1
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Rizzi A, Di Gioacchino M, Gammeri L, Inchingolo R, Chini R, Santilli F, Nucera E, Gangemi S. The Emerging Role of Innate Lymphoid Cells (ILCs) and Alarmins in Celiac Disease: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications. Cells 2023; 12:1910. [PMID: 37508573 PMCID: PMC10378400 DOI: 10.3390/cells12141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Celiac disease (CD) is an intestinal disease that develops in genetically predisposed individuals and is triggered by the ingestion of gluten. CD was considered a Th1-disease. Today, the role of Th17, IL-21, and IL-17A lymphocytes is well known. Inflammation is regulated by the activity of gluten-specific CD4+ T lymphocytes that produce pro-inflammatory cytokines, including IFN-γ, TNF-α, and IL-21, perpetuating the Th1 response. These cytokines determine an inflammatory state of the small intestine, with consequent epithelial infiltration of lymphocytes and an alteration of the architecture of the duodenal mucosa. B cells produce antibodies against tissue transglutaminase and against deamidated gliadin. Although the role of the adaptive immune response is currently known, the evidence about the role of innate immunity cells is still poorly understood. Epithelial damage determines the release of damage-associated molecular patterns (DAMPs), also known as alarmins. Together with the intestinal epithelial cells and the type 1 innate lymphoid cells (ILC1s), alarmins like TSLP, IL-33, and HMGB1 could have a fundamental role in the genesis and maintenance of inflammation. Our study aims to evaluate the evidence in the literature about the role of ILCs and alarmins in celiac disease, evaluating the possible future diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.); (R.C.); (E.N.)
| | - Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University, 66100 Chieti, Italy;
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (L.G.); (S.G.)
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Neurosciences, Sense Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Raffaella Chini
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.); (R.C.); (E.N.)
| | - Francesca Santilli
- Center for Advanced Studies and Technology, G. d’Annunzio University, 66100 Chieti, Italy;
| | - Eleonora Nucera
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.); (R.C.); (E.N.)
- Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (L.G.); (S.G.)
| |
Collapse
|
3
|
Altered Expression of Antimicrobial Peptides in the Upper Gastrointestinal Tract of Patients with Diabetes Mellitus. Nutrients 2023; 15:nu15030754. [PMID: 36771460 PMCID: PMC9919831 DOI: 10.3390/nu15030754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial peptides (AMP) are essential components of innate immunity with a broad range of antimicrobial activities against bacteria, viruses, and fungi. The aim of this study was to investigate AMP expression in the upper gastrointestinal tract in normal and pathological metabolic states in humans. Furthermore, we examined the correlation between vitamin D levels and AMP expression in the same cohort. Serum concentrations of 25-hydroxyvitamin D3 were measured, and mRNA expression of β-defensins HBD-1, -2, -3, -4, α-defensins HD-5 and -6 and cathelicidin in the upper gastrointestinal tract epithelia were determined by quantitative RT-PCR in 31 individuals (10 with type 2 diabetes, 10 with insulin resistance, and 11 healthy controls). The majority of the cohort showed low vitamin D concentrations, which were negatively correlated with mRNA expression levels of HBD-3 in corpus mucosa. HBD-1 and HBD-3 mRNA were expressed in corpus mucosa, with the former significantly decreased in patients with diabetes. Hence, we conclude that type 2 diabetes is associated with reduced AMP expression in the upper gastrointestinal tract, which might contribute towards epithelial barrier dysfunction and increased bacterial translocation in these patients.
Collapse
|
4
|
Escudero-Hernández C. Epithelial cell dysfunction in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:133-164. [PMID: 33707053 DOI: 10.1016/bs.ircmb.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium limits host-luminal interactions and maintains gut homeostasis. Breakdown of the epithelial barrier and villous atrophy are hallmarks of coeliac disease. Besides the well characterized immune-mediated epithelial damage induced in coeliac mucosa, constitutional changes and early gluten direct effects disturb intestinal epithelial cells. The subsequent modifications in key epithelial signaling pathways leads to outnumbered immature epithelial cells that, in turn, facilitate epithelial dysfunction, promote crypt hyperplasia, and increase intestinal permeability. Consequently, underlying immune cells have a greater access to gluten, which boosts the proinflammatory immune response against gluten and positively feedback the epithelial damage loop. Gluten-free diet is an indispensable treatment for coeliac disease patients, but additional therapies are under development, including those that reinforce intestinal epithelial healing. In this chapter, we provide an overview of intestinal epithelial cell disturbances that develop during gluten intake in coeliac disease mucosa.
Collapse
|
5
|
Unmethylated CpG motifs inToxoplasma gondiiDNA induce TLR9- and IFN-β-dependent expression ofα-defensin-5 in intestinal epithelial cells. Parasitology 2015; 143:60-8. [DOI: 10.1017/s0031182015001456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SUMMARYThe gut epithelial barrier is a strategic place to prevent, or at least to limit, parasite dissemination upon oral infection withToxoplasma gondii. Innate immunity to this pathogen results from delicate interactions involving different components of the infecting agent and the host. We herein aimed to examine the molecular mechanism by which protozoan DNA boosts the production ofα-defensin-5 (DEFA-5), the main antimicrobial peptide at the target site of infection. The present study shows that DEFA-5 is rapidly upregulated in intestinal epithelial cells following intracellular Toll-like receptor 9 (TLR9) activation by unmethylated CpG motifs in DNA fromT. gondii(CpG-DNA). Concomitantly, CpG-DNA purified from the pathogen markedly increased TLR9 mRNA expression levels in the Caco-2 cell line. We further verified that DEFA-5 production was dependent on interferon-βreleased from these cells upon treatment with CpG-DNA prepared from tachyzoites. Our results suggest that, in protozoan DNA-stimulated intestinal epithelial cells, the TLR9/interferon-β/DEFA-5 pathway may initiate an innate anti-T. gondiiresponse without the need of parasite invasion. These findings highlight the key role of the gut epithelium in Toxoplasma recognition and amplification of local host defence against this microbe, thereby contributing to gain insight into immunoprotective mechanisms and to improve therapeutic strategies.
Collapse
|
6
|
Defensins: “Simple” antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev 2015; 26:361-70. [DOI: 10.1016/j.cytogfr.2014.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 11/19/2022]
|
7
|
Huang Q, Tao SS, Zhang YJ, Zhang C, Li LJ, Zhao W, Zhao MQ, Li P, Pan HF, Mao C, Ye DQ. Serum resistin levels in patients with rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Clin Rheumatol 2015; 34:1713-20. [DOI: 10.1007/s10067-015-2955-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
|
8
|
Kopp ZA, Jain U, Van Limbergen J, Stadnyk AW. Do antimicrobial peptides and complement collaborate in the intestinal mucosa? Front Immunol 2015; 6:17. [PMID: 25688244 PMCID: PMC4311685 DOI: 10.3389/fimmu.2015.00017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022] Open
Abstract
It is well understood that multiple antimicrobial peptides (AMPs) are constitutively deployed by the epithelium to bolster the innate defenses along the entire length of the intestines. In addition to this constitutive/homeostatic production, AMPs may be inducible and levels changed during disease. In contrast to this level of knowledge on AMP sources and roles in the intestines, our understanding of the complement cascade in the healthy and diseased intestines is rudimentary. Epithelial cells make many complement proteins and there is compelling evidence that complement becomes activated in the lumen. With the common goal of defending the host against microbes, the opportunities for cross-talk between these two processes is great, both in terms of actions on the target microbes but also on regulating the synthesis and secretion of the alternate family of molecules. This possibility is beginning to become apparent with the finding that colonic epithelial cells possess anaphylatoxin receptors. There still remains much to be learned about the possible points of collaboration between AMPs and complement, for example, whether there is reciprocal control over expression in the intestinal mucosa in homeostasis and restoring the balance following infection and inflammation.
