the underlying anti-inflammatory mechanism of FR, the principal mechanism remained inadequately understood. In this study, we investigated in depth the molecular mechanism of the anti-inflammatory actions of the ethanol extract of FR (EFR) and its potential targets using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro. We showed that EFR effectively ameliorated the overproduction of inflammatory mediators and cytokines, as well as the expression of related genes. It was further demonstrated that LPS-induced activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) were significantly inhibited by pretreatment with EFR, accompanied by a concomitant decrease in the nuclear translocation of the p65 subunit of NF-κB and activator protein 1 (AP-1). In addition, EFR pretreatment potently prevented LPS-induced decreased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Our data also revealed that the activation of AMPK and subsequent inhibition of the mammalian target of the rapamycin (mTOR) signaling pathway was probably responsible for the inhibitory effect of EFR on LPS-induced inflammatory responses, evidenced by reverse changes observed under the condition of AMPK inactivation following co-treatment with the AMPK-specific inhibitor Compound C. Finally, the main components with an anti-inflammatory effect in EFR were identified as madecassic acid, ellagic acid, quinic acid, and procyanidin C1 by LC-MS and testified based on the inhibition of NO production and inflammatory mediator expression. Taken together, our results indicated that EFR was able to ameliorate inflammatory responses via the suppression of MAPKs/NF-κB signaling pathways following AMPK activation, suggesting the therapeutic potential of EFR for inflammatory diseases.
Collapse
Affiliation(s)
- Hongtan Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Tingting Lin
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China
| | - Yupei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Fangfang Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Shudi Zhang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Haiyue Pang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Lisen Huang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Chihli Yu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Gueyhorng Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Chun Wu
- Department of Clinical Medicine, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
7
|
Sanayei M, Kalejahi P, Mahinkazemi M, Fathifar Z, Barzegar A. The effect of Chlorella vulgaris on obesity related metabolic disorders: a systematic review of randomized controlled trials. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:833-842. [PMID: 33951762 DOI: 10.1515/jcim-2021-0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Chlorella vulgaris (CV) as a unicellular algae is a dietary supplement with beneficial nutritious content, used for decades in some countries. Positive effects for CV supplementation on metabolic parameters has been established in animal and human studies. However there is a gap for this results summary for a definite conclusion announce. This systematic review aimed to summarize the effects of CV on body weight, lipid profile, and blood glucose. CONTENT PRISMA guidelines were charted in this review. Subject search was performed in MEDLINE, ProQuest, PubMed, ISI web of sciences, Google scholar, Cochrane and Scopus databases for randomized clinical trials published in English languages, until December 2020, which assessed the effects of CV on metabolic syndrome related symptoms in clinical trials. SUMMARY Out of 4,821 records screened, after duplicate and irrelevant exclusion by title and abstract, 20 articles remained for full text screening. Finally a total of 12 articles met the study inclusion criteria and were assessed for study method and results. OUTLOOK The findings showed controversies in anthropometric, glycemic and lipid profile effects. CV may have beneficial effects on obesity-related metabolic disorders; however, collected studies lacked statistical power to reach a definite conclusion. More well-designed studies are required.
Collapse
Affiliation(s)
- Mahzad Sanayei
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Kalejahi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mahinkazemi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Fathifar
- Student Research Committee, Faculty of Health Information Management, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Barzegar
- Nutrition Research Center, Department of Community Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Pinho RM, Garas LC, Huang BC, Weimer BC, Maga EA. Malnourishment affects gene expression along the length of the small intestine. Front Nutr 2022; 9:894640. [PMID: 36118759 PMCID: PMC9478944 DOI: 10.3389/fnut.2022.894640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Malnourishment is a risk factor for childhood mortality, jeopardizing the health of children by aggravating pneumonia/acute respiratory infections and diarrheal diseases. Malnourishment causes morphophysiological changes resulting in stunting and wasting that have long-lasting consequences such as cognitive deficit and metabolic dysfunction. Using a pig model of malnutrition, the interplay between the phenotypic data displayed by the malnourished animals, the gene expression pattern along the intestinal tract, microbiota composition of the intestinal contents, and hepatic metabolite concentrations from the same animals were correlated using a multi-omics approach. Samples from the duodenum, jejunum, and ileum of malnourished (protein and calorie-restricted diet) and full-fed (no dietary restrictions) piglets were subjected to RNA-seq. Gene co-expression analysis and phenotypic correlations were made with WGCNA, while the integration of transcriptome with microbiota composition and the hepatic metabolite profile was done using mixOmics. Malnourishment caused changes in tissue gene expression that influenced energetic balance, cell proliferation, nutrient absorption, and response to stress. Repression of antioxidant genes, including glutathione peroxidase, in coordination with induction of metal ion transporters corresponded to the hepatic metabolite changes. These data indicate oxidative stress in the intestine of malnourished animals. Furthermore, several of the phenotypes displayed by these animals could be explained by changes in gene expression.
Collapse
Affiliation(s)
- Raquel M. Pinho
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Raquel M. Pinho
| | - Lydia C. Garas
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - B. Carol Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Elizabeth A. Maga
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Freyria NJ, Kuo A, Chovatia M, Johnson J, Lipzen A, Barry KW, Grigoriev IV, Lovejoy C. Salinity tolerance mechanisms of an Arctic Pelagophyte using comparative transcriptomic and gene expression analysis. Commun Biol 2022; 5:500. [PMID: 35614207 PMCID: PMC9133084 DOI: 10.1038/s42003-022-03461-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Little is known at the transcriptional level about microbial eukaryotic adaptations to short-term salinity change. Arctic microalgae are exposed to low salinity due to sea-ice melt and higher salinity with brine channel formation during freeze-up. Here, we investigate the transcriptional response of an ice-associated microalgae over salinities from 45 to 8. Our results show a bracketed response of differential gene expression when the cultures were exposed to progressively decreasing salinity. Key genes associated with salinity changes were involved in specific metabolic pathways, transcription factors and regulators, protein kinases, carbohydrate active enzymes, and inorganic ion transporters. The pelagophyte seemed to use a strategy involving overexpression of Na+-H+ antiporters and Na+ -Pi symporters as salinity decreases, but the K+ channel complex at higher salinities. Specific adaptation to cold saline arctic conditions was seen with differential expression of several antifreeze proteins, an ice-binding protein and an acyl-esterase involved in cold adaptation.
Collapse
Affiliation(s)
- Nastasia J Freyria
- Département de biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada.
- Québec Océan, Département de biologie, Université Laval, Québec, Canada.
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Connie Lovejoy
- Département de biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada.
- Québec Océan, Département de biologie, Université Laval, Québec, Canada.
| |
Collapse
|
10
|
Patel SJ, Liu N, Piaker S, Gulko A, Andrade ML, Heyward FD, Sermersheim T, Edinger N, Srinivasan H, Emont MP, Westcott GP, Luther J, Chung RT, Yan S, Kumari M, Thomas R, Deleye Y, Tchernof A, White PJ, Baselli GA, Meroni M, De Jesus DF, Ahmad R, Kulkarni RN, Valenti L, Tsai L, Rosen ED. Hepatic IRF3 fuels dysglycemia in obesity through direct regulation of Ppp2r1b. Sci Transl Med 2022; 14:eabh3831. [PMID: 35320000 PMCID: PMC9162056 DOI: 10.1126/scitranslmed.abh3831] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.
Collapse
Affiliation(s)
- Suraj J. Patel
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Digestive and Liver Diseases, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Liu
- Harvard Medical School, Boston, MA 02115, USA
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children’s Hospital, Boston, MA 02215, USA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Sam Piaker
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Maynara L. Andrade
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Frankie D. Heyward
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Tyler Sermersheim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nufar Edinger
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Margo P. Emont
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Gregory P. Westcott
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jay Luther
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Raymond T. Chung
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shuai Yan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Manju Kumari
- Department of Cardiology, Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Reeby Thomas
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Yann Deleye
- Duke Molecular Physiology Institute and Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - André Tchernof
- Institut Universitaire de Cardiologie and Pneumologie de Québec–Université Laval (IUCPQUL), Québec City, Canada
| | - Phillip J. White
- Duke Molecular Physiology Institute and Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido A. Baselli
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
- Precision Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario F. De Jesus
- Harvard Medical School, Boston, MA 02115, USA
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rohit N. Kulkarni
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
- Precision Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Leung I, Veisaga ML, Espinal M, Zhang W, Barnum R, Barbieri MA. Anti-lipid droplets accumulation effect of Annona montana (mountain soursop) leaves extract on differentiation of preadipocytes. BIOCELL 2022; 46:567-578. [PMID: 34970018 PMCID: PMC8713457 DOI: 10.32604/biocell.2022.014009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Annona genus is a member of Annonaceae, one of the largest families of plants across tropical and subtropical regions. This family has been used in several ethnomedicinal practices to treat a multitude of human diseases. However, the molecular mechanism underlying its effect on the lipid droplet formation and on the expression of adipogenic markers of this plant remain to be investigated. In this study, we examined whether the extracts from the aerial part of Annona montana affect in vitro differentiation of preadipocytes. For our investigations, both mouse embryo fibroblast 3T3-L1 and normal human primary subcutaneous preadipocytes were incubated with Annona montana extracts (-and its subfractions-) and then analyzed on preadipocyte differentiation, lipid content, lipid droplet size and number, the expression of adipogenic-specific transcriptional factors, as well as cell survival. From our examinations, we found the Annona montana ethyl acetate extract to exhibit a potent inhibitory effect on adipogenesis, without affecting cell survival, in a dose-dependent manner. Such inhibitory effects included a significant decrease in the accumulation of lipid content by both a dramatic reduction of size and number of lipid droplets. This extract strongly attenuated the expression of PPARγ and HMGB2. It also inhibited the expression of CEBPα, FAS, and Akt without influencing Erk1/2 activities. Our findings suggest that specifically, the Annona montana ethyl acetate extract has a prominent inhibitory effect in cellular pathways of adipocyte differentiation by modulating specific gene expression, which is known to perform a pivotal role during adipogenesis.
