1
|
Nuyttens L, Vandewalle J, Libert C. Sepsis-induced changes in pyruvate metabolism: insights and potential therapeutic approaches. EMBO Mol Med 2024:10.1038/s44321-024-00155-6. [PMID: 39468303 DOI: 10.1038/s44321-024-00155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a heterogeneous syndrome resulting from a dysregulated host response to infection. It is considered as a global major health priority. Sepsis is characterized by significant metabolic perturbations, leading to increased circulating metabolites such as lactate. In mammals, pyruvate is the primary substrate for lactate production. It plays a critical role in metabolism by linking glycolysis, where it is produced, with the mitochondrial oxidative phosphorylation pathway, where it is oxidized. Here, we provide an overview of all cytosolic and mitochondrial enzymes involved in pyruvate metabolism and how their activities are disrupted in sepsis. Based on the available data, we also discuss potential therapeutic strategies targeting these pyruvate-related enzymes leading to enhanced survival.
Collapse
Affiliation(s)
- Louise Nuyttens
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Wu P, Zhang Z, Zhou Y, Liu Q, Tam KY, Su Z. Novel Dichloroacetophenone-Based PDHK1 Inhibitors as Potent Anticancer Agents. Drug Des Devel Ther 2024; 18:4661-4679. [PMID: 39440140 PMCID: PMC11495195 DOI: 10.2147/dddt.s473437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background Pyruvate dehydrogenase kinases (PDHKs), important metabolic and abnormally expressed enzymes in cancer cells, are promising targets for cancer therapy, especially for non-small-cell lung cancer (NSCLC). Methods In this study, a new hit, dichloroacetophenone (DAP) analog 9, was postulated to bind to the PDHK1 allosteric pocket, guided by molecular modeling and kinase biochemical experiments. Based on this binding mode, novel DAP analogs were designed and synthesized to confirm the importance of Phe180, Tyr411, and the hydrophobic core at the bottom of the pocket. Results This structure-activity relationship (SAR) study led to the discovery of a novel potent hybrid scaffold, dichloroacetophenone biphenylsulfone ether. Dichloroacetophenone biphenylsulfone ether 31 and 32 inhibited PDHK1 with IC50 values of 86 and 140 nM, respectively. Conclusion Compound 32 with acceptable in vitro metabolic stability, predicted drug-likeness properties and ADME/T profiles, showed promising therapeutic efficacy in a lung cancer xenograft mouse model.
Collapse
MESH Headings
- Humans
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Structure-Activity Relationship
- Mice
- Acetophenones/pharmacology
- Acetophenones/chemistry
- Acetophenones/chemical synthesis
- Drug Screening Assays, Antitumor
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Dose-Response Relationship, Drug
- Molecular Structure
- Cell Proliferation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Mice, Nude
- Models, Molecular
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Cell Line, Tumor
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Puhua Wu
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Huangshi, People’s Republic of China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, People’s Republic of China
| | - Zhicheng Zhang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Huangshi, People’s Republic of China
| | - Yan Zhou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, People’s Republic of China
| | - Quan Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, People’s Republic of China
| | - Kin-Yip Tam
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, People’s Republic of China
| | - Zhenhong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Huangshi, People’s Republic of China
| |
Collapse
|
3
|
Kaushik S, Hung TI, Chang CA. Molecular mechanics studies of factors affecting overall rate in cascade reactions: Multi-enzyme colocalization and environment. Protein Sci 2024; 33:e5175. [PMID: 39276014 PMCID: PMC11401055 DOI: 10.1002/pro.5175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024]
Abstract
Millions of years of evolution have optimized many biosynthetic pathways by use of multi-step catalysis. In addition, multi-step metabolic pathways are commonly found in and on membrane-bound organelles in eukaryotic biochemistry. The fundamental mechanisms that facilitate these reaction processes provide strategies to bioengineer metabolic pathways in synthetic chemistry. Using Brownian dynamics simulations, here we modeled intermediate substrate transportation of colocalized yeast-ester biosynthesis enzymes on the membrane. The substrate acetate ion traveled from the pocket of aldehyde dehydrogenase to its target enzyme acetyl-CoA synthetase, then the substrate acetyl CoA diffused from Acs1 to the active site of the next enzyme, alcohol-O-acetyltransferase. Arranging two enzymes with the smallest inter-enzyme distance of 60 Å had the fastest average substrate association time as compared with anchoring enzymes with larger inter-enzyme distances. When the off-target side reactions were turned on, most substrates were lost, which suggests that native localization is necessary for efficient final product synthesis. We also evaluated the effects of intermolecular interactions, local substrate concentrations, and membrane environment to bring mechanistic insights into the colocalization pathways. The computation work demonstrates that creating spatially organized multi-enzymes on membranes can be an effective strategy to increase final product synthesis in bioengineering systems.
Collapse
Affiliation(s)
- Shivansh Kaushik
- Department of ChemistryUniversity of California RiversideRiversideCaliforniaUSA
| | - Ta I Hung
- Department of ChemistryUniversity of California RiversideRiversideCaliforniaUSA
| | - Chia‐en A. Chang
- Department of ChemistryUniversity of California RiversideRiversideCaliforniaUSA
| |
Collapse
|
4
|
Shi WT, Yao CP, Liu WH, Cao WY, Shao W, Liao SQ, Yu T, Zhu QF, Chen Z, Zang YJ, Farooq M, Wei WK, Zhang XA. An fusaric acid-based CRISPR library screen identifies MDH2 as a broad-spectrum regulator of Fusarium toxin-induced cell death. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135937. [PMID: 39342847 DOI: 10.1016/j.jhazmat.2024.135937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Fusarium mycotoxins are of great concern because they are the most common food-borne mycotoxins and environmental contaminants worldwide. Fusaric acid (FA), Deoxynivalenol (DON), Zearalenone (ZEA), T-2 toxin (T-2), and Fumonisin B1 (FB1) are important Fusarium toxins contaminating feeds and food and can cause serious health problems. FA can synergize with some other Fusarium toxins to enhance overall toxicity. However, the underlying molecular mechanism remains poorly understood. In this study, our CRISPR screening revealed Malate dehydrogenase 2 (MDH2) and Pyruvate dehydrogenase E1 subunit beta (PDHB) are the key genes for FA-induced cell death. Pathways associated with mitochondrial function, notably the TCA cycle, play a significant role in FA cytotoxicity. We found that MDH2 and PDHB depletion reduced FA-induced cell death, ROS accumulation, and the expression of caspase-3 and HIF-1α. The cell viability assays and flow cytometry demonstrated that MDH2 knockout but not PDHB decreased DON, ZEA, T-2, and FB1-induced cytotoxicity, apoptosis, and ROS accumulation. MDH2 inhibitor LW6 also decreased DON, ZEA, T-2, and FB1-induced toxicity. This suggested that MDH2, but not PDHB, is a common regulator of broad-spectrum Fusarium toxin (FA, DON, ZEA, T-2, and FB1)-induced cell death. Our work provides new avenues for the treatment of Fusarium toxin toxicity.
Collapse
Affiliation(s)
- Wei-Tao Shi
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China; Xinjiang Agricultural University, College of Animal Science, Urumqi 830052, PR China
| | - Chun-Peng Yao
- Vegetable Research Institute of Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, PR China
| | - Wen-Hua Liu
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Wan-Yi Cao
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Wei Shao
- Xinjiang Agricultural University, College of Animal Science, Urumqi 830052, PR China
| | - Shen-Quan Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, 510640, PR China
| | - Ting Yu
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Qing-Feng Zhu
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Zhuang Chen
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Ying-Jie Zang
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Muhammad Farooq
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Wen-Kang Wei
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| | - Xiao-Ai Zhang
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| |
Collapse
|
5
|
Urzì C, Meyer C, Mathis D, Vermathen P, Nuoffer JM. Intra- and extracellular real-time analysis of perfused fibroblasts using an NMR bioreactor: A pilot study. J Inherit Metab Dis 2024. [PMID: 39233469 DOI: 10.1002/jimd.12794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Metabolomic discrimination of different mitochondrial defects is challenging. We describe an NMR-based bioreactor allowing real-time intra- and extracellular metabolic investigation of perfused fibroblasts. OBJECTIVES The objective of this study is (I) determining whether metabolic investigations of perfused fibroblasts overall and separated for intra- and extracellular contributions by real-time NMR allows for discrimination of different representative mitochondrial defects in a feasibility study and (II) gaining insight into physiological consequences of mitochondrial dysfunction in basal condition and during glycolysis inhibition. METHODS Overall, intra- and extracellular metabolomes of malate dehydrogenase 2 (MDH2), pyruvate dehydrogenase (PDH), complex I (CI) deficient fibroblasts, and control fibroblasts were investigated under standard culture conditions and under glycolysis inhibition. In addition to "overall" metabolite quantification, intra- and extracellular metabolic contributions were separated based on diffusion rate differences. RESULTS AND DISCUSSION Overall metabolites: Chemometric analysis of the entire metabolome revealed good separation between control, PDH and MDH2, while CI was less well separated. However, mixed intra- and extracellular changes complicated interpretation of the cellular metabolism. Intra- and extracellular metabolites: Compartment specific chemometrics revealed possibly augmenting metabolomic separation between control and deficient cell lines under basal and inhibition condition. All mitochondrial defects exhibited upregulation of glycolytic metabolism compared to controls. Inhibition of glycolysis resulted in perturbations of other metabolic pathways such as glutaminolysis, alanine, arginine, glutamate, and proline metabolism. MDH2 showed upregulation of alanine and glutamate metabolism, while the CI defect revealed lower intracellular arginine and downregulation of glutamate and arginine-dependent proline synthesis. CONCLUSION Discrimination of intra- and extracellular metabolic contributions helps understanding the underlying mechanisms of mitochondrial disorders, uncovers potential metabolic biomarkers, and unravels metabolic pathway-specific adaptations in response to metabolic perturbations.