Collapse
Affiliation(s)
- Zoë A Kopp
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University , Halifax, NS , Canada
| | - Umang Jain
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University , Halifax, NS , Canada
| | - Johan Van Limbergen
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University , Halifax, NS , Canada ; Department of Pediatrics, Faculty of Medicine, Dalhousie University , Halifax, NS , Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University , Halifax, NS , Canada ; Department of Pediatrics, Faculty of Medicine, Dalhousie University , Halifax, NS , Canada
| |
Collapse
|
9
|
Complexity of antimicrobial peptide regulation during pathogen-host interactions. Int J Antimicrob Agents 2014; 45:447-54. [PMID: 25532742 DOI: 10.1016/j.ijantimicag.2014.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/10/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) are a key component of the immune system and are expressed by a large variety of organisms. AMPs are capable of eliminating a broad range of micro-organisms, illustrated by murine models where lack of AMP expression resulted in enhanced susceptibility to infection. Despite the importance of AMPs in immune defences, it is not clear whether a change in AMP expression is pathogen-specific or reflects a general response to groups of pathogens. Furthermore, it is unclear how the evoked change in AMP expression affects the host. To fully exploit the therapeutic potential of AMPs - by direct application of peptides or by using AMP-inducers - it is crucial to gain an insight into the complexity involved in pathogen-mediated regulation of AMP expression. This review summarises current knowledge on how AMP expression is affected by pathogens. In addition, the relevance and specificity of these changes in AMPs during infection will be discussed.
Collapse
|
10
|
Patel SR, Smith K, Letley DP, Cook KW, Memon AA, Ingram RJM, Staples E, Backert S, Zaitoun AM, Atherton JC, Robinson K. Helicobacter pylori downregulates expression of human β-defensin 1 in the gastric mucosa in a type IV secretion-dependent fashion. Cell Microbiol 2013; 15:2080-92. [PMID: 23870035 PMCID: PMC4028989 DOI: 10.1111/cmi.12174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/23/2013] [Accepted: 07/15/2013] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori establishes a chronic lifelong infection in the human gastric mucosa, which may lead to peptic ulcer disease or gastric adenocarcinoma. The human beta-defensins (hβDs) are antimicrobial peptides, hβD1 being constitutively expressed in the human stomach. We hypothesized that H. pylori may persist, in part, by downregulating gastric hβD1 expression. We measured hβD1 and hβD2 expression in vivo in relation to the presence, density and severity of H. pylori infection, investigated differential effects of H. pylori virulence factors, and studied underlying signalling mechanisms in vitro. Significantly lower hβD1 and higher hβD2 mRNA and protein concentrations were present in gastric biopsies from infected patients. Those patients with higher-level bacterial colonization and inflammation had significantly lower hβD1 expression, but there were no differences in hβD2. H. pylori infection of human gastric epithelial cell lines also downregulated hβD1. Using wild-type strains and isogenic mutants, we showed that a functionalcag pathogenicity island-encoded type IV secretion system induced this downregulation. Treatment with chemical inhibitors or siRNA revealed that H. pylori usurped NF-κB signalling to modulate hβD1 expression. These data indicate that H. pylori downregulates hβD1 expression via NF-κB signalling, and suggest that this may promote bacterial survival and persistence in the gastric niche.
Collapse
Affiliation(s)
- S R Patel
- Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, NG7 2RD, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Antimicrobial Human β-Defensins in the Colon and Their Role in Infectious and Non-Infectious Diseases. Pathogens 2013; 2:177-92. [PMID: 25436887 PMCID: PMC4235710 DOI: 10.3390/pathogens2010177] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 03/10/2013] [Indexed: 01/02/2023] Open
Abstract
β-defensins are small cationic antimicrobial peptides secreted by diverse cell types including colonic epithelial cells. Human β-defensins form an essential component of the intestinal lumen in innate immunity. The defensive mechanisms of β-defensins include binding to negatively charged microbial membranes that cause cell death and chemoattraction of immune cells. The antimicrobial activity of β-defensin is well reported in vitro against several enteric pathogens and in non-infectious processes such as inflammatory bowel diseases, which alters β-defensin production. However, the role of β-defensin in vivo in its interaction with other immune components in host defense against bacteria, viruses and parasites with more complex membranes is still not well known. This review focuses on the latest findings regarding the role of β-defensin in relevant human infectious and non-infectious diseases of the colonic mucosa. In addition, we summarize the most significant aspects of β-defensin and its antimicrobial role in a variety of disease processes.
Collapse
|
12
|
Pathophysiology and role of the gastrointestinal system in spondyloarthritides. Rheum Dis Clin North Am 2012; 38:569-82. [PMID: 23083756 DOI: 10.1016/j.rdc.2012.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is a well-known extra-articular manifestation in spondyloarthritis (SpA); about 6.5% of patients with ankylosing spondylitis develop IBD during the course of the disease. The pathogenesis of both SpA and IBD is considered to be the result of a complex interplay between the host (genetic predisposition), the immune system and environmental factors, notably microorganisms, leading to a disturbed immune system and chronic inflammation. Over the past decade, the role of tumor necrosis factor inhibition (infliximab, etanercept, adalimumab, golimumab) in improving signs and symptoms and overall quality of life has been well documented in various forms of SpA. Future research will clarify the role of other potential targets.
Collapse
|
13
|
Hill DR, Kessler SP, Rho HK, Cowman MK, de la Motte CA. Specific-sized hyaluronan fragments promote expression of human β-defensin 2 in intestinal epithelium. J Biol Chem 2012; 287:30610-24. [PMID: 22761444 DOI: 10.1074/jbc.m112.356238] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hyaluronan (HA) is a glycosaminoglycan polymer found in the extracellular matrix of virtually all mammalian tissues. Recent work has suggested a role for small, fragmented HA polymers in initiating innate defense responses in immune cells, endothelium, and epidermis through interaction with innate molecular pattern recognition receptors, such as TLR4. Despite these advances, little is known regarding the effect of fragmented HA at the intestinal epithelium, where numerous pattern recognition receptors act as sentinels of an innate defense response that maintains epithelial barrier integrity in the presence of abundant and diverse microbial challenges. Here we report that HA fragments promote expression of the innate antimicrobial peptide human β-defensin 2 (HβD2) in intestinal epithelial cells. Treatment of HT-29 colonic epithelial cells with HA fragment preparations resulted in time- and dose-dependent up-regulated expression of HβD2 protein in a fragment size-specific manner, with 35-kDa HA fragment preparations emerging as the most potent inducers of intracellular HβD2. Furthermore, oral administration of specific-sized HA fragments promotes the expression of an HβD2 ortholog in the colonic epithelium of both wild-type and CD44-deficient mice but not in TLR4-deficient mice. Together, our observations suggest that a highly size-specific, TLR4-dependent, innate defense response to fragmented HA contributes to intestinal epithelium barrier defense through the induction of intracellular HβD2 protein.
