1
|
Nedomova M, Haberecht-Müller S, Möller S, Venz S, Prochazkova M, Prochazka J, Sedlak F, Chawengsaksophak K, Hammer E, Kasparek P, Adamek M, Sedlacek R, Konvalinka J, Krüger E, Grantz Saskova K. DDI2 protease controls embryonic development and inflammation via TCF11/NRF1. iScience 2024; 27:110893. [PMID: 39328932 PMCID: PMC11424978 DOI: 10.1016/j.isci.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/25/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
DDI2 is an aspartic protease that cleaves polyubiquitinated substrates. Upon proteotoxic stress, DDI2 activates the transcription factor TCF11/NRF1 (NFE2L1), crucial for maintaining proteostasis in mammalian cells, enabling the expression of rescue factors, including proteasome subunits. Here, we describe the consequences of DDI2 ablation in vivo and in cells. DDI2 knock-out (KO) in mice caused embryonic lethality at E12.5 with severe developmental failure. Molecular characterization of embryos showed insufficient proteasome expression with proteotoxic stress, accumulation of high molecular weight ubiquitin conjugates and induction of the unfolded protein response (UPR) and cell death pathways. In DDI2 surrogate KO cells, proteotoxic stress activated the integrated stress response (ISR) and induced a type I interferon (IFN) signature and IFN-induced proliferative signaling, possibly ensuring survival. These results indicate an important role for DDI2 in the cell-tissue proteostasis network and in maintaining a balanced immune response.
Collapse
Affiliation(s)
- Monika Nedomova
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Sophie Möller
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Simone Venz
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Michaela Prochazkova
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Jan Prochazka
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Frantisek Sedlak
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Kallayanee Chawengsaksophak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Elke Hammer
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Petr Kasparek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Michael Adamek
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Klara Grantz Saskova
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| |
Collapse
|
2
|
Kamaraj R, Ghosh S, Das S, Sen S, Kumar P, Majumdar M, Dasgupta R, Mukherjee S, Das S, Ghose I, Pavek P, Raja Karuppiah MP, Chuturgoon AA, Anand K. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Bioconjug Chem 2024; 35:1089-1115. [PMID: 38990186 PMCID: PMC11342303 DOI: 10.1021/acs.bioconjchem.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Targeted protein degradation or TPD, is rapidly emerging as a treatment that utilizes small molecules to degrade proteins that cause diseases. TPD allows for the selective removal of disease-causing proteins, including proteasome-mediated degradation, lysosome-mediated degradation, and autophagy-mediated degradation. This approach has shown great promise in preclinical studies and is now being translated to treat numerous diseases, including neurodegenerative diseases, infectious diseases, and cancer. This review discusses the latest advances in TPD and its potential as a new chemical modality for immunotherapy, with a special focus on the innovative applications and cutting-edge research of PROTACs (Proteolysis TArgeting Chimeras) and their efficient translation from scientific discovery to technological achievements. Our review also addresses the significant obstacles and potential prospects in this domain, while also offering insights into the future of TPD for immunotherapeutic applications.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Subhrojyoti Ghosh
- Department
of Biotechnology, Indian Institute of Technology
Madras, Chennai 600036, India
| | - Souvadra Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shinjini Sen
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Priyanka Kumar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Madhurima Majumdar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Renesa Dasgupta
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Sampurna Mukherjee
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shrimanti Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Indrilla Ghose
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Petr Pavek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Muruga Poopathi Raja Karuppiah
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod District, Kerala 671320, India
| | - Anil A. Chuturgoon
- Discipline
of Medical Biochemistry, School of Laboratory Medicine and Medical
Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State 9300, South Africa
| |
Collapse
|
3
|
Shah MA, Kang JB, Koh PO. Chlorogenic acid modulates the ubiquitin-proteasome system in stroke animal model. Lab Anim Res 2022; 38:41. [PMID: 36539905 PMCID: PMC9768937 DOI: 10.1186/s42826-022-00151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chlorogenic acid, a phenolic compound, has potent antioxidant and neuroprotective properties. The ubiquitin-proteasome system is an important regulators of neurodevelopment and modulators of neuronal function. This system is associated with neurodevelopment and neurotransmission through degradation and removal of damaged proteins. Activation of the ubiquitin-proteasome system is a critical factor in preventing cell death. We have previously reported a decrease in the activity of the ubiquitin-proteasome system during cerebral ischemia. This study investigated whether chlorogenic acid regulates the ubiquitin-proteasome system in an animal stroke model. In adult rats, middle cerebral artery occlusion (MCAO) surgery was performed to induce focal cerebral ischemia. Chlorogenic acid (30 mg/kg) or normal saline was injected into the abdominal cavity 2 h after MCAO surgery, and cerebral cortex tissues were collected 24 h after MCAO damage. RESULTS Chlorogenic acid attenuated neurobehavioral disorders and histopathological changes caused by MCAO damage. We identified the decreases in ubiquitin C-terminal hydrolase L1, ubiquitin thioesterase OTUB1, proteasome subunit α type 1, proteasome subunit α type 3, and proteasome subunit β type 4 expression using a proteomics approach in MCAO animals. The decrease in these proteins was alleviated by chlorogenic acid. In addition, the results of reverse transcription-polymerase chain reaction confirmed these changes. The identified proteins were markedly reduced in MCAO damage, while chlorogenic acid prevented these reductions induced by MCAO. The decrease of ubiquitin-proteasome system proteins in ischemic damage was associated with neuronal apoptosis. CONCLUSIONS Our results showed that chlorogenic acid regulates ubiquitin-proteasome system proteins and protects cortical neurons from neuronal damage. These results provide evidence that chlorogenic acid has neuroprotective effects and maintains the ubiquitin-proteasome system in ischemic brain injury.
