1
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
2
|
Noguchi M, Miyauchi A, Masaki Y, Sakaki M, Lei XF, Kobayashi-Tanabe M, Miyazaki A, Aoki T, Yoshida H, Seio K, Kim-Kaneyama JR. Hic-5 antisense oligonucleotide inhibits advanced hepatic fibrosis and steatosis in vivo. JHEP Rep 2024; 6:101195. [PMID: 39444410 PMCID: PMC11497448 DOI: 10.1016/j.jhepr.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 10/25/2024] Open
Abstract
Background & Aims Chronic liver diseases, including metabolic dysfunction-associated steatohepatitis (MASH), pose a significant global health burden. Progressive liver fibrosis can lead to severe outcomes; however, there is a lack of effective therapies targeting advanced fibrosis. Hydrogen peroxide-inducible clone-5 (Hic-5), an adaptor protein in focal adhesion, is critical for promoting liver fibrosis in hepatic stellate cells. This study investigated its clinical applicability by examining hepatic Hic-5 expression in human fibrotic tissues, exploring its association with MASH, and assessing the therapeutic potential of antisense oligonucleotides (ASOs) targeting Hic-5 in a MASH mouse model. Methods Hepatic Hic-5 expression in human fibrotic tissues underwent pathological image analysis and single-cell RNA sequencing. ASOs targeting Hic-5 were developed and tested using in vitro cell models. An in vivo MASH mouse model was used to evaluate the effects of anti-Hic-5 ASOs on advanced fibrosis and steatosis. Results Hepatic Hic-5 expression increased with the progression of fibrosis, particularly in advanced stages. Single-cell RNA sequencing revealed Hic-5 expression primarily in hepatic stellate cells. In MASH-associated fibrosis, Hic-5 expression correlated with the expression of fibrotic genes. In the MASH mouse model, hepatic Hic-5 expression increased with disease progression. Anti-Hic-5 ASOs effectively suppressed Hic-5 expression in vitro and attenuated advanced fibrosis and steatosis in vivo, indicating their therapeutic potential. Conclusions Hepatic Hic-5 expression is associated with advanced liver fibrosis and MASH. Anti-Hic-5 ASOs are promising therapeutic interventions for MASH accompanied by advanced fibrosis. These findings provide valuable insights into potential clinical treatments for advanced liver fibrosis. Impact and implications This study investigated the role of Hic-5 in liver fibrosis and steatohepatitis, highlighting its potential as a therapeutic target. We developed an antisense oligonucleotide (ASO) that was particularly transportable to the liver, and targeted Hic-5. Anti-Hic-5 ASO exhibited therapeutic efficacy for liver fibrosis and steatosis in vivo, indicating its therapeutic potential for liver fibrosis and steatosis. ASOs have already achieved dramatic therapeutic effects as approved nucleic acid drugs. Thus, anti-Hic-5 ASO is expected to lead the direct generation of seed compounds for the clinical development of drugs for liver fibrosis and steatosis.
Collapse
Affiliation(s)
- Masahito Noguchi
- Department of Biochemistry, Showa University School of Medicine; Shinagawa-ku, Tokyo, Japan
| | - Aya Miyauchi
- Department of Biochemistry, Showa University School of Medicine; Shinagawa-ku, Tokyo, Japan
- Institute for Extracellular Matrix Research, Showa University; Shinagawa-ku, Tokyo, Japan
| | - Yoshiaki Masaki
- Department of Life Science and Technology, Tokyo Institute of Technology; Yokohama, Kanagawa, Japan
| | - Masashi Sakaki
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine; Shinagawa-ku, Tokyo, Japan
| | - Xiao-Feng Lei
- Department of Dermatology, Showa University School of Medicine; Shinagawa-ku, Tokyo, Japan
| | | | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine; Shinagawa-ku, Tokyo, Japan
- Institute for Extracellular Matrix Research, Showa University; Shinagawa-ku, Tokyo, Japan
| | - Takeshi Aoki
- Department of General and Gastroenterological Surgery, Showa University School of Medicine; Shinagawa-ku, Tokyo, Japan
| | - Hitoshi Yoshida
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine; Shinagawa-ku, Tokyo, Japan
| | - Kohji Seio
- Department of Life Science and Technology, Tokyo Institute of Technology; Yokohama, Kanagawa, Japan
| | - Joo-ri Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine; Shinagawa-ku, Tokyo, Japan
- Institute for Extracellular Matrix Research, Showa University; Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
3
|
Abidha CA, Meeks KAC, Chilunga FP, Venema A, Schindlmayr R, Hayfron-Benjamin C, Klipstein-Grobusch K, Mockenhaupt FP, Agyemang C, Henneman P, Danquah I. A comprehensive lifestyle index and its associations with DNA methylation and type 2 diabetes among Ghanaian adults: the rodam study. Clin Epigenetics 2024; 16:143. [PMID: 39415250 PMCID: PMC11481717 DOI: 10.1186/s13148-024-01758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND A series of modifiable lifestyle factors, such as diet quality, physical activity, alcohol intake, and smoking, may drive the rising burden of type 2 diabetes (T2DM) among sub-Saharan Africans globally. It is unclear whether epigenetic changes play a mediatory role in the associations between these lifestyle factors and T2DM. We assessed the associations between a comprehensive lifestyle index, DNA methylation and T2DM among Ghanaian adults. METHODS We used whole-blood Illumina 450 k DNA methylation data from 713 Ghanaians from the Research on Obesity and Diabetes among African Migrants (RODAM) study. We constructed a comprehensive lifestyle index based on established cut-offs for diet quality, physical activity, alcohol intake, and smoking status. In the T2DM-free discovery cohort (n = 457), linear models were fitted to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) associated with the lifestyle index after adjustment for age, sex, body mass index (BMI), and technical covariates. Associations between the identified DMPs and the primary outcome (T2DM), as well as secondary outcomes (fasting blood glucose (FBG) and HbA1c), were determined via logistic and linear regression models, respectively. RESULTS In the present study population (mean age: 52 ± 10 years; male: 42.6%), the comprehensive lifestyle index showed a significant association with one DMP annotated to an intergenic region on chromosome 7 (false discovery rate (FDR) = 0.024). Others were annotated to ADCY7, SMARCE1, AHRR, LOXL2, and PTBP1 genes. One DMR was identified and annotated to the GFPT2 gene (familywise error rate (FWER) from bumphunter bootstrap = 0.036). None of the DMPs showed significant associations with T2DM; directions of effect were positive for the DMP in the AHRR and inverse for all the other DMPs. Higher methylation of the ADCY7 DMP was associated with higher FBG (p = 0.024); LOXL2 DMP was associated with lower FBG (p = 0.023) and HbA1c (p = 0.049); and PTBP1 DMP was associated with lower HbA1c (p = 0.002). CONCLUSIONS In this explorative epigenome-wide association study among Ghanaians, we identified one DMP and DMR associated with a comprehensive lifestyle index not previously associated with individual lifestyle factors. Based on our findings, we infer that lifestyle factors in combination, affect DNA methylation, thereby influencing the risk of T2DM among Ghanaian adults living in different contexts.
Collapse
Affiliation(s)
- C A Abidha
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - K A C Meeks
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - F P Chilunga
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - A Venema
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - R Schindlmayr
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany
| | - C Hayfron-Benjamin
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Physiology, University of Ghana Medical School, Accra, Ghana
| | - Kerstin Klipstein-Grobusch
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, Julius Global Health, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - C Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - I Danquah
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
| |
Collapse
|
4
|
Fan W, Bradford TM, Török NJ. Metabolic dysfunction-associated liver disease and diabetes: Matrix remodeling, fibrosis, and therapeutic implications. Ann N Y Acad Sci 2024; 1538:21-33. [PMID: 38996214 DOI: 10.1111/nyas.15184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Metabolic dysfunction-associated liver disease (MASLD) and steatohepatitis (MASH) are becoming the most common causes of chronic liver disease in the United States and worldwide due to the obesity and diabetes epidemics. It is estimated that by 2030 close to 100 million people might be affected and patients with type 2 diabetes are especially at high risk. Twenty to 30% of patients with MASLD can progress to MASH, which is characterized by steatosis, necroinflammation, hepatocyte ballooning, and in advanced cases, fibrosis progressing to cirrhosis. Clinically, it is recognized that disease progression in diabetic patients is accelerated and the role of various genetic and epigenetic factors, as well as cell-matrix interactions in fibrosis and stromal remodeling, have recently been recognized. While there has been great progress in drug development and clinical trials for MASLD/MASH, the complexity of these pathways highlights the need to improve diagnosis/early detection and develop more successful antifibrotic therapies that not only prevent but reverse fibrosis.
Collapse
Affiliation(s)
- Weiguo Fan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
- Palo Alto VA Medical Center, Palo Alto, California, USA
| | - Toby M Bradford
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Natalie J Török
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
- Palo Alto VA Medical Center, Palo Alto, California, USA
| |
Collapse
|
5
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Amoroso M, Augustin S, Moosmang S, Gashaw I. Non-invasive biomarkers prognostic of decompensation events in NASH cirrhosis: a systematic literature review. J Mol Med (Berl) 2024; 102:841-858. [PMID: 38753041 PMCID: PMC11213726 DOI: 10.1007/s00109-024-02448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 06/29/2024]
Abstract
Liver cirrhosis due to nonalcoholic steatohepatitis (NASH) is a life-threatening condition with increasing incidence world-wide. Although its symptoms are unspecific, it can lead to decompensation events such as ascites, hepatic encephalopathy, variceal hemorrhage, and hepatocellular carcinoma (HCC). In addition, an increased risk for cardiovascular events has been demonstrated in patients with NASH. Pharmacological treatments for NASH cirrhosis are not yet available, one of the reasons being the lack in surrogate endpoints available in clinical trials of NASH cirrhosis. The feasibility of non-invasive prognostic biomarkers makes them interesting candidates as possible surrogate endpoints if their change following treatment would result in better outcomes for patients in future clinical trials of NASH cirrhosis. In this systematic literature review, a summary of the available literature on the prognostic performance of non-invasive biomarkers in terms of cardiovascular events, liver-related events, and mortality is outlined. Due to the scarcity of data specific for NASH cirrhosis, this review includes studies on NAFLD whose evaluation focuses on cirrhosis. Our search strategy identified the following non-invasive biomarkers with prognostic value in studies of NASH patients: NAFLD fibrosis score (NFS), Fibrosis-4 (FIB-4), aspartate aminotransferase (AST) to platelet ratio index (APRI), enhanced liver fibrosis (ELF™), BARD (BMI, AST/ALT (alanine aminotransferase) ratio, diabetes), Hepamet Fibrosis Score (HFS), liver enzymes (AST + ALT), alpha-fetoprotein, platelet count, neutrophil to lymphocyte ratio (NLR), Lysyl oxidase-like (LOXL) 2, miR-122, liver stiffness, MEFIB (liver stiffness measured with magnetic resonance elastography (MRE) + FIB-4), and PNPLA3 GG genotype. The aim of the present systematic literature review is to provide the reader with a summary of the non-invasive biomarkers with prognostic value in NASH cirrhosis and give an evaluation of their utility as treatment monitoring biomarkers in future clinical trials.