Collapse
Affiliation(s)
- David R Hill
- Department of Molecular Medicine, Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
The pathogenetic mechanisms that cause the two types of inflammatory bowel disease (IBD), Crohn's disease (CD) and ulcerative colitis (UC), are still under investigation. Nevertheless, there is broad agreement that luminal microbes are of particular relevance in the development of these conditions. In recent years, increasing evidence has shown that defects in the innate immunity are at the centre of both types of IBD. The innate intestinal barrier is provided by the epithelium which secretes antimicrobial peptides (so-called defensins) that are retained in the mucus layer. In ileal CD, the alpha-defensins are lacking owing to several Paneth cell defects. In colonic CD, the expression of beta-defensins is inadequate. This may be related to downregulation of the transcription factor peroxisome proliferator-activated receptor-gamma and in some cohorts is associated with a reduced HBD2 gene copy number. In UC, the mucus layer, which protects the host from the enormous amounts of luminal microbes, is defective. This is accompanied by an insufficient differentiation from intestinal stem cells towards goblet cells. All these disturbances in the gut barrier shift the balance from epithelial defence towards bacterial offence. The current treatment for CD and UC is based on suppression of this secondary inflammatory process. In future, patients may benefit from new therapeutic approaches stimulating the protective innate immune system.
Collapse
Affiliation(s)
- M Gersemann
- Department of Internal Medicine I, Robert Bosch Hospital, Stuttgart Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart
| | | | | |
Collapse
|
15
|
Langhorst J, Choi KE. The role of human defensins in gastrointestinal diseases. Expert Rev Clin Immunol 2012; 7:779-87. [PMID: 22014019 DOI: 10.1586/eci.11.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In clarifying the pathogenesis of inflammatory bowel diseases, a dysregulation of the adaptive immune function was the main focus of research in the last decade. With increasing knowledge of antimicrobial peptides, a primary disturbed barrier function and the system of innate immunity has recently received increasing attention. Contrary to the common understanding of irritable bowel syndrome as a functional disorder, there is first evidence for an involvement of innate immunity for this condition. Peptides with high relevance seem to be the class of human defensins. This article will thus discuss current advances in immunologic research of inflammatory bowel disease and irritable bowel syndrome, focusing on defensins and their possible role as biomarkers of these diseases.
Collapse
Affiliation(s)
- Jost Langhorst
- Integrative Gastroenterology, Department of Integrative and Internal Medicine, Kliniken Essen-Mitte, University of Duisburg-Essen, Knappschafts Krankenhaus, Am Deimelsberg 34a, 45276 Essen, Germany.
| | | |
Collapse
|
16
|
Abstract
Antimicrobial peptides are present in all walks of life, from plants to animals, and they are considered to be endogenous antibiotics. In general, antimicrobial peptides are determinants of the composition of the microbiota and they function to fend off microbes and prevent infections. Antimicrobial peptides eliminate micro-organisms through disruption of their cell membranes. Their importance in human immunity, and in health as well as disease, has only recently been appreciated. The present review provides an introduction to the field of antimicrobial peptides in general and discusses two of the major classes of mammalian antimicrobial peptides: the defensins and the cathelicidins. The review focuses on their structures, their main modes of action and their regulation.
Collapse
Affiliation(s)
- Andreas Cederlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Abstract
BACKGROUND AND AIM Gut flora/host interactions are fundamental for the maintenance of homeostasis. Evidence of possible regulatory effect of commensal bacteria on proliferative disorders of the colon is mounting. In this study, we explored the hypothesis that precancerous lesions, such as adenomas, present alteration of the local microflora and lead to an overproduction of antibacterial molecules of the innate immunity, namely α-defensins. Thus, the host-bacteria misbalance could represent a potential procarcinogenic factor. METHODS Biopsies from adenomatous polyps and normal mucosa, in the rectum-sigmoid colon, were collected from 51 patients. Concentration of mucosal bacteria was evaluated by real-time polymerase chain reaction after extraction of total DNA. Total RNA was also extracted, and the defensin α-1, defensin-5, and defensin-6 gene expressions were evaluated by real-time polymerase chain reaction. Immunohistochemical study has been carried out to evaluate protein production and location. Antibacterial activity of adenomatous polyps mucosa was evaluated in vitro. RESULTS Biopsies from adenomatous polyps had a significant relative reduction of mucosa adherent bacteria compared with normal tissue (20-fold relative reduction, P<0.05). Concomitantly, α-defensin expression and production were significantly increased in adenomas. Adenoma mucosa showed increased antibacterial activity in vitro compared with normal mucosa. CONCLUSIONS Microflora dysbiosis occurs at the mucosal surface in colonic adenomas, and may represent a potential factor for dysplastic cell proliferation. Further studies are needed to confirm and define the role of this mechanism in colon carcinogenesis and the potential applications in the clinical setting.
Collapse
|
18
|
Defensin-mRNA expression in the upper gastrointestinal tract is modulated in children with celiac disease and Helicobacter pylori-positive gastritis. J Pediatr Gastroenterol Nutr 2010; 50:596-600. [PMID: 20400909 DOI: 10.1097/mpg.0b013e3181cd26cd] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Defensins are expressed in epithelial cells as cationic peptides with antimicrobial properties. Because of their role as immunologically important effector molecules, their contribution in maintaining a stable microenvironment in the gastrointestinal tract has recently received much attention. The present study was designed to further characterize expression patterns of defensins in diseases of the upper gastrointestinal tract in children, particularly in Helicobacter pylori (Hp)-associated gastritis or celiac disease (CD). PATIENTS AND METHODS Semiquantitative real-time reverse transcriptase-polymerase chain reaction (PCR) was carried out with gene-specific primers for human beta-defensin 1 to 6 (hBD1 to 6) and human alpha-defensin 5 and 6 (hD5 and 6) in mucosal biopsies of children diagnosed as having CD (n = 11; 4.2-16.2 years) or Hp gastritis (n = 18; 3.2-16.7 years). Levels of expression were compared with those of healthy individuals (n = 21; 2.8-14.6 years). Expression levels in Hp-infected specimens were furthermore compared with those with histologic inflammation not associated with Hp infection (n = 30; 3.6-15.7 years). RESULTS Expression of hBD2 was upregulated in the antrum and corpus of patients with Hp gastritis, whereas inflammation without detection of Hp was not associated with any change in defensin gene expression. In patients with CD, expression of hBD2 was upregulated in the antrum, whereas hBD1 and 4 were downregulated in duodenal biopsies. CONCLUSIONS Different pathological conditions of the upper gastrointestinal tract lead to specific modulations of defensin gene expression in children. Especially the pathophysiological role of hBD2 in Hp infection and hBD1 and 4 in CD warrant further attention.
Collapse
|
19
|
Abstract
The oral cavity outreaches as a particular environment in which there is a continuous interplay between bacteria, fungi and viruses, and the epithelial barrier. Among the innate mechanisms that aim to establish a regulated equilibrium between health and disease, natural antimicrobial peptides, especially those part of the defensins' family, have emerged as fundamental mediators. Their biological role is emphasized by the large number of expressed genes, as well as the multiplicity of the individual molecules present on biological tissues and fluids, in physiological and pathological conditions. Furthermore, the direct antimicrobial action, defensins may play a pivotal role in the orchestration of the innate response and contribute to the interplay between the innate and adaptive immunity. This review focuses on the specificities of defensins' structure, expression and biological role in the oral environment, enlightening their relevance in physiological and pathological conditions.