Collapse
Affiliation(s)
- Christian Urzì
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christoph Meyer
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Déborah Mathis
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Peter Vermathen
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Grepper D, Tabasso C, Zanou N, Aguettaz AK, Castro-Sepulveda M, Ziegler DV, Lagarrigue S, Arribat Y, Martinotti A, Ebrahimi A, Daraspe J, Fajas L, Amati F. BCL2L13 at endoplasmic reticulum-mitochondria contact sites regulates calcium homeostasis to maintain skeletal muscle function. iScience 2024; 27:110510. [PMID: 39175772 PMCID: PMC11340602 DOI: 10.1016/j.isci.2024.110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/17/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
The physical connection between mitochondria and endoplasmic reticulum (ER) is an essential signaling hub to ensure organelle and cellular functions. In skeletal muscle, ER-mitochondria calcium (Ca2+) signaling is crucial to maintain cellular homeostasis during physical activity. High expression of BCL2L13, a member of the BCL-2 family, was suggested as an adaptive response in endurance-trained human subjects. In adult zebrafish, we found that the loss of Bcl2l13 impairs skeletal muscle structure and function. Ca2+ signaling is altered in Bcl2l13 knockout animals and mitochondrial complexes activity is decreased. Organelle fractioning in mammalian cells shows BCL2L13 at mitochondria, ER, and mitochondria-associated membranes. ER-mitochondria contact sites number is not modified by BCL2L13 modulation, but knockdown of BCL2L13 in C2C12 cells changes cytosolic Ca2+ release and mitochondrial Ca2+ uptake. This suggests that BCL2L13 interaction with mitochondria and ER, and its role in Ca2+ signaling, contributes to proper skeletal muscle function.
Collapse
Affiliation(s)
- Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Cassandra Tabasso
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Axel K.F. Aguettaz
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| | - Mauricio Castro-Sepulveda
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Dorian V. Ziegler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Yoan Arribat
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Adrien Martinotti
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| | - Ammar Ebrahimi
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| |
Collapse
|
7
|
Elnwasany A, Ewida HA, Menendez-Montes I, Mizerska M, Fu X, Kim CW, Horton JD, Burgess SC, Rothermel BA, Szweda PA, Szweda LI. Reciprocal regulation of cardiac β-oxidation and pyruvate dehydrogenase by insulin. J Biol Chem 2024; 300:107412. [PMID: 38796064 PMCID: PMC11231754 DOI: 10.1016/j.jbc.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease. It is therefore important to identify mechanisms by which insulin regulates substrate utilization in the heart. Mitochondrial pyruvate dehydrogenase (PDH) is the key regulatory site for the oxidation of glucose for ATP production. Nevertheless, the impact of insulin on PDH activity has not been fully delineated, particularly in the heart. We sought in vivo evidence that insulin stimulates cardiac PDH and that this process is driven by the inhibition of fatty acid oxidation. Mice injected with insulin exhibited dephosphorylation and activation of cardiac PDH. This was accompanied by an increase in the content of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), and, thus, mitochondrial import of fatty acids. Administration of the CPT1 inhibitor oxfenicine was sufficient to activate PDH. Malonyl-CoA is produced by acetyl-CoA carboxylase (ACC). Pharmacologic inhibition or knockout of cardiac ACC diminished insulin-dependent production of malonyl-CoA and activation of PDH. Finally, circulating insulin and cardiac glucose utilization exhibit daily rhythms reflective of nutritional status. We demonstrate that time-of-day-dependent changes in PDH activity are mediated, in part, by ACC-dependent production of malonyl-CoA. Thus, by inhibiting fatty acid oxidation, insulin reciprocally activates PDH. These studies identify potential molecular targets to promote cardiac glucose oxidation and treat heart disease.
Collapse
Affiliation(s)
- Abdallah Elnwasany
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heba A Ewida
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA; Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Ivan Menendez-Montes
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Monika Mizerska
- Department of Pharmacology, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaorong Fu
- Department of Pharmacology, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chai-Wan Kim
- Departments of Internal Medicine and Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jay D Horton
- Departments of Internal Medicine and Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shawn C Burgess
- Department of Pharmacology, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Beverly A Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pamela A Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luke I Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
8
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Ren X, Trotter T, Ashwath N, Stanley D, Bajagai YS, Brewer PB. Transcriptomic Insights: Phytogenic Modulation of Buffel Grass ( Cenchrus ciliaris) Seedling Emergence. PLANTS (BASEL, SWITZERLAND) 2024; 13:1174. [PMID: 38732389 PMCID: PMC11085557 DOI: 10.3390/plants13091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
This study explores the impact of a novel phytogenic product containing citric acid, carvacrol, and cinnamaldehyde on buffel grass (Cenchrus ciliaris) seedling emergence. A dilution series of the phytogenic solution revealed a concentration range that promoted seedling emergence, with an optimal concentration of 0.5%. Transcriptomic analysis using RNA-seq was performed to investigate gene expression changes in seedlings under the influence of the phytogenic product. The results revealed that the phytogenic treatment significantly altered the gene expression, with a prevalent boost in transcriptional activity compared to the control. Functional analysis indicated the positive alteration of key metabolic pathways, including the tricarboxylic acid (TCA) cycle, glycolysis, and pentose phosphate pathways. Moreover, pathways related to amino acids, nucleotide biosynthesis, heme biosynthesis, and formyltetrahydrofolate biosynthesis showed substantial modulation. The study provides valuable insights into the molecular mechanisms underlying the phytogenic product's effects on grass seedling establishment and highlights its ability to promote energy metabolism and essential biosynthetic pathways for plant growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Philip B. Brewer
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4701, Australia; (X.R.); (T.T.); (Y.S.B.)
| |
Collapse
|
10
|
Vaseghi G, Shariati L, Bahri Najafi M, Malakootikhah Z, Naji Esfahani H, Haghjooy Javanmard S. Evaluation of IP3R3 Gene Silencing Effect on Pyruvate Dehydrogenase (PDH) Enzyme Activity in Breast Cancer Cells with and Without Estrogen Receptor. Adv Biomed Res 2024; 13:24. [PMID: 38808320 PMCID: PMC11132195 DOI: 10.4103/abr.abr_413_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 05/30/2024] Open
Abstract
Background Inositol 1,4,5-trisphosphate receptor (IP3R), a critical calcium ion (Ca2+) regulator, plays a vital role in breast cancer (BC) metabolism. Dysregulated IP3R in BC cells can drive abnormal growth or cell death. Estradiol increases IP3R type 3 (IP3R3) levels in BC, promoting cell proliferation and metabolic changes, including enhanced pyruvate dehydrogenase (PDH) activity, which, when reduced, leads to cell apoptosis. The study silenced IP3R3 to assess its impact on PDH. Materials and Methods The study used IP3R3 small interfering RNA (siRNA) to target Michigan Cancer Foundation-7 (MCF-7) and MDA-MB-231 cell lines. Transfection success was confirmed by flow cytometry. Cell viability and gene silencing were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and real-time quantitative polymerase chain reaction (PCR) assays. Protein expression and cellular activity were analyzed through western blotting and PDH activity measurement. Results Transfecting MCF-7 and MDA-MB-231 cells with IP3R3 siRNA achieved a 65% transfection rate without significant toxicity. IP3R3 gene silencing effectively reduced IP3R3 messenger RNA (mRNA) and protein levels in both cell lines, leading to decreased PDH enzyme activity, especially in MDA-MB-231 cells. Conclusion The study highlights a link between high IP3R3 gene silencing and reduced PDH activity, with higher IP3R3 expression in estrogen-independent (MDA-MB-231) compared to estrogen-dependent (MCF-7) cell lines. This suggests a potential impact on BC metabolism and tumor growth via regulation of PDH activity.
Collapse
Affiliation(s)
- Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakootikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hajar Naji Esfahani
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Yang D, Wang Y, Qi T, Zhang X, Shen L, Ma J, Pang Z, Lal NK, McClatchy DB, Seradj SH, Leung VH, Wang K, Xie Y, Polli FS, Maximov A, Gonzalez OC, de Lecea L, Cline HT, Augustine V, Yates JR, Ye L. Phosphorylation of pyruvate dehydrogenase inversely associates with neuronal activity. Neuron 2024; 112:959-971.e8. [PMID: 38266644 PMCID: PMC11021214 DOI: 10.1016/j.neuron.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/24/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
For decades, the expression of immediate early genes (IEGs) such as FOS has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity. Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected activity decreases across the brain, which were induced by a wide range of factors including general anesthesia, chemogenetic inhibition, sensory experiences, and natural behaviors. Thus, as an inverse activity marker (IAM) in vivo, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.
Collapse
Affiliation(s)
- Dong Yang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tianbo Qi
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xi Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Leyao Shen
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jingrui Ma
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhengyuan Pang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Neeraj K Lal
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Saba Heydari Seradj
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Verina H Leung
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristina Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi Xie
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Filip S Polli
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anton Maximov
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Hollis T Cline
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vineet Augustine
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Tian LY, Smit DJ, Popova NV, Horn S, Velasquez LN, Huber S, Jücker M. All Three AKT Isoforms Can Upregulate Oxygen Metabolism and Lactate Production in Human Hepatocellular Carcinoma Cell Lines. Int J Mol Sci 2024; 25:2168. [PMID: 38396845 PMCID: PMC10889766 DOI: 10.3390/ijms25042168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is related to risk factors such as viral hepatitis, alcohol intake, and non-alcoholic fatty liver disease (NAFLD). The constitutive activation of the PI3K/AKT signaling pathway is common in HCC and has essential involvement in tumor progression. The serine/threonine kinase AKT has several downstream substrates, which have been implicated in the regulation of cellular metabolism. However, the contribution of each of the three AKT isoforms, i.e., AKT1, AKT2 and AKT3, to HCC metabolism has not been comprehensively investigated. In this study, we analyzed the functional role of AKT1, AKT2 and AKT3 in HCC metabolism. The overexpression of activated AKT1, AKT2 and AKT3 isoforms in the human HCC cell lines Hep3B and Huh7 resulted in higher oxygen consumption rate (OCR), ATP production, maximal respiration and spare respiratory capacity in comparison to vector-transduced cells. Vice versa, lentiviral vector-mediated knockdowns of each AKT isoform reduced OCR in both cell lines. Reduced OCR rates observed in the three AKT isoform knockdowns were associated with reduced extracellular acidification rates (ECAR) and reduced lactate production in both analyzed cell lines. Mechanistically, the downregulation of OCR by AKT isoform knockdowns correlated with an increased phosphorylation of the pyruvate dehydrogenase on Ser232, which negatively regulates the activity of this crucial gatekeeper of mitochondrial respiration. In summary, our data indicate that each of the three AKT isoforms is able to upregulate OCR, ECAR and lactate production independently of each other in human HCC cells through the regulation of the pyruvate dehydrogenase.
Collapse
Affiliation(s)
- Ling-Yu Tian
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.-Y.T.); (D.J.S.); (N.V.P.)
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing 100044, China
| | - Daniel J. Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.-Y.T.); (D.J.S.); (N.V.P.)
| | - Nadezhda V. Popova
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.-Y.T.); (D.J.S.); (N.V.P.)
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Lis Noelia Velasquez
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.N.V.); (S.H.)