Collapse
Affiliation(s)
| | | | - Sven Moosmang
- Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany
| | | |
Collapse
|
7
|
Chen J, Yang X, Li W, Lin Y, Lin R, Cai X, Yan B, Xie B, Li J. Potential molecular and cellular mechanisms of the effects of cuproptosis-related genes in the cardiomyocytes of patients with diabetic heart failure: a bioinformatics analysis. Front Endocrinol (Lausanne) 2024; 15:1370387. [PMID: 38883603 PMCID: PMC11176466 DOI: 10.3389/fendo.2024.1370387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Background Diabetes mellitus is an independent risk factor for heart failure, and diabetes-induced heart failure severely affects patients' health and quality of life. Cuproptosis is a newly defined type of programmed cell death that is thought to be involved in the pathogenesis and progression of cardiovascular disease, but the molecular mechanisms involved are not well understood. Therefore, we aimed to identify biomarkers associated with cuproptosis in diabetes mellitus-associated heart failure and the potential pathological mechanisms in cardiomyocytes. Materials Cuproptosis-associated genes were identified from the previous publication. The GSE26887 dataset was downloaded from the GEO database. Methods The consistency clustering was performed according to the cuproptosis gene expression. Differentially expressed genes were identified using the limma package, key genes were identified using the weighted gene co-expression network analysis(WGCNA) method, and these were subjected to immune infiltration analysis, enrichment analysis, and prediction of the key associated transcription factors. Consistency clustering identified three cuproptosis clusters. The differentially expressed genes for each were identified using limma and the most critical MEantiquewhite4 module was obtained using WGCNA. We then evaluated the intersection of the MEantiquewhite4 output with the three clusters, and obtained the key genes. Results There were four key genes: HSDL2, BCO2, CORIN, and SNORA80E. HSDL2, BCO2, and CORIN were negatively associated with multiple immune factors, while SNORA80E was positively associated, and T-cells accounted for a major proportion of this relationship with the immune system. Four enriched pathways were found to be associated: arachidonic acid metabolism, peroxisomes, fatty acid metabolism, and dorsoventral axis formation, which may be regulated by the transcription factor MECOM, through a change in protein structure. Conclusion HSDL2, BCO2, CORIN, and SNORA80E may regulate cardiomyocyte cuproptosis in patients with diabetes mellitus-associated heart failure through effects on the immune system. The product of the cuproptosis-associated gene LOXL2 is probably involved in myocardial fibrosis in patients with diabetes, which leads to the development of cardiac insufficiency.
Collapse
Affiliation(s)
- Jinhao Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xu Yang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Weiwen Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Run Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xianzhen Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Baoxin Yan
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Bin Xie
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jilin Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
8
|
Nie H, Yang H, Cheng L, Yu J. Identification of Lipotoxicity-Related Biomarkers in Diabetic Nephropathy Based on Bioinformatic Analysis. J Diabetes Res 2024; 2024:5550812. [PMID: 38774257 PMCID: PMC11108700 DOI: 10.1155/2024/5550812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/24/2024] Open
Abstract
Objective: This study is aimed at investigating diagnostic biomarkers associated with lipotoxicity and the molecular mechanisms underlying diabetic nephropathy (DN). Methods: The GSE96804 dataset from the Gene Expression Omnibus (GEO) database was utilized to identify differentially expressed genes (DEGs) in DN patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the DEGs. A protein-protein interaction (PPI) network was established to identify key genes linked to lipotoxicity in DN. Immune infiltration analysis was employed to identify immune cells with differential expression in DN and to assess the correlation between these immune cells and lipotoxicity-related hub genes. The findings were validated using the external dataset GSE104954. ROC analysis was performed to assess the diagnostic performance of the hub genes. The Gene set enrichment analysis (GSEA) enrichment method was utilized to analyze the key genes associated with lipotoxicity as mentioned above. Result: In this study, a total of 544 DEGs were identified. Among them, extracellular matrix (ECM), fatty acid metabolism, AGE-RAGE, and PI3K-Akt signaling pathways were significantly enriched. Combining the PPI network and lipotoxicity-related genes (LRGS), LUM and ALB were identified as lipotoxicity-related diagnostic biomarkers for DN. ROC analysis showed that the AUC values for LUM and ALB were 0.882 and 0.885, respectively. The AUC values for LUM and ALB validated in external datasets were 0.98 and 0.82, respectively. Immune infiltration analysis revealed significant changes in various immune cells during disease progression. Macrophages M2, mast cells activated, and neutrophils were significantly associated with all lipotoxicity-related hub genes. These key genes were enriched in fatty acid metabolism and extracellular matrix-related pathways. Conclusion: The identified lipotoxicity-related hub genes provide a deeper understanding of the development mechanisms of DN, potentially offering new theoretical foundations for the development of diagnostic biomarkers and therapeutic targets related to lipotoxicity in DN.
Collapse
Affiliation(s)
- Han Nie
- Department of Endocrinology, Affiliated Hospital of Jiujiang University, No. 57, East Road, Xunyang District, Jiujiang, Jiangxi, China 332000
| | - Huan Yang
- Department of Endocrinology, Affiliated Hospital of Jiujiang University, No. 57, East Road, Xunyang District, Jiujiang, Jiangxi, China 332000
| | - Lidan Cheng
- Department of Endocrinology, Affiliated Hospital of Jiujiang University, No. 57, East Road, Xunyang District, Jiujiang, Jiangxi, China 332000
| | - Jianxin Yu
- Department of Endocrinology, Affiliated Hospital of Jiujiang University, No. 57, East Road, Xunyang District, Jiujiang, Jiangxi, China 332000
| |
Collapse
|
9
|
Hu YJ, Zhang X, Lv HM, Liu Y, Li SZ. Protein O-GlcNAcylation: The sweet hub in liver metabolic flexibility from a (patho)physiological perspective. Liver Int 2024; 44:293-315. [PMID: 38110988 DOI: 10.1111/liv.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
O-GlcNAcylation is a dynamic, reversible and atypical O-glycosylation that regulates various cellular physiological processes via conformation, stabilisation, localisation, chaperone interaction or activity of target proteins. The O-GlcNAcylation cycle is precisely controlled by collaboration between O-GlcNAc transferase and O-GlcNAcase. Uridine-diphosphate-N-acetylglucosamine, the sole donor of O-GlcNAcylation produced by the hexosamine biosynthesis pathway, is controlled by the input of glucose, glutamine, acetyl coenzyme A and uridine triphosphate, making it a sensor of the fluctuation of molecules, making O-GlcNAcylation a pivotal nutrient sensor for the metabolism of carbohydrates, amino acids, lipids and nucleotides. O-GlcNAcylation, particularly prevalent in liver, is the core hub for controlling systemic glucose homeostasis due to its nutritional sensitivity and precise spatiotemporal regulation of insulin signal transduction. The pathology of various liver diseases has highlighted hepatic metabolic disorder and dysfunction, and abnormal O-GlcNAcylation also plays a specific pathological role in these processes. Therefore, this review describes the unique features of O-GlcNAcylation and its dynamic homeostasis maintenance. Additionally, it explains the underlying nutritional sensitivity of O-GlcNAcylation and discusses its mechanism of spatiotemporal modulation of insulin signal transduction and liver metabolic homeostasis during the fasting and feeding cycle. This review emphasises the pathophysiological implications of O-GlcNAcylation in nonalcoholic fatty liver disease, nonalcoholic steatohepatitis and hepatic fibrosis, and focuses on the adverse effects of hyper O-GlcNAcylation on liver cancer progression and metabolic reprogramming.
Collapse
Affiliation(s)
- Ya-Jie Hu
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xu Zhang
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong-Ming Lv
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yang Liu
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Ze Li
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
10
|
Chen YQ. NASH Drug Development: Seeing the Light at the End of the Tunnel? J Clin Transl Hepatol 2023; 11:1397-1403. [PMID: 37719961 PMCID: PMC10500295 DOI: 10.14218/jcth.2023.00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 07/03/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease affecting a large population worldwide. No clinically approved drugs are available. In this minireview, we discuss the heterogeneous nature of NASH and lack of consensus in outcome measures among clinical trials. We summarize NASH therapeutic targets and candidate drugs. We compare the efficacy of 33 published clinical trials that evaluated noninvasive biomarkers and liver biopsy. Currently, phase II trial results of fibroblast growth factor 21 (FGF21) and phase III trial results of resmetirom and pioglitazone are encouraging.
Collapse
Affiliation(s)
- Yong Q. Chen
- Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Poe A, Martinez Yus M, Wang H, Santhanam L. Lysyl oxidase like-2 in fibrosis and cardiovascular disease. Am J Physiol Cell Physiol 2023; 325:C694-C707. [PMID: 37458436 PMCID: PMC10635644 DOI: 10.1152/ajpcell.00176.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is an important and essential reparative response to injury that, if left uncontrolled, results in the excessive synthesis, deposition, remodeling, and stiffening of the extracellular matrix, which is deleterious to organ function. Thus, the sustained activation of enzymes that catalyze matrix remodeling and cross linking is a fundamental step in the pathology of fibrotic diseases. Recent studies have implicated the amine oxidase lysyl oxidase like-2 (LOXL2) in this process and established significantly elevated expression of LOXL2 as a key component of profibrotic conditions in several organ systems. Understanding the relationship between LOXL2 and fibrosis as well as the mechanisms behind these relationships can offer significant insights for developing novel therapies. Here, we summarize the key findings that demonstrate the link between LOXL2 and fibrosis and inflammation, examine current therapeutics targeting LOXL2 for the treatment of fibrosis, and discuss future directions for experiments and biomedical engineering.
Collapse
Affiliation(s)
- Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Marta Martinez Yus
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
12
|
Radić J, Kožik B, Nikolić I, Kolarov-Bjelobrk I, Vasiljević T, Vranjković B, Despotović S. Multiple Roles of LOXL2 in the Progression of Hepatocellular Carcinoma and Its Potential for Therapeutic Targeting. Int J Mol Sci 2023; 24:11745. [PMID: 37511503 PMCID: PMC10380739 DOI: 10.3390/ijms241411745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
LOXL2, a copper-dependent amine oxidase, has emerged as a promising therapeutic target in hepatocellular carcinoma (HCC). Increased LOXL2 expression in HCC has been linked with an aggressive phenotype and represents a poor prognostic factor. Here, we focus on the mechanisms through which LOXL2 orchestrates multiple oncogenic functions in HCC development. We performed a review of the current knowledge on the roles LOXL2 performs in the modulation of the HCC tumor microenvironment, formation of premetastatic niches, and epithelial-mesenchymal transition. We also highlighted the complex interplay between LOXL2 and hypoxia, angiogenesis, and vasculogenic mimicry in HCC. At the end of the review, we summarize the current LOXL2 inhibitors and discuss their potential in HCC precision treatment.