Collapse
Affiliation(s)
- Pedro de Sousa Gomes
- Laboratory of Pharmacology and Cellular Biocompatibility, Faculty of Dental Medicine, University of Porto, Porto, Portugal.
| | | |
Collapse
|
20
|
Han SH, Kim YE, Park JA, Park JB, Kim YS, Lee Y, Choi IG, Kwon HJ. Expression of human beta-defensin-2 gene induced by CpG-DNA in human B cells. Biochem Biophys Res Commun 2009; 389:443-8. [PMID: 19732743 DOI: 10.1016/j.bbrc.2009.08.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 08/29/2009] [Indexed: 11/20/2022]
Abstract
Defensins have a broad range of antimicrobial activity against bacteria, fungi, and viruses. The expression of human beta-defensin-2 (hBD-2) is prevalently observed in epithelial cells and is induced by bacterial infection. Here, we have shown that the expression of the hBD-2 gene and release of hBD-2 protein into the medium is up-regulated in response to CpG-DNA in human B cell line RPMI 8226. The induction of hBD-2 was dependent on CG sequence and phosphorothioate backbone-modification. This was also confirmed in primary human lymphocytes. To shed light on the molecular mechanism involved in hBD-2 induction by CpG-DNA, we examined the contribution of the NF-kappaB signaling pathway in RPMI 8226 cells. Suppression of MyD88 function and inhibition of NF-kappaB nuclear localization blocked hBD-2 induction. The NF-kappaB pathway inhibitors also abolished hBD-2 induction. These results may contribute to a better understanding on the therapeutic effects of CpG-DNA against infectious diseases.
Collapse
Affiliation(s)
- Su Ho Han
- Department of Microbiology, College of Medicine, Hallym University, Gangwon-do 200-702, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fischer W, Prassl S, Haas R. Virulence Mechanisms and Persistence Strategies of the Human Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2009; 337:129-71. [DOI: 10.1007/978-3-642-01846-6_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Defensins are differentially expressed with respect to the anatomic region in the upper gastrointestinal tract of children. J Pediatr Gastroenterol Nutr 2009; 49:139-42. [PMID: 19516187 DOI: 10.1097/mpg.0b013e31818f0a51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Defensins are antimicrobial peptides expressed on various epithelial surfaces. Although they are believed to contribute to intestinal homeostasis, their expression pattern in children is not well characterized. As determined by real-time polymerase chain reaction, amount of human alpha-defensins (hD)-5 and -6 mRNA in duodenal biopsies were significantly higher than in biopsies taken from the gastric mucosa. On the contrary, expression of human beta-defensins (hBD)-1 and -2 mRNA showed a significantly higher expression in the stomach. Expression of hBD3 to 6 was inconsistently detected. These results suggest a distinct role for various defensins in host defense in the upper gastrointestinal tract of children.
Collapse
|
23
|
Dugan AS, Maginnis MS, Jordan JA, Gasparovic ML, Manley K, Page R, Williams G, Porter E, O'Hara BA, Atwood WJ. Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J Biol Chem 2008; 283:31125-32. [PMID: 18782756 DOI: 10.1074/jbc.m805902200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BK virus (BKV) is a polyomavirus that establishes a lifelong persistence in most humans and is a major impediment to success of kidney grafts. The function of the innate immune system in BKV infection and pathology has not been investigated. Here we examine the role of antimicrobial defensins in BKV infection of Vero cells. Our data show that alpha-defensin human neutrophil protein 1 (HNP1) and human alpha-defensin 5 (HD5) inhibit BKV infection by targeting an early event in the viral lifecycle. HD5 treatment of BKV reduced viral attachment to cells, whereas cellular treatment with HD5 did not. Colocalization studies indicated that HD5 interacts directly with BKV. Ultrastructural analysis revealed HD5-induced aggregation of virions. HD5 also inhibited infection of cells by other related polyomaviruses. This is the first study to demonstrate polyomavirus sensitivity to defensins. We also show a novel mechanism whereby HD5 binds to BKV leading to aggregation of virion particles preventing normal virus binding to the cell surface and uptake into cells.
Collapse
Affiliation(s)
- Aisling S Dugan
- Department of Molecular Biology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Palazzo M, Balsari A, Rossini A, Selleri S, Calcaterra C, Gariboldi S, Zanobbio L, Arnaboldi F, Shirai YF, Serrao G, Rumio C. Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion. THE JOURNAL OF IMMUNOLOGY 2007; 178:4296-303. [PMID: 17371986 DOI: 10.4049/jimmunol.178.7.4296] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enteroendocrine cells are known primarily for their production of hormones that affect digestion, but they might also be implicated in sensing and neutralizing or expelling pathogens. We evaluate the expression of TLRs and the response to specific agonists in terms of cytokines, defensins, and hormones in enteroendocrine cells. The mouse enteroendocrine cell line STC-1 and C57BL/6 mice are used for in vitro and in vivo studies, respectively. The presence of TLR4, 5, and 9 is investigated by RT-PCR, Western blot, and immunofluorescence analyses. Activation of these receptors is studied evaluating keratinocyte-derived chemokine, defensins, and cholecystokinin production in response to their specific agonists. In this study, we show that the intestinal enteroendocrine cell line STC-1 expresses TLR4, 5, and 9 and releases cholecystokinin upon stimulation with the respective receptor agonists LPS, flagellin, and CpG-containing oligodeoxynucleotides. Release of keratinocyte-derived chemokine and beta-defensin 2 was also observed after stimulation of STC-1 cells with the three TLR agonists, but not with fatty acids. Consistent with these in vitro data, mice showed increased serum cholecystokinin levels after oral challenge with LPS, flagellin, or CpG oligodeoxynucleotides. In addition to their response to food stimuli, enteroendocrine cells sense the presence of bacterial Ags through TLRs and are involved in neutralizing intestinal bacteria by releasing chemokines and defensins, and maybe in removing them by releasing hormones such as cholecystokinin, which induces contraction of the muscular tunica, favoring the emptying of the distal small intestine.
Collapse
Affiliation(s)
- Marco Palazzo
- Department of Human Morphology, Institute of Pathology, Università degli Studi di Milano, Via Mangiagalli 31, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wojdak-Maksymiec K, Kmieć M, Zukiewicz A. Associations between defensin polymorphism and somatic cell count in milk and milk utility traits in Jersey dairy cows. ACTA ACUST UNITED AC 2007; 53:495-500. [PMID: 17105569 DOI: 10.1111/j.1439-0442.2006.00899.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the study was to investigate associations between combined defensin genotypes (CDGs) and somatic cell count (SCC) in Jersey cows. The study included a herd of 184 dairy Jersey cows from Wielkopolska region in Poland. Polymerase chain reaction-restriction fragment length polymorphism analysis with TaqI restrictase established the existence of 12 CDGs with a frequency of over 1%. The most frequent were A1A2B1B2C1C2 and A1A2B1B2C1- genotypes with a frequency of 56.9783% and 12.5% respectively. The study also confirmed the existence of a statistically significant association between SCC and the year of study, season, lactation stage and cow. The highest SCC (transformed into a logarithmic scale) was found in the milk of cows with A1-B1-C1C2 genotype, whereas the lowest one in cows with A2-B1B2C1C2 genotype. Another aim of the project was to study the association between CDG and milk production traits, such as daily milk yield and fat and protein content. CDG was found to be a significant factor affecting daily milk yield and non-significant for fat and protein content. The highest daily milk yield was observed in cows with CDGs A1A2B1B2C2- and -A2-B1B2C1-, whereas the lowest one was characteristic of -A2-B1-C1C2 and A1A2B1-C1- animals. Fat content was found to be related to CDG genotype in the opposite way; the highest values were recorded in animals with -A2-B1B2C1- genotype, the lowest - in animals with -A2-B1-C1C2 genotype. Similar results were observed in protein content in milk -A2-B1B2C1-, the highest content and -A2-B1-C1C2, the lowest content. The results confirm the hypothesis of using CDG as an SCC marker. However, further studies should be conducted to confirm these results before CDG can be used as a marker in a mass selection of dairy cows.