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.N.V.); (S.H.)
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.-Y.T.); (D.J.S.); (N.V.P.)
| |
Collapse
|
13
|
Cimmino TP, Pagano E, Stornaiuolo M, Esposito G, Ammendola R, Cattaneo F. Formyl-peptide receptor 2 signalling triggers aerobic metabolism of glucose through Nox2-dependent modulation of pyruvate dehydrogenase activity. Open Biol 2023; 13:230336. [PMID: 37875162 PMCID: PMC10597678 DOI: 10.1098/rsob.230336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
The human formyl-peptide receptor 2 (FPR2) is activated by an array of ligands. By phospho-proteomic analysis we proved that FPR2 stimulation induces redox-regulated phosphorylation of many proteins involved in cellular metabolic processes. In this study, we investigated metabolic pathways activated in FPR2-stimulated CaLu-6 cells. The results showed an increased concentration of metabolites involved in glucose metabolism, and an enhanced uptake of glucose mediated by GLUT4, the insulin-regulated member of GLUT family. Accordingly, we observed that FPR2 transactivated IGF-IRβ/IRβ through a molecular mechanism that requires Nox2 activity. Since cancer cells support their metabolism via glycolysis, we analysed glucose oxidation and proved that FPR2 signalling promoted kinase activity of the bifunctional enzyme PFKFB2 through FGFR1/FRS2- and Akt-dependent phosphorylation. Furthermore, FPR2 stimulation induced IGF-IRβ/IRβ-, PI3K/Akt- and Nox-dependent inhibition of pyruvate dehydrogenase activity, thus preventing the entry of pyruvate in the tricarboxylic acid cycle. Consequently, we observed an enhanced FGFR-dependent lactate dehydrogenase (LDH) activity and lactate production in FPR2-stimulated cells. As LDH expression is transcriptionally regulated by c-Myc and HIF-1, we demonstrated that FPR2 signalling promoted c-Myc phosphorylation and Nox-dependent HIF-1α stabilization. These results strongly indicate that FPR2-dependent signalling can be explored as a new therapeutic target in treatment of human cancers.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
14
|
Zhao L, Geng R, Huang Y, Zhang J, Cheng H, Zhou C, Wang Y. AP2α negatively regulates PDHA1 in cervical cancer cells to promote aggressive features and aerobic glycolysis in vitro and in vivo. J Gynecol Oncol 2023; 34:e59. [PMID: 37055163 PMCID: PMC10482590 DOI: 10.3802/jgo.2023.34.e59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/10/2023] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
OBJECTIVE As a gate-keeper enzyme link, pyruvate dehydrogenase E1 subunit alpha (PDHA1) functions as a key regulator during glycolysis and the mitochondrial citric acid cycle, which has been reported in several tumors. Nevertheless, the effects of PDHA1 on biological behaviors and metabolism remain unclear in cervical cancer (CC) cells. The study aims to explore the PDHA1 effects on glucose metabolism in CC cells and its possible mechanism. METHODS We first determined the expression levels of PDHA1 and activating protein 2 alpha (AP2α) as a PDHA1 potential transcription factor. The effects of PDHA1 in vivo were evaluated through a subcutaneous xenograft mouse model. Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) labeling assay, Transwell invasion assay, wound healing assay, Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and flow cytometry were performed in CC cells. Oxygen consumption rate (OCR) levels were determined to reflect aerobic glycolysis level in gastric cancer cells. Reactive oxygen species (ROS) level was measured with 2', 7'-dichlorofluorescein diacetate kit. The relationship between PDHA1 and AP2α was examined by conducting chromatin immunoprecipitation assay and electrophoretic mobility shift assay. RESULTS In CC tissues and cell lines, PDHA1 was downregulated, while AP2α was upregulated. Overexpression of PDHA1 remarkedly inhibited the proliferation, invasion and migration of CC cells, and tumor growth in vivo, as well as promoted OCR, apoptosis and ROS production. Moreover, AP2α directly bound to PDHA1 within suppressor of cytokine signaling 3 promoter region to negatively regulate PDHA1 expression level. What is more, PDHA1 knockdown could effectively reversed the AP2α silencing-mediated suppressive effects on cell proliferation, invasion, migration, and the promotive effects of AP2α knockdown on OCR, apoptosis and ROS production. CONCLUSIONS Our findings demonstrate that AP2α negatively regulated PDHA1 via binding to PDHA1 gene promoter to promote malignant CC cell behaviors, which may provide a potential approach for CC therapeutics.
Collapse
Affiliation(s)
- Lijie Zhao
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Rong Geng
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yi Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan, China
| | - Jiping Zhang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Haiying Cheng
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Cankun Zhou
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yifeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Zhang T, Niu Z, He J, Pu P, Meng F, Xi L, Tang X, Ding L, Ma M, Chen Q. Potential Effects of High Temperature and Heat Wave on Nanorana pleskei Based on Transcriptomic Analysis. Curr Issues Mol Biol 2023; 45:2937-2949. [PMID: 37185716 PMCID: PMC10136961 DOI: 10.3390/cimb45040192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
In the context of climate change, understanding how indigenous amphibians of the Qinghai-Tibet plateau react to stresses and their coping mechanisms could be crucial for predicting their fate and successful conservation. A liver transcriptome for Nanorana pleskei was constructed using high-throughput RNA sequencing, and its gene expression was compared with frogs acclimated under either room temperature or high temperature and also heat wave exposed ones. A total of 126,465 unigenes were produced, with 66,924 (52.92%) of them being annotated. Up to 694 genes were found to be differently regulated as a result of abnormal temperature acclimatization. Notably, genes belonging to the heat shock protein (HSP) family were down-regulated in both treated groups. Long-term exposure to high-temperature stress may impair the metabolic rate of the frog and trigger the body to maintain a hypometabolic state in an effort to survive challenging times. During heat waves, unlike the high-temperature group, mitochondrial function was not impaired, and the energy supply was largely normal to support the highly energy-consuming metabolic processes. Genes were more transcriptionally suppressed when treated with high temperatures than heat waves, and the body stayed in low-energy states for combating these long-term adverse environments to survive. It might be strategic to preserve initiation to executive protein activity under heat wave stress. Under both stress conditions, compromising the protection of HSP and sluggish steroid activity occurred in frogs. Frogs were more affected by high temperatures than by heat waves.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Jie He
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Peng Pu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Fei Meng
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Lu Xi
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Li Ding
- Department of Animal Science, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Miaojun Ma
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Inhibition of Pyruvate Dehydrogenase in the Heart as an Initiating Event in the Development of Diabetic Cardiomyopathy. Antioxidants (Basel) 2023; 12:antiox12030756. [PMID: 36979003 PMCID: PMC10045649 DOI: 10.3390/antiox12030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Obesity affects a growing fraction of the population and is a risk factor for type 2 diabetes and cardiovascular disease. Even in the absence of hypertension and coronary artery disease, type 2 diabetes can result in a heart disease termed diabetic cardiomyopathy. Diminished glucose oxidation, increased reliance on fatty acid oxidation for energy production, and oxidative stress are believed to play causal roles. However, the progression of metabolic changes and mechanisms by which these changes impact the heart have not been established. Cardiac pyruvate dehydrogenase (PDH), the central regulatory site for glucose oxidation, is rapidly inhibited in mice fed high dietary fat, a model of obesity and diabetes. Increased reliance on fatty acid oxidation for energy production, in turn, enhances mitochondrial pro-oxidant production. Inhibition of PDH may therefore initiate metabolic inflexibility and oxidative stress and precipitate diabetic cardiomyopathy. We discuss evidence from the literature that supports a role for PDH inhibition in loss in energy homeostasis and diastolic function in obese and diabetic humans and in rodent models. Finally, seemingly contradictory findings highlight the complexity of the disease and the need to delineate progressive changes in cardiac metabolism, the impact on myocardial structure and function, and the ability to intercede.
Collapse
|
17
|
Guo Y, Zhou Y, Wu P, Ran M, Xu N, Shan W, Sha O, Tam KY. Dichloroacetophenone biphenylsulfone ethers as anticancer pyruvate dehydrogenase kinase inhibitors in non-small cell lung cancer models. Chem Biol Interact 2023; 378:110467. [PMID: 37004952 DOI: 10.1016/j.cbi.2023.110467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Pyruvate dehydrogenase kinase 1 (PDK1) is an important metabolic enzyme which is often overexpressed in many types of cancers, including non-small-cell lung cancers (NSCLC). Targeting PDK1 appears to be an attractive anticancer strategy. Based on a previously reported moderate potent anticancer PDK1 inhibitor, 64, we developed three dichloroacetophenone biphenylsulfone ethers, 30, 31 and 32, which showed strong PDK1 inhibitions of 74%, 83% and 72% at 10 μM, respectively. Then we investigated the anticancer effects of 31 in two NSCLC cell lines, namely, NCI-H1299 and NCI-H1975. It was found that 31 exhibited sub-micromolar cancer cell IC50s, suppressed colony formation, induced mitochondrial membrane potential depolarization, triggered apoptosis, altered cellular glucose metabolism, with concomitant reductions in extracellular lactate levels and enhanced the generation of reactive oxygen species in NSCLC cells. Moreover, 31 significantly suppressed the tumor growth in an NCI-H1975 mouse xenograft model, outperforming the anticancer effects of 64. Taken together our results suggested that inhibition of PDK1 via dichloroacetophenone biphenylsulfone ethers may provide a novel direction leading to an alternative treatment option in NSCLC therapy.
Collapse
|
18
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
19
|
Thermal Titration Molecular Dynamics (TTMD): Not Your Usual Post-Docking Refinement. Int J Mol Sci 2023; 24:ijms24043596. [PMID: 36835004 PMCID: PMC9968212 DOI: 10.3390/ijms24043596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Molecular docking is one of the most widely used computational approaches in the field of rational drug design, thanks to its favorable balance between the rapidity of execution and the accuracy of provided results. Although very efficient in exploring the conformational degrees of freedom available to the ligand, docking programs can sometimes suffer from inaccurate scoring and ranking of generated poses. To address this issue, several post-docking filters and refinement protocols have been proposed throughout the years, including pharmacophore models and molecular dynamics simulations. In this work, we present the first application of Thermal Titration Molecular Dynamics (TTMD), a recently developed method for the qualitative estimation of protein-ligand unbinding kinetics, to the refinement of docking results. TTMD evaluates the conservation of the native binding mode throughout a series of molecular dynamics simulations performed at progressively increasing temperatures with a scoring function based on protein-ligand interaction fingerprints. The protocol was successfully applied to retrieve the native-like binding pose among a set of decoy poses of drug-like ligands generated on four different pharmaceutically relevant biological targets, including casein kinase 1δ, casein kinase 2, pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease.