Collapse
Affiliation(s)
- Ivy Leung
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - Maria-Luisa Veisaga
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | - Margarita Espinal
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - Wei Zhang
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - Robert Barnum
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - Manuel Alejandro Barbieri
- Department of Biological Sciences, Florida International University, Miami, 33199, USA.,Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA.,Fairchild Tropical Botanic Garden, Coral Gables, 33156, USA.,International Center of Tropical Botany, Florida International University, Miami, 33199, USA
| |
Collapse
|
12
|
Albeltagy RS, Mumtaz F, Abdel Moneim AE, El-Habit OH. N-Acetylcysteine Reduces miR-146a and NF-κB p65 Inflammatory Signaling Following Cadmium Hepatotoxicity in Rats. Biol Trace Elem Res 2021; 199:4657-4665. [PMID: 33454892 DOI: 10.1007/s12011-021-02591-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
We performed a thorough screening and analysis of the impact of cadmium chloride (CdCl2) and N-acetylcysteine (NAC) on the miR146a/NF-κB p65 inflammatory pathway and mitochondrial biogenesis dysfunction in male albino rats. A total of 24 male albino rats were divided into three groups: a control group, a CdCl2-treated group (3 mg/kg, orally), and a CdCl2 + NAC-treated group (200 mg/kg of NAC, 1 h after CdCl2 treatment), for 60 consecutive days. Real-time quantitative PCR was used to analyze the expression of miR146a, Irak1, Traf6, Nrf1, Nfe2l2, Pparg, Prkaa, Stat3, Tfam, Tnfa, and Il1b, whereas tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 protein levels were assessed using ELISA, and NF-κB p65 was detected using western blotting. A significant restoration of homeostatic inflammatory processes as well as mitochondrial biogenesis was observed after NAC and CdCl2 treatment. Decreased miR146a and NF-κB p65 were also found after treatment with NAC and CdCl2 compared with CdCl2 treatment alone. Collectively, our findings demonstrate that CdCl2 caused mtDNA release because of Tfam loss, leading to NF-κB p65 activation. Co-treatment with NAC could alleviate Cd-induced genotoxicity in liver tissue. We concluded that adding NAC to CdCl2 resulted in a decreased signaling of the NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Rasha S Albeltagy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Farah Mumtaz
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Ola H El-Habit
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
13
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
14
|
Yang H, Xie J, Wang N, Zhou Q, Lu Y, Qu Z, Wang H. Effects of Miao sour soup on hyperlipidemia in high-fat diet-induced obese rats via the AMPK signaling pathway. Food Sci Nutr 2021; 9:4266-4277. [PMID: 34401077 PMCID: PMC8358355 DOI: 10.1002/fsn3.2394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
Hyperlipidemia is a common characteristic of obese animals. Identifying the factors involved in the regulation of dietary lipid metabolism is the most beneficial way to improve health. Miao sour soup (MSS) is a fermented food made from tomato and red pepper that contains lycopene, capsaicin, and organic acids. We conducted this study to investigate the regulatory functions and mechanisms of MSS on the blood lipid levels of high-fat diet-induced obese rats. In our preventive study, rats were fed normal diet (ND1), high-fat diet (HFD1), HFD + 4 g/kg BW MSS (HFD + LS1), and HFD + 8 g/kg BW MSS (HFD + HS1). We found that MSS significantly reduced the body weight and fat accumulation and improved the blood lipid levels of rats. MSS significantly increased the expression of AMP-activated protein kinase-alpha (AMPKα), attenuated the expression of the adipogenic transcription factor sterol regulatory element-binding protein-1c (SREBP-1c), and suppressed the expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase alpha (ACCα), the critical regulators of hepatic lipid metabolism. Additionally, we also conducted a treatment study, and we grouped rats to receive ND2, HFD2, PC2, HFD + LS2, and HFD + HS2 for another 10 weeks. MSS treatment reduced the body weight, fat deposition, and percentage of lipid droplets and regulated the plasma lipid content. MSS significantly increased the expression of AMPK and alleviated the expression of SREBP-1c, ACC, and FAS. Taken together, these findings suggest that MSS prevents and treats hyperlipidemia in obese rats by regulating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Jiao Xie
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Nanlan Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Qianqian Zhou
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| | - Yang Lu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
- Guiyang Maternal and Child Healthcare HospitalGuiyangChina
| | - Zihan Qu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
- Laishan District Center for Disease Control and PreventionYantaiChina
| | - Huiqun Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
15
|
Augmented muscle glycogen utilization following a single session of sprint training in hypoxia. Eur J Appl Physiol 2021; 121:2981-2991. [PMID: 34228222 DOI: 10.1007/s00421-021-04748-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE This study determined the effect of a single session of sprint interval training in hypoxia on muscle glycogen content among athletes. METHODS Ten male college track and field sprinters (mean ± standard error of the mean: age, 21.1 ± 0.2 years; height, 177 ± 2 cm; body weight, 67 ± 2 kg) performed two exercise trials under either hypoxia [HYPO; fraction of inspired oxygen (FiO2), 14.5%] or normoxia (NOR: FiO2, 20.9%). The exercise consisted of 3 × 30 s maximal cycle sprints with 8-min rest periods between sets. Before and immediately after the exercise, the muscle glycogen content was measured using carbon magnetic resonance spectroscopy in vastus lateralis and vastus intermedius muscles. Moreover, power output, blood lactate concentrations, metabolic responses (respiratory oxygen uptake and carbon dioxide output), and muscle oxygenation were evaluated. RESULTS Exercise significantly decreased muscle glycogen content in both trials (interaction, P = 0.03; main effect for time, P < 0.01). Relative changes in muscle glycogen content following exercise were significantly higher in the HYPO trial (- 43.5 ± 0.4%) than in the NOR trial (- 34.0 ± 0.3%; P < 0.01). The mean power output did not significantly differ between the two trials (P = 0.80). The blood lactate concentration after exercise was not significantly different between trials (P = 0.31). CONCLUSION A single session of sprint interval training (3 × 30 s sprints) in hypoxia caused a greater decrease in muscle glycogen content compared with the same exercise under normoxia without interfering with the power output.
Collapse
|
16
|
Fu X, Zong T, Yang P, Li L, Wang S, Wang Z, Li M, Li X, Zou Y, Zhang Y, Htet Aung LH, Yang Y, Yu T. Nicotine: Regulatory roles and mechanisms in atherosclerosis progression. Food Chem Toxicol 2021; 151:112154. [PMID: 33774093 DOI: 10.1016/j.fct.2021.112154] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Smoking is an independent risk factor for atherosclerosis. The smoke produced by tobacco burning contains more than 7000 chemicals, among which nicotine is closely related to the occurrence and development of atherosclerosis. Nicotine, a selective cholinergic agonist, accelerates the formation of atherosclerosis by stimulating nicotinic acetylcholine receptors (nAChRs) located in neuronal and non-neuronal tissues. This review introduces the pathogenesis of atherosclerosis and the mechanisms involving nicotine and its receptors. Herein, we focus on the various roles of nicotine in atherosclerosis, such as upregulation of growth factors, inflammation, and the dysfunction of endothelial cells, vascular smooth muscle cells (VSMC) as well as macrophages. In addition, nicotine can stimulate the generation of reactive oxygen species, cause abnormal lipid metabolism, and activate immune cells leading to the onset and progression of atherosclerosis. Exosomes, are currently a research hotspot, due to their important connections with macrophages and the VSMC, and may represent a novel application into future preventive treatment to promote the prevention of smoking-related atherosclerosis. In this review, we will elaborate on the regulatory mechanism of nicotine on atherosclerosis, as well as the effects of interference with nicotine receptors and the use of exosomes to prevent atherosclerosis development.
Collapse
Affiliation(s)
- Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lin Li
- Department of Vascular Surgery, The Qingdao Hiser Medical Center, Qingdao, Shandong Province, China
| | - Shizhong Wang
- The Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 66000, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, People's Republic of China.
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| |
Collapse
|
17
|
Oringanje C, Delacruz LR, Han Y, Luckhart S, Riehle MA. Overexpression of Activated AMPK in the Anopheles stephensi Midgut Impacts Mosquito Metabolism, Reproduction and Plasmodium Resistance. Genes (Basel) 2021; 12:genes12010119. [PMID: 33478058 PMCID: PMC7835765 DOI: 10.3390/genes12010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial integrity and homeostasis in the midgut are key factors controlling mosquito fitness and anti-pathogen resistance. Targeting genes that regulate mitochondrial dynamics represents a potential strategy for limiting mosquito-borne diseases. AMP-activated protein kinase (AMPK) is a key cellular energy sensor found in nearly all eukaryotic cells. When activated, AMPK inhibits anabolic pathways that consume ATP and activates catabolic processes that synthesize ATP. In this study, we overexpressed a truncated and constitutively active α-subunit of AMPK under the control of the midgut-specific carboxypeptidase promotor in the midgut of female Anopheles stephensi. As expected, AMPK overexpression in homozygous transgenic mosquitoes was associated with changes in nutrient storage and metabolism, decreasing glycogen levels at 24 h post-blood feeding when transgene expression was maximal, and concurrently increasing circulating trehalose at the same time point. When transgenic lines were challenged with Plasmodium falciparum, we observed a significant decrease in the prevalence and intensity of infection relative to wild type controls. Surprisingly, we did not observe a significant difference in the survival of adult mosquitoes fed either sugar only or both sugar and bloodmeals throughout adult life. This may be due to the limited period that the transgene was activated before homeostasis was restored. However, we did observe a significant decrease in egg production, suggesting that manipulation of AMPK activity in the mosquito midgut resulted in the re-allocation of resources away from egg production. In summary, this work identifies midgut AMPK activity as an important regulator of metabolism, reproduction, and innate immunity in An. stephensi, a highly invasive and important malaria vector species.