Collapse
Affiliation(s)
- K Wojdak-Maksymiec
- Department of Genetics and Animal Breeding, Agricultural University of Szczecin, ul. Dr Judyma 6, 72-466 Szczecin, Poland.
| | | | | |
Collapse
|
26
|
Algood HMS, Cover TL. Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clin Microbiol Rev 2006; 19:597-613. [PMID: 17041136 PMCID: PMC1592695 DOI: 10.1128/cmr.00006-06] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that persistently colonizes more than half of the global human population. In order to successfully colonize the human stomach, H. pylori must initially overcome multiple innate host defenses. Remarkably, H. pylori can persistently colonize the stomach for decades or an entire lifetime despite development of an acquired immune response. This review focuses on the immune response to H. pylori and the mechanisms by which H. pylori resists immune clearance. Three main sections of the review are devoted to (i) analysis of the immune response to H. pylori in humans, (ii) analysis of interactions of H. pylori with host immune defenses in animal models, and (iii) interactions of H. pylori with immune cells in vitro. The topics addressed in this review are important for understanding how H. pylori resists immune clearance and also are relevant for understanding the pathogenesis of diseases caused by H. pylori (peptic ulcer disease, gastric adenocarcinoma, and gastric lymphoma).
Collapse
Affiliation(s)
- Holly M Scott Algood
- Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
27
|
Abstract
Host defence peptides are a conserved component of the innate immune response in all complex life forms. In humans, the major classes of host defence peptides include the α- and β-defensins and the cathelicidin, hCAP-18/LL-37. These peptides are expressed in the granules of neutrophils and by a wide variety of tissue types. They have many roles in the immune response including both indirect and direct antimicrobial activity, the ability to act as chemokines as well as induce chemokine production leading to recruitment of leukocytes to the site of infection, the promotion of wound healing and an ability to modulate adaptive immunity. It appears that many of these properties are mediated though direct interaction of peptides with the cells of the innate immune response including monocytes, dendritic cells, T cells and epithelial cells. The importance of these peptides in immune responses has been demonstrated since animals defective in the expression of certain host defence peptides showgreater susceptibility to bacterial infections. In the very few instances in which human patients have been demonstrated to have defective host defence peptide expression, these individuals suffer from frequent infections. Although studies of the immunomodulatory properties of these peptides are in their infancy, there is a growing body of evidence suggesting that the immunomodulatory properties of these small, naturally occurring molecules might be harnessed for development as novel therapeutic agents.
Collapse
Affiliation(s)
- William M. Shafer
- Department of Microbiology and Immunology, 3001 Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
28
|
Kumar A, Zhang J, Yu FSX. Toll-like receptor 2-mediated expression of beta-defensin-2 in human corneal epithelial cells. Microbes Infect 2005; 8:380-9. [PMID: 16242370 PMCID: PMC2666383 DOI: 10.1016/j.micinf.2005.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/28/2005] [Accepted: 07/04/2005] [Indexed: 11/20/2022]
Abstract
We previously showed that human corneal epithelial cells (HCECs) express Toll-like receptors (TLRs), which recognize gram-positive bacteria and respond to Staphylococcus aureus infection by the expression and secretion of proinflammatory cytokines and beta-defensin-2 (hBD2). In this study, we further elucidated the underlying mechanisms regulating hBD-2 expression and its role in innate defense in HCECs in response to S. aureus challenge. Exposure of HUCL cells, a telomerase-immortalized HCEC line, to S. aureus, its exoproducts (1:10 dilution), or synthetic lipopeptide Pam3Cys (10 microg/ml) resulted in the up-regulation of hBD-2, but not hBD1 and hBD3. Similar to HUCL cells, primary HCECs responded to S. aureus-exoproducts and Pam3Cys challenge by expressing hBD2 mRNA and secreting hBD2 into the culture media. Furthermore, these stimuli induced the expression of TLR2 at both mRNA and protein levels. Consistently with its role as a major pattern-recognizing receptor, TLR2 was located at the cell surface by cell surface biotinylation. The treatment of HUCL cells with TLR2 neutralizing antibody resulted in a significant decrease in Pam3Cys-induced hBD2 production as well as IL-6, IL-8, and TNF-alpha secretion. The Pam3Cys-induced hBD2 expression was completely blocked by NF-kappaB inhibitors and partially inhibited by p38 MAP kinase and the JNK inhibitors. Conditioned media derived from HCECs challenged with S. aureus-exoproducts or Pam3Cys exhibited antibacterial activity against S. aureus, Pseudomonas aeruginosa and Escherichia coli. These findings suggest that S. aureus induces hBD2 production through TLR2-mediated pathways in HCECs and that pathogen-challenged, TLR-activated HCECs possess antimicrobial activity. Thus, the epithelium might play a role in innate defense against bacterial infection by directly killing bacteria in the cornea.
Collapse
Affiliation(s)
| | | | - Fu-Shin X. Yu
- Corresponding author. Tel.: +1 313 577 1657; fax: +1 313 577 7781. E-mail address: (F.-S.X. Yu)
| |
Collapse
|
29
|
Taha AS, Faccenda E, Angerson WJ, Balsitis M, Kelly RW. Natural antibiotic expression in celiac disease--correlation with villous atrophy and response to a gluten-free diet. Dig Dis Sci 2005; 50:791-5. [PMID: 15844720 DOI: 10.1007/s10620-005-2575-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As infection influences the pathogenesis and presentation of celiac disease, we investigated the expression of natural antibiotics in this condition. Twenty-three adults were prospectively studied: 10 controls and 13 subjects with untreated celiac disease. Distal duodenal biopsies were taken at baseline and after 6 months of a gluten-free diet and assessed for the expression of natural antibiotics. Epithelial human beta-defensin 1 in subjects with celiac disease had a median of 0.02 unit at baseline, compared with 0.34 unit in controls (P < 0.001). It correlated negatively with the degree of villous atrophy (r = -0.64, P = 0.019) and rose to 0.04 unit on the gluten-free diet (P = 0.035 vs. baseline, P < 0.001 vs. controls). The expression of other antibiotics was unchanged. The expression of epithelial natural antibiotics is limited in celiac disease.
Collapse
Affiliation(s)
- Ali S Taha
- Crosshouse Hospital, Kilmarnock, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Joly S, Organ CC, Johnson GK, McCray PB, Guthmiller JM. Correlation between beta-defensin expression and induction profiles in gingival keratinocytes. Mol Immunol 2004; 42:1073-84. [PMID: 15829297 DOI: 10.1016/j.molimm.2004.11.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2004] [Indexed: 11/28/2022]
Abstract
Human beta-defensins are antimicrobial peptides produced by epithelial cells. To date, 28 beta-defensins have been described and the expression of a select few has been classified as constitutive or inducible. Most studies have evaluated expression and regulation using a limited number of primary cell cultures or immortalized cell lines. The goal of this study was to quantitatively assess the in vitro expression and inducibility profiles of human beta-defensins, HBD-1, HBD-2, and HBD-3 across a number of primary gingival keratinocyte cultures. Cultured cells from 14 human subjects were stimulated with interleukin-1 beta (IL-1beta), IL-2, IL-6, IL-8, IL-12, tumor necrosis factor alpha (TNF-alpha), gamma interferon (IFN-gamma) or Escherichia coli lipopolysaccharide (LPS) and analyzed by reverse transcription (RT)-PCR. A subset of cultures were quantitatively assessed by real-time PCR. HBD-1 presented the highest and most heterogeneous expression at the basal level (non-stimulated) as compared to expression of HBD-2 and HBD-3, which was significantly lower and homogeneous. IFN-gamma was a primary inducer for HBD-1 and HBD-3, while IL-1beta and TNF-alpha were primary inducers for HBD-2. Sporadic induction was seen for IL-2, IL-6 and LPS. Synergistic expression was seen when various cytokines were combined. Interestingly, the induction potential of each beta-defensin was directly correlated to its basal expression. An inhibitor of JAK2 kinase (Janus kinase), down-regulated IFN-gamma-induced HBD-1 and HBD-3 expression, suggesting a role for the JAK/signal transducer and activator of transcription (STAT) signaling pathway in their expression. HBD-2 protein expression of supernatants and cell lysates paralleled mRNA expression. The results suggest that beta-defensin expression and induction in gingival keratinocytes is similar to that seen in other tissue. However, the novel finding of considerable variation among induction levels and the correlation of the induction with basal expression suggests that these innate response elements may play a key role in susceptibility or resistance to disease in the oral cavity.