Collapse
|
20
|
Tabatabaei Dakhili SA, Greenwell AA, Ussher JR. Pyruvate Dehydrogenase Complex and Glucose Oxidation as a Therapeutic Target in Diabetic Heart Disease. J Lipid Atheroscler 2023; 12:47-57. [PMID: 36761067 PMCID: PMC9884548 DOI: 10.12997/jla.2023.12.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetic cardiomyopathy was originally described as the presence of ventricular dysfunction in the absence of coronary artery disease and/or hypertension. It is characterized by diastolic dysfunction and is more prevalent in people with diabetes than originally realized, leading to the suggestion in the field that it simply be referred to as diabetic heart disease. While there are currently no approved therapies for diabetic heart disease, a multitude of studies clearly demonstrate that it is characterized by several disturbances in myocardial energy metabolism. One of the most prominent changes in myocardial energy metabolism in diabetes is a robust impairment in glucose oxidation. Herein we will describe the mechanisms responsible for the diabetes-induced decline in myocardial glucose oxidation, and the pharmacological approaches that have been pursued to correct this metabolic disorder. With surmounting evidence that stimulating myocardial glucose oxidation can alleviate diastolic dysfunction and other pathologies associated with diabetic heart disease, this may also represent a novel strategy for decreasing the prevalence of heart failure with preserved ejection fraction in the diabetic population.
Collapse
Affiliation(s)
- Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Amanda A. Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
22
|
Bai C, Liu Y, Zhao Y, Ye Q, Zhao C, Liu Y, Wang J. Circulating exosome-derived miR-122-5p is a novel biomarker for prediction of postoperative atrial fibrillation. J Cardiovasc Transl Res 2022; 15:1393-1405. [PMID: 35513595 DOI: 10.1007/s12265-022-10267-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
Postoperative atrial fibrillation (POAF) is a frequent complication associated with increased periprocedural mortality and morbidity after cardiac surgery. Our study aimed to identify the difference in exosomal miRNA and further explore its role in the diagnosis of POAF. First, the differentially expressed miRNAs (DEMs) were obtained by high-throughput RNA sequencing. Second, the DEMs target genes were put into gene ontology (GO) and KEGG pathway analysis. Third, real-time quantification PCR (RT-qPCR) was used to verify the DEMs. Finally, we revealed 23 DEMs in POAF patients. Furthermore, analysis of gene function revealed that DEMs may affect atrial structure through many signaling pathways. We also found that miR-122-5p was up-regulated in POAF patients, but there are no significant changes in miR-191-5p, miR-181a-5p, miR-155-5p and miR-151a-5p. Our study revealed that exosomal miRNAs exert enormous potential in evaluating the severity or prognostic of POAF.
Collapse
Affiliation(s)
- Chen Bai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yisi Liu
- School of Nursing, Capital Medical University, Beijing, 100069, China
| | - Yichen Zhao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Qing Ye
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Cheng Zhao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jiangang Wang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
23
|
Mannelli M, Gamberi T, Garella R, Magherini F, Squecco R, Fiaschi T. Pyruvate prevents the onset of the cachectic features and metabolic alterations in myotubes downregulating
STAT3
signaling. FASEB J 2022; 36:e22598. [DOI: 10.1096/fj.202200848r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Michele Mannelli
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche “Mario Serio” Università degli Studi di Firenze Florence Italy
| | - Tania Gamberi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche “Mario Serio” Università degli Studi di Firenze Florence Italy
| | - Rachele Garella
- Dipartimento di Medicina Sperimentale e Clinica Università degli Studi di Firenze Florence Italy
| | - Francesca Magherini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche “Mario Serio” Università degli Studi di Firenze Florence Italy
| | - Roberta Squecco
- Dipartimento di Medicina Sperimentale e Clinica Università degli Studi di Firenze Florence Italy
| | - Tania Fiaschi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche “Mario Serio” Università degli Studi di Firenze Florence Italy
| |
Collapse
|
24
|
Pei J, Zhang J, Cong Q. Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling. Bioinformatics 2022; 38:4301-4311. [PMID: 35881696 DOI: 10.1093/bioinformatics/btac527] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recent development of deep-learning methods has led to a breakthrough in the prediction accuracy of 3D protein structures. Extending these methods to protein pairs is expected to allow large-scale detection of protein-protein interactions (PPIs) and modeling protein complexes at the proteome level. RESULTS We applied RoseTTAFold and AlphaFold, two of the latest deep-learning methods for structure predictions, to analyze coevolution of human proteins residing in mitochondria, an organelle of vital importance in many cellular processes including energy production, metabolism, cell death and antiviral response. Variations in mitochondrial proteins have been linked to a plethora of human diseases and genetic conditions. RoseTTAFold, with high computational speed, was used to predict the coevolution of about 95% of mitochondrial protein pairs. Top-ranked pairs were further subject to modeling of the complex structures by AlphaFold, which also produced contact probability with high precision and in many cases consistent with RoseTTAFold. Most top-ranked pairs with high contact probability were supported by known PPIs and/or similarities to experimental structural complexes. For high-scoring pairs without experimental complex structures, our coevolution analyses and structural models shed light on the details of their interfaces, including CHCHD4-AIFM1, MTERF3-TRUB2, FMC1-ATPAF2 and ECSIT-NDUFAF1. We also identified novel PPIs (PYURF-NDUFAF5, LYRM1-MTRF1L and COA8-COX10) for several proteins without experimentally characterized interaction partners, leading to predictions of their molecular functions and the biological processes they are involved in. AVAILABILITY AND IMPLEMENTATION Data of mitochondrial proteins and their interactions are available at: http://conglab.swmed.edu/mitochondria. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Fukushi A, Kim HD, Chang YC, Kim CH. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells. Int J Mol Sci 2022; 23:ijms231710037. [PMID: 36077431 PMCID: PMC9456516 DOI: 10.3390/ijms231710037] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
Aerobic glycolysis is an emerging hallmark of many human cancers, as cancer cells are defined as a “metabolically abnormal system”. Carbohydrates are metabolically reprogrammed by its metabolizing and catabolizing enzymes in such abnormal cancer cells. Normal cells acquire their energy from oxidative phosphorylation, while cancer cells acquire their energy from oxidative glycolysis, known as the “Warburg effect”. Energy–metabolic differences are easily found in the growth, invasion, immune escape and anti-tumor drug resistance of cancer cells. The glycolysis pathway is carried out in multiple enzymatic steps and yields two pyruvate molecules from one glucose (Glc) molecule by orchestral reaction of enzymes. Uncontrolled glycolysis or abnormally activated glycolysis is easily observed in the metabolism of cancer cells with enhanced levels of glycolytic proteins and enzymatic activities. In the “Warburg effect”, tumor cells utilize energy supplied from lactic acid-based fermentative glycolysis operated by glycolysis-specific enzymes of hexokinase (HK), keto-HK-A, Glc-6-phosphate isomerase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, phosphofructokinase (PFK), phosphor-Glc isomerase (PGI), fructose-bisphosphate aldolase, phosphoglycerate (PG) kinase (PGK)1, triose phosphate isomerase, PG mutase (PGAM), glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase isozyme type M2 (PKM2), pyruvate dehydrogenase (PDH), PDH kinase and lactate dehydrogenase. They are related to glycolytic flux. The key enzymes involved in glycolysis are directly linked to oncogenesis and drug resistance. Among the metabolic enzymes, PKM2, PGK1, HK, keto-HK-A and nucleoside diphosphate kinase also have protein kinase activities. Because glycolysis-generated energy is not enough, the cancer cell-favored glycolysis to produce low ATP level seems to be non-efficient for cancer growth and self-protection. Thus, the Warburg effect is still an attractive phenomenon to understand the metabolic glycolysis favored in cancer. If the basic properties of the Warburg effect, including genetic mutations and signaling shifts are considered, anti-cancer therapeutic targets can be raised. Specific therapeutics targeting metabolic enzymes in aerobic glycolysis and hypoxic microenvironments have been developed to kill tumor cells. The present review deals with the tumor-specific Warburg effect with the revisited viewpoint of recent progress.
Collapse
Affiliation(s)
- Abekura Fukushi
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Hee-Do Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Yu-Chan Chang
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (Y.-C.C.); (C.-H.K.); Fax: +82-31-290-7015 (C.-H.K.)
| | - Cheorl-Ho Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (Y.-C.C.); (C.-H.K.); Fax: +82-31-290-7015 (C.-H.K.)
| |
Collapse
|
26
|
Holloway C, Zhong G, Kim YK, Ye H, Sampath H, Hammerling U, Isoherranen N, Quadro L. Retinoic acid regulates pyruvate dehydrogenase kinase 4 (Pdk4) to modulate fuel utilization in the adult heart: Insights from wild-type and β-carotene 9',10' oxygenase knockout mice. FASEB J 2022; 36:e22513. [PMID: 36004605 PMCID: PMC9544431 DOI: 10.1096/fj.202101910rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
Regulation of the pyruvate dehydrogenase (PDH) complex by the pyruvate dehydrogenase kinase PDK4 enables the heart to respond to fluctuations in energy demands and substrate availability. Retinoic acid, the transcriptionally active form of vitamin A, is known to be involved in the regulation of cardiac function and growth during embryogenesis as well as under pathological conditions. Whether retinoic acid also maintains cardiac health under physiological conditions is unknown. However, vitamin A status and intake of its carotenoid precursor β-carotene have been linked to the prevention of heart diseases. Here, we provide in vitro and in vivo evidence that retinoic acid regulates cardiac Pdk4 expression and thus PDH activity. Furthermore, we show that mice lacking β-carotene 9',10'-oxygenase (BCO2), the only enzyme of the adult heart that cleaves β-carotene to generate retinoids (vitamin A and its derivatives), displayed cardiac retinoic acid insufficiency and impaired metabolic flexibility linked to a compromised PDK4/PDH pathway. These findings provide novel insights into the functions of retinoic acid in regulating energy metabolism in adult tissues, especially the heart.