Collapse
Affiliation(s)
- Jelena Radić
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11100 Belgrade, Serbia
| | - Ivan Nikolić
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Ivana Kolarov-Bjelobrk
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Tijana Vasiljević
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia
- Department of Pathology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Bojana Vranjković
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Sanja Despotović
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Cheng F, Yang F, Wang Y, Zhou J, Qian H, Yan Y. Mesenchymal stem cell-derived exosomal miR-27b-3p alleviates liver fibrosis via downregulating YAP/LOXL2 pathway. J Nanobiotechnology 2023; 21:195. [PMID: 37328872 DOI: 10.1186/s12951-023-01942-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is an extracellular copper-dependent enzyme that plays a central role in fibrosis by catalyzing the crosslinking and deposition of collagen. Therapeutic LOXL2 inhibition has been shown to suppress liver fibrosis progression and promote its reversal. This study investigates the efficacy and underlying mechanisms of human umbilical cord-derived exosomes (MSC-ex) in LOXL2 inhibition of liver fibrosis. MSC-ex, nonselective LOX inhibitor β-aminopropionitrile (BAPN), or PBS were administered into carbon tetrachloride (CCl4)-induced fibrotic livers. Serum LOXL2 and collagen crosslinking were assessed histologically and biochemically. MSC-ex's mechanisms on LOXL2 regulation were investigated in human hepatic stellate cell line LX-2. We found that systemic administration of MSC-ex significantly reduced LOXL2 expression and collagen crosslinking, delaying the progression of CCl4-induced liver fibrosis. Mechanically, RNA-sequencing and fluorescence in situ hybridization (FISH) indicated that miR-27b-3p was enriched in MSC-ex and exosomal miR-27b-3p repressed Yes-associated protein (YAP) expression by targeting its 3' untranslated region in LX-2. LOXL2 was identified as a novel downstream target gene of YAP, and YAP bound to the LOXL2 promoter to positively regulate transcription. Additionally, the miR-27b-3p inhibitor abrogated the anti-LOXL2 abilities of MSC-ex and diminished the antifibrotic efficacy. miR-27b-3p overexpression promoted MSC-ex mediated YAP/LOXL2 inhibition. Thus, MSC-ex may suppress LOXL2 expression through exosomal miR-27b-3p mediated YAP down-regulation. The findings here may improve our understanding of MSC-ex in liver fibrosis alleviation and provide new opportunities for clinical treatment.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
| | - Yanjin Wang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China.
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China.
| |
Collapse
|
14
|
Zhang CY, Liu S, Yang M. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapy. World J Hepatol 2023; 15:180-200. [PMID: 36926234 PMCID: PMC10011909 DOI: 10.4254/wjh.v15.i2.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function lasting more than six months. CLD includes alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver inflammation and oxidative stress are commonly associated with the development and progression of CLD. Molecular signaling pathways such as AMP-activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome proliferator-activated receptors (PPARs) are implicated in the pathogenesis of CLD. Therefore, antioxidant and anti-inflammatory agents from natural products are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). In this review, we summarize some powerful products that can be potential applied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such as β-sitosterol, curcumin, genistein, and silymarin can regulate the activation of several important molecules, including AMPK, Farnesoid X receptor, nuclear factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
15
|
Chen N, Qiu X, Ruan H, Huang J, Liu S. Effects of late evening snacks on glucose homeostasis in cirrhotic patients: A meta-analysis. Medicine (Baltimore) 2023; 102:e32805. [PMID: 36800603 PMCID: PMC9936037 DOI: 10.1097/md.0000000000032805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Insulin resistance and hepatogenic diabetes are common complications in patients with liver cirrhosis. Previous studies have shown that reducing the fasting phase by supplying a late evening snack (LES) is a potential intervention to improve substrate utilization and liver function. However, the underlying mechanisms need to be further elucidated. The purpose of current meta-analysis is to evaluate effects of LES on glucose homeostasis in cirrhotic patients. METHODS Electronic databases including PubMed, Web of Science, and major scientific conference sessions were searched without language restriction and carried out on March 1, 2022 with an additional manual search of bibliographies of relevant articles. A total of 4145 studies were identified, and 10 studies were eligible for the meta-analysis, comprising 631 patients (319 in the LES group and 312 in the non-LES group). Subgroup analyses were performed to investigate the effect of LES on cirrhotic patients with or without diabetes. RESULTS Analysis showed that LES intervention had significant effects in cirrhotic patients for glycemic parameters on fasting plasma glucose, fasting insulin, and glycosylated hemoglobin respective effect sizes of -8.7, -0.86, and -0.76. Subgroup result revealed that the effect of LES on fasting plasma glucose is higher in cirrhotic patients with diabetes group than cirrhotic patients without diabetes group, and long-term LES supplementation (>2 months) was more beneficial to maintain glucose homeostasis in cirrhotic patients than that of short-term supplementation (<2 months). LES also had significant effect on nutritional metabolic parameters like including albumin and non-protein respiratory quotient. CONCLUSION Meta-analysis indicated that LES not only improved malnutrition in cirrhotic patients with or without diabetes but also maintain glucose homeostasis in cirrhotic patients with diabetes. LES is a promising and simple intervention that beneficial to maintain glucose homeostasis in cirrhotic patients.
Collapse
Affiliation(s)
- Ni Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xinze Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Huaqiang Ruan
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
- * Correspondence: Shiquan Liu, Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning, Guangxi 530007, PR China (e-mail: , )
| |
Collapse
|
16
|
Creeden JF, Kipp ZA, Xu M, Flight RM, Moseley HNB, Martinez GJ, Lee W, Alganem K, Imami AS, McMullen MR, Roychowdhury S, Nawabi AM, Hipp JA, Softic S, Weinman SA, McCullumsmith R, Nagy LE, Hinds TD. Hepatic kinome atlas: An in-depth identification of kinase pathways in liver fibrosis of humans and rodents. Hepatology 2022; 76:1376-1388. [PMID: 35313030 PMCID: PMC9489820 DOI: 10.1002/hep.32467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/02/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Resolution of pathways that converge to induce deleterious effects in hepatic diseases, such as in the later stages, have potential antifibrotic effects that may improve outcomes. We aimed to explore whether humans and rodents display similar fibrotic signaling networks. APPROACH AND RESULTS We assiduously mapped kinase pathways using 340 substrate targets, upstream bioinformatic analysis of kinase pathways, and over 2000 random sampling iterations using the PamGene PamStation kinome microarray chip technology. Using this technology, we characterized a large number of kinases with altered activity in liver fibrosis of both species. Gene expression and immunostaining analyses validated many of these kinases as bona fide signaling events. Surprisingly, the insulin receptor emerged as a considerable protein tyrosine kinase that is hyperactive in fibrotic liver disease in humans and rodents. Discoidin domain receptor tyrosine kinase, activated by collagen that increases during fibrosis, was another hyperactive protein tyrosine kinase in humans and rodents with fibrosis. The serine/threonine kinases found to be the most active in fibrosis were dystrophy type 1 protein kinase and members of the protein kinase family of kinases. We compared the fibrotic events over four models: humans with cirrhosis and three murine models with differing levels of fibrosis, including two models of fatty liver disease with emerging fibrosis. The data demonstrate a high concordance between human and rodent hepatic kinome signaling that focalizes, as shown by our network analysis of detrimental pathways. CONCLUSIONS Our findings establish a comprehensive kinase atlas for liver fibrosis, which identifies analogous signaling events conserved among humans and rodents.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Mei Xu
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Robert M. Flight
- Department of Molecular & Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
- Resource Center for Stable Isotope Resolved MetabolomicsUniversity of KentuckyLexingtonKentuckyUSA
| | - Hunter N. B. Moseley
- Department of Molecular & Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
- Resource Center for Stable Isotope Resolved MetabolomicsUniversity of KentuckyLexingtonKentuckyUSA
- Institute for Biomedical InformaticsUniversity of KentuckyLexingtonKentuckyUSA
- Center for Clinical and Translational ScienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Genesee J. Martinez
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Wang‐Hsin Lee
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Khaled Alganem
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Ali S. Imami
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Megan R. McMullen
- Department of Inflammation and ImmunityCleveland ClinicClevelandOhioUSA
| | | | - Atta M. Nawabi
- Division of Transplant and HepatobiliaryDepartment of SurgeryThe University of Kansas Medical CenterKansas CityKansasUSA
| | | | - Samir Softic
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Department of PediatricsUniversity of KentuckyLexingtonKentuckyUSA
| | - Steven A. Weinman
- Department of Internal Medicine and Liver CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Robert McCullumsmith
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
- Neurosciences InstituteProMedicaToledoOhioUSA
| | - Laura E. Nagy
- Department of Inflammation and ImmunityCleveland ClinicClevelandOhioUSA
- Department of Gastroenterology and HepatologyCenter for Liver Disease ResearchCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
- Barnstable Brown Diabetes CenterUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| |
Collapse
|
17
|
Lu PY, Niu GJ, Hong PP, Wang JX. Lysyl Oxidase-like Protein Recognizes Viral Envelope Proteins and Bacterial Polysaccharides against Pathogen Infection via Induction of Expression of Antimicrobial Peptides. Viruses 2022; 14:2072. [PMID: 36146878 PMCID: PMC9500624 DOI: 10.3390/v14092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Lysyl oxidases (LOXs) are copper-dependent monoamine oxidases, and they play critical roles in extracellular matrix (ECM) remodeling. The LOX and LOX-like (LOXL) proteins also have a variety of biological functions, such as development and growth regulation, tumor suppression, and cellular senescence. However, the functions of LOXLs containing repeated scavenger receptor cysteine-rich (SRCR) domains in immunity are rarely reported. In this study, we characterized the antiviral and antibacterial functions of a lysyl oxidase-like (LOXL) protein containing tandem SRCR domains in Marsupenaeus japonicus. The mRNA level of LoxL was significantly upregulated in the hemocytes and intestines of shrimp challenged using white spot syndrome virus (WSSV) or bacteria. After the knockdown of LoxL via RNA interference, WSSV replication and bacterial loads were apparently increased, and the survival rate of the shrimp decreased significantly, suggesting that LOXL functions against pathogen infection in shrimp. Mechanistically, LOXL interacted with the envelope proteins of WSSV or with lipopolysaccharide and peptidoglycan from bacteria in shrimp challenged using WSSV or bacteria, and it promoted the expression of a battery of antimicrobial peptides (AMPs) via the induction of Dorsal nuclear translocation against viral and bacterial infection. Moreover, LOXL expression was also positively regulated by Dorsal in the shrimp challenged by pathogens. These results indicate that, by acting as a pattern recognition receptor, LOXL plays vital roles in antiviral and antibacterial innate immunity by enhancing the expression of AMPs in shrimp.