Collapse
Affiliation(s)
- Sophie Joly
- Dows Institute for Dental Research, University of Iowa, Iowa City, IA 52242-1001, USA
| | | | | | | | | |
Collapse
|
31
|
Vora P, Youdim A, Thomas LS, Fukata M, Tesfay SY, Lukasek K, Michelsen KS, Wada A, Hirayama T, Arditi M, Abreu MT. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:5398-405. [PMID: 15494486 DOI: 10.4049/jimmunol.173.9.5398] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The intestinal epithelium serves as a barrier to the intestinal flora. In response to pathogens, intestinal epithelial cells (IEC) secrete proinflammatory cytokines. To aid in defense against bacteria, IEC also secrete antimicrobial peptides, termed defensins. The aim of our studies was to understand the role of TLR signaling in regulation of beta-defensin expression by IEC. The effect of LPS and peptidoglycan on beta-defensin-2 expression was examined in IEC lines constitutively or transgenically expressing TLRs. Regulation of beta-defensin-2 was assessed using promoter-reporter constructs of the human beta-defensin-2 gene. LPS and peptidoglycan stimulated beta-defensin-2 promoter activation in a TLR4- and TLR2-dependent manner, respectively. A mutation in the NF-kappaB or AP-1 site within the beta-defensin-2 promoter abrogated this response. In addition, inhibition of Jun kinase prevents up-regulation of beta-defensin-2 protein expression in response to LPS. IEC respond to pathogen-associated molecular patterns with expression of the antimicrobial peptide beta-defensin-2. This mechanism may protect the intestinal epithelium from pathogen invasion and from potential invaders among the commensal flora.
Collapse
Affiliation(s)
- Puja Vora
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Harada K, Ohba K, Ozaki S, Isse K, Hirayama T, Wada A, Nakanuma Y. Peptide antibiotic human beta-defensin-1 and -2 contribute to antimicrobial defense of the intrahepatic biliary tree. Hepatology 2004; 40:925-32. [PMID: 15382127 DOI: 10.1002/hep.20379] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human beta-defensins (hBDs) are important antimicrobial peptides that contribute to innate immunity at mucosal surfaces. This study was undertaken to investigate the expression of hBD-1 and hBD-2 in intrahepatic biliary epithelial cells in specimens of human liver, and 4 cultured cell lines (2 consisting of biliary epithelial cells and 2 cholangiocarcinoma cells). In addition, hBD-1 and hBD-2 were assayed in specimens of bile. hBD-1 was nonspecifically expressed immunohistochemically in intrahepatic biliary epithelium and hepatocytes in all patients studied, but expression of hBD-2 was restricted to large intrahepatic bile ducts in 8 of 10 patients with extrahepatic biliary obstruction (EBO), 7 of 11 with hepatolithiasis, 1 of 6 with primary biliary cirrhosis (PBC), 1 of 5 with primary sclerosing cholangitis (PSC), 0 of 6 with chronic hepatitis C (CH-C), and 0 of 11 with normal hepatic histology. hBD-2 expression was evident in bile ducts exhibiting active inflammation. Serum C reactive protein levels correlated with biliary epithelial expression of hBD-2. Real-time PCR revealed that in all of 28 specimens of fresh liver, including specimens from patients with hepatolithiasis, PBC, PSC, CH-C and normal hepatic histology, hBD-1 messenger RNA was consistently expressed, whereas hBD-2 messenger RNA was selectively expressed in biliary epithelium of patients with hepatolithiasis. Immunobloting analysis revealed hBD-2 protein in bile in 1 of 3 patients with PSC, 1 of 3 with PBC, and each of 6 with hepatolithiasis; in contrast, hBD-1 was detectable in all bile samples examined. Four cultured biliary epithelial cell lines consistently expressed hBD-1; in contrast these cell lines did not express hBD-2 spontaneously but were induced to express hBD-2 by treatment with Eschericia coli, lipopolysaccharide, interleukin-1beta or tumor necrosis factor-alpha. In conclusion, these findings suggest that in the intrahepatic biliary tree, hBD-2 is expressed in response to local infection and/or active inflammation, whereas hBD-1 may constitute a preexisting component of the biliary antimicrobial defense system.
Collapse
Affiliation(s)
- Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML. beta-Defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis. Clin Exp Immunol 2004; 137:379-85. [PMID: 15270856 PMCID: PMC1809118 DOI: 10.1111/j.1365-2249.2004.02543.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
mRNA expression of two recently described human beta-defensins (hBD-3 and hBD-4) in epithelial cells of normal small and large intestine and the impact of chronic intestinal inflammation on their expression levels was investigated. Intestinal specimens from patients with ulcerative colitis (UC), Crohn's disease (CD) and controls with no history of inflammatory bowel disease were studied. hBD-3 and hBD-4 mRNAs were determined in freshly isolated epithelial cells by real-time quantitative reverse transcription-polymerase chain reaction (QRT-PCR) and by in situ hybridization. The effect of proinflammatory cytokines on hBD-3 and hBD-4 mRNA expression in colon carcinoma cells was also investigated. Purified epithelial cells of normal small and large intestine expressed both hBD-3 and hBD-4 mRNA, with higher expression levels of hBD-3 mRNA. In situ hybridization revealed higher levels of mRNA expression in the crypt- compared to the villus/luminal-compartment. Interferon (IFN)-gamma, but not tumour necrosis factor (TNF)-alpha or IL-1beta, augmented hBD-3 mRNA expression. None of these agents stimulated hBD-4 expression. Colonic epithelial cells from patients with UC displayed a significant increase in hBD-3 and hBD-4 mRNA compared to epithelial cells of controls. In contrast, small intestinal epithelial cells from CD patients did not show increased expression levels compared to the corresponding control cells. Moreover, Crohn's colitis did not show increased expression of hBD-4 mRNA, while the data are inconclusive for hBD-3 mRNA. We conclude that the chronic inflammatory reaction induced in the colon of UC patients enhances hBD-3 and hBD-4 mRNA expression in the epithelium, whereas in CD this is less evident.
Collapse
Affiliation(s)
- A Fahlgren
- Department of Clinical Microbiology and Immunology, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
34
|
Abstract
Defensins are thought to play a major role in the defence of small intestinal crypts against colonisation by potential pathogens. In humans two alpha-defensins, HD5 and HD6 and two beta-defensins, hBD1 and hBD2, probably contribute to the antimicrobial barrier, but there are no data to indicate how the expression of these defensin genes might vary in individuals and in populations. To begin to address this question we developed a competitive reverse transcriptase polymerase chain reaction (RT-PCR) assay to quantify HD5 and HD6 mRNA and used it to measure transcripts in small intestinal biopsy tissue from adults living in London, UK, or in Lusaka, Zambia. We also measured alpha- and beta-defensin mRNA in biopsies collected in London from different regions of the small intestine. Jejunal biopsies (n=169) from 83 adults in Lusaka contained approximately one order of magnitude less HD5 and HD6 mRNA than biopsies (n=33) obtained from 27 adults in London. HD5 and HD6 transcript levels were high throughout duodenum, jejunum and ileum. hBD1 and hBD2 mRNA were detected in some, but not all, biopsies from normal small intestine. These data suggest that alpha-defensin expression is down-regulated in tropical populations, and that there are distinct pathways regulating transcription of alpha- and beta-defensins.