Collapse
Affiliation(s)
- Chelsee Holloway
- Graduate Program in Endocrinology and Animal Bioscience, Rutgers University, New Brunswick, New Jersey, USA.,Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Guo Zhong
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Hong Ye
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Harini Sampath
- Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ulrich Hammerling
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Nina Isoherranen
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
27
|
Ruiz‐Villafán B, Cruz‐Bautista R, Manzo‐Ruiz M, Passari AK, Villarreal‐Gómez K, Rodríguez‐Sanoja R, Sánchez S. Carbon catabolite regulation of secondary metabolite formation, an old but not well-established regulatory system. Microb Biotechnol 2022; 15:1058-1072. [PMID: 33675560 PMCID: PMC8966007 DOI: 10.1111/1751-7915.13791] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022] Open
Abstract
Secondary microbial metabolites have various functions for the producer microorganisms, which allow them to interact and survive in adverse environments. In addition to these functions, other biological activities may have clinical relevance, as diverse as antimicrobial, anticancer and hypocholesterolaemic effects. These metabolites are usually formed during the idiophase of growth and have a wide diversity in their chemical structures. Their synthesis is under the impact of the type and concentration of the culture media nutrients. Some of the molecular mechanisms that affect the synthesis of secondary metabolites in bacteria (Gram-positive and negative) and fungi are partially known. Moreover, all microorganisms have their peculiarities in the control mechanisms of carbon sources, even those belonging to the same genus. This regulatory knowledge is necessary to establish culture conditions and manipulation methods for genetic improvement and product fermentation. As the carbon source is one of the essential nutritional factors for antibiotic production, its study has been imperative both at the industrial and research levels. This review aims to draw the utmost recent advances performed to clarify the molecular mechanisms of the negative effect exerted by the carbon source on the secondary metabolite formation, emphasizing those found in Streptomyces, one of the genera most profitable antibiotic producers.
Collapse
Affiliation(s)
- Beatriz Ruiz‐Villafán
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Rodrigo Cruz‐Bautista
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Monserrat Manzo‐Ruiz
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Ajit Kumar Passari
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Karen Villarreal‐Gómez
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Romina Rodríguez‐Sanoja
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Sergio Sánchez
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| |
Collapse
|
28
|
Zhang Y, Zhao M, Gao H, Yu G, Zhao Y, Yao F, Yang W. MAPK signalling-induced phosphorylation and subcellular translocation of PDHE1α promotes tumour immune evasion. Nat Metab 2022; 4:374-388. [PMID: 35315437 DOI: 10.1038/s42255-022-00543-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Tumour cells utilize multiple strategies to evade the immune system, but the underlying metabolic mechanisms remain poorly understood. The pyruvate dehydrogenase (PDH) complex converts pyruvate to acetyl-coenzyme A in mitochondria, thereby linking glycolysis to the ricarboxylic acid cycle. Here we show that the PDH complex E1 subunit α (PDHE1α) is also located in the cytosol. Cytosolic PDHE1α interacts with IKKβ and protein phosphatase 1B, thereby facilitating the inhibition of the NF-κB pathway. Cytosolic PDHE1α can be phosphorylated at S327 by ERK2 and translocated into mitochondria. Decreased cytosolic PDHE1α levels restore NF-κB signalling, whereas increased mitochondrial PDHE1α levels drive α-ketoglutarate production and promote reactive oxygen species detoxification. Synergistic activation of NF-κB and reactive oxygen species detoxification promotes tumour cell survival and enhances resistance to cytotoxic lymphocytes. Consistently, low levels of PDHE1α phosphorylation are associated with poor prognosis of patients with lung cancer. Our findings show a mechanism through which phosphorylation-dependent subcellular translocation of PDHE1α promotes tumour immune evasion.
Collapse
Affiliation(s)
- Yajuan Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ming Zhao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guanzhen Yu
- Medical Artificial Intelligence Laboratory, Zhejiang Institute of Digital Media, Chinese Academy of Science, Shaoxing, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
29
|
Hu C, Wu T, Ma S, Huang W, Xu Q, Kashani KB, Hu B, Li J. Association of Thiamine Use with Outcomes in Patients with Sepsis and Alcohol Use Disorder: An Analysis of the MIMIC-III Database. Infect Dis Ther 2022; 11:771-786. [PMID: 35169996 PMCID: PMC8960538 DOI: 10.1007/s40121-022-00603-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction The association between thiamine use and clinical outcomes among patients with sepsis and alcohol use disorder (AUD) is unclear. Methods In this retrospective cohort study of patients from Medical Information Mart for Intensive Care III (MIMIC-III, version 1.4), we evaluated the association of thiamine use with clinical outcomes in patients with AUD and sepsis. The primary outcome was 28-day survival, and secondary outcomes included ICU, in-hospital, and 90-day mortality, ICU and hospital length of stay, duration of vasopressor use, need and duration of continuous renal replacement therapy (CRRT), and dynamic changes for variables up to day 7 after ICU admission. Results A total of 944 patients with sepsis and AUD were included in this cohort [median age, 53.1 years; women, 26.0% (245 of 944)]. Among all patients, 24.6% (233 of 944) received thiamine with a dose of 200 mg (IQR 100–345 mg). The 28-day mortality was 11.2% (26 of 233) in the thiamine use group compared with 18.6% (132 of 711) in the no thiamine use group (P = 0.009). After adjustment for a series of confounders, the mixed-effects Cox proportional hazards models showed that administration of thiamine was associated with a lower risk of 28-day mortality compared with no administration of thiamine. Conclusions In critically ill patients with alcohol use disorder admitted for sepsis, treatment with thiamine may be associated with a decreased risk of death. However, the present results should be interpreted with caution due to the limitations of retrospective design. Additional larger, multicenter randomized controlled trials are needed to confirm our findings. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-022-00603-1.
Collapse
Affiliation(s)
- Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, 430071, Hubei, China.,Clinical Research Center of Hubei Critical Care Medicine, Wuhan, 430071, Hubei, China
| | - Tong Wu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, 430071, Hubei, China.,Clinical Research Center of Hubei Critical Care Medicine, Wuhan, 430071, Hubei, China
| | - Siqing Ma
- Department of Critical Care Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Weipeng Huang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, 430071, Hubei, China.,Clinical Research Center of Hubei Critical Care Medicine, Wuhan, 430071, Hubei, China
| | - Qiancheng Xu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, 430071, Hubei, China.,Clinical Research Center of Hubei Critical Care Medicine, Wuhan, 430071, Hubei, China
| | - Kianoush B Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, 430071, Hubei, China. .,Clinical Research Center of Hubei Critical Care Medicine, Wuhan, 430071, Hubei, China.
| | - Jianguo Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, 430071, Hubei, China. .,Clinical Research Center of Hubei Critical Care Medicine, Wuhan, 430071, Hubei, China.
| |
Collapse
|
30
|
Mobet Y, Liu X, Liu T, Yu J, Yi P. Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Front Cell Dev Biol 2022; 10:813581. [PMID: 35186927 PMCID: PMC8851358 DOI: 10.3389/fcell.2022.813581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Methylation of adenosine in RNA to N6-methyladenosine (m6A) is widespread in eukaryotic cells with his integral RNA regulation. This dynamic process is regulated by methylases (editors/writers), demethylases (remover/erasers), and proteins that recognize methylation (effectors/readers). It is now evident that m6A is involved in the proliferation and metastasis of cancer cells, for instance, altering cancer cell metabolism. Thus, determining how m6A dysregulates metabolic pathways could provide potential targets for cancer therapy or early diagnosis. This review focuses on the link between the m6A modification and the reprogramming of metabolism in cancer. We hypothesize that m6A modification could dysregulate the expression of glucose, lipid, amino acid metabolism, and other metabolites or building blocks of cells by adaptation to the hypoxic tumor microenvironment, an increase in glycolysis, mitochondrial dysfunction, and abnormal expression of metabolic enzymes, metabolic receptors, transcription factors as well as oncogenic signaling pathways in both hematological malignancies and solid tumors. These metabolism abnormalities caused by m6A’s modification may affect the metabolic reprogramming of cancer cells and then increase cell proliferation, tumor initiation, and metastasis. We conclude that focusing on m6A could provide new directions in searching for novel therapeutic and diagnostic targets for the early detection and treatment of many cancers.
Collapse
Affiliation(s)
- Youchaou Mobet
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, United States
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| |
Collapse
|
31
|
Katayama Y, Kawata Y, Moritoh Y, Watanabe M. Dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, ameliorates type 2 diabetes via reduced gluconeogenesis. Heliyon 2022; 8:e08889. [PMID: 35169648 PMCID: PMC8829582 DOI: 10.1016/j.heliyon.2022.e08889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/18/2021] [Accepted: 01/30/2022] [Indexed: 11/15/2022] Open
Abstract
Aims Pyruvate dehydrogenase (PDH) catalyzes the decarboxylation of pyruvate to acetyl-CoA, which plays a key role in linking cytosolic glycolysis to mitochondria metabolism. PDH is physiologically inactivated by pyruvate dehydrogenase kinases (PDKs). Thus, activation of PDH via inhibiting PDK may lead to metabolic benefits. In the present study, we investigated the antidiabetic effect of PDK inhibition using dichloroacetate (DCA), a PDK inhibitor. Main methods We evaluated the effect of single dose of DCA on plasma metabolic parameters in normal rats. Next, we investigated the antidiabetic effect of DCA in diabetic ob/ob mice. In addition, we performed in vitro assays to understand the effect and mechanism of action of DCA on gluconeogenesis in mouse myoblast cell line C2C12 and rat hepatoma cell line FaO. Key findings In normal rats, a single dose of DCA decreased the plasma level of pyruvate, the product of glycolysis, and the plasma glucose level only in the fasting state. Meanwhile, a single dose of DCA lowered the plasma glucose level, and a three-week treatment decreased the fructosamine level in diabetic ob/ob mice. In vitro experiments demonstrated concentration-dependent suppression of lactate production in C2C12 myotubes. In addition, DCA suppressed glucose production from pyruvate and lactate in FaO hepatoma cells. Thus, DCA-mediated restricted supply of gluconeogenic substrates from the muscle to liver, and direct suppression of hepatic gluconeogenesis might have contributed to its glucose-lowering effect in the current models. Significance PDK inhibitor may be considered as a potential antidiabetic agent harboring inhibitory effect on gluconeogenesis.
Collapse
|
32
|
Ji Z, Liu GH, Qu J. Mitochondrial sirtuins, metabolism, and aging. J Genet Genomics 2021; 49:287-298. [PMID: 34856390 DOI: 10.1016/j.jgg.2021.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Maintaining metabolic homeostasis is essential for cellular and organismal health throughout life. Of the multiple signaling pathways that regulate metabolism, such as PI3K/AKT, mTOR, AMPK, and sirtuins, mammalian sirtuins also play unique roles in aging. By understanding how sirtuins regulate metabolic processes, we can start to understand how they slow down or accelerate biological aging. Here, we review the biology of SIRT3, SIRT4, and SIRT5, known as the mitochondrial sirtuins due to their localization in the mitochondrial matrix. First, we will focus on canonical pathways that regulate metabolism more broadly and how these are integrated with aging regulation. Then, we will summarize the current knowledge about functional differences between SIRT3, SIRT4, and SIRT5 in metabolic control and integration in signaling networks. Finally, we will discuss how mitochondrial sirtuins regulate processes associated with aging and oxidative stress, calorie restriction and disease.