Collapse
Affiliation(s)
| | | | - Yunan Han
- Department of Health Sciences, ECPI University, Virginia Beach, VA 23462, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
- Correspondence: ; Tel.: +1-520-626-8500
| |
Collapse
|
18
|
Ma Y, Maruta H, Sun B, Wang C, Isono C, Yamashita H. Effects of long-term taurine supplementation on age-related changes in skeletal muscle function of Sprague-Dawley rats. Amino Acids 2021; 53:159-170. [PMID: 33398526 DOI: 10.1007/s00726-020-02934-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022]
Abstract
Taurine (2-aminoethanesulfonic acid) is a free amino acid found abundantly in mammalian tissues. Increasing evidence suggests that taurine plays a role in the maintenance of skeletal muscle function and increase of exercise capacity. Most energy drinks contain this amino acid; however, there is insufficient research on the effects of long-term, low-dose supplementation of taurine. In this study, we investigated the effects of long-term administration of taurine at low doses on aging in rodents. In Experiment 1, we examined age-related changes in aging Sprague-Dawley (SD) rats (32-92 weeks old) that O2 consumption and spontaneous activity decreased significantly with aging. In Experiment 2, we examined the effects of long-term (21-week) administration of taurine on healthy aging SD rats. SD rats were stabilized for 32-34 weeks and divided into three groups, administrated water (control), 0.5% taurine (25 mg/kg body weight (BW)/day), or 1% taurine (50 mg/kg BW/day) from age 34 to 56 weeks (5 days/week, 5 mL/kg BW). Our findings suggest that long-term administration of taurine at relatively low dose could attenuate the age-related decline in O2 consumption and spontaneous locomotor activity. Upon intestinal absorption, taurine might modulate age-related changes in respiratory metabolism and skeletal muscle function via peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), succinate dehydrogenase (SDH), cytochrome c (Cycs), myocyte enhancer factor 2A (MEF2A), glucose transporter 4 (GLUT4), and myoglobin, which are regulated by the activation of AMP-activated protein kinase (AMPK). This article examines the mechanism underlying the effects of taurine on age-related changes, which may have potential clinical implications.
Collapse
Affiliation(s)
- Yun Ma
- Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, 719-1197, Japan
| | - Hitomi Maruta
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama, 719-1197, Japan
| | - Baojun Sun
- Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, 719-1197, Japan
| | - Chengduo Wang
- Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, 719-1197, Japan
| | - Chiaki Isono
- Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, 719-1197, Japan
| | - Hiromi Yamashita
- Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, 719-1197, Japan. .,Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama, 719-1197, Japan.
| |
Collapse
|
19
|
Montrose K, López Cabezas RM, Paukštytė J, Saarikangas J. Winter is coming: Regulation of cellular metabolism by enzyme polymerization in dormancy and disease. Exp Cell Res 2020; 397:112383. [PMID: 33212148 DOI: 10.1016/j.yexcr.2020.112383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Metabolism feeds growth. Accordingly, metabolism is regulated by nutrient-sensing pathways that converge growth promoting signals into biosynthesis by regulating the activity of metabolic enzymes. When the environment does not support growth, organisms invest in survival. For cells, this entails transitioning into a dormant, quiescent state (G0). In dormancy, the activity of biosynthetic pathways is dampened, and catabolic metabolism and stress tolerance pathways are activated. Recent work in yeast has demonstrated that dormancy is associated with alterations in the physicochemical properties of the cytoplasm, including changes in pH, viscosity and macromolecular crowding. Accompanying these changes, numerous metabolic enzymes transition from soluble to polymerized assemblies. These large-scale self-assemblies are dynamic and depolymerize when cells resume growth. Here we review how enzyme polymerization enables metabolic plasticity by tuning carbohydrate, nucleic acid, amino acid and lipid metabolic pathways, with particular focus on its potential adaptive value in cellular dormancy.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Neuroscience Center, University of Helsinki, Finland.
| |
Collapse
|
20
|
Ashida H, Tian X, Kitakaze T, Yamashita Y. Bisacurone suppresses hepatic lipid accumulation through inhibiting lipogenesis and promoting lipolysis. J Clin Biochem Nutr 2020; 67:43-52. [PMID: 32801468 PMCID: PMC7417797 DOI: 10.3164/jcbn.20-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
Turmeric and its components have various health beneficial functions. However, little is known about function of bisacurone, which is one of the sesquiterpenes in turmeric, at the compound level. In this study, we investigated the preventive effect of bisacurone on hepatic lipid accumulation and its mechanism in HepG2 cells and ICR mice. In HepG2 cells, bisacurone significantly inhibited fatty acid-induced intracellular lipid accumulation in a dose-dependent manner. Bisacurone at 10 µM increased protein expression of peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase-1A accompanied by phosphorylation of AMP-activated protein kinase. In the liver of ICR mice, bisacurone decreased total lipids, triglyceride, and cholesterol contents. Bisacurone at 10 mg/kg body weight increased phosphorylation of AMP-activated protein kinase, and its downstream acetyl-CoA carboxylase as a rate-limiting enzyme for lipogenesis, while it decreased the nuclear translocation level of sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein as the major transcription factors for lipogenesis. On the other hand, bisacurone promoted lipolysis by up-expression of peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase-1A. Thus, bisacurone might be a valuable food factor for preventing hepatic lipid accumulation by inhibiting lipogenesis and promoting lipolysis through phosphorylation of AMP-activated protein kinase.
Collapse
Affiliation(s)
- Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Xiaokuo Tian
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Tomoya Kitakaze
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
21
|
Gao L, Hu Y, Hu D, Li Y, Yang S, Dong X, Alharbi SA, Liu H. Anti-obesity activity of gold nanoparticles synthesized from Salacia chinensis modulates the biochemical alterations in high-fat diet-induced obese rat model via AMPK signaling pathway. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
22
|
Ran D, Ma Y, Liu W, Luo T, Zheng J, Wang D, Song R, Zhao H, Zou H, Gu J, Yuan Y, Bian J, Liu Z. TGF-β-activated kinase 1 (TAK1) mediates cadmium-induced autophagy in osteoblasts via the AMPK / mTORC1 / ULK1 pathway. Toxicology 2020; 442:152538. [PMID: 32693121 DOI: 10.1016/j.tox.2020.152538] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 01/28/2023]
Abstract
Cadmium (Cd) is one of worldwide environmental pollutants that causes bone homeostasis, which depends on the resorption of bones by osteoclasts and formation of bones by the osteoblasts (OB). However, the Cd toxicity on OB and its mechanism are unclear. Autophagy is an evolutionarily conserved degradation process in which domestic intracellular components are selectively digested for the recycling of nutrients and energy. This process is indispensable for cell homeostasis maintenance and stress responses. Dysregulation at the level of autophagic activity consequently disturbs the balance between bone formation and bone resorption and mediates the onset and progression of multiple bone diseases, including osteoporosis. TAK1 has been recently emerged as an activator of AMPK and hence an autophagy inducer. AMPK is a key molecule that induces autophagy and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by mTORC1. In this study, we found that Cd treatment caused the formation of autophagosomes, LC3-II lipidation and p62 downregulation, and the increased autophagic flux, indicating that Cd treatment induced autophagy in OBs. Cd treatment induced TAK1 activation mediated AMPK phosphorylation, which promoted autophagy via phosphorylation of ULK1 at S317. Meanwhile, Cd treatment dramatically decreased mTORC1, S6K1, 4E-BP1, S6, ULK1S555 and ULK1S757 phosphorylation, suggesting that mTORC1 activity was inhibited and inactive mTORC1 prevents ULK1 activation by phosphorylating ULK1 at SerS555 and Ser757. Our data strongly suggest that TAK1 mediates AMPK activation, which activates ULK1 by phosphorylating ULK1S317 and suppressing mTORC1-mediated ULK1S555 and ULK1S757 phosphorylation. Our study has revealed a signaling mechanism for TAK1 in Cd-induced autophagy in OBs.
Collapse
Affiliation(s)
- Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Tongwang Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China.
| |
Collapse
|
23
|
Feng S, Zhang L, Liu X, Li G, Zhang B, Wang Z, Zhang H, Ma H. Low levels of AMPK promote epithelial-mesenchymal transition in lung cancer primarily through HDAC4- and HDAC5-mediated metabolic reprogramming. J Cell Mol Med 2020; 24:7789-7801. [PMID: 32519437 PMCID: PMC7348170 DOI: 10.1111/jcmm.15410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
AMP-activated protein kinase (AMPK) serves as a "supermetabolic regulator" that helps maintain cellular energy homeostasis. However, the role of AMPK in glucose metabolism reprogramming in lung cancer remains unclear. Here, our study shows that low AMPK expression correlates with metastasis and clinicopathologic parameters of non-small-cell lung cancer. Low AMPK significantly enhances the Warburg effect in HBE and A549 cells, which in turn induces the expression of mesenchymal markers and enhances their invasion and migration. At the mechanistic level, low AMPK up-regulates HK2 expression and glycolysis levels through HDAC4 and HDAC5. Collectively, our findings demonstrate that low AMPK-induced metabolism can promote epithelial-mesenchymal transition progression in normal bronchial epithelial cells and lung cancer cells, and increase the risk for tumour metastasis.
Collapse
Affiliation(s)
- Shoujie Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, China
| | - Li Zhang
- Editorial Office of International Journal of Anesthesiology and Resuscitation, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Liu
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, China
| | - Guangbin Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Biao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziwen Wang
- Intensive Care Unit, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, China
| | - Haitao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Coding the α-subunit of SNF1 kinase, Snf1 is required for the conidiogenesis and pathogenicity of the Alternaria alternata tangerine pathotype. Fungal Biol 2020; 124:562-570. [PMID: 32448447 DOI: 10.1016/j.funbio.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
To well cope with various external carbon sources, fungi have evolved an adaptive mechanism to overcome the adversity of carbon source deficiency. The sucrose non-fermenting (SNF1) protein kinase mainly mediates the utilization of non-fermentable carbon sources. In this study, we determined the function of Snf1, coding the α-subunit of SNF1 kinase, in the phytopathogenic fungus Alternaria alternata via analyzing the Snf1 deletion mutants (ΔAasnf1). Aasnf1 is required for growth, development of aerial mycelium, and conidiation. Results of pathogenicity test showed that ΔAasnf1 induced smaller lesions on detached citrus leaves. Moreover, in the carbon utilization assay, ΔAasnf1 showed growth inhibition on the minimal medium supplemented with polygalacturonic acid, sucrose or alcohol as the only carbon source. Compared to the wild type, ΔAasnf1 also exhibited stronger resistance to cell wall stressors of sodium dodecyl sulfate and congo red. In conclusion, Aasnf1 played important roles in the carbon utilization, vegetative growth, conidiation, cell wall functions and pathogenicity of A. alternata. This study is the first report on the functions of Aasnf1 and our results suggest that Snf1 is critical for the conidiogenesis and pathogenesis of the A. alternata tangerine pathotype.