Collapse
Affiliation(s)
- Peng-Yuan Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Pan H, Zhou M, Ju Z, Luo J, Jin J, Shen L, Zhou P, Huang R. Potential role of gut microbiota-LCA-INSR axis in high fat-diet-induced non-alcoholic fatty liver dysfunction: From perspective of radiation variation. Curr Res Food Sci 2022; 5:1685-1700. [PMID: 36204709 PMCID: PMC9530674 DOI: 10.1016/j.crfs.2022.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease of the liver covering a range of conditions from hepatic steatosis to liver fibrosis. NAFLD could be induced by High-fat-diet(HFD). Ionizing radiation is widely used in medical diagnosis and therapy as well as is a common risk factor in occupational environment. Whether the exposure of various dose of radiation has effects on HFD-induced NAFLD remains unclear. Here, we reported that radiation exposure promoted HFD-induced NAFLD in a dose-response manner. Furthermore, the gut microbiota composition had significant difference among mice with or without radiation treatment. Specifically, the Bacteroidetes/Firmicutes ratio, the abundance of A. muciniphila, Butyricococcus, and Clostridiaceae decreased significantly in the mice with co-exposure of high dose of radiation and HFD treatment. A fecal transplantation trial (FMT) further verified the role of gut microbiota in the regulation of the liver response to co-exposure of high dose of radiation and HFD treatment. Notably, the gut microbiome analysis showed plasma lithocholic acid (LCA) level increased in the mice with co-exposure of high dose of radiation and HFD treatment. Following antibiotic and probiotic treatments there was a significantly decreased LCA bile acid concentration and subsequent promotion of INSR/PI3K/Akt insulin signaling in the liver tissues. Our results demonstrate that the co-exposure of radiation and HFD aggravates the HFD-induced NAFLD through gut microbiota-LCA-INSR axis. Probiotics supplementation is a potential way to protect against co-exposure of radiation and HFD-induced liver damage. Meanwhile, our study provide a new insight that population with potential HFD-induced damage should pay more attention on preventing from liver damage while exposing radiation. Gut microbiota-lithocholic acid-insulin receptor (LCA-INSR) axis involves the promotion effects of radiation on HFD-induced NAFLD. Probiotics improve the liver damage induced by co-exposure of radiation and HFD.
Collapse
Affiliation(s)
- Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Jing Jin
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, China
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Corresponding author.
| |
Collapse
|
19
|
Metabolic dysfunction-associated fatty liver disease in obese youth with insulin resistance and type 2 diabetes. Curr Opin Pediatr 2022; 34:414-422. [PMID: 35836399 DOI: 10.1097/mop.0000000000001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to present the new definition of the disease, defining the epidemiology, risk factors with a particular attention to the role of insulin resistance (IR) and to define the main treatments explored. RECENT FINDINGS Nonalcoholic fatty liver disease (NAFLD) was previously considered a primary liver disease, but it would be more correct to consider it a component of the metabolic syndrome (MetS) in which IR might play a key role. Based on these findings, it has been recently proposed to modify the classic term of NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) that better reflects the pathophysiology of this complex disease. SUMMARY Currently, no treatments approved in childhood are available, thus the only recommended approach is the prevention and correction of the known risk factors, and particularly of IR. However, further studies are needed to better clarify the pathogenetic mechanisms of NAFLD in order to establish more tailored therapies.
Collapse
|
20
|
Teng T, Qiu S, Zhao Y, Zhao S, Sun D, Hou L, Li Y, Zhou K, Yu X, Yang C, Li Y. Pathogenesis and Therapeutic Strategies Related to Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23147841. [PMID: 35887189 PMCID: PMC9322253 DOI: 10.3390/ijms23147841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), one of the most common types of chronic liver disease, is strongly correlated with obesity, insulin resistance, metabolic syndrome, and genetic components. The pathological progression of NAFLD, consisting of non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), and liver cirrhosis, is characterized by a broad spectrum of clinical phenotypes. Although patients with mild NAFL are considered to show no obvious clinical symptoms, patients with long-term NAFL may culminate in NASH and further liver fibrosis. Even though various drugs are able to improve NAFLD, there are no FDA-approved medications that directly treat NAFLD. In this paper, the pathogenesis of NAFLD, the potential therapeutic targets, and their underlying mechanisms of action were reviewed.
Collapse
Affiliation(s)
- Tieshan Teng
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Shuai Qiu
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Yiming Zhao
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Siyuan Zhao
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Dequan Sun
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Lingzhu Hou
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Yihang Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Ke Zhou
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Xixi Yu
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Changyong Yang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Correspondence: or (C.Y.); (Y.L.)
| | - Yanzhang Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- Correspondence: or (C.Y.); (Y.L.)
| |
Collapse
|
21
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
22
|
Perryman L, Gray SG. Fibrosis in Mesothelioma: Potential Role of Lysyl Oxidases. Cancers (Basel) 2022; 14:981. [PMID: 35205728 PMCID: PMC8870010 DOI: 10.3390/cancers14040981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapies (such as checkpoint inhibitors) and standard chemotherapies (such as cisplatin) have limitations in the successful treatment of malignant pleural mesothelioma (MPM). Fibrosis is the accumulation of collagen in the extracellular matrix (ECM) of tissues, making them denser than that of healthy tissues and thereby affecting drug delivery and immune cell infiltration. Moreover, fibrosis severely affects the patient's breathing and quality of life. The production of collagen and its assembly is highly regulated by various enzymes such as lysyl oxidases. Many solid tumors aberrantly express the family of lysyl oxidases (LOX/LOXL). This review examines how LOX/LOXLs were found to be dysregulated in noncancerous and cancerous settings, discusses their roles in solid tumor fibrosis and pathogenesis and explores the role of fibrosis in the development and poor clinical outcomes of patients with MPM. We examine the current preclinical status of drugs targeting LOX/LOXLs and how the incorporation of such drugs may have therapeutic benefits in the treatment and management of patients with MPM.
Collapse
Affiliation(s)
- Lara Perryman
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW 2086, Australia;
| | - Steven G. Gray
- Thoracic Oncology, Labmed Directorate, St James’s Hospital, D08 RX0X Dublin, Ireland
| |
Collapse
|
23
|
Shi N, Wang Z, Zhu H, Liu W, Zhao M, Jiang X, Zhao J, Ren C, Zhang Y, Luo L. Research progress on drugs targeting the TGF-β signaling pathway in fibrotic diseases. Immunol Res 2022; 70:276-288. [PMID: 35147920 PMCID: PMC9197809 DOI: 10.1007/s12026-022-09267-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis is a key factor leading to disability and death worldwide; however, thus far, there are no approved treatments for fibrosis. Transforming growth factor (TGF)-β is a major pro-fibrotic cytokine, which is expected to become a target in the treatment of fibrosis; however, since TGF-β has a wide range of biological functions involving a variety of biological processes in the body, a slight change in TGF-β may have a systematic effect. Indiscriminate inhibition of TGF-β can lead to adverse reactions, which can affect the efficacy of treatment. Therefore, it has become very important to explore how both the TGF-β signaling pathway is inhibited and the safe and efficient TGF-β small molecule inhibitors or neutralizing antibodies are designed in the treatment of fibrotic diseases. In this review, we mainly discuss the key role of the TGF-β signaling pathway in fibrotic diseases, as well as the development of fibrotic drugs in recent years, and explore potential targets in the treatment of fibrotic diseases in order to guide subsequent drug development.
Collapse
Affiliation(s)
- Ning Shi
- Department of Neurosurgery, Cancer Research Institute, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410008, China
| | - Zhihong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Taiping Road #27, Beijing, 100850, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, 410205, Hunan, China
| | - Weidong Liu
- Department of Neurosurgery, Cancer Research Institute, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410008, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, 410205, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, Cancer Research Institute, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jin Zhao
- Department of Neurosurgery, Cancer Research Institute, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410008, China
| | - Caiping Ren
- Department of Neurosurgery, Cancer Research Institute, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410008, China.
| | - Yan Zhang
- Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China.
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Taiping Road #27, Beijing, 100850, China.
| |
Collapse
|
24
|
Matrisome alterations in obesity – Adipose tissue transcriptome study on monozygotic weight-discordant twins. Matrix Biol 2022; 108:1-19. [DOI: 10.1016/j.matbio.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
25
|
Meier AA, Moon HJ, Toth R, Folta-Stogniew E, Kuczera K, Middaugh CR, Mure M. Oligomeric States and Hydrodynamic Properties of Lysyl Oxidase-Like 2. Biomolecules 2021; 11:biom11121846. [PMID: 34944490 PMCID: PMC8699698 DOI: 10.3390/biom11121846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) has emerged as a promising therapeutic target against metastatic/invasive tumors and organ and tissue fibrosis. LOXL2 catalyzes the oxidative deamination of lysine and hydroxylysine residues in extracellular matrix (ECM) proteins to promote crosslinking of these proteins, and thereby plays a major role in ECM remodeling. LOXL2 secretes as 100-kDa full-length protein (fl-LOXL2) and then undergoes proteolytic cleavage of the first two scavenger receptor cysteine-rich (SRCR) domains to yield 60-kDa protein (Δ1-2SRCR-LOXL2). This processing does not affect the amine oxidase activity of LOXL2 in vitro. However, the physiological importance of this cleavage still remains elusive. In this study, we focused on characterization of biophysical properties of fl- and Δ1-2SRCR-LOXL2s (e.g., oligomeric states, molecular weights, and hydrodynamic radii in solution) to gain insight into the structural role of the first two SRCR domains. Our study reveals that fl-LOXL2 exists predominantly as monomer but also dimer to the lesser extent when its concentration is <~1 mM. The hydrodynamic radius (Rh) determined by multi-angle light scattering coupled with size exclusion chromatography (SEC-MALS) indicates that fl-LOXL2 is a moderately asymmetric protein. In contrast, Δ1-2SRCR-LOXL2 exists solely as monomer and its Rh is in good agreement with the predicted value. The Rh values calculated from a 3D modeled structure of fl-LOXL2 and the crystal structure of the precursor Δ1-2SRCR-LOXL2 are within a reasonable margin of error of the values determined by SEC-MALS for fl- and Δ1-2SRCR-LOXL2s in mature forms in this study. Based on superimposition of the 3D model and the crystal structure of Δ1-2SRCR-LOXL2 (PDB:5ZE3), we propose a configuration of fl-LOXL2 that explains the difference observed in Rh between fl- and Δ1-2SRCR-LOXL2s in solution.
Collapse
Affiliation(s)
- Alex A. Meier
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (A.A.M.); (H.-J.M.); (K.K.)
| | - Hee-Jung Moon
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (A.A.M.); (H.-J.M.); (K.K.)
| | - Ronald Toth
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; (R.T.IV); (C.R.M.)
| | - Ewa Folta-Stogniew
- W.M. Keck Biotechnology Resource Laboratory, Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06511, USA;
| | - Krzysztof Kuczera
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (A.A.M.); (H.-J.M.); (K.K.)
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - C. Russell Middaugh
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; (R.T.IV); (C.R.M.)
| | - Minae Mure
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (A.A.M.); (H.-J.M.); (K.K.)