Collapse
Affiliation(s)
- Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guang-Hui Liu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Sun Y, Wang Z, Nie C, Xue L, Wang Y, Song C, Fan M, Qian H, Ying H, Li Y, Wang L. Hydroxysafflor Yellow A Alters Fuel Selection From Glucose to Fat by Activating the PPARδ Pathway in Myocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13838-13848. [PMID: 34757740 DOI: 10.1021/acs.jafc.1c06034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Modulation of fuel selection is critical in skeletal muscle function. Hydroxysafflor yellow A (HSYA) is the major bioactive component in safflower (Carthamus tinctorius L.) and, in our previous study, has been demonstrated to promote a shift from fast to slow myofiber. However, the effects of HSYA on fuel selection in skeletal muscle and its underlying mechanisms remain unclear. In this study, the in vitro experiments found that water extracts of safflower, rich in HSYA, significantly suppressed the expressions of the genes related to glucose utilization and activated the expressions of the lipolysis genes. Furthermore, HSYA resulted in a shift in substrate utilization toward fat relative to carbohydrates in C2C12 myotubes. Animal tests showed HSYA could significantly reduce the respiratory exchange ratio and prolonge endurance performance in mice and also trigger a switch in intramuscular fuel selection preference from carbohydrates to fat at rest and during exercise. Mechanistic studies revealed that HSYA converted this fuel selection by activating peroxisome proliferator activated receptor δ (PPARδ), and these effects of HSYA could be reversed by specific suppression of PPARδ by PPARδ siRNA. Collectively, our study demonstrated that HSYA can switch substrate utilization from glucose to fat in myocytes by activating PPARδ signaling, resulting in prolonged endurance performance. These findings provided direct evidence for the endurance performance enhancement effect of HSYA and explored new perspectives for the innovation and application of HSYA in the health care industry.
Collapse
Affiliation(s)
- Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhijun Wang
- COFCO Aerocean Oils & Grain Industrial Co., Ltd, Shawan, NO.1 West Park Road, West Urumqi Road, Shawan County, Tacheng District, Xinjiang Province 832100, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chunmei Song
- Food & Pharmacy College, Xuchang University, Xuchang 461000, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Ying
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
34
|
AMPK activation by SC4 inhibits noradrenaline-induced lipolysis and insulin-stimulated lipogenesis in white adipose tissue. Biochem J 2021; 478:3869-3889. [PMID: 34668531 DOI: 10.1042/bcj20210411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
The effects of small-molecule AMP-activated protein kinase (AMPK) activators in rat epididymal adipocytes were compared. SC4 was the most effective and submaximal doses of SC4 and 5-amino-4-imidazolecarboxamide (AICA) riboside were combined to study the effects of AMPK activation in white adipose tissue (WAT). Incubation of rat adipocytes with SC4 + AICA riboside inhibited noradrenaline-induced lipolysis and decreased hormone-sensitive lipase (HSL) Ser563 phosphorylation, without affecting HSL Ser565 phosphorylation. Preincubation of fat pads from wild-type (WT) mice with SC4 + AICA riboside inhibited insulin-stimulated lipogenesis from glucose or acetate and these effects were lost in AMPKα1 knockout (KO) mice, indicating AMPKα1 dependency. Moreover, in fat pads from acetyl-CoA carboxylase (ACC)1/2 S79A/S212A double knockin versus WT mice, the effect of SC4 + AICA riboside to inhibit insulin-stimulated lipogenesis from acetate was lost, pinpointing ACC as the main AMPK target. Treatment with SC4 + AICA riboside decreased insulin-stimulated glucose uptake, an effect that was still observed in fat pads from AMPKα1 KO versus WT mice, suggesting the effect was partly AMPKα1-independent. SC4 + AICA riboside treatment had no effect on the insulin-induced increase in palmitate esterification nor on sn-glycerol-3-phosphate-O-acyltransferase activity. Therefore in WAT, AMPK activation inhibits noradrenaline-induced lipolysis and suppresses insulin-stimulated lipogenesis primarily by inactivating ACC and by inhibiting glucose uptake.
Collapse
|
35
|
Chen L, Qu B, Wang H, Liu H, Guan Y, Zhou J, Zhang J. The effect of curculigo orchioides (Xianmao) on kidney energy metabolism and the related mechanism in rats based on metabolomics. Food Sci Nutr 2021; 9:6194-6212. [PMID: 34760250 PMCID: PMC8565213 DOI: 10.1002/fsn3.2573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/18/2021] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
The Chinese materia medica Xianmao (XM) is widely used in Chinese clinics and the traditional Chinese medicine diets. Although XM is often used to study its kidney-yang effect, the research on its effect on kidney energy metabolism and its mechanism is still relatively lacking. In this study, rats were given different doses of XM water extract for 4 weeks. Biochemical method was used to detect the content of serum biochemical indexes of liver and kidney function and blood lipid indicators, and HE staining method was used to observe the histopathological of liver and kidney in rats. The kidney Na+-K+-ATPase, Ca2+-Mg2+-ATPase, SDH (succinate dehydrogenase) enzyme activity, and the content of ATP in rats were measured. Metabolomics technology was used to analyze the potential biomarkers related to the effects of XM on kidney energy metabolism, and then, the metabolic pathways were analyzed. RT-PCR was used to detect the expression of Ampk, Sirt1, Ppar-α, and Pgc-1α mRNA in kidney of rats. The results showed, compared with the blank control group, there was no significant effect on liver and kidney function in XMH, XMM, and XML groups. These significantly increased the kidney Na+-K+-ATPase, Ca2+-Mg2+-ATPase, SDH enzyme activity, and ATP content in XMH, XMM, and XML groups. Mitochondrial metabolic rate was inhibited in XMH group, but it was significantly increased in XMM and XML groups. The number of mitochondria was increased in XMH, XMM, and XML groups. Overall, these effects may be mediated by TCA cycle metabolism, butanoate metabolism, propanoate metabolism, alanine, aspartate, and glutamate metabolism, retinol metabolism, purine metabolism, pentose phosphate metabolism, aminoacyl-tRNA biosynthesis, valine, leucine, and isoleucine biosynthesis, and degradation metabolism pathways, as well as by increasing expression of upstream genes Ampk, Sirt1, Ppar-α, and Pgc-1α mRNA.
Collapse
Affiliation(s)
- Limei Chen
- The Affiliated Hospital of Jiangxi University of CMNanchangChina
- Jiangxi University of Chinese MedicineNanchangChina
| | - Baohua Qu
- Nanchang Institute of Science & TechnologyNanchangChina
| | - Hui Wang
- Jiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Jiangxi University of Chinese MedicineNanchangChina
| | - Yongmei Guan
- Jiangxi University of Chinese MedicineNanchangChina
| | | | - Jiaqi Zhang
- Jiangxi University of Chinese MedicineNanchangChina
| |
Collapse
|
36
|
Ahmad W, Ebert PR. Suppression of a core metabolic enzyme dihydrolipoamide dehydrogenase ( dld) protects against amyloid beta toxicity in C. elegans model of Alzheimer's disease. Genes Dis 2021; 8:849-866. [PMID: 34522713 PMCID: PMC8427249 DOI: 10.1016/j.gendis.2020.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 01/24/2023] Open
Abstract
A decrease in energy metabolism is associated with Alzheimer's disease (AD), but it is not known whether the observed decrease exacerbates or protects against the disease. The importance of energy metabolism in AD is reinforced by the observation that variants of dihydrolipoamide dehydrogenase (DLD), is genetically linked to late-onset AD. To determine whether DLD is a suitable therapeutic target, we suppressed the dld-1 gene in Caenorhabditis elegans that express human Aβ peptide in either muscles or neurons. Suppression of the dld-1 gene resulted in significant restoration of vitality and function that had been degraded by Aβ pathology. This included protection of neurons and muscles cells. The observed decrease in proteotoxicity was associated with a decrease in the formation of toxic oligomers rather than a decrease in the abundance of the Aβ peptide. The mitochondrial uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), which like dld-1 gene expression inhibits ATP synthesis, had no significant effect on Aβ toxicity. Proteomics data analysis revealed that beneficial effects after dld-1 suppression could be due to change in energy metabolism and activation of the pathways associated with proteasomal degradation, improved cell signaling and longevity. Thus, some features unique to dld-1 gene suppression are responsible for the therapeutic benefit. By direct genetic intervention, we have shown that acute inhibition of dld-1 gene function may be therapeutically beneficial. This result supports the hypothesis that lowering energy metabolism protects against Aβ pathogenicity and that DLD warrants further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul R. Ebert
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
37
|
Mi S, Jiang H, Zhang L, Xie Z, Zhou J, Sun A, Jin H, Ge J. Regulation of Cardiac-Specific Proteins Expression by Moderate-Intensity Aerobic Exercise Training in Mice With Myocardial Infarction Induced Heart Failure Using MS-Based Proteomics. Front Cardiovasc Med 2021; 8:732076. [PMID: 34692783 PMCID: PMC8531249 DOI: 10.3389/fcvm.2021.732076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
This study aims to systematically reveal the changes in protein levels induced by regular exercise in mice with ischemic-induced heart failure (HF). Aerobic exercise training for the ischemic-induced HF mice lasted for 4 weeks and then we used the liquid chromatography-mass spectrometry method to identify and quantify the protein profile in the myocardium of mice. As a whole, 1,304 proteins (597 proteins up-regulated; 707 proteins down-regulated) were differentially expressed between the exercise group and the sedentary group, including numerous proteins related to energy metabolism. The significant alteration of the component (E1 component subunit alpha and subunit beta) and the activity-regulating enzyme (pyruvate dehydrogenase kinase 2 and pyruvate dehydrogenase kinase 4) of pyruvate dehydrogenase complex and poly [ADP-ribose] polymerase 3, a nicotinamide adenine dinucleotide(+)-consuming enzymes, was further verified in targeted analysis. Generally, this proteomics profiling furnishes a systematic insight of the influence of aerobic exercise on HF.