Collapse
|
25
|
Yang W, Shin HY, Cho H, Chung JY, Lee EJ, Kim JH, Kang ES. TOM40 Inhibits Ovarian Cancer Cell Growth by Modulating Mitochondrial Function Including Intracellular ATP and ROS Levels. Cancers (Basel) 2020; 12:cancers12051329. [PMID: 32456076 PMCID: PMC7281007 DOI: 10.3390/cancers12051329] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
TOM40 is a channel-forming subunit of translocase, which is essential for the movement of proteins into the mitochondria. We found that TOM40 was highly expressed in epithelial ovarian cancer (EOC) cells at both the transcriptional and translational levels; its expression increased significantly during the transformation from normal ovarian epithelial cells to EOC (p < 0.001), and TOM40 expression negatively correlated with disease-free survival (Hazard ratio = 1.79, 95% Confidence inerval 1.16–2.78, p = 0.009). TOM40 knockdown decreased proliferation in several EOC cell lines and reduced tumor burden in an in vivo xenograft mouse model. TOM40 expression positively correlated with intracellular adenosine triphosphate (ATP) levels. The low ATP and high reactive oxygen species (ROS) levels increased the activity of AMP-activated protein kinase (AMPK) in TOM40 knockdown EOC cells. However, AMPK activity did not correlate with declined cell growth in TOM40 knockdown EOC cells. We found that metformin, first-line therapy for type 2 diabetes, effectively inhibited the growth of EOC cell lines in an AMPK-independent manner by inhibiting mitochondria complex I. In conclusion, TOM40 positively correlated with mitochondrial activities, and its association enhances the proliferation of ovarian cancer. Also, metformin is an effective therapeutic option in TOM40 overexpressed ovarian cancer than normal ovarian epithelium.
Collapse
Affiliation(s)
- Wookyeom Yang
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Joon-Yong Chung
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Eun-ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
- Correspondence: (J.-H.K.); (E.-S.K.); Tel.:+82-2-2019-3430 (J.-H.K.); +82-2-3410-2703 (E.-S.K.); Fax: +82-2-3462-8209 (J.-H.K.); +82-2-3410-2719 (E.-S.K.)
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (J.-H.K.); (E.-S.K.); Tel.:+82-2-2019-3430 (J.-H.K.); +82-2-3410-2703 (E.-S.K.); Fax: +82-2-3462-8209 (J.-H.K.); +82-2-3410-2719 (E.-S.K.)
| |
Collapse
|
26
|
Interleukin-6 Treatment Results in GLUT4 Translocation and AMPK Phosphorylation in Neuronal SH-SY5Y Cells. Cells 2020; 9:cells9051114. [PMID: 32365859 PMCID: PMC7290332 DOI: 10.3390/cells9051114] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that can be released from the brain during prolonged exercise. In peripheral tissues, exercise induced IL-6 can result in GLUT4 translocation and increased glucose uptake through AMPK activation. GLUT4 is expressed in the brain and can be recruited to axonal plasma membranes with neuronal activity through AMPK activation. The aim of this study is to examine if IL-6 treatment: (1) results in AMPK activation in neuronal cells, (2) increases the activation of proteins involved in GLUT4 translocation, and (3) increases neuronal glucose uptake. Retinoic acid was used to differentiate SH-SY5Y neuronal cells. Treatment with 100 nM of insulin increased the phosphorylation of Akt and AS160 (p < 0.05). Treatment with 20 ng/mL of IL-6 resulted in the phosphorylation of STAT3 at Tyr705 (p ≤ 0.05) as well as AS160 (p < 0.05). Fluorescent Glut4GFP imaging revealed treatment with 20ng/mL of IL-6 resulted in a significant mobilization towards the plasma membrane after 5 min until 30 min. There was no difference in GLUT4 mobilization between the insulin and IL-6 treated groups. Importantly, IL-6 treatment increased glucose uptake. Our findings demonstrate that IL-6 and insulin can phosphorylate AS160 via different signaling pathways (AMPK and PI3K/Akt, respectively) and promote GLUT4 translocation towards the neuronal plasma membrane, resulting in increased neuronal glucose uptake in SH-SY5Y cells.
Collapse
|
27
|
Aashaq S, Batool A, Andrabi KI. TAK1 mediates convergence of cellular signals for death and survival. Apoptosis 2020; 24:3-20. [PMID: 30288639 DOI: 10.1007/s10495-018-1490-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
TGF-β activated kinase 1, a MAPK kinase kinase family serine threonine kinase has been implicated in regulating diverse range of cellular processes that include embryonic development, differentiation, autophagy, apoptosis and cell survival. TAK1 along with its binding partners TAB1, TAB2 and TAB3 displays a complex pattern of regulation that includes serious crosstalk with major signaling pathways including the C-Jun N-terminal kinase (JNK), p38 MAPK, and I-kappa B kinase complex (IKK) involved in establishing cellular commitments for death and survival. This review also highlights how TAK1 orchestrates regulation of energy homeostasis via AMPK and its emerging role in influencing mTORC1 pathway to regulate death or survival in tandem.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Asiya Batool
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Khurshid I Andrabi
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| |
Collapse
|
28
|
Zhang J, Zhao Y, Hou T, Zeng H, Kalambhe D, Wang B, Shen X, Huang Y. Macrophage-based nanotherapeutic strategies in ulcerative colitis. J Control Release 2020; 320:363-380. [DOI: 10.1016/j.jconrel.2020.01.047] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/11/2020] [Accepted: 01/26/2020] [Indexed: 12/21/2022]
|
29
|
Khodavirdipour A, Haddadi F, Keshavarzi S. Chromium Supplementation; Negotiation with Diabetes Mellitus, Hyperlipidemia and Depression. J Diabetes Metab Disord 2020; 19:585-595. [PMID: 32550211 DOI: 10.1007/s40200-020-00501-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
Chromium (Cr) is an essential trace element which found naturally in a daily diet and available in the form of supplementary tablets to boost disorders like diabetes mellitus (DM) and functions like lipid metabolism and beneficial on depression too. Diabetes is one of the most prevalent endocrine diseases or in other words, the most severe metabolic syndrome (MS), which associated with high production of free-radicals which is out of bodies detoxifying machine capacity or high oxidative stress (HOS), vasculitis and elevated lipid profile. many research papers and clinical trials published about the significance of chromium on biological activities, pre and post clinical. For this review research articles, clinical trials, from 1st Jan'10 to 31st Dec'18 and refer literature for the biochemical, pharmacological and biological activity of Chromium. Primarily articles gathered from the above search engines. Then precisely according to our aim and goal and regarding designed objectives dismisses similar articles and finally came to 84 articles for the above said period. This review trying to cover the entire picture from what chromium is to the recent updates on their greater role in increasing insulin sensitivity of cells and enhancing lipid metabolism and even recent findings suggest its positive effects including prevention and ameliorating properties on depression. The biological activities, pharmacological features, clinical implications including efficacy and role of chromium compounds on the glycaemic index will be discussed. The outcome of this review is to bring the pros and cons of chromium supplementation along with is safety and toxicity concern beside molecular pathways, biochemistry and clinical trials, all in one comprehensive review.
Collapse
Affiliation(s)
- Amir Khodavirdipour
- Division of Human Genetics, Department of Anatomy, St. john's hospital, Bangalore, India.,Department of Biology, Faculty of Natural sciences, University of Tabriz, Tabriz, 98613-35856 Iran
| | - Fatemeh Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Shiva Keshavarzi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
30
|
Wang X, Jiang H, Zhang N, Cai C, Li G, Hao J, Yu G. Anti-diabetic activities of agaropectin-derived oligosaccharides from Gloiopeltis furcata via regulation of mitochondrial function. Carbohydr Polym 2019; 229:115482. [PMID: 31826412 DOI: 10.1016/j.carbpol.2019.115482] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to investigate whether agaropectin-derived oligosaccharides from Gloiopeltis furcata (SAOs) exert an anti-diabetic effect in sodium palmitate (PA)-induced insulin resistant HepG2 cells. We found that SAOs were co-localized with mitochondria and regulated mitochondrial function. SAOs reduced respiratory chain activities, which led to reduced respiratory oxygen consumption and increased the cellular ADP/ATP ratio in a certain degree of dose-dependent manner. Thus, SAOs alleviated the oxidative stress state in PA-treated cells and, moreover, concurrently regulated the ROS-JNK-IRS-1 pathway. As a result, SAOs enhanced insulin sensitivity and glucose metabolism by activating the IRS-1-AKT-GSK-3β-GS pathway. Additionally, SAOs activated AMPK through both PKA-LKB1 and mitochondrial-regulated energy metabolism pathways. Therefore, SAOs decreased accumulation of lipids and improved lipid metabolism via regulating HMGCR, ACC and SREBP-1 proteins in HepG2 cells. Taken together, we conclude that SAOs could significantly ameliorate diabetic states in vitro via regulating mitochondria and their downstream signaling pathways.