- Correspondence:
| |
Collapse
|
26
|
Głuszyńska P, Lemancewicz D, Dzięcioł JB, Razak Hady H. Non-Alcoholic Fatty Liver Disease (NAFLD) and Bariatric/Metabolic Surgery as Its Treatment Option: A Review. J Clin Med 2021; 10:jcm10245721. [PMID: 34945016 PMCID: PMC8706342 DOI: 10.3390/jcm10245721] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) has considerably increased over the last years. NAFLD is currently the most common cause of chronic liver disease in the developing world. The diagnosis of NAFLD/NASH is often incidental, as the early-stage of disease is frequently free of symptoms. Most patients recognized with NAFLD have severe obesity and other obesity-related disease such as type 2 diabetes mellitus (T2DM), insulin-resistance, dyslipidemia and hypertension. The only proven method for NAFLD improvement and resolution is weight loss. Bariatric surgery leads to significant and long-term weight loss as well as improvement of coexisting diseases. There is a lot of evidence suggesting that metabolic/bariatric surgery is an effective method of NAFLD treatment that leads to reduction in steatosis, hepatic inflammation and fibrosis. However, there is still a need to perform long-term studies in order to determine the role of bariatric surgery as a treatment option for NAFLD and NASH. This review discusses current evidence about epidemiology, pathogenesis and treatment options for NAFLD including bariatric/metabolic surgery and its effect on improvement and resolution of NAFLD.
Collapse
Affiliation(s)
- Paulina Głuszyńska
- Department of General and Endocrine Surgery, Medical University of Bialystok, 15-089 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8279
| | - Dorota Lemancewicz
- Department of Human Anatomy, Medical University of Bialystok, 15-089 Białystok, Poland; (D.L.); (J.B.D.)
| | - Janusz Bogdan Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, 15-089 Białystok, Poland; (D.L.); (J.B.D.)
| | - Hady Razak Hady
- Department of General and Endocrine Surgery, Medical University of Bialystok, 15-089 Białystok, Poland;
| |
Collapse
|
27
|
Yamamura S, Kawaguchi T, Nakano D, Tomiyasu Y, Yoshinaga S, Doi Y, Takahashi H, Anzai K, Eguchi Y, Torimura T. Prevalence and Independent Factors for Fatty Liver and Significant Hepatic Fibrosis Using B-Mode Ultrasound Imaging and Two Dimensional-Shear Wave Elastography in Health Check-up Examinees. Kurume Med J 2021; 66:225-237. [PMID: 34690209 DOI: 10.2739/kurumemedj.ms664008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM Exercise is beneficial for metabolic syndrome. Fatty liver and significant hepatic fibrosis, hepatic manifestations of metabolic syndrome, are becoming an epidemic. We aimed to investigate the prevalence of fatty liver and significant fibrosis and examined the independent factors for these conditions. SUBJECTS AND METHODS We enrolled 1,361 health check-up examinees (median age, 53 years; female/male, 813/548). Fatty liver and fibrosis were evaluated by B-mode ultrasound imaging and shear wave elastography. Factors associated with fatty liver and significant fibrosis were analyzed by logistic regression analysis. RESULTS Fatty liver and significant fibrosis were observed in 50.5% and 42.7% of enrolled subjects, respectively. Independent factors associated with fatty liver were BMI (OR 1.46; 95%CI 1.397-1.537; P<0.0001) and no exer cise habits (OR 1.47; 95% CI 1.101-1.984; P=0.0093). Independent factors associated with significant fibrosis were age, female, BMI (OR 1.37; 95%CI 1.311-1.436; P<0.0001), and no exercise habits (OR 1.49; 95% CI 1.102-2.031; P=0.0097). CONCLUSIONS Fatty liver and significant fibrosis were frequently seen in health check-up examinees and the common independent factors were higher BMI and no exercise habits. Thus, weight loss and exercise may ameliorate fatty liver and significant hepatic fibrosis in the general population.
Collapse
Affiliation(s)
- Sakura Yamamura
- Division of Gastroenterology, Department of Internal Medicine, Kurume University School of Medicine
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Internal Medicine, Kurume University School of Medicine
| | - Dan Nakano
- Division of Gastroenterology, Department of Internal Medicine, Kurume University School of Medicine
| | - Yoshiko Tomiyasu
- Medical Examination Section, Medical Examination Part Facilities, Public Utility Foundation Saga Prefectural Health Promotion Foundation
| | - Shinobu Yoshinaga
- Medical Examination Section, Medical Examination Part Facilities, Public Utility Foundation Saga Prefectural Health Promotion Foundation
| | - Yumi Doi
- Medical Examination Section, Medical Examination Part Facilities, Public Utility Foundation Saga Prefectural Health Promotion Foundation
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga University Hospital
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga University Hospital
| | - Yuichiro Eguchi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga University Hospital.,Liver Center, Saga University Hospital
| | - Takuji Torimura
- Division of Gastroenterology, Department of Internal Medicine, Kurume University School of Medicine
| |
Collapse
|
28
|
Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. Genetics, Immunity and Nutrition Boost the Switching from NASH to HCC. Biomedicines 2021; 9:1524. [PMID: 34829753 PMCID: PMC8614742 DOI: 10.3390/biomedicines9111524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading contributor to the global burden of chronic liver diseases. The phenotypic umbrella of NAFLD spans from simple and reversible steatosis to nonalcoholic steatohepatitis (NASH), which may worsen into cirrhosis and hepatocellular carcinoma (HCC). Notwithstanding, HCC may develop also in the absence of advanced fibrosis, causing a delayed time in diagnosis as a consequence of the lack of HCC screening in these patients. The precise event cascade that may precipitate NASH into HCC is intricate and it entails diverse triggers, encompassing exaggerated immune response, endoplasmic reticulum (ER) and oxidative stress, organelle derangement and DNA aberrancies. All these events may be accelerated by both genetic and environmental factors. On one side, common and rare inherited variations that affect hepatic lipid remodeling, immune microenvironment and cell survival may boost the switching from steatohepatitis to liver cancer, on the other, diet-induced dysbiosis as well as nutritional and behavioral habits may furtherly precipitate tumor onset. Therefore, dietary and lifestyle interventions aimed to restore patients' health contribute to counteract NASH progression towards HCC. Even more, the combination of therapeutic strategies with dietary advice may maximize benefits, with the pursuit to improve liver function and prolong survival.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Silvia Fargion
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
29
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
30
|
Padda J, Khalid K, Khedr A, Tasnim F, Al-Ewaidat OA, Cooper AC, Jean-Charles G. Non-Alcoholic Fatty Liver Disease and Its Association With Diabetes Mellitus. Cureus 2021; 13:e17321. [PMID: 34557367 PMCID: PMC8449987 DOI: 10.7759/cureus.17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
There is a bidirectional relationship between non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). The liver has a vital role in the pathophysiology of both diseases as it leads to the development of insulin resistance (IR), which in turn results in NAFLD and T2DM. It has been shown that T2DM increases the risk of NAFLD progression. Furthermore, the presence of NAFLD raises the probability of T2DM complications, which explains the increased rates of NAFLD screening in patients with T2DM. In addition, there are common management options for the two diseases. Lifestyle changes can play a role in the initial management of both diseases. Medications that are used to treat T2DM are also used in the management of NAFLD, such as metformin, thiazolidinediones (TZD), glucagon-like peptide-1 (GLP-1) analogues, and dipeptidyl peptidase-4 (DPP4) inhibitors. Bariatric surgery is often used as a last resort and has shown promising results. Lifestyle interventions with diet and exercise are important postoperatively to maintain the weight loss. There are many novel treatments that are being investigated for the treatment of NAFLD, targeting multiple pathophysiologic pathways. This review aims to shed some light on the intricate relationship between NAFLD and T2DM and how IR links both diseases. We also try to raise awareness among clinicians about this relationship and how the presence of one disease should raise a high index of suspicion for the existence of the other.
Collapse
Affiliation(s)
| | | | - Anwar Khedr
- Internal Medicine, JC Medical Center, Orlando, USA
| | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, Advent Health & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
31
|
Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA, Esteban-Casales BE, Navarro-Tito N, Alarcón-Romero LDC, Luciano-Villa CA, Ramírez M, del Moral-Hernández Ó, Flores-Alfaro E. Role of Long Non-Coding RNAs and the Molecular Mechanisms Involved in Insulin Resistance. Int J Mol Sci 2021; 22:7256. [PMID: 34298896 PMCID: PMC8306787 DOI: 10.3390/ijms22147256] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin resistance (IR) and glucose homeostasis by regulating inflammatory and lipogenic processes. lncRNAs regulate gene expression by binding to other non-coding RNAs, mRNAs, proteins, and DNA. In recent years, several mechanisms have been reported to explain the key roles of lncRNAs in the development of IR, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), imprinted maternal-ly expressed transcript (H19), maternally expressed gene 3 (MEG3), myocardial infarction-associated transcript (MIAT), and steroid receptor RNA activator (SRA), HOX transcript antisense RNA (HOTAIR), and downregulated Expression-Related Hexose/Glucose Transport Enhancer (DREH). LncRNAs participate in the regulation of lipid and carbohydrate metabolism, the inflammatory process, and oxidative stress through different pathways, such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), polypyrimidine tract-binding protein 1/element-binding transcription factor 1c (PTBP1/SREBP-1c), AKT/nitric oxide synthase (eNOS), AKT/forkhead box O1 (FoxO1), and tumor necrosis factor-alpha (TNF-α)/c-Jun-N-terminal kinases (JNK). On the other hand, the mechanisms linked to the molecular, cellular, and biochemical actions of lncRNAs vary according to the tissue, biological species, and the severity of IR. Therefore, it is essential to elucidate the role of lncRNAs in the insulin signaling pathway and glucose and lipid metabolism. This review analyzes the function and molecular mechanisms of lncRNAs involved in the development of IR.