Collapse
Affiliation(s)
- Shouling Mi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhonglei Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hong Jin
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Stomatological Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Arnould H, Baudouin V, Baudry A, Ribeiro LW, Ardila-Osorio H, Pietri M, Caradeuc C, Soultawi C, Williams D, Alvarez M, Crozet C, Djouadi F, Laforge M, Bertho G, Kellermann O, Launay JM, Schmitt-Ulms G, Schneider B. Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases. PLoS Pathog 2021; 17:e1009991. [PMID: 34610054 PMCID: PMC8519435 DOI: 10.1371/journal.ppat.1009991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.
Collapse
Affiliation(s)
- Hélène Arnould
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Vincent Baudouin
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Anne Baudry
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Luiz W. Ribeiro
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | | | - Mathéa Pietri
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Cédric Caradeuc
- CNRS, UMR 8601, Paris, France
- Université de Paris, UMR 8601, Paris, France
| | - Cynthia Soultawi
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Declan Williams
- University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases, Canada
| | - Marjorie Alvarez
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Carole Crozet
- IRMB, Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - Fatima Djouadi
- INSERM, UMR-S 1138, Paris, France
- Université de Paris, UMR-S 1138, Paris, France
| | - Mireille Laforge
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Gildas Bertho
- CNRS, UMR 8601, Paris, France
- Université de Paris, UMR 8601, Paris, France
| | - Odile Kellermann
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Jean-Marie Launay
- Assistance Publique des Hôpitaux de Paris, INSERM UMR942, Hôpital Lariboisière, Paris, France
- Pharma Research Department, Hoffmann La Roche Ltd, Basel, Switzerland
| | - Gerold Schmitt-Ulms
- University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases, Canada
| | - Benoit Schneider
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
- * E-mail:
| |
Collapse
|
39
|
Solano Fonseca R, Metang P, Egge N, Liu Y, Zuurbier KR, Sivaprakasam K, Shirazi S, Chuah A, Arneaud SL, Konopka G, Qian D, Douglas PM. Glycolytic preconditioning in astrocytes mitigates trauma-induced neurodegeneration. eLife 2021; 10:69438. [PMID: 34473622 PMCID: PMC8448530 DOI: 10.7554/elife.69438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023] Open
Abstract
Concussion is associated with a myriad of deleterious immediate and long-term consequences. Yet the molecular mechanisms and genetic targets promoting the selective vulnerability of different neural subtypes to dysfunction and degeneration remain unclear. Translating experimental models of blunt force trauma in C. elegans to concussion in mice, we identify a conserved neuroprotective mechanism in which reduction of mitochondrial electron flux through complex IV suppresses trauma-induced degeneration of the highly vulnerable dopaminergic neurons. Reducing cytochrome C oxidase function elevates mitochondrial-derived reactive oxygen species, which signal through the cytosolic hypoxia inducing transcription factor, Hif1a, to promote hyperphosphorylation and inactivation of the pyruvate dehydrogenase, PDHE1α. This critical enzyme initiates the Warburg shunt, which drives energetic reallocation from mitochondrial respiration to astrocyte-mediated glycolysis in a neuroprotective manner. These studies demonstrate a conserved process in which glycolytic preconditioning suppresses Parkinson-like hypersensitivity of dopaminergic neurons to trauma-induced degeneration via redox signaling and the Warburg effect. Concussion is a type of traumatic brain injury that results from a sudden blow or jolt to the head. Symptoms can include a passing headache, dizziness, confusion or sensitivity to light, but experiencing multiple concussions can have drastic repercussions in later life. Studies of professional athletes have shown that those who experience one or more concussions are prone to developing Alzheimer’s and Parkinson’s disease, two well-known neurodegenerative diseases. Both conditions involve the progressive loss or breakdown of nerve cells, called neurons. But exactly how this so-called neurodegeneration of brain cells stems from the original, physical injury remains unclear. Head trauma may cause damage to the structural support of a cell or disrupt the flow of electrical impulses through neurons. Energy use and production in damaged cells could shift into overdrive to repair the damage. The chemical properties of different types of brain cells could also make some more vulnerable to trauma than others. Besides neurons, star-shaped support cells in the brain called astrocytes, which may have some protective ability, could also be affected. To investigate which cells may be more susceptible to traumatic injuries, Solano Fonseca et al. modelled the impacts of concussion-like head trauma in roundworms (C. elegans) and mice. In both animals, one type of neuron was extremely vulnerable to cell death after trauma. Neurons that release dopamine, a chemical involved in cell-to-cell communication and the brain’s reward system, showed signs of cell damage and deteriorated after injury. Dopaminergic cells, as these cells are called, are involved in motor coordination, and the loss of dopaminergic cells has been linked to both Alzheimer’s and Parkinson’s disease. Astrocytes, however, had a role in reducing the death of dopaminergic neurons after trauma. In experiments, astrocytes appeared to restore the balance of energy production to meet the increased energy demands of impacted neurons. Single-cell analyses showed that genes involved in metabolism were switched on in astrocytes to produce energy via an alternative pathway. This energetic shift facilitated via astrocytes may help mitigate against some damage to dopamine-producing neurons after trauma, reducing cell death. This work furthers our understanding of cellular changes in the concussed brain. More research will be required to better characterise how this immediate trauma to cells, and the subsequent loss of dopaminergic neurons, impacts brain health long-term. Efforts to design effective therapies to slow or reverse these changes could then follow.
Collapse
Affiliation(s)
- Rene Solano Fonseca
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Patrick Metang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nathan Egge
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yingjian Liu
- Department of Mechanical Engineering, University of Texas at Dallas, Dallas, United States
| | - Kielen R Zuurbier
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Karthigayini Sivaprakasam
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shawn Shirazi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Ashleigh Chuah
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sonja Lb Arneaud
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Genevieve Konopka
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Dong Qian
- Department of Mechanical Engineering, University of Texas at Dallas, Dallas, United States
| | - Peter M Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
40
|
Bakare AB, Lesnefsky EJ, Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front Physiol 2021; 12:693734. [PMID: 34456746 PMCID: PMC8385445 DOI: 10.3389/fphys.2021.693734] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Edward J. Lesnefsky
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Physiology/Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
41
|
Du H, Zhao Y, Li H, Wang DW, Chen C. Roles of MicroRNAs in Glucose and Lipid Metabolism in the Heart. Front Cardiovasc Med 2021; 8:716213. [PMID: 34368265 PMCID: PMC8339264 DOI: 10.3389/fcvm.2021.716213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that participate in heart development and pathological processes mainly by silencing gene expression. Overwhelming evidence has suggested that miRNAs were involved in various cardiovascular pathological processes, including arrhythmias, ischemia-reperfusion injuries, dysregulation of angiogenesis, mitochondrial abnormalities, fibrosis, and maladaptive remodeling. Various miRNAs could regulate myocardial contractility, vascular proliferation, and mitochondrial function. Meanwhile, it was reported that miRNAs could manipulate nutrition metabolism, especially glucose and lipid metabolism, by regulating insulin signaling pathways, energy substrate transport/metabolism. Recently, increasing studies suggested that the abnormal glucose and lipid metabolism were closely associated with a broad spectrum of cardiovascular diseases (CVDs). Therefore, maintaining glucose and lipid metabolism homeostasis in the heart might be beneficial to CVD patients. In this review, we summarized the present knowledge of the functions of miRNAs in regulating cardiac glucose and lipid metabolism, as well as highlighted the miRNA-based therapies targeting cardiac glucose and lipid metabolism.
Collapse
Affiliation(s)
- Hengzhi Du
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yanru Zhao
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Cardoso AM, Morais CM, Sousa M, Rebelo O, Tão H, Barbosa M, Pedroso de Lima MC, Jurado AS. MiR-200c-based metabolic modulation in glioblastoma cells as a strategy to overcome tumor chemoresistance. Hum Mol Genet 2021; 30:2315-2331. [PMID: 34245265 DOI: 10.1093/hmg/ddab193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and common form of primary brain tumor characterized by fast proliferation, high invasion, and resistance to current standard treatment. The average survival rate post-diagnosis is 14.6 months, despite the aggressive standard post-surgery radiotherapy concomitant with chemotherapy with temozolomide (TMZ). Currently, efforts are being endowed to develop new and more efficient therapeutic approaches capable to overcome chemoresistance, inhibit tumor progression and improve overall patient survival rate. Abnormal microRNA (miRNA) expression has been correlated with chemoresistance, proliferation and resistance to apoptosis, which result from their master regulatory role of gene expression. Altered cell metabolism, favoring glycolysis, was identified as an emerging cancer hallmark and has been described in GB, thus offering a new target for innovative GB therapies. In this work, we hypothesized that a gene therapy-based strategy consisting of the overexpression of a miRNA downregulated in GB and predicted to target crucial metabolic enzymes might promote a shift of GB cell metabolism, decreasing the glycolytic dependence of tumor cells and contributing to their sensitization to chemotherapy with TMZ. The increase of miR-200c levels in DBTRG cells resulted in downregulation of mRNA of enzymes involved in bioenergetics pathways and impaired cell metabolism and mobility. Additionally, miR-200c overexpression prior to DBTRG cell exposure to TMZ resulted in cell cycle arrest. Overall, our results show that miR-200c overexpression could offer a way to overcome chemoresistance developed by GB cells in response to current standard chemotherapy, providing an improvement to current GB standard treatment, with benefit for patient outcome.
Collapse
Affiliation(s)
- Ana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Catarina M Morais
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Madalena Sousa
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Hermínio Tão
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Marcos Barbosa
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Amália S Jurado
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| |
Collapse
|
43
|
Ji X, Sun W, Lv C, Huang J, Zhang H. Circular RNAs Regulate Glucose Metabolism in Cancer Cells. Onco Targets Ther 2021; 14:4005-4021. [PMID: 34239306 PMCID: PMC8259938 DOI: 10.2147/ott.s316597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) were originally thought to result from RNA splicing errors. However, it has been shown that circRNAs can regulate cancer onset and progression in various ways. They can regulate cancer cell proliferation, differentiation, invasion, and metastasis. Moreover, they modulate glucose metabolism in cancer cells through different mechanisms such as directly regulating glycolytic enzymes and glucose transporter (GLUT) or indirectly regulating signal transduction pathways. In this review, we elucidate on the role of circRNAs in regulating glucose metabolism in cancer cells, which partly explains the pathogenesis of malignant tumors, and provides new therapeutic targets or new diagnostic and prognostic markers for human cancers.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Chengzhou Lv
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Jiapeng Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| |
Collapse
|
44
|
Marwali EM, Caesa P, Purnama Y, Rayhan M, Budiwardhana N, Fitria L, Fakhri D, Portman MA. Thiamine levels in Indonesian children with congenital heart diseases undergoing surgery using cardiopulmonary bypass machine. Asian Cardiovasc Thorac Ann 2021; 30:307-313. [PMID: 34102906 DOI: 10.1177/02184923211024103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND This study evaluated thiamine levels in Indonesian children with congenital heart diseases before and after cardiopulmonary bypass and their relationship with clinical and surgical outcomes. METHOD A prospective, single center cross-sectional study was conducted to evaluate thiamine levels in 25 children undergoing congenital heart diseases surgery with cardiopulmonary bypass procedure. Thiamine levels were quantified using a high-performance liquid chromatography method. RESULT Preoperative thiamine deficiency was observed in one subject. Thiamine levels did not differ statistically between nutritional status and clinical outcomes categories. There were no significant changes in thiamine levels before and after cardiopulmonary bypass (median pre versus post (P25-75): 50 ng/mL (59.00-116.00) and 83.00 ng/mL (70.00-101.00), p = 0.84), although a significant reduction in thiamine levels were observed with longer cardiopulmonary bypass duration (p = 0.017, R = -0.472). CONCLUSION Thiamine levels were not significantly impacted by cardiac surgery except in patients undergoing extremely long cardiopulmonary bypass duration. However, clinical outcome was not affected by thiamine levels.