Collapse
Affiliation(s)
- Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Ning Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
31
|
Bartel K, Müller R, von Schwarzenberg K. Differential regulation of AMP-activated protein kinase in healthy and cancer cells explains why V-ATPase inhibition selectively kills cancer cells. J Biol Chem 2019; 294:17239-17248. [PMID: 31604821 DOI: 10.1074/jbc.ra119.010243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic hub regulating various pathways involved in tumor metabolism. Here we report that vacuolar H+-ATPase (V-ATPase) inhibition differentially affects regulation of AMPK in tumor and nontumor cells and that this differential regulation contributes to the selectivity of V-ATPase inhibitors for tumor cells. In nonmalignant cells, the V-ATPase inhibitor archazolid increased phosphorylation and lysosomal localization of AMPK. We noted that AMPK localization has a prosurvival role, as AMPK silencing decreased cellular growth rates. In contrast, in cancer cells, we found that AMPK is constitutively active and that archazolid does not affect its phosphorylation and localization. Moreover, V-ATPase-independent AMPK induction in tumor cells protected them from archazolid-induced cytotoxicity, further underlining the role of AMPK as a prosurvival mediator. These observations indicate that AMPK regulation is uncoupled from V-ATPase activity in cancer cells and that this makes them more susceptible to cell death induction by V-ATPase inhibitors. In both tumor and healthy cells, V-ATPase inhibition induced a distinct metabolic regulatory cascade downstream of AMPK, affecting ATP and NADPH levels, glucose uptake, and reactive oxygen species production. We could attribute the prosurvival effects to AMPK's ability to maintain redox homeostasis by inhibiting reactive oxygen species production and maintaining NADPH levels. In summary, the results of our work indicate that V-ATPase inhibition has differential effects on AMPK-mediated metabolic regulation in cancer and healthy cells and explain the tumor-specific cytotoxicity of V-ATPase inhibition.
Collapse
Affiliation(s)
- Karin Bartel
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University, 81377 Munich, Germany
| | - Rolf Müller
- Helmholtz Center for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, and Department of Pharmacy at Saarland University, Saarland University Campus, 66123 Saarbrücken, Germany
| | - Karin von Schwarzenberg
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University, 81377 Munich, Germany
| |
Collapse
|
32
|
Wang X, Shan X, Dun Y, Cai C, Hao J, Li G, Cui K, Yu G. Anti-Metabolic Syndrome Effects of Fucoidan from Fucus vesiculosus via Reactive Oxygen Species-Mediated Regulation of JNK, Akt, and AMPK Signaling. Molecules 2019; 24:E3319. [PMID: 31547311 PMCID: PMC6767115 DOI: 10.3390/molecules24183319] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022] Open
Abstract
Recent studies have reported that dietary fiber improved metabolic syndrome (MetS). However, the effects of fucoidans on MetS were still not clear. In this study, we evaluated the activity of fucoidan from Fucus vesiculosus (FvF) on attenuating MetS and first elucidated the underlying mechanism. In vitro, FvF treatment remarkably lowered the level of reactive oxygen species (ROS) compared with the sodium palmitate (PA)-induced insulin resistance (IR) group. The phosphorylation level of c-Jun N-terminal kinase (JNK) was significantly decreased, while phosphorylation of protein kinase B (pAkt) level increased, compared with that of the HepG2 cells treated with PA. Thus, FvF increased glucose consumption and relieved IR via ROS-mediated JNK and Akt signaling pathways. In addition, these changes were accompanied by the activation of adenosine 5'-monophosphate-ativated protein kinase (AMPK) and its downstream targets (e.g., HMG-CoA reductase (HMGCR), acetyl-CoA carboxylase (ACC), and sterol-regulatory element-binding protein-1c (SREBP-1C)), which improved lipid metabolism in IR HepG2 cells. In vivo, FvF improved hyperglycemia and decreased serum insulin level in mice with MetS. Furthermore, we evaluated the inhibition of glucose transport by in vitro (Caco-2 monolayer model), semi-in vivo (everted gut sac model) and oral glucose tolerance test (OGTT), which indicated that FvF could significantly reduce the absorption of glucose into the blood stream, thus it could improve blood-glucose levels and IR in mice with MetS. Moreover, FvF decreased serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) levels and liver lipid accumulation, while increased the serum high density lipoprotein cholesterol (HDL-C) level in mice with MetS. Therefore, FvF could be considered as a potential candidate for the treatment of MetS by alleviating IR, inhibiting glucose transportation, and regulating lipid metabolism.
Collapse
Affiliation(s)
- Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Xindi Shan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Yunlou Dun
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Kaiyun Cui
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
33
|
Rogowski M, Bellusci L, Sabatini M, Rapposelli S, Rahman SM, Chiellini G, Assadi-Porter FM. Lipolytic Effects of 3-Iodothyronamine (T1AM) and a Novel Thyronamine-Like Analog SG-2 through the AMPK Pathway. Int J Mol Sci 2019; 20:ijms20164054. [PMID: 31434215 PMCID: PMC6721273 DOI: 10.3390/ijms20164054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
3-Iodothyronamine (T1AM) and its synthetic analog SG-2 are rapidly emerging as promising drivers of cellular metabolic reprogramming. Our recent research indicates that in obese mice a sub-chronic low dose T1AM treatment increased lipolysis, associated with significant weight loss independent of food consumption. The specific cellular mechanism of T1AM's lipolytic effect and its site of action remains unknown. First, to study the mechanism used by T1AM to gain entry into cells, we synthesized a fluoro-labeled version of T1AM (FL-T1AM) by conjugating it to rhodamine (TRITC) and analyzed its cellular uptake and localization in 3T3-L1 mouse adipocytes. Cell imaging using confocal microscopy revealed a rapid intercellular uptake of FL-T1AM into mitochondria without localization to the lipid droplet or nucleus of mature adipocytes. Treatment of 3T3-L1 adipocytes with T1AM and SG-2 resulted in decreased lipid accumulation, the latter showing a significantly higher potency than T1AM (10 µM vs. 20 µM, respectively). We further examined the effects of T1AM and SG-2 on liver HepG2 cells. A significant decrease in lipid accumulation was observed in HepG2 cells treated with T1AM or SG-2, due to increased lipolytic activity. This was confirmed by accumulation of glycerol in the culture media and through activation of the AMPK/ACC signaling pathways.
Collapse
Affiliation(s)
- Michael Rogowski
- University of Alabama Birmingham School of Medicine, Cardiology Division, 901 19th St. S., Birmingham, AL 35209, USA
| | | | | | | | - Shaikh M Rahman
- Department of Nutritional Sciences, Texas Tech University, P.O. Box 41270, Lubbock, TX 79409, USA
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56126 Pisa, Italy.
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA.
| | - Fariba M Assadi-Porter
- Department of Integrative Biology, University of Wisconsin-Madison, 250 N. Mills St, Madison, WI 53706, USA.
| |
Collapse
|
34
|
Yamada S, Kamata T, Nawa H, Sekijima T, Takei N. AMPK activation, eEF2 inactivation, and reduced protein synthesis in the cerebral cortex of hibernating chipmunks. Sci Rep 2019; 9:11904. [PMID: 31417118 PMCID: PMC6695389 DOI: 10.1038/s41598-019-48172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/26/2019] [Indexed: 01/10/2023] Open
Abstract
During hibernation, mammalian cells are exposed to severe environmental stressors such as low temperature, lowered O2 supply, and glucose deficiency. The cellular metabolic rate is markedly reduced for adapting to these conditions. AMP-activated protein kinase (AMPK) senses the cellular energy status and regulates metabolism. Therefore, we examined AMPK signaling in several brain regions and peripheral tissues in hibernating chipmunk. Eukaryotic elongation factor 2 (eEF2) is a downstream target of AMPK. Phosphorylation of eEF2, indicating its inactivation, is enhanced in the cerebral cortex of hibernating chipmunks. The study indicated that the sequential regulation of AMPK-mammalian target of rapamycin complex 1-eEF2 signaling was altered and protein synthesis ability was reduced in the cerebral cortex of hibernating chipmunks.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Environmental Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 951-8585, Japan
| | - Taito Kamata
- Department of Environmental Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 951-8585, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Tsuneo Sekijima
- Department of Environmental Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 951-8585, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| |
Collapse
|
35
|
The AMPK-Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome. Nat Cell Biol 2019; 21:940-951. [PMID: 31358971 PMCID: PMC6679774 DOI: 10.1038/s41556-019-0356-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
The receptor-interacting protein 1 (RIPK1)/RIPK3 kinases play important roles in necroptosis that is closely linked to inflammatory response. Although the activation of necroptosis is well characterized, how necroptosis is tuned down is largely unknown. Here, we found that Parkin (also known as PARK2), an E3 ubiquitin ligase implicated in Parkinson’s disease and a tumor suppressor, regulates necroptosis and inflammation by regulating necrosome formation. Parkin prevents the formation of the RIPK1-RIPK3 complex by promoting polyubiquitination of RIPK3. Parkin is phosphorylated and activated by the cellular energy sensor AMP-activated protein kinase (AMPK). Parkin-deficiency potentiates the RIPK1-RIPK3 interaction, RIPK3 phosphorylation, and necroptosis. Importantly, Parkin deficiency enhances inflammation and inflammation-associated tumorigenesis. These findings demonstrate that the AMPK-Parkin axis negatively regulates necroptosis via inhibiting the RIPK1-RIPK3 complex formation and this regulation may serve as an important mechanism to fine-tune necroptosis and inflammation.
Collapse
|
36
|
Carpinus turczaninowii Extract May Alleviate High Glucose-Induced Arterial Damage and Inflammation. Antioxidants (Basel) 2019; 8:antiox8060172. [PMID: 31212679 PMCID: PMC6616550 DOI: 10.3390/antiox8060172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023] Open
Abstract
Hyperglycemia-induced oxidative stress triggers severe vascular damage and induces an inflammatory vascular state, and is, therefore, one of the main causes of atherosclerosis. Recently, interest in the natural compound Carpinus turczaninowii has increased because of its reported antioxidant and anti-inflammatory properties. We investigated whether a C. turczaninowii extract was capable of attenuating high glucose-induced inflammation and arterial damage using human aortic vascular smooth muscle cells (hASMCs). mRNA expression levels of proinflammatory response [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)], endoplasmic reticulum (ER) stress [CCAAT-enhancer-binding proteins (C/EBP) homologous protein (CHOP)], and adenosine monophosphate (AMP)-protein activated kinase α2 (AMPK α2)], and DNA damage [phosphorylated H2.AX (p-H2.AX)] were measured in hASMCs treated with the C. turczaninowii extracts (1 and 10 μg/mL) after being stimulated by high glucose (25 mM) or not. The C. turczaninowii extract attenuated the increased mRNA expression of IL-6, TNF-α, and CHOP in hASMCs under high glucose conditions. The expression levels of p-H2.AX and AMPK α2 induced by high glucose were also significantly decreased in response to treatment with the C. turczaninowii extract. In addition, 15 types of phenolic compounds including quercetin, myricitrin, and ellagic acid, which exhibit antioxidant and anti-inflammatory properties, were identified in the C. turczaninowii extract through ultra-performance liquid chromatography-quadrupole-time of flight (UPLC-Q-TOF) mass spectrometry. In conclusion, C. turczaninowii may alleviate high glucose-induced inflammation and arterial damage in hASMCs, and may have potential in the treatment of hyperglycemia-induced atherosclerosis.