Collapse
Affiliation(s)
- Winnie Dhaliwal
- Department of Adult and Paediatric Gastroenterology, Barts and The London School of Medicine, Queen Mary's, University of London, Turner Street, London E1 2AD, UK
| | | | | |
Collapse
|
35
|
Wex T, Treiber G, Lendeckel U, Malfertheiner P. A two-step method for the extraction of high-quality RNA from endoscopic biopsies. Clin Chem Lab Med 2003; 41:1033-7. [PMID: 12964810 DOI: 10.1515/cclm.2003.159] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of molecular techniques such as quantitative RT-PCR depends on the quality of cellular RNA. In particular, RNA extraction from endoscopic biopsies is difficult with respect to yield, and especially integrity. Endoscopic biopsies taken from the gastric antrum, corpus and duodenum were subjected to various RNA extraction protocols, and the RNA was used for quantitative RT-PCR. The subsequent use of two methods, (i) a phenol/chloroform extraction and (ii) a column-based extraction method, resulted in a yield of 4.5 microg total RNA per biopsy with reliable quality in 80% of samples. The quantitative RT-PCR analysis revealed that only RNA samples that clearly show both 18S- and 28S-RNA bands in agarose gel electrophoresis were suitable for quantitative RT-PCR as shown by expression of corpus-specific pepsinogen C-mRNA and the duodenum-specific multi-drug resistance protein-1 (mdr-1)-mRNA. In partially degraded RNA, pepsinogen C, mdr-1, or beta-actin mRNAs were still detectable, but the quantitative determination gave inconsistent data. The two-step method described here is a suitable option for extracting high-quality RNA from endoscopic biopsies when other standard protocols fail.
Collapse
Affiliation(s)
- Thomas Wex
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany.
| | | | | | | |
Collapse
|
36
|
Wehkamp J, Schmidt K, Herrlinger KR, Baxmann S, Behling S, Wohlschläger C, Feller AC, Stange EF, Fellermann K. Defensin pattern in chronic gastritis: HBD-2 is differentially expressed with respect to Helicobacter pylori status. J Clin Pathol 2003; 56:352-7. [PMID: 12719455 PMCID: PMC1769951 DOI: 10.1136/jcp.56.5.352] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND/AIMS Recent reports have suggested that Helicobacter pylori infection induces the mucosal antibiotic peptide human beta defensin 2 (HBD-2). Therefore, the present study investigated mRNA and peptide expression of four different defensins in the upper gastrointestinal tract in patients with H pylori positive and negative chronic gastritis. MATERIALS/METHODS Biopsies from the oesophagus to the duodenum were taken during routine gastroscopy in 71 individuals. Total RNA was extracted and the reverse transcription polymerase chain reaction was performed with primers for human defensins 5 and 6 (HD-5/6) or HBD-1 and HBD-2. Paraffin wax embedded tissue from gastric resections was tested for HD-5, HBD-1, and HBD-2 by immunohistochemistry. RESULTS Helicobacter pylori colonisation was associated with an increased percentage of positive biopsies with respect to HBD-2 in the corpus (p < 0.05). Helicobacter pylori had no impact on the gastric expression of HD-5 and HBD-1, whereas HD-6 was increased in the fundus. The abundant expression of alpha defensins in the duodenum and beta defensins in the oesophagus served as a positive control in each individual. Immunohistochemical analysis confirmed the presence of the HD-5, HBD-1, and HBD-2 peptides in gastric resection specimens. CONCLUSIONS The recently described induction of HBD-2 upon H pylori infection was confirmed in a clinical setting of chronic gastritis. This phenomenon may be mediated by components of the pathogen itself or may occur secondary to immune events in chronic inflammation.
Collapse
Affiliation(s)
- J Wehkamp
- Department of Internal Medicine I, Division of Gastroenterology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fang XM, Shu Q, Chen QX, Book M, Sahl HG, Hoeft A, Stuber F. Differential expression of alpha- and beta-defensins in human peripheral blood. Eur J Clin Invest 2003; 33:82-7. [PMID: 12492457 DOI: 10.1046/j.1365-2362.2003.01076.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Human defensin peptides with broad-spectrum antimicrobial activity have been implicated in the human defence response towards microbial invasion. Two families of defensins designated alpha- and beta-defensins, respectively, have been identified. Little is known about the expression of both defensin families in human peripheral blood. The purpose of this study was to examine the expression of alpha- and beta-defensin genes in human peripheral blood. MATERIAL AND METHODS Fifty-one healthy blood donors were screened for defensin expression. Blood from defensin responders was stimulated by lipopolysaccharide or heat-inactivated Pseudomonas aeruginosa ex vivo. Levels of mRNA were assessed by semiquantitative RT-PCR. Southern blot analysis and sequencing were used to confirm the identity of defensin gene transcripts. Western blotting analysis was used to detect the expression of defensin peptides. RESULTS beta-defensin was undetected in human peripheral blood without stimulation. Following stimulation by lipopolysaccharide or heat-inactivated bacterial cells, the majority (88.2%) of healthy individuals had a detectable expression for beta-defensin-1 gene and 39.2% for beta-defensin-2 gene, compared with none for beta-defensin-3. beta-defensin-1 and -2 mRNAs in the stimulated human peripheral blood of responders became detectable at 3 h and showed a maximum at 6 h following induction by 100 ng mL-1 of lipopolysaccharide or bacterial cells. In contrast, human alpha-defensins 1-3 mRNA are constitutively expressed in peripheral leukocytes but not up-regulated by lipopolysaccharide or bacterial cells. CONCLUSIONS In human peripheral blood, beta-defensin-1 and -2 genes were transiently transcribed and translated following the induction of lipopolysaccharide or heat-inactivated bacterial cells, whereas alpha-defensins 1-3 genes were constitutively transcribed, and beta-defensin-3 gene was not expressed. The inducible expression of beta-defensin-1 and -2 genes showed interindividual variability.
Collapse
Affiliation(s)
- X-M Fang
- Sir Run Run Shaw Hospital, Zhejiang University, QingChun Road 3, 310016 HangZhou, Zhejiang, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Fahlgren A, Hammarström S, Danielsson A, Hammarström ML. Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis. Clin Exp Immunol 2003; 131:90-101. [PMID: 12519391 PMCID: PMC1808590 DOI: 10.1046/j.1365-2249.2003.02035.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The impact of chronic inflammation on the expression of human alpha-defensins 5 and 6 (HD-5, HD-6), beta-defensins 1 and 2 (hBD-1, hBD-2) and lysozyme in epithelial cells of small and large intestine was investigated. Intestinal specimens from 16 patients with ulcerative colitis (UC), 14 patients with Crohn's disease (CD) and 40 controls with no history of inflammatory bowel disease were studied. mRNA expression levels of the five defence molecules were determined in freshly isolated epithelial cells by real-time quantitative RT-PCR. Specific copy standards were used allowing comparison between the expression levels of the different defensins. HD-5 and lysozyme protein expression was also studied by immunohistochemistry. Colonic epithelial cells from patients with UC displayed a significant increase of hBD-2, HD-5, HD-6 and lysozyme mRNA as compared to epithelial cells in controls. Lysozyme mRNA was expressed at very high average copy numbers followed by HD-5, HD-6, hBD-1 and hBD-2 mRNA. HD-5 and lysozyme protein was demonstrated in metaplastic Paneth-like cells in UC colon. There was no correlation between hBD-2 mRNA levels and HD-5 or HD-6 mRNA levels in colon epithelial cells of UC patients. Colonic epithelial cells of Crohn's colitis patients showed increased mRNA levels of HD-5 and lysozyme mRNA whereas ileal epithelial cells of Crohn's patients with ileo-caecal inflammation did not. Chronic inflammation in colon results in induction of hBD-2 and alpha-defensins and increased lysozyme expression. hBD-1 expression levels in colon remain unchanged in colitis. The high antimicrobial activity of epithelial cells in chronic colitis may be a consequence of changes in the epithelial lining, permitting adherence of both pathogenic bacteria and commensals directly to the epithelial cell surface.