Collapse
Affiliation(s)
- Vianet Argelia Tello-Flores
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Marco Antonio Ramírez-Vargas
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Brenda Ely Esteban-Casales
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Luz del Carmen Alarcón-Romero
- Laboratorio de Citopatología e Histoquímica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Carlos Aldair Luciano-Villa
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Mónica Ramírez
- CONACyT, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Óscar del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| |
Collapse
|
32
|
Yang A, Yan X, Fan X, Shi Y, Huang T, Li W, Chen W, Jia J, You H. Hepatic stellate cells-specific LOXL1 deficiency abrogates hepatic inflammation, fibrosis, and corrects lipid metabolic abnormalities in non-obese NASH mice. Hepatol Int 2021; 15:1122-1135. [PMID: 34014450 DOI: 10.1007/s12072-021-10210-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Lysyl oxidase-like-1 (LOXL1), a vital cross-linking enzyme in extracellular matrix (ECM) maintenance, promotes fibrosis via enhancement of ECM stability. However, the potential role of LOXL1 in the pathogenesis of nonalcoholic steatohepatitis (NASH) has not been previously studied. METHODS We generated Loxl1fl/fl mice to selectively delete LOXL1 in hepatic stellate cells (HSCs) (Loxl1fl/flGfapcre; Loxl1fl/fl as littermate controls) and then examined liver pathology and metabolic profiles in Loxl1fl/flGfapcre fed with either a choline-deficient L-amino acid-defined (CDAA) diet or an isocaloric control diet for 16 weeks. Thereafter, the findings from the animal model were confirmed in 23 patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD). RESULTS LOXL1 was significantly increased in CDAA induced non-obese NASH compared with the control diet, and LOXL1 deficient in HSCs ameliorated CDAA-induced inflammation and fibrosis, with reduced expression of pro-inflammation and pro-fibrogenic genes in the HSCs-specific LOXL1 knockout mice model. Interestingly, LOXL1 deficient in HSCs could attenuate hepatic steatosis and reverse the metabolic disorder by restoring adipose tissue function without altering the effect of hepatic lipogenesis gene expression in non-obese NASH model. More importantly, analyses of serum LOXL1 and leptin levels from NAFLD patients revealed that LOXL1 was positively correlated with histological fibrosis progression, whereas it was inversely correlated with leptin levels, especially in non-obese NAFLD patients. CONCLUSION LOXL1 may contribute to fibrosis progression in non-obese NAFLD, and HSCs-specific knockout of LOXL1 attenuated liver steatosis, inflammation, fibrosis, , and improved lipid metabolic abnormalities. Hence, LOXL1 inhibition may serve as a new therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.,Beijing Clinical Medicine Institute, Beijing, 100050, People's Republic of China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, People's Republic of China
| | - Xuzhen Yan
- Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, People's Republic of China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, People's Republic of China
| | - Xu Fan
- Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, People's Republic of China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, People's Republic of China
| | - Yiwen Shi
- Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, People's Republic of China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, People's Republic of China
| | - Tao Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.,Beijing Clinical Medicine Institute, Beijing, 100050, People's Republic of China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, People's Republic of China
| | - Weiyu Li
- Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, People's Republic of China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, People's Republic of China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.,Beijing Clinical Medicine Institute, Beijing, 100050, People's Republic of China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, People's Republic of China
| | - Jidong Jia
- Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, People's Republic of China.,Beijing Clinical Medicine Institute, Beijing, 100050, People's Republic of China.,National Clinical Research Center of Digestive Diseases, Beijing, 100050, People's Republic of China
| | - Hong You
- Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, People's Republic of China. .,Beijing Clinical Medicine Institute, Beijing, 100050, People's Republic of China. .,National Clinical Research Center of Digestive Diseases, Beijing, 100050, People's Republic of China.
| |
Collapse
|
33
|
Kim MN, Han K, Yoo J, Ha Y, Chon YE, Lee JH, Simon TG, Chan AT, Hwang SG. Body weight variability and the risk of cardiovascular outcomes in patients with nonalcoholic fatty liver disease. Sci Rep 2021; 11:9154. [PMID: 33911167 PMCID: PMC8080815 DOI: 10.1038/s41598-021-88733-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
We investigated the association between body weight variability and the risks of cardiovascular disease and mortality in patients with nonalcoholic fatty liver disease (NAFLD) using large-scale, nationwide cohort data. We included 726,736 individuals with NAFLD who underwent a health examination between 2009 and 2010. NAFLD was defined as a fatty liver index ≥ 60, after excluding significant alcohol intake, viral hepatitis, and liver cirrhosis. Body weight variability was assessed using four indices, including variability independent of the mean (VIM). During a median 8.1-year follow-up, we documented 11,358, 14,714, and 22,164 cases of myocardial infarction (MI), stroke, and all-cause mortality, respectively. Body weight variability was associated with an increased risk of MI, stroke, and mortality after adjusting for confounding variables. The hazard ratios (HRs) (95% confidence intervals) for the highest quartile, compared with the lowest quartile, of VIM for body weight were 1.15 (1.10-1.20), 1.22 (1.18-1.26), and 1.56 (1.53-1.62) for MI, stroke, and all-cause mortality, respectively. Body weight variability was associated with increased risks of MI, stroke, and all-cause mortality in NAFLD patients. Appropriate interventions to maintain a stable weight could positively affect health outcomes in NAFLD patients.
Collapse
Affiliation(s)
- Mi Na Kim
- Division of Gastroenterology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea.
- Clinical and Translational Hepatology Laboratory, Seongnam, Republic of Korea.
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Juhwan Yoo
- Department of Biomedicine and Health Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeonjung Ha
- Division of Gastroenterology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea
| | - Young Eun Chon
- Division of Gastroenterology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea
| | - Ju Ho Lee
- Division of Gastroenterology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea
| | - Tracey G Simon
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Seong Gyu Hwang
- Division of Gastroenterology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea.
| |
Collapse
|
34
|
Roles of Lysyl Oxidase Family Members in the Tumor Microenvironment and Progression of Liver Cancer. Int J Mol Sci 2020; 21:ijms21249751. [PMID: 33371259 PMCID: PMC7766343 DOI: 10.3390/ijms21249751] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
The lysyl oxidase (LOX) family members are secreted copper-dependent amine oxidases, comprised of five paralogues: LOX and LOX-like l-4 (LOXL1-4), which are characterized by catalytic activity contributing to the remodeling of the cross-linking of the structural extracellular matrix (ECM). ECM remodeling plays a key role in the angiogenesis surrounding tumors, whereby a corrupt tumor microenvironment (TME) takes shape. Primary liver cancer includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), ranked as the seventh most common cancer globally, with limited therapeutic options for advanced stages. In recent years, a growing body of evidence has revealed the key roles of LOX family members in the pathogenesis of liver cancer and the shaping of TME, indicating their notable potential as therapeutic targets. We herein review the clinical value and novel biological roles of LOX family members in tumor progression and the TME of liver cancers. In addition, we highlight recent insights into their mechanisms and their potential involvement in the development of target therapy for liver cancer.
Collapse
|
35
|
Xia C, Zhang X, Cao T, Wang J, Li C, Yue L, Niu K, Shen Y, Ma G, Chen F. Hepatic Transcriptome Analysis Revealing the Molecular Pathogenesis of Type 2 Diabetes Mellitus in Zucker Diabetic Fatty Rats. Front Endocrinol (Lausanne) 2020; 11:565858. [PMID: 33329383 PMCID: PMC7732450 DOI: 10.3389/fendo.2020.565858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023] Open
Abstract
Around 9% of the adult population in the world (463 million) suffer from diabetes mellitus. Most of them (~90%) belong to type 2 diabetes mellitus (T2DM), which is a common chronic metabolic disorder, and the number of cases has been reported to increase each year. Zucker diabetic fatty (ZDF) rat provides a successful animal model to study the pathogenesis of T2DM. Although previous hepatic transcriptome studies revealed some novel genes associated with the occurrence and development of T2DM, there still lacks the comprehensive transcriptomic analysis for the liver tissues of ZDF rats. We performed comparative transcriptome analyses between the liver tissues of ZDF rats and healthy ZCL rats and also evaluated several clinical indices. We could identify 214 and 104 differentially expressed genes (DEGs) and lncRNAs in ZDF rats, respectively. Pathway and biofunction analyses showed a synergistic effect between mRNAs and lncRNAs. By comprehensively analyzing transcriptomic data and clinical indices, we detected some typical features of T2DM in ZDF rats, such as upregulated metabolism (significant increased lipid absorption/transport/utilization, gluconeogenesis, and protein hydrolysis), increased inflammation, liver injury and increased endoplasmic reticulum (ER) stress. In addition, of the 214 DEGs, 114 were known and 100 were putative T2DM-related genes, most of which have been associated with substance metabolism (particularly degradation), inflammation, liver injury and ER stress biofunctions. Our study provides an important reference and improves understanding of molecular pathogenesis of obesity-associated T2DM. Our data can also be used to identify potential diagnostic markers and therapeutic targets, which should strengthen the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Chengdong Xia
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuli Zhang
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianshu Cao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiannong Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cuidan Li
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Liya Yue
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kaifeng Niu
- China National Center for Bioinformation, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yicheng Shen
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guannan Ma
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fei Chen
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Shao M, Ye Z, Qin Y, Wu T. Abnormal metabolic processes involved in the pathogenesis of non-alcoholic fatty liver disease (Review). Exp Ther Med 2020; 20:26. [PMID: 32934691 PMCID: PMC7471863 DOI: 10.3892/etm.2020.9154] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and can lead to liver cirrhosis or liver cancer in severe cases. In recent years, the incidence of NAFLD has increased substantially. The trend has continued to increase and has become a key point of concern for health systems. NAFLD is often associated with metabolic abnormalities caused by increased visceral obesity, including insulin resistance, diabetes mellitus, hypertension, dyslipidemia, atherosclerosis and systemic microinflammation. Therefore, the pathophysiological mechanisms of NAFLD must be clarified to develop new drug treatment strategies. Recently, researchers have conducted numerous studies on the pathogenesis of NAFLD and have identified various important regulatory factors and potential molecular mechanisms, providing new targets and a theoretical basis for the treatment of NAFLD. However, the pathogenesis of NAFLD is extremely complex and involves the interrelationship and influence of multiple organs and systems. Therefore, the condition must be explored further. In the present review, the abnormal metabolic process, including glucose, lipid, amino acid, bile acid and iron metabolism are reviewed. It was concluded that NAFLD is associated with an imbalanced metabolic network that involves glucose, lipids, amino acids, bile acids and iron, and lipid metabolism is the core metabolic process. The current study aimed to provide evidence and hypotheses for research and clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zixiang Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yanhong Qin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
37
|
Noureddin M, Muthiah MD, Sanyal AJ. Drug discovery and treatment paradigms in nonalcoholic steatohepatitis. Endocrinol Diabetes Metab 2020; 3:e00105. [PMID: 33102791 PMCID: PMC7576222 DOI: 10.1002/edm2.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in western populations, and is closely associated with features of the metabolic syndrome. The burden of disease is set to rise exponentially, and this is further compounded by the lack of good medications. In addition, these patients tend to have multiple comorbidities that may not be adequately managed. In this article, we review the biological basis of potential therapies in nonalcoholic steatohepatitis (NASH), the current drugs being tested in clinical trials, as well some practical considerations in managing patients in the clinic.
Collapse
Affiliation(s)
- Mazen Noureddin
- Division of Digestive and Liver DiseasesComprehensive Transplant CenterCedars Sinai Medical CenterLos AngelesCalifornia
| | - Mark D. Muthiah
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Division of Gastroenterology and HepatologyNational University HospitalNational University Health SystemSingapore
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology and NutritionVirginia Commonwealth University School of MedicineRichmondVirginia
| |
Collapse
|
38
|
Wang W, Huang X, Fan X, Yan J, Luan J. Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review). Mol Med Rep 2020; 22:4116-4124. [PMID: 33000255 DOI: 10.3892/mmr.2020.11516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/18/2020] [Indexed: 11/06/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a global public health problem. Cirrhosis and hepatocellular carcinoma are the main causes of death in patients with chronic hepatitis C (CHC) infection. Liver fibrosis is an important cause of cirrhosis and end‑stage liver disease after CHC infection. Along with the course of infection, liver fibrosis exhibits a progressive exacerbation. Hepatic stellate cells (HSCs) are involved in both physiological and pathological processes of the liver. During the chronic liver injury process, the activated HSCs transform into myofibroblasts, which are important cells in the development of liver fibrosis. At present, HCV infection still lacks specific markers for the accurate detection of the disease condition and progression. Therefore, the present review focused on HSCs, which are closely related to HCV‑infected liver fibrosis, and analyzed the changes in the HSCs, including their surface‑specific markers, cytokine production, activation, cell function and morphological structure. The present review aimed to propose novel diagnostic markers, at both the cellular and molecular level, which would be of great significance for the timely diagnosis of the disease. According to this aim, the characteristic changes of HSCs during HCV infection were reviewed in the present article.