Collapse
|
37
|
Yeganeh B, Lee J, Ermini L, Lok I, Ackerley C, Post M. Autophagy is required for lung development and morphogenesis. J Clin Invest 2019; 129:2904-2919. [PMID: 31162135 DOI: 10.1172/jci127307] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a major respiratory illness in extremely premature infants. The biological mechanisms leading to BPD are not fully understood, although an arrest in lung development has been implicated. The current study aimed to investigate the occurrence of autophagy in the developing mouse lung and its regulatory role in airway branching and terminal sacculi formation. We found 2 windows of epithelial autophagy activation in the developing mouse lung, both resulting from AMPK activation. Inhibition of AMPK-mediated autophagy led to reduced lung branching in vitro. Conditional deletion of beclin 1 (Becn1) in mouse lung epithelial cells (Becn1Epi-KO), either at early (E10.5) or late (E16.5) gestation, resulted in lethal respiratory distress at birth or shortly after. E10.5 Becn1Epi-KO lungs displayed reduced airway branching and sacculi formation accompanied by impaired vascularization, excessive epithelial cell death, reduced mesenchymal thinning of the interstitial walls, and delayed epithelial maturation. E16.5 Becn1Epi-KO lungs had reduced terminal air sac formation and vascularization and delayed distal epithelial differentiation, a pathology similar to that seen in infants with BPD. Taken together, our findings demonstrate that intrinsic autophagy is an important regulator of lung development and morphogenesis and may contribute to the BPD phenotype when impaired.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children
| | - Joyce Lee
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children.,Institute of Medical Science, and
| | - Leonardo Ermini
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children
| | - Irene Lok
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children
| | - Cameron Ackerley
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children.,Departments of Physiology and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children.,Institute of Medical Science, and.,Departments of Physiology and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Duan Q, Li H, Gao C, Zhao H, Wu S, Wu H, Wang C, Shen Q, Yin T. High glucose promotes pancreatic cancer cells to escape from immune surveillance via AMPK-Bmi1-GATA2-MICA/B pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:192. [PMID: 31088566 PMCID: PMC6518784 DOI: 10.1186/s13046-019-1209-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/02/2019] [Indexed: 12/20/2022]
Abstract
Background Modulation of cell surface expression of MHC class I chain-related protein A/B (MICA/B) has been proven to be one of the mechanisms by which tumor cells escape from NK cell-mediated killing. Abnormal metabolic condition, such as high glucose, may create a cellular stress milieu to induce immune dysfunction. Hyperglycemia is frequently presented in the majority of pancreatic cancer patients and is associated with poor prognosis. In this study, we aimed to detect the effects of high glucose on NK cell-mediated killing on pancreatic cancer cells through reduction of MICA/B expression. Methods The lysis of NK cells on pancreatic cancer cells were compared at different glucose concentrations through lactate dehydrogenase release assay. Then, qPCR, Western Blot, Flow cytometry and Immunofluorescence were used to identify the effect of high glucose on expression of MICA/B, Bmi1, GATA2, phosphorylated AMPK to explore the underlying mechanisms in the process. Moreover, an animal model with diabetes mellitus was established to explore the role of high glucose on NK cell-mediated cytotoxicity on pancreatic cancer in vivo. Results In our study, high glucose protects pancreatic cancer from NK cell-mediated killing through suppressing MICA/B expression. Bmi1, a polycomb group (PcG) protein, was found to be up-regulated by high glucose, and mediated the inhibition of MICA/B expression through promoting GATA2 in pancreatic cancer. Moreover, high glucose inhibited AMP-activated protein kinase signaling, leading to high expression of Bmi1. Conclusion Our findings identify that high glucose may promote the immune escape of pancreatic cancer cells under hyperglycemic tumor microenvironment. In this process, constitutive activation of AMPK-Bmi1-GATA2 axis could mediate MICA/B inhibition, which may serve as a therapeutic target for further intervention of pancreatic cancer immune evasion. Electronic supplementary material The online version of this article (10.1186/s13046-019-1209-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingke Duan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hehe Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenggang Gao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hengqiang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shihong Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
39
|
Jiang L, Liu T, Xie L, Ouyang C, Ji J, Huang T. AICAR prolongs corneal allograft survival via the AMPK-mTOR signaling pathway in mice. Biomed Pharmacother 2019; 113:108558. [PMID: 30856534 DOI: 10.1016/j.biopha.2019.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/06/2019] [Accepted: 01/06/2019] [Indexed: 12/11/2022] Open
Abstract
Immune rejection is a critical complication that results in the graft failure after corneal transplantation. Thus, there remains a need for new therapies for allograft rejection. AICAR (aminoimidazole-4-carboxamide ribonucleoside) is an, as adenosine monophosphate-activated protein kinase (AMPK) activator and a purine nucleoside with a wide range of metabolic effects, including activation of AMPK. More recently, it was reported that it is possible to inhibiting organs rejection and prolong the graft survival time in various models of organ transplantation. In this study, we systematically evaluated the efficacy of AICAR as a treatment modality for inhibiting allograft rejection in a mouse model of corneal transplantation. We found that AICAR significantly suppressed the opacity, edema, and vascularization of the graft, resulting in prolonged corneal allograft survival. AICAR treatment also significantly decreased central corneal thickness. Moreover, the AICAR-treated group showed decreased expression of IB4 and VEGF as compared to the control group. In addition, the mRNA expression of T helper 1 cytokines (IL-2, INF-γ, and TNF-α) was suppressed, and the expression of T helper 2 cytokines (IL-4, IL-5, and IL-13) was elevated by AICAR. Furthermore, the western blotting results revealed that AICAR stimulated AMPK activation and inhibited angiogenesis and inflammation possibly by subsequently suppressing mTOR phosphorylation. By contrast, the AMPK inhibitor Compound C (also called dorsomorphin) had the opposite effect. Our results showed that Compound C blocked AMPK-mTOR signaling and promoted the angiogenesis and inflammation, thus compromising the graft survival. These results suggest that AICAR may be a potential option for inhibiting the corneal graft rejection and for prolonging the graft survival.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Tingting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Lijie Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Chen Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Ting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China.
| |
Collapse
|
40
|
Zhang HX, Yuan J, Li YF, Li RS. Thalidomide decreases high glucose-induced extracellular matrix protein synthesis in mesangial cells via the AMPK pathway. Exp Ther Med 2019; 17:927-934. [PMID: 30651882 DOI: 10.3892/etm.2018.6995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/26/2018] [Indexed: 01/03/2023] Open
Abstract
A previous study demonstrated the renal-protective effect of thalidomide (Thd) in diabetic nephropathy rats through the activation of the adenosine monophosphate-activated protein kinase (AMPK) and inhibition of the nuclear factor κB (NF-κB)/monocyte chemoattractant protein-1 (MCP-1) and transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog signaling pathways. The association between AMPK inactivation and high glucose (HG)-induced meningeal cell (MC) proliferation and extracellular matrix (ECM) accumulation via NF-κB and TGF-β1 signaling remains unknown. The aim of the current study was to demonstrate the effects of Thd on cell proliferation and ECM expression in HG-cultured MCs and the underlying mechanisms. HG-cultured human MCs were treated with Thd. Cell proliferation was measured by MTT assay and quantification of cell proliferation was based on the measurement of bromodeoxyuridine incorporation. The differences in TGF-β1, fibronectin and MCP-1 protein expression levels were detected via ELISA and western blot analysis. The AMPK signaling pathway was also examined by western blot analysis in MCs. Compound C, an AMPK inhibitor and AICAR (5-aminoimidazole-4-carboxamide 1β-D-ribofuranoside), an AMPK agonist, were used to analyze the functional role of AMPK in MCs. Cell proliferation was significantly decreased in HG-cultured MCs following treatment with high concentrations of Thd (100 and 200 µg/ml) for 24 h compared with the HG-cultured MC group. Thd suppressed the inflammatory processes in HG-induced MCs. These effects were partially mediated through the activation of AMPK and inhibition of the NF-κB/MCP-1 signaling pathways. Taken together, these results suggest that Thd may have therapeutic potential in diabetic renal injury via the AMPK signaling pathway.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Jie Yuan
- Department of Radiology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Ya-Feng Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Rong-Shan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
41
|
Mueed Z, Tandon P, Maurya SK, Deval R, Kamal MA, Poddar NK. Tau and mTOR: The Hotspots for Multifarious Diseases in Alzheimer's Development. Front Neurosci 2019; 12:1017. [PMID: 30686983 PMCID: PMC6335350 DOI: 10.3389/fnins.2018.01017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
The hyperphosphorylation of tau protein and the overexpression of mTOR are considered to be the driving force behind Aβ plaques and Neurofibrillay Tangles (NFT's), hallmarks of Alzheimer's disease (AD). It is now evident that miscellaneous diseases such as Diabetes, Autoimmune diseases, Cancer, etc. are correlated with AD. Therefore, we reviewed the literature on the causes of AD and investigated the association of tau and mTOR with other diseases. We have discussed the role of insulin deficiency in diabetes, activated microglial cells, and dysfunction of blood-brain barrier (BBB) in Autoimmune diseases, Presenilin 1 in skin cancer, increased reactive species in mitochondrial dysfunction and deregulated Cyclins/CDKs in promoting AD pathogenesis. We have also discussed the possible therapeutics for AD such as GSK3 inactivation therapy, Rechaperoning therapy, Immunotherapy, Hormonal therapy, Metal chelators, Cell cycle therapy, γ-secretase modulators, and Cholinesterase and BACE 1-inhibitors which are thought to serve a major role in combating pathological changes coupled with AD. Recent research about the relationship between mTOR and aging and hepatic Aβ degradation offers possible targets to effectively target AD. Future prospects of AD aims at developing novel drugs and modulators that can potentially improve cell to cell signaling, prevent Aβ plaques formation, promote better release of neurotransmitters and prevent hyperphosphorylation of tau.