Collapse
Affiliation(s)
- A Fahlgren
- Department of Immunology, Umeå University, 901 85 Umeå, Sweden
| | | | | | | |
Collapse
|
39
|
Rajala MW, Lin Y, Ranalletta M, Yang XM, Qian H, Gingerich R, Barzilai N, Scherer PE. Cell type-specific expression and coregulation of murine resistin and resistin-like molecule-alpha in adipose tissue. Mol Endocrinol 2002; 16:1920-30. [PMID: 12145345 DOI: 10.1210/me.2002-0048] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adipocytes are the exclusive or predominant source of several secreted proteins that exert profound effects on systemic carbohydrate and lipid metabolism. Resistin, a 10-kDa adipose tissue specific secretory protein, has recently been implicated in exerting a negative effect on systemic insulin sensitivity. It is, however, not known how resistin mediates this insulin-desensitizing effect or what regulatory mechanisms control resistin expression. Resistin-like molecule-alpha (RELMalpha), a homolog of resistin originally identified by its upregulation in asthmatic lung, is another secreted protein expressed in adipose tissue. The regulation of RELMalpha in adipose tissue and its relationship to resistin expression has not been addressed so far. Here, we demonstrate that the expression of resistin and RELMalpha are similarly regulated in adipose tissue despite the fact that RELMalpha is exclusively expressed in the stromal vascular fraction of adipose tissue and not in adipocytes. Interestingly, this coregulation is limited to adipose tissue as the expression of RELMalpha in lung is independent of metabolic regulation. Additionally, we show that resistin and RELMalpha levels are not subject to regulation by proinflammatory stimuli. Finally, acute hyperglycemia leads to up-regulation of resistin and RELMalpha transcription in various adipose depots.
Collapse
MESH Headings
- 3T3 Cells
- Adipocytes/metabolism
- Adipose Tissue/blood supply
- Adipose Tissue/cytology
- Adipose Tissue/metabolism
- Animals
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Gene Expression Regulation
- Hormones, Ectopic/genetics
- Hormones, Ectopic/metabolism
- Hyperglycemia/genetics
- Hyperglycemia/metabolism
- Inflammation/genetics
- Inflammation/metabolism
- Intercellular Signaling Peptides and Proteins
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Obese
- Nerve Growth Factor
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Resistin
- Tissue Distribution
Collapse
Affiliation(s)
- Michael W Rajala
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 2002; 70:953-63. [PMID: 11796631 PMCID: PMC127717 DOI: 10.1128/iai.70.2.953-963.2002] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides are highly conserved evolutionarily and are thought to play an important role in innate immunity at intestinal mucosal surfaces. To better understand the role of the antimicrobial peptide human cathelicidin LL-37/human cationic antimicrobial protein 18 (hCAP18) in intestinal mucosal defense, we characterized the regulated expression and production of this peptide by human intestinal epithelium. LL-37/hCAP18 is shown to be expressed within epithelial cells located at the surface and upper crypts of normal human colon. Little or no expression was seen within the deeper colon crypts or within epithelial cells of the small intestine. Paralleling its expression in more differentiated epithelial cells in vivo, LL-37/hCAP18 mRNA and protein expression was upregulated in spontaneously differentiating Caco-2 human colon epithelial cells and in HCA-7 human colon epithelial cells treated with the cell differentiation-inducing agent sodium butyrate. LL-37/hCAP18 expression by colon epithelium does not require commensal bacteria, since LL-37/hCAP18 is produced with a similar expression pattern by epithelial cells in human colon xenografts that lack a luminal microflora. LL-37/hCAP18 mRNA was not upregulated in response to tumor necrosis factor alpha, interleukin 1alpha (IL-1alpha), gamma interferon, lipopolysaccharide, or IL-6, nor did the expression patterns and levels of LL-37/hCAP18 in the epithelium of the normal and inflamed colon differ. On the other hand, infection of HCA-7 cells with Salmonella enterica serovar Dublin or enteroinvasive Escherichia coli modestly upregulated LL-37/hCAP18 mRNA expression. We conclude that differentiated human colon epithelium expresses LL-37/hCAP18 as part of its repertoire of innate defense molecules and that the distribution and regulated expression of LL-37/hCAP18 in the colon differs markedly from that of other enteric antimicrobial peptides, such as defensins.
Collapse
Affiliation(s)
- Koji Hase
- Laboratory of Mucosal Immunology. Histology Shared Resources, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Naturally occurring antimicrobial cationic polypeptides play a major role in innate and adaptive immunity. These polypeptides are found to be either linear and unstructured or structured through disulfide bonds. Among the structured antimicrobial polypeptides, defensins comprise a family of cysteine-rich cationic polypeptides that contribute significantly to host defense against the invasion of microorganisms in animals, humans, insects and plants. Their wide-spread occurrence in various tissues of these diverse organisms, and their importance in innate and adaptive immunity have led to their identification, isolation and characterization. A large volume of literature is available on defensins' occurrence, structural characterization, gene expression and regulation under normal and pathological conditions. Much has also been published regarding their antimicrobial, antiviral and chemoattractive properties, and their molecular and cellular interactions. In this review, we describe the current status of our knowledge of defensins with respect to their molecular, cellular and structural biology, their role in host defense, future research paradigms and the possibility of their utilization as a new class of non-toxic antimicrobial agents and immuno-modulators.
Collapse
Affiliation(s)
- Periathamby Antony Raj
- Division of Periodontics, School of Dentistry, Marquette University, Milwaukee, WI 53201-1881, USA.
| | | |
Collapse
|
42
|
Abstract
Physical barrier function was formerly believed to play the major role in mucosal protection against luminal bacteria. This view has now been challenged by the discovery of specialized molecules that possess antimicrobial activity. More than 100 peptides have been identified so far, and the number is still growing. These peptides are distributed widely and conserved throughout phylogeny. The epithelial expression of antimicrobial peptides is of particular interest as many pathogens adhere to epithelial surfaces and may eventually invade the host. This rapidly acting defence system of innate immunity is already engaged before adoptive immune interactions take place. These antimicrobial peptides consist of constitutive and inducible forms, potentiating this barrier function in terms of an inflammatory response. One important subgroup of antimicrobial peptides is the family of defensins, which are classified as alpha (alpha-) and beta (beta-) defensins. Eight different peptides with varying antimicrobial properties have been identified. They are distributed widely in humans, and organ-specific expression patterns have been observed. Homologous peptides have been found in other mammals, vertebrates, invertebrates, insects and plants. The identification of alpha-defensins and their murine counterparts, cryptdins, in the small intestine prompted intensive research into epithelial antimicrobial defence.
Collapse
Affiliation(s)
- K Fellermann
- Department of Internal Medicine, Division of Gastroenterology, University of Lubeck, Lubeck, Germany.
| | | |
Collapse
|