Collapse
Affiliation(s)
- Wei Wang
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xuelian Huang
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xuzhou Fan
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jingmei Yan
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianfeng Luan
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
39
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
40
|
Chen W, Yang A, Jia J, Popov YV, Schuppan D, You H. Lysyl Oxidase (LOX) Family Members: Rationale and Their Potential as Therapeutic Targets for Liver Fibrosis. Hepatology 2020; 72:729-741. [PMID: 32176358 DOI: 10.1002/hep.31236] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022]
Abstract
The cross-linking of structural extracellular matrix (ECM) components, especially fibrillar collagens and elastin, is strongly implicated in fibrosis progression and resistance to fibrosis reversal. Lysyl oxidase family members (LOX and LOXL1 [lysyl oxidase-like 1], LOXL2 [lysyl oxidase-like 2], LOXL3 [lysyl oxidase-like 3], and LOXL4 [lysyl oxidase like 4]) are extracellular copper-dependent enzymes that play a key role in ECM cross-linking, but have also other intracellular functions relevant to fibrosis and carcinogenesis. Although the expression of most LOX family members is elevated in experimental liver fibrosis of diverse etiologies, their individual contribution to fibrosis is incompletely understood. Inhibition of the LOX family as a whole and of LOX, LOXL1, and LOXL2 specifically has been shown to suppress fibrosis progression and accelerate its reversal in rodent models of cardiac, renal, pulmonary, and liver fibrosis. Recent disappointing clinical trials with a monoclonal antibody against LOXL2 (simtuzumab) in patients with pulmonary and liver fibrosis dampened enthusiasm for LOX family member inhibition. However, this unexpected negative outcome may be related to the inefficient antibody, rather than to LOXL2, not qualifying as a relevant antifibrotic target. Moreover, LOX family members other than LOXL2 may prove to be attractive therapeutic targets. In this review, we summarize the structural hallmarks, expression patterns, covalent cross-linking activities, and modes of regulation of LOX family members and discuss the clinical potential of their inhibition to treat fibrosis in general and liver fibrosis in particular.
Collapse
Affiliation(s)
- Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jidong Jia
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yury V Popov
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Detlef Schuppan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Institute of Translational Immunology and Research, Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Hong You
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4020249. [PMID: 32733940 PMCID: PMC7383338 DOI: 10.1155/2020/4020249] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The occurrence of nonalcoholic fatty liver disease (NAFLD) is associated with major abnormalities of hepatic lipid metabolism. We propose that lipid abnormalities directly or indirectly contribute to NAFLD, especially fatty acid accumulation, arachidonic acid metabolic disturbance, and ceramide overload. The effects of lipid intake and accumulation on NAFLD and NAFLD treatment are explained with theoretical and experimental details. Overall, these findings provide further understanding of lipid metabolism in NAFLD and may lead to novel therapies.
Collapse
|
42
|
Transcriptomically Revealed Oligo-Fucoidan Enhances the Immune System and Protects Hepatocytes via the ASGPR/STAT3/HNF4A Axis. Biomolecules 2020; 10:biom10060898. [PMID: 32545625 PMCID: PMC7355575 DOI: 10.3390/biom10060898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Oligo-fucoidan, a sulfated polysaccharide extracted from brown seaweed, exhibits anti-inflammatory and anti-tumor effects. However, the knowledge concerning the detailed mechanism of oligo-fucoidan on liver cells is obscure. In this study, we investigate the effect of oligo-fucoidan in normal hepatocytes by transcriptomic analysis. Using an oligo-fucoidan oral gavage in wild-type adult zebrafish, we find that oligo-fucoidan pretreatment enhances the immune system and anti-viral genes in hepatocytes. Oligo-fucoidan pretreatment also decreases the expression of lipogenic enzymes and liver fibrosis genes. Using pathway analysis, we identify hepatocyte nuclear factor 4 alpha (HNF4A) to be the potential driver gene. We further investigate whether hepatocyte nuclear factor 4 alpha (HNF4A) could be induced by oligo-fucoidan and the underlying mechanism. Therefore, a normal hepatocyte clone 9 cell as an in vitro model was used. We demonstrate that oligo-fucoidan increases cell viability, Cyp3a4 activity, and Hnf4a expression in clone 9 cells. We further demonstrate that oligo-fucoidan might bind to asialoglycoprotein receptors (ASGPR) in normal hepatocytes through both in vitro and in vivo competition assays. This binding, consequently activating the signal transducer and activator of transcription 3 (STAT3), increases the expression of the P1 isoform of HNF4A. According to our data, we suggest that oligo-fucoidan not only enhances the gene expression associated with anti-viral ability and immunity, but also increases P1-HNF4A levels through ASGPR/STAT3 axis, resulting in protecting hepatocytes.
Collapse
|
43
|
Fujii H, Kawada N. The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:ijms21113863. [PMID: 32485838 PMCID: PMC7312931 DOI: 10.3390/ijms21113863] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) consists of the entire spectrum of fatty liver disease in patients without significant alcohol consumption, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to cirrhosis, with NASH recently shown as an important cause of hepatocellular carcinoma (HCC). There is a close relationship between insulin resistance (IR) and NAFLD, with a five-fold higher prevalence of NAFLD in patients with type 2 diabetes (T2DM) compared to that in patients without T2DM. IR is involved in the progression of disease conditions such as steatosis and NASH, as well as hepatic fibrosis progression. The mechanisms underlying these processes involve genetic factors, hepatic fat accumulation, alterations in energy metabolism, and inflammatory signals derived from various cell types including immune cells. In NASH-associated fibrosis, the principal cell type responsible for extracellular matrix production is the hepatic stellate cell (HSC). HSC activation by IR involves “direct” and “indirect” pathways. This review will describe the molecular mechanisms of inflammation and hepatic fibrosis in IR, the relationship between T2DM and hepatic fibrosis, and the relationship between T2DM and HCC in patients with NAFLD.
Collapse
Affiliation(s)
- Hideki Fujii
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
- Correspondence: ; Tel.: +81-6-6645-3897
| | | |
Collapse
|
44
|
Klepfish M, Gross T, Vugman M, Afratis NA, Havusha-Laufer S, Brazowski E, Solomonov I, Varol C, Sagi I. LOXL2 Inhibition Paves the Way for Macrophage-Mediated Collagen Degradation in Liver Fibrosis. Front Immunol 2020; 11:480. [PMID: 32296422 PMCID: PMC7136575 DOI: 10.3389/fimmu.2020.00480] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/02/2020] [Indexed: 01/06/2023] Open
Abstract
Liver fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) proteins and enzymes, especially fibrillary collagens, and represents a major cause of morbidity and mortality worldwide. Lysyl oxidases (LOXs) drive covalent crosslinking of collagen fibers, thereby promoting stabilization and accumulation of liver fibrosis while limiting its resolution. Here we show in a carbon tetrachloride (CCl4)-induced liver fibrosis murine model that treatment with a novel anti-lysyl oxidase like 2 (LOXL2) neutralizing antibody, which targets extracellular LOXL2, significantly improves fibrosis resolution. LOXL2 inhibition following the onset of fibrosis accelerated and augmented collagen degradation. This was accompanied by increased localization of reparative monocyte-derived macrophages (MoMFs) in the proximity of fibrotic fibers and their representation in the liver. These cells secreted collagenolytic matrix metalloproteinases (MMPs) and, in particular, the membrane-bound MT1-MMP (MMP-14) collagenase. Inducible and selective ablation of infiltrating MoMFs negated the increased "on-fiber" accumulation of MMP-14-expressing MoMFs and the accelerated collagenolytic activity observed in the anti-LOXL2-treated mice. Many studies of liver fibrosis focus on preventing the progression of the fibrotic process. In contrast, the therapeutic mechanism of LOXL2 inhibition presented herein aims at reversing existing fibrosis and facilitating endogenous liver regeneration by paving the way for collagenolytic macrophages.
Collapse
Affiliation(s)
- Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Milena Vugman
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sapir Havusha-Laufer
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Brazowski
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Varol
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
45
|
Meroni M, Dongiovanni P, Longo M, Carli F, Baselli G, Rametta R, Pelusi S, Badiali S, Maggioni M, Gaggini M, Fracanzani AL, Romeo S, Gatti S, Davidson NO, Gastaldelli A, Valenti L. Mboat7 down-regulation by hyper-insulinemia induces fat accumulation in hepatocytes. EBioMedicine 2020; 52:102658. [PMID: 32058943 PMCID: PMC7026742 DOI: 10.1016/j.ebiom.2020.102658] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background Naturally occurring variation in Membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), encoding for an enzyme involved in phosphatidylinositol acyl-chain remodelling, has been associated with fatty liver and hepatic disorders. Here, we examined the relationship between hepatic Mboat7 down-regulation and fat accumulation. Methods Hepatic MBOAT7 expression was surveyed in 119 obese individuals and in experimental models. MBOAT7 was acutely silenced by antisense oligonucleotides in C57Bl/6 mice, and by CRISPR/Cas9 in HepG2 hepatocytes. Findings In obese individuals, hepatic MBOAT7 mRNA decreased from normal liver to steatohepatitis, independently of diabetes, inflammation and MBOAT7 genotype. Hepatic MBOAT7 levels were reduced in murine models of fatty liver, and by hyper-insulinemia. In wild-type mice, Mboat7 was down-regulated by refeeding and insulin, concomitantly with insulin signalling activation. Acute hepatic Mboat7 silencing promoted hepatic steatosis in vivo and enhanced expression of fatty acid transporter Fatp1. MBOAT7 deletion in hepatocytes reduced the incorporation of arachidonic acid into phosphatidylinositol, consistently with decreased enzymatic activity, determining the accumulation of saturated triglycerides, enhanced lipogenesis and FATP1 expression, while FATP1 deletion rescued the phenotype. Interpretation MBOAT7 down-regulation by hyper-insulinemia contributes to hepatic fat accumulation, impairing phosphatidylinositol remodelling and up-regulating FATP1. Funding LV was supported by MyFirst Grant AIRC n.16888, Ricerca Finalizzata Ministero della Salute RF-2016–02,364,358, Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; LV and AG received funding from the European Union Programme Horizon 2020 (No. 777,377) for the project LITMUS-“Liver Investigation: Testing Marker Utility in Steatohepatitis”. MM was supported by Fondazione Italiana per lo Studio del Fegato (AISF) ‘Mario Coppo’ fellowship.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Ospedale Policlinico via F Sforza 35, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
| | - Fabrizia Carli
- National Research Council (CNR), Institute of Clinical Physiology, Pisa, Italy
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Ospedale Policlinico via F Sforza 35, 20122 Milano, Italy
| | - Raffaela Rametta
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Serena Pelusi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Ospedale Policlinico via F Sforza 35, 20122 Milano, Italy; Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Italy
| | - Sara Badiali
- Department of Surgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Melania Gaggini
- National Research Council (CNR), Institute of Clinical Physiology, Pisa, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Ospedale Policlinico via F Sforza 35, 20122 Milano, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy
| | - Stefano Gatti
- Preclinical research center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicholas O Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, Italy
| | - Amalia Gastaldelli
- National Research Council (CNR), Institute of Clinical Physiology, Pisa, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Ospedale Policlinico via F Sforza 35, 20122 Milano, Italy; Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Italy.