Collapse
Affiliation(s)
- Eva M Marwali
- Pediatric Cardiac Intensive Care Unit, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia.,Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Putri Caesa
- Pediatric Cardiac Intensive Care Unit, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Yoel Purnama
- Pediatric Cardiac Intensive Care Unit, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Muhammad Rayhan
- Pediatric Cardiac Intensive Care Unit, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Novik Budiwardhana
- Pediatric Cardiac Intensive Care Unit, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Liza Fitria
- Pediatric Cardiac Intensive Care Unit, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Dicky Fakhri
- Pediatric Cardiac Surgery, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Michael A Portman
- Department of Cardiothoracic Surgery Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
45
|
Yu M, Lun J, Zhang H, Zhu L, Zhang G, Fang J. The non-canonical functions of HIF prolyl hydroxylases and their dual roles in cancer. Int J Biochem Cell Biol 2021; 135:105982. [PMID: 33894356 DOI: 10.1016/j.biocel.2021.105982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are dioxygenases using oxygen and 2-oxoglutarate as co-substrates. Under normoxia, PHDs hydroxylate the conserved prolyl residues of HIFα, leading to HIFα degradation. In hypoxia PHDs are inactivated, which results in HIFα accumulation. The accumulated HIFα enters nucleus and initiates gene transcription. Many studies have shown that PHDs have substrates other than HIFα, implying that they have HIF-independent non-canonical functions. Besides modulating protein stability, the PHDs-mediated prolyl hydroxylation affects protein-protein interaction and protein activity for alternative substrates. Increasing evidence indicates that PHDs also have hydroxylase-independent functions. They influence protein stability, enzyme activity, and protein-protein interaction in a hydroxylase-independent manner. These findings highlight the functional diversity and complexity of PHDs. Due to having inhibitory activity on HIFα, PHDs are proposed to act as tumor suppressors. However, research shows that PHDs exert either tumor-promoting or tumor-suppressing features. Here, we try to summarize the current understanding of PHDs hydroxylase-dependent and -independent functions and their roles in cancer.
Collapse
Affiliation(s)
- Mengchao Yu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Jie Lun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, China
| | - Lei Zhu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| |
Collapse
|
46
|
Gopal K, Al Batran R, Altamimi TR, Greenwell AA, Saed CT, Tabatabaei Dakhili SA, Dimaano MTE, Zhang Y, Eaton F, Sutendra G, Ussher JR. FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Rep 2021; 35:108935. [PMID: 33826891 DOI: 10.1016/j.celrep.2021.108935] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/11/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) increases the risk for diabetic cardiomyopathy and is characterized by diastolic dysfunction. Myocardial forkhead box O1 (FoxO1) activity is enhanced in T2D and upregulates pyruvate dehydrogenase (PDH) kinase 4 expression, which inhibits PDH activity, the rate-limiting enzyme of glucose oxidation. Because low glucose oxidation promotes cardiac inefficiency, we hypothesize that FoxO1 inhibition mitigates diabetic cardiomyopathy by stimulating PDH activity. Tissue Doppler echocardiography demonstrates improved diastolic function, whereas myocardial PDH activity is increased in cardiac-specific FoxO1-deficient mice subjected to experimental T2D. Pharmacological inhibition of FoxO1 with AS1842856 increases glucose oxidation rates in isolated hearts from diabetic C57BL/6J mice while improving diastolic function. However, AS1842856 treatment fails to improve diastolic function in diabetic mice with a cardiac-specific FoxO1 or PDH deficiency. Our work defines a fundamental mechanism by which FoxO1 inhibition improves diastolic dysfunction, suggesting that it may be an approach to alleviate diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Tariq R Altamimi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Christina T Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - M Toni E Dimaano
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yongneng Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Gopinath Sutendra
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
47
|
Prochownik EV, Wang H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021; 10:cells10040762. [PMID: 33808495 PMCID: PMC8066905 DOI: 10.3390/cells10040762] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15213, USA
- The Hillman Cancer Center, UPMC, Pittsburgh, PA 15213, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-(412)-692-6795
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
48
|
Pavlu-Pereira H, Lousa D, Tomé CS, Florindo C, Silva MJ, de Almeida IT, Leandro P, Rivera I, Vicente JB. Structural and functional impact of clinically relevant E1α variants causing pyruvate dehydrogenase complex deficiency. Biochimie 2021; 183:78-88. [PMID: 33588022 DOI: 10.1016/j.biochi.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/19/2023]
Abstract
Pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-coenzyme A, hinging glycolysis and the tricarboxylic acid cycle. PDC deficiency, an inborn error of metabolism, has a broad phenotypic spectrum. Symptoms range from fatal lactic acidosis or progressive neuromuscular impairment in the neonatal period, to chronic neurodegeneration. Most disease-causing mutations in PDC deficiency affect the PDHA1 gene, encoding the α subunit of the PDC-E1 component. Detailed biophysical analysis of pathogenic protein variants is a challenging approach to support the design of therapies based on improving and correcting protein structure and function. Herein, we report the characterization of clinically relevant PDC-E1α variants identified in Portuguese PDC deficient patients. These variants bear amino acid substitutions in different structural regions of PDC-E1α. The structural and functional analyses of recombinant heterotetrameric (αα'ββ') PDC-E1 variants, combined with molecular dynamics (MD) simulations, show a limited impact of the amino acid changes on the conformational stability, apart from the increased propensity for aggregation of the p.R253G variant as compared to wild-type PDC-E1. However, all variants presented a functional impairment in terms of lower residual PDC-E1 enzymatic activity and ≈3-100 × lower affinity for the thiamine pyrophosphate (TPP) cofactor, in comparison with wild-type PDC-E1. MD simulations neatly showed generally decreased stability (increased flexibility) of all variants with respect to the WT heterotetramer, particularly in the TPP binding region. These results are discussed in light of disease severity of the patients bearing such mutations and highlight the difficulty of developing chaperone-based therapies for PDC deficiency.
Collapse
Affiliation(s)
- Hana Pavlu-Pereira
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina S Tomé
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Florindo
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Tavares de Almeida
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Leandro
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Isabel Rivera
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
49
|
Jelinek BA, Moxley MA. Detailed evaluation of pyruvate dehydrogenase complex inhibition in simulated exercise conditions. Biophys J 2021; 120:936-949. [PMID: 33515599 DOI: 10.1016/j.bpj.2021.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian pyruvate dehydrogenase complex (PDC) is a mitochondrial multienzyme complex that connects glycolysis to the tricarboxylic acid cycle by catalyzing pyruvate oxidation to produce acetyl-CoA, NADH, and CO2. This reaction is required to aerobically utilize glucose, a preferred metabolic fuel, and is composed of three core enzymes: pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). The pyruvate-dehydrogenase-specific kinase (PDK) and pyruvate-dehydrogenase-specific phosphatase (PDP) are considered the main control mechanism of mammalian PDC activity. However, PDK and PDP activity are allosterically regulated by several effectors fully overlapping PDC substrates and products. This collection of positive and negative feedback mechanisms confounds simple predictions of relative PDC flux, especially when all effectors are dynamically modulated during metabolic states that exist in physiologically realistic conditions, such as exercise. Here, we provide, to our knowledge, the first globally fitted, pH-dependent kinetic model of the PDC accounting for the PDC core reaction because it is regulated by PDK, PDP, metal binding equilibria, and numerous allosteric effectors. The model was used to compute PDH regulatory complex flux as a function of previously determined metabolic conditions used to simulate exercise and demonstrates increased flux with exercise. Our model reveals that PDC flux in physiological conditions is primarily inhibited by product inhibition (∼60%), mostly NADH inhibition (∼30-50%), rather than phosphorylation cycle inhibition (∼40%), but the degree to which depends on the metabolic state and PDC tissue source.
Collapse
Affiliation(s)
- Bodhi A Jelinek
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska
| | - Michael A Moxley
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska.
| |
Collapse
|
50
|
Stojakovic A, Trushin S, Sheu A, Khalili L, Chang SY, Li X, Christensen T, Salisbury JL, Geroux RE, Gateno B, Flannery PJ, Dehankar M, Funk CC, Wilkins J, Stepanova A, O'Hagan T, Galkin A, Nesbitt J, Zhu X, Tripathi U, Macura S, Tchkonia T, Pirtskhalava T, Kirkland JL, Kudgus RA, Schoon RA, Reid JM, Yamazaki Y, Kanekiyo T, Zhang S, Nemutlu E, Dzeja P, Jaspersen A, Kwon YIC, Lee MK, Trushina E. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol 2021; 4:61. [PMID: 33420340 PMCID: PMC7794523 DOI: 10.1038/s42003-020-01584-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.
Collapse
Affiliation(s)
- Andrea Stojakovic
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Anthony Sheu
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Layla Khalili
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Xing Li
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Trace Christensen
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Jeffrey L Salisbury
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Rachel E Geroux
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Benjamin Gateno
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Padraig J Flannery
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Mrunal Dehankar
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, 98109-5263, USA
| | - Jordan Wilkins
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Anna Stepanova
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Tara O'Hagan
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Alexander Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Xiujuan Zhu
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Utkarsh Tripathi
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Rachel A Kudgus
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Renee A Schoon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Joel M Reid
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Sihhiye, Ankara, 06100, Turkey
| | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Adam Jaspersen
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ye In Christopher Kwon
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|