Collapse
Affiliation(s)
- Zeba Mueed
- Department of Biotechnology, Invertis University, Bareilly, India
| | - Pallavi Tandon
- Department of Biotechnology, Invertis University, Bareilly, India
| | | | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, India
| | - Mohammad A Kamal
- King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics, Hebersham, NSW, Australia.,Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | | |
Collapse
|
42
|
Grossini E, Farruggio S, Raina G, Mary D, Deiro G, Gentilli S. Effects of Genistein on Differentiation and Viability of Human Visceral Adipocytes. Nutrients 2018; 10:E978. [PMID: 30060502 PMCID: PMC6115928 DOI: 10.3390/nu10080978] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 01/05/2023] Open
Abstract
Obesity can lead to pathological growth of adipocytes by inducing inflammation and oxidative stress. Genistein could be a potential candidate for the treatment of obesity due to its antioxidant properties. Specific kits were used to examine the effects of genistein vs adiponectin on human visceral pre-adipocytes differentiation, cell viability, mitochondrial membrane potential, and oxidative stress in pre-adipocytes and in white/brown adipocytes. Western Blot was performed to examine changes in protein activation/expression. Genistein increased human visceral pre-adipocytes differentiation and browning, and caused a dose-related improvement of cell viability and mitochondrial membrane potential. Similar effects were observed in brown adipocytes and in white adipocytes, although in white cells the increase of cell viability was inversely related to the dose. Moreover, genistein potentiated AMP-activated protein kinase (AMPK)/mitofusin2 activation/expression in pre-adipocytes and white/brown adipocytes and protected them from the effects of hydrogen peroxide. The effects caused by genistein were similar to those of adiponectin. The results obtained showed that genistein increases human visceral pre-adipocytes differentiation and browning, protected against oxidative stress in pre-adipocytes and white/brown adipocytes through mechanisms related to AMPK-signalling and the keeping of mitochondrial function.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- Experimental Surgery, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Serena Farruggio
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Giulia Raina
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - David Mary
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| | - Giacomo Deiro
- General Surgery Unit, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| | - Sergio Gentilli
- General Surgery Unit, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
43
|
Kim Y, Cho JY, Oh SW, Kang M, Lee SE, Jung E, Park YS, Lee J. Globular adiponectin acts as a melanogenic signal in human epidermal melanocytes. Br J Dermatol 2018; 179:689-701. [PMID: 29485733 DOI: 10.1111/bjd.16488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Adiponectin is an adipocyte-derived cytokine that circulates as a full-length protein and a fragment containing the globular domain of adiponectin (gAd). A recent study has reported the antimelanogenic effects of full-length adiponectin. OBJECTIVES To examine the involvement of gAd in melanogenesis and its mechanisms of action. METHODS The effects of gAd on melanogenesis and its mechanisms of action were investigated in human epidermal melanocytes and reconstructed epidermis, including melanin content, cellular tyrosinase activity, cyclic adenosine monophosphate (cAMP) production and protein kinase A (PKA) activity, expression and phosphorylation of signalling molecules. RESULTS Exogenous gAd increased melanin content, and the mRNA levels of microphthalmia-associated transcription factor (MITF) and its downstream genes TRP1, but not TRP2, were increased by gAd. However, cAMP production and PKA activity were not affected by gAd. Moreover, attempts to elucidate the underlying mechanism behind the gAd-mediated effect revealed that gAd could regulate melanogenesis by upregulating MITF through phosphorylation of the cAMP response element-binding protein (CREB). In addition, upregulation of MITF was mediated by activation of adenosine monophosphate-activated protein kinase (AMPK)-p38 mitogen-activated protein kinase (MAPK) signalling. Taken together, these findings indicate that promotion of melanogenesis by gAd occurs through increased expression of MITF, which is mediated by activation of the AMPK-p38 MAPK-CREB pathway. CONCLUSIONS These findings suggest that gAd contributes to epidermal homeostasis via its effect on melanocyte biology, and products of adipose tissue could affect epidermal biology.
Collapse
Affiliation(s)
- Y Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan City, 311-51, Chungcheongnam Do, Republic of Korea
| | - J Y Cho
- Department of Integrative Biotechnology and Biocosmetics Research Center, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19, Gyunggi Do, Republic of Korea
| | - S W Oh
- Department of Integrative Biotechnology and Biocosmetics Research Center, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19, Gyunggi Do, Republic of Korea
| | - M Kang
- Department of Integrative Biotechnology and Biocosmetics Research Center, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19, Gyunggi Do, Republic of Korea
| | - S E Lee
- Department of Integrative Biotechnology and Biocosmetics Research Center, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19, Gyunggi Do, Republic of Korea
| | - E Jung
- Biospectrum Life Science Institute, Seongnam City, 132-16, Gyunggi Do, Republic of Korea
| | - Y S Park
- Department of Microbiology, School of Medicine, Kyung Hee University, 024-53, Seoul, Republic of Korea
| | - J Lee
- Department of Integrative Biotechnology and Biocosmetics Research Center, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19, Gyunggi Do, Republic of Korea
| |
Collapse
|
44
|
Bai M, Liu Y, Zhou F, Zhang Y, Zhu Q, Zhang L, Zhang Q, Wang S, Zhu K, Wang X, Zhou L. Berberine inhibits glucose oxidation and insulin secretion in rat islets. Endocr J 2018; 65:469-477. [PMID: 29467344 DOI: 10.1507/endocrj.ej17-0543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glucose promotes insulin secretion primarily via its metabolism and the production of metabolic coupling factors in beta-cells. The activation of AMP-activated protein kinase (AMPK), an energy sensor, results in a decrease in insulin secretion from beta-cells, but its mechanism remains largely unknown. Berberine, an oral anti-diabetic drug, has been shown to activate AMPK in multiple peripheral tissues. Here, we examined the effects of berberine and AMPK activation on insulin secretion and glucose oxidation in rat islets. Our results showed that berberine inhibited glucose-stimulated insulin secretion from rat islets with AMPK activation. When glucose concentration was elevated to 25 mmol/L, the inhibitory action of berberine on insulin secretion disappeared. Furthermore, berberine significantly decreased oxygen consumption rate (OCR) and ATP production induced by high glucose in rat islets. Although adenovirus-mediated overexpression of constituent-activated AMPK markedly decreased GSIS and OCR in rat islets, the inhibition of AMPK by compound C did not reverse berberine-suppressed OCR. In addition, berberine attenuated glucose-stimulated expression of fatty acid synthase. These results indicate that berberine-mediated deceleration of glucose oxidation is tightly link to the decreased insulin secretion in islets independent of AMPK activation and inhibition of fatty acid synthesis may also contribute to the effect of berberine on insulin secretion.
Collapse
Affiliation(s)
- Mengyao Bai
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yun Liu
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Feiye Zhou
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuqing Zhang
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Qin Zhu
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Linlin Zhang
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Qi Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Shushu Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Kecheng Zhu
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xiao Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Libin Zhou
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
45
|
Peoples JNR, Maxmillian T, Le Q, Nadtochiy SM, Brookes PS, Porter GA, Davidson VL, Ebert SN. Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart. J Biol Chem 2018. [PMID: 29540484 DOI: 10.1074/jbc.ra118.002566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cardiac energy demands during early embryonic periods are sufficiently met through glycolysis, but as development proceeds, the oxidative phosphorylation in mitochondria becomes increasingly vital. Adrenergic hormones are known to stimulate metabolism in adult mammals and are essential for embryonic development, but relatively little is known about their effects on metabolism in the embryonic heart. Here, we show that embryos lacking adrenergic stimulation have ∼10-fold less cardiac ATP compared with littermate controls. Despite this deficit in steady-state ATP, neither the rates of ATP formation nor degradation was affected in adrenergic hormone-deficient hearts, suggesting that ATP synthesis and hydrolysis mechanisms were fully operational. We thus hypothesized that adrenergic hormones stimulate metabolism of glucose to provide chemical substrates for oxidation in mitochondria. To test this hypothesis, we employed a metabolomics-based approach using LC/MS. Our results showed glucose 1-phosphate and glucose 6-phosphate concentrations were not significantly altered, but several downstream metabolites in both glycolytic and pentose-phosphate pathways were significantly lower compared with controls. Furthermore, we identified glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase as key enzymes in those respective metabolic pathways whose activity was significantly (p < 0.05) and substantially (80 and 40%, respectively) lower in adrenergic hormone-deficient hearts. Addition of pyruvate and to a lesser extent ribose led to significant recovery of steady-state ATP concentrations. These results demonstrate that without adrenergic stimulation, glucose metabolism in the embryonic heart is severely impaired in multiple pathways, ultimately leading to insufficient metabolic substrate availability for successful transition to aerobic respiration needed for survival.