| |
Collapse
|
46
|
Ranjbar G, Mikhailidis DP, Sahebkar A. Effects of newer antidiabetic drugs on nonalcoholic fatty liver and steatohepatitis: Think out of the box! Metabolism 2019; 101:154001. [PMID: 31672448 DOI: 10.1016/j.metabol.2019.154001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western societies and a major cause of hepatic disease worldwide. Its more severe type, namely nonalcoholic steatohepatitis (NASH), may result in the development of cirrhosis and hepatocellular carcinoma. NAFLD, and especially NASH, are also associated with increased cardiovascular morbidity and mortality. Type 2 diabetes mellitus (T2DM) predisposes to NAFLD development and progression via insulin resistance and hyperglycemia. It has also been reported that the majority of T2DM patients have NAFLD/NASH, thus potentially further increasing their cardiometabolic risk. Current guidelines recommend to screen for NAFLD in all T2DM patients and vice-versa. Lifestyle remains the first-line therapeutic option for NAFLD/NASH. Among antidiabetic drugs, pioglitazone was shown to improve histological features of NASH. More recently, there is an increasing interest regarding the effects of newer anti-diabetic drugs, such as dipeptidyl peptidase 4 inhibitors (DPP-4i), sodium glucose cotransporter 2 inhibitors (SGLT2i), and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on NAFLD/NASH. The present narrative review considers the up-to-date data on the impact of DPP-4i, SGLT2i, and GLP-1 RAs on biochemical and/or histological markers of NAFLD/NASH. The potential clinical implications of these findings in daily practice are also discussed. Taking into consideration the global increasing prevalence of NAFLD/NASH, therapeutic options that can prevent or treat this disease will exert considerable benefits on human health.
Collapse
Affiliation(s)
- Golnaz Ranjbar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
mir-101-3p Downregulation Promotes Fibrogenesis by Facilitating Hepatic Stellate Cell Transdifferentiation During Insulin Resistance. Nutrients 2019; 11:nu11112597. [PMID: 31671785 PMCID: PMC6893471 DOI: 10.3390/nu11112597] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance (IR) and microRNAs (miRNAs), which regulate cell-to-cell communication between hepatocytes and hepatic stellate cells (HSCs), may intertwine in nonalcoholic fatty liver disease (NAFLD) pathogenesis. The aim of this study was to evaluate whether epigenetics and environmental factors interact to promote progressive NAFLD during IR. We examined the miRNA signature in insulin receptor haploinsufficient (InsR+/−) and wild-type (wt) HSCs by RNAseq (n = 4 per group). Then, we evaluated their impact in an IR-NASH (nonalcoholic steatohepatitis) model (InsR+/− mice fed standard or methionine choline deficient (MCD) diet, n = 10 per group) and in vitro. InsR+/− HSCs displayed 36 differentially expressed miRNAs (p < 0.05 vs. wt), whose expression was then analyzed in the liver of InsR+/− mice fed an MCD diet. We found that miR-101-3p negatively associated with both InsR+/− genotype and MCD (p < 0.05) and the histological spectrum of liver damage (p < 0.01). miR-101-3p was reduced in InsR+/− hepatocytes and HSCs and even more in InsR+/− cells exposed to insulin (0.33 µM) and fatty acids (0.25 mM), resembling the IR-NASH model. Conversely, insulin induced miR-101-3p expression in wt cells but not in InsR+/− ones (p < 0.05). In conclusion, IR combined with diet-induced liver injury favors miR-101-3p downregulation, which may promote progressive NAFLD through HSC and hepatocyte transdifferentiation and proliferation.
Collapse
|
48
|
Findlay AD, Foot JS, Buson A, Deodhar M, Jarnicki AG, Hansbro PM, Liu G, Schilter H, Turner CI, Zhou W, Jarolimek W. Identification and Optimization of Mechanism-Based Fluoroallylamine Inhibitors of Lysyl Oxidase-like 2/3. J Med Chem 2019; 62:9874-9889. [DOI: 10.1021/acs.jmedchem.9b01283] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alison D. Findlay
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, New South Wales 2086, Australia
| | - Jonathan S. Foot
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, New South Wales 2086, Australia
| | - Alberto Buson
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, New South Wales 2086, Australia
| | - Mandar Deodhar
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, New South Wales 2086, Australia
| | - Andrew G. Jarnicki
- Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2300, Australia
| | - Philip M. Hansbro
- Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2300, Australia
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales 2050, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales 2050, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, New South Wales 2086, Australia
| | - Craig I. Turner
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, New South Wales 2086, Australia
| | - Wenbin Zhou
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, New South Wales 2086, Australia
| | - Wolfgang Jarolimek
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, New South Wales 2086, Australia
| |
Collapse
|
49
|
Pelusi S, Cespiati A, Rametta R, Pennisi G, Mannisto V, Rosso C, Baselli G, Dongiovanni P, Fracanzani AL, Badiali S, Maggioni M, Craxi A, Fargion S, Prati D, Nobili V, Bugianesi E, Romeo S, Pihlajamaki J, Petta S, Valenti L. Prevalence and Risk Factors of Significant Fibrosis in Patients With Nonalcoholic Fatty Liver Without Steatohepatitis. Clin Gastroenterol Hepatol 2019; 17:2310-2319.e6. [PMID: 30708111 DOI: 10.1016/j.cgh.2019.01.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/06/2019] [Accepted: 01/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS In patients with nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) is a risk factor for the development of fibrosis. However, fibrosis has been observed in livers of patients without NASH. We aimed to estimate the prevalence of fibrosis in patients without NASH and risk factors for fibrosis. METHODS We analyzed data from 1738 subjects (44.9% with severe obesity) in a cross-sectional liver biopsy cohort enrolled at referral centers in Italy and Finland. Biopsy specimens were analyzed histologically by a blinded pathologist at each center, and a diagnosis of NASH was made based on steatosis (≥5% of hepatocytes), hepatocellular ballooning, and lobular inflammation. We also collected data on demographic features, metabolic comorbidities, and genetic factors, and performed logistic regression analyses. Findings were validated using data from 118 consecutive patients with NAFLD who underwent sequential liver biopsies at tertiary referral centers in Italy. RESULTS In the cross-sectional cohort, 132 of 389 patients (33.9%) with significant fibrosis had no NASH and 39 patients (10.0%) had no inflammation. The dissociation between NASH and fibrosis was significantly greater in patients with severe obesity (P < .005). Steatosis, ballooning, and lobular inflammation each were associated independently with significant fibrosis (P < .001); age, adiposity, fasting hyperglycemia, and the PNPLA3 I148M variant also were associated with fibrosis. In patients without, but not in those with NASH, significant fibrosis was associated with steatosis grade and the PNPLA3 I148M variant. In patients without NASH, age, fasting hyperglycemia, ballooning, and inflammation were associated with fibrosis. In the validation cohort, 16 of 47 patients (34.0%) with clinically significant fibrosis did not have NASH at baseline. In patients with fibrosis without baseline NASH, worsening of fibrosis (based on later biopsies) was associated with fasting hyperglycemia and more severe steatosis (P = .016). CONCLUSIONS In an analysis of biopsy specimens collected from patients with NAFLD at a single time point, one third of patients with significant fibrosis did not have NASH. We validated this finding in a separate cohort. In patients without NASH, fasting hyperglycemia, severe steatosis, mild inflammation or ballooning, and the PNPLA3 I148M variant identified those at risk of significant fibrosis.
Collapse
Affiliation(s)
- Serena Pelusi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Transfusion Medicine and Hematology, Translational Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annalisa Cespiati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Raffaela Rametta
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Grazia Pennisi
- Section of Gastroenterology, Dipartimento Biomedico di Medicina Interna e Specialistica, University of Palermo, Palermo, Italy
| | - Ville Mannisto
- Department of Medicine, University of Eastern Finland and Kuopio, University Hospital, Kuopio, Finland
| | - Chiara Rosso
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Transfusion Medicine and Hematology, Translational Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Badiali
- Surgery Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Pathology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Craxi
- Section of Gastroenterology, Dipartimento Biomedico di Medicina Interna e Specialistica, University of Palermo, Palermo, Italy
| | - Silvia Fargion
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Translational Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valerio Nobili
- Department of Gastroenterology, Ospedale Bambin Gesù, Roma, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Stefano Romeo
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Cardiology Department, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Jussi Pihlajamaki
- Department of Medicine, University of Eastern Finland and Kuopio, University Hospital, Kuopio, Finland
| | - Salvatore Petta
- Section of Gastroenterology, Dipartimento Biomedico di Medicina Interna e Specialistica, University of Palermo, Palermo, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Transfusion Medicine and Hematology, Translational Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
50
|
Changes in Circulating Lysyl Oxidase-Like-2 (LOXL2) Levels, HOMA, and Fibrosis after Sustained Virological Response by Direct Antiviral Therapy. J Clin Med 2019; 8:jcm8081242. [PMID: 31426495 PMCID: PMC6723423 DOI: 10.3390/jcm8081242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023] Open
Abstract
Background: we aimed to assess the influence of metabolic syndrome on fibrosis regression (using liver-stiffness measurement (LSM) and serological scores) and the relationship with the expression of lysyl oxidase-like-2 as a potential goal of antifibrotic therapy. Methods: We included 271 patients treated with Direct Antiviral Therapy (DAAs) in our hospital who achieved a sustained virological response (SVR); physical examination, blood tests, and LSM were made at baseline (B) and 24 months (24 M) after SVR. Hemodynamic studies and transjugular liver biopsies were performed on 13 patients. Results: At B, 68 patients were F1 (25.1%); F2 n = 59 (21.7%); F3 n = 44 (16.05%); and 100 were F4 (36.9%). Although the LSM (absolute value) improved in 82% of patients (n = 222), it progressed in 17.5% of patients (n = 48). At 24 M, 48 patients met the metabolic syndrome (MetS) criteria and there was an increase in patients with a BMI of >25 kg/m2 (p < 0.001). At B and 24 M, a BMI of >25 kg/m2 is a risk factor for significant fibrosis or steatosis at 24 M (p < 0.05) and progression on LSM (p < 0.001), as well as MetS at B and 24 M (OR 4.1 IC (1.4–11.7), p = 0.008; and OR 5.4 IC (1.9–15.4), p = 0.001, respectively). Regarding the correlation between LSM and the liver biopsy, we found that only six out of 13 patients had a matching LSM and biopsy. We found a statistically significant decrease in LOXL2 levels at 24 M with respect to B (p < 0.001) with higher serological value in patients with elastography of >9 kPa vs. <9 kPa (p = 0.046). Conclusion: Regression of LSM was reached in 82% of patients. Downregulated LOXL2 was demonstrated post-SVR, with overexpression in cirrhotic patients being a potential therapy goal in selected patients.
Collapse
|