Collapse
Affiliation(s)
- Jessica N R Peoples
- From the Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, University of Central Florida, College of Medicine, Orlando, Florida 32827
| | - Timmi Maxmillian
- From the Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, University of Central Florida, College of Medicine, Orlando, Florida 32827
| | - Quynh Le
- From the Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, University of Central Florida, College of Medicine, Orlando, Florida 32827
| | - Sergiy M Nadtochiy
- the Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York 14620, and
| | - Paul S Brookes
- From the Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, University of Central Florida, College of Medicine, Orlando, Florida 32827
| | - George A Porter
- the Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Victor L Davidson
- From the Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, University of Central Florida, College of Medicine, Orlando, Florida 32827
| | - Steven N Ebert
- From the Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, University of Central Florida, College of Medicine, Orlando, Florida 32827,
| |
Collapse
|
46
|
Wang Y, Han X, Fu M, Wang J, Song Y, Liu Y, Zhang J, Zhou J, Ge J. Qiliqiangxin attenuates hypoxia-induced injury in primary rat cardiac microvascular endothelial cells via promoting HIF-1α-dependent glycolysis. J Cell Mol Med 2018; 22:2791-2803. [PMID: 29502357 PMCID: PMC5908112 DOI: 10.1111/jcmm.13572] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Protection of cardiac microvascular endothelial cells (CMECs) against hypoxia injury is an important therapeutic strategy for treating ischaemic cardiovascular disease. In this study, we investigated the effects of qiliqiangxin (QL) on primary rat CMECs exposed to hypoxia and the underlying mechanisms. Rat CMECs were successfully isolated and passaged to the second generation. CMECs that were pre-treated with QL (0.5 mg/mL) and/or HIF-1α siRNA were cultured in a three-gas hypoxic incubator chamber (5% CO2 , 1% O2 , 94% N2 ) for 12 hours. Firstly, we demonstrated that compared with hypoxia group, QL effectively promoted the proliferation while attenuated the apoptosis, improved mitochondrial function and reduced ROS generation in hypoxic CMECs in a HIF-1α-dependent manner. Meanwhile, QL also promoted angiogenesis of CMECs via HIF-1α/VEGF signalling pathway. Moreover, QL improved glucose utilization and metabolism and increased ATP production by up-regulating HIF-1α and a series of glycolysis-relevant enzymes, including glucose transport 1 (GLUT1), hexokinase 2 (HK2), 6-phosphofructokinase 1 (PFK1), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Our findings indicate that QL can protect CMECs against hypoxia injury via promoting glycolysis in a HIF-1α-dependent manner. Lastly, the results suggested that QL-dependent enhancement of HIF-1α protein expression in hypoxic CMECs was associated with the regulation of AMPK/mTOR/HIF-1α pathway, and we speculated that QL also improved HIF-1α stabilization through down-regulating prolyl hydroxylases 3 (PHD3) expression.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueting Han
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingqiang Fu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingfeng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Song
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingjing Zhang
- Department of Cardiology, Zoucheng Hospital, Affiliated Hospital of Jining medical university, Jinan, Shandong, China
| | - Jingmin Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Gallo C, Dallaglio K, Bassani B, Rossi T, Rossello A, Noonan DM, D'Uva G, Bruno A, Albini A. Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation. Oncotarget 2018; 7:59917-59931. [PMID: 27494895 PMCID: PMC5312358 DOI: 10.18632/oncotarget.10990] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/06/2016] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Recently, increased attention has been addressed to the ability of flavonoids to prevent cancer by suppressing angiogenesis, strategy that we named "angioprevention". Several natural compounds exert their anti-tumor properties by activating 5' adenosine monophosphate-activated protein kinase (AMPK), a key regulator of metabolism in cancer cells. Drugs with angiopreventive activities, in particular metformin, regulate AMPK in endothelial cells. Here we investigated the involvement of AMPK in the anti-angiogenic effects of xanthohumol (XN), the major prenylated flavonoid of the hop plant, and mechanisms of action. The anti-angiogenic activity of XN was more potent than epigallocatechin-3-gallate (EGCG). Treatment of endothelial cells with XN led to increased AMPK phosphorylation and activity. Functional studies using biochemical approaches confirmed that AMPK mediates XN anti-angiogenic activity. AMPK activation by XN was mediated by CAMMKβ, but not LKB1. Analysis of the downstream mechanisms showed that XN-induced AMPK activation reduced nitric oxide (NO) levels in endothelial cells by decreasing eNOS phosphorylation. Finally, AKT pathway was inactivated by XN as part of its anti-angiogenic activity, but independently from AMPK, suggesting that these two signaling pathways proceed autonomously. Our study dissects the molecular mechanism by which XN exerts its potent anti-angiogenic activity, pointing out AMPK as a crucial signal transducer.
Collapse
Affiliation(s)
- Cristina Gallo
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Katiuscia Dallaglio
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Barbara Bassani
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Teresa Rossi
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | | | - Douglas M Noonan
- Department of Biotechnologies and Life Sciencies, University of Insubria, Varese, Italy
| | - Gabriele D'Uva
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
48
|
Qiu F, Zhang H, Yuan Y, Liu Z, Huang B, Miao H, Liu X, Zhao Q, Zhang H, Dong H, Zhang Z. A decrease of ATP production steered by PEDF in cardiomyocytes with oxygen-glucose deprivation is associated with an AMPK-dependent degradation pathway. Int J Cardiol 2018; 257:262-271. [PMID: 29361350 DOI: 10.1016/j.ijcard.2018.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
Abstract
AIMS The activated AMP activated protein kinase (AMPK) serves as a transient protective cardiovascular kinase via preserving adenosine triphosphate (ATP) production under ischemic conditions. However, recent studies reveal that inhibition of AMPK in stroke is neuroprotection. Pigment epithelium derived factor (PEDF) is also known for the protection of ischemic cardiomyocytes. However, the relationship between PEDF and AMPK in cardiomyocytes is poorly understood. METHODS AND RESULTS Rat neonatal and adult left ventricular cardiomyocytes were isolated and subjected to oxygen-glucose deprivation (OGD). During OGD, PEDF significantly reduced AMPKα levels to decrease ATP production and reduced ATP expenditure both in neonatal and adult cardiomyocytes, which increased energy reserves and cell viability. Importantly, pharmacological AMPK inhibitor reduced ATP production but failed to decrease ATP expenditure, thus leading cells into death. Furthermore, AMPKα was degraded by a ubiquitin-dependent proteasomal degradation pathway, which is associated with a PEDF/PEDFR/peroxisome proliferator activated receptor γ (PPARγ) axis. Inhibition of PPARγ or proteasome disrupted the interaction of AMPKα and PPARγ, which abolished AMPKα degradation. Importantly, the decrease of AMPKα and ATP level was normalized after recovery of oxygen and glucose. CONCLUSIONS We demonstrate a novel mechanism for regulation of cardiac ATP production by PEDF involving AMPKα and PPARγ. PEDF promotes proteasomal degradation of AMPK and, subsequently, reduces ATP production. The reduction of ATP production associated with the decrease of ATP expenditure completed by PEDF increase energy reserves and reduces cell energy failure, prolonging the cell activity during OGD.
Collapse
Affiliation(s)
- Fan Qiu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Yanliang Yuan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Zhiwei Liu
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Bing Huang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Xiucheng Liu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Qixiang Zhao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Hu Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China.
| |
Collapse
|
49
|
Mobbs JI, Di Paolo A, Metcalfe RD, Selig E, Stapleton DI, Griffin MDW, Gooley PR. Unravelling the Carbohydrate-Binding Preferences of the Carbohydrate-Binding Modules of AMP-Activated Protein Kinase. Chembiochem 2018; 19:229-238. [PMID: 29193585 DOI: 10.1002/cbic.201700589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 01/24/2023]
Abstract
The β subunit of adenosine monophosphate (AMP)-activated protein kinase (AMPK), which exists as two isoforms (β1 and β2) in humans, has a carbohydrate-binding module (CBM) that interacts with glycogen. Although the β1- and β2-CBMs are structurally similar, with strictly conserved ligand-contact residues, they show different carbohydrate affinities. β2-CBM shows the strongest affinity for both branched and unbranched oligosaccharides and it has recently been shown that a Thr insertion into β2-CBM (Thr101) forms a pocket to accommodate branches. This insertion does not explain why β2-CBM binds all carbohydrates with stronger affinity. Herein, it is shown that residue 134 (Val for β2 and Thr for β1), which does not come into contact with a carbohydrate, appears to account for the affinity difference. Characterisation by NMR spectroscopy, however, suggests that mutant β2-Thr101Δ/Val134Thr differs from that of β1-CBM, and mutant β1-Thr101ins/Thr134Val differs from that of β2-CBM. Furthermore, these mutants are less stable to chemical denaturation, relative to that of wild-type β-CBMs, which confounds the affinity analyses. To support the importance of Thr101 and Val134, the ancestral CBM has been constructed. This CBM retains Thr101 and Val134, which suggests that the extant β1-CBM has a modest loss of function in carbohydrate binding. Because the ancestor bound carbohydrate with equal affinity to that of β2-CBM, it is concluded that residue 134 plays an indirect role in carbohydrate binding.
Collapse
Affiliation(s)
- Jesse I Mobbs
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.,Current Address: Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Alex Di Paolo
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.,Current Address: New Technologies Development Department, Kaneka Eurogentec S.A. Biologics Division, 14 Rue Bois Saint-Jean, 4102, Seraing, Belgium
| | - Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Emily Selig
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - David I Stapleton
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
50
|
Sairenji S, Akine S, Nabeshima T. Response speed control of helicity inversion based on a "regulatory enzyme"-like strategy. Sci Rep 2018; 8:137. [PMID: 29317654 PMCID: PMC5760571 DOI: 10.1038/s41598-017-16503-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
In biological systems, there are many signal transduction cascades in which a chemical signal is transferred as a series of chemical events. Such successive reaction systems are advantageous because the efficiency of the functions can be finely controlled by regulatory enzymes at an earlier stage. However, most of artificial responsive molecules developed so far rely on single-step conversion, whose response speeds have been difficult to be controlled by external stimuli. In this context, developing artificial conversion systems that have a regulation step similar to the regulatory enzymes has been anticipated. Here we report a novel artificial two-step structural conversion system in which the response speed can be controlled based on a regulatory enzyme-like strategy. In this system, addition of fluoride ion caused desilylation of the siloxycarboxylate ion attached to a helical complex, resulting in the subsequent helicity inversion. The response speeds of the helicity inversion depended on the reactivity of the siloxycarboxylate ions; when a less-reactive siloxycarboxylate ion was used, the helicity inversion rate was governed by the desilylation rate. This is the first artificial responsive molecule in which the overall response speed can be controlled at the regulation step separated from the function step.
Collapse
Affiliation(s)
- Shiho Sairenji
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology / Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan.
| |
Collapse
|