Collapse
Affiliation(s)
- Murad-Ali Shah
- grid.256681.e0000 0001 0661 1492Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-Daero, Jinju, 52828 South Korea
| | - Ju-Bin Kang
- grid.256681.e0000 0001 0661 1492Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-Daero, Jinju, 52828 South Korea
| | - Phil-Ok Koh
- grid.256681.e0000 0001 0661 1492Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-Daero, Jinju, 52828 South Korea
| |
Collapse
|
4
|
Gómez-Virgilio L, Silva-Lucero MDC, Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez AM, Zacapala-Gómez AE, Luna-Muñoz J, Montiel-Sosa F, Soto-Rojas LO, Pacheco-Herrero M, Cardenas-Aguayo MDC. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022; 11:cells11152262. [PMID: 35892559 PMCID: PMC9329718 DOI: 10.3390/cells11152262] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a highly conserved lysosomal degradation pathway active at basal levels in all cells. However, under stress conditions, such as a lack of nutrients or trophic factors, it works as a survival mechanism that allows the generation of metabolic precursors for the proper functioning of the cells until the nutrients are available. Neurons, as post-mitotic cells, depend largely on autophagy to maintain cell homeostasis to get rid of damaged and/or old organelles and misfolded or aggregated proteins. Therefore, the dysfunction of this process contributes to the pathologies of many human diseases. Furthermore, autophagy is highly active during differentiation and development. In this review, we describe the current knowledge of the different pathways, molecular mechanisms, factors that induce it, and the regulation of mammalian autophagy. We also discuss its relevant role in development and disease. Finally, here we summarize several investigations demonstrating that autophagic abnormalities have been considered the underlying reasons for many human diseases, including liver disease, cardiovascular, cerebrovascular diseases, neurodegenerative diseases, neoplastic diseases, cancers, and, more recently, infectious diseases, such as SARS-CoV-2 caused COVID-19 disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Maria-del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Diego-Salvador Flores-Morelos
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Guerrero, Mexico;
| | - Jazmin Gallardo-Nieto
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Biotechnology Engeniering, Universidad Politécnica de Quintana Roo, Cancún 77500, Quintana Roo, Mexico
| | - Gustavo Lopez-Toledo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
| | - Arminda-Mercedes Abarca-Fernandez
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Biotechnology Engeniering, Universidad Politécnica de Quintana Roo, Cancún 77500, Quintana Roo, Mexico
| | - Ana-Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Guerrero, Mexico;
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 53150, Estado de México, Mexico; (J.L.-M.); (F.M.-S.)
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 11805, Dominican Republic
| | - Francisco Montiel-Sosa
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 53150, Estado de México, Mexico; (J.L.-M.); (F.M.-S.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros 51000, Dominican Republic;
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; (L.G.-V.); (M.-d.-C.S.-L.); (D.-S.F.-M.); (J.G.-N.); (G.L.-T.); (A.-M.A.-F.)
- Correspondence: ; Tel.: +52-55-2907-0937
| |
Collapse
|
5
|
Manzanza NDO, Sedlackova L, Kalaria RN. Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders. Front Aging Neurosci 2021; 13:690293. [PMID: 34248606 PMCID: PMC8267936 DOI: 10.3389/fnagi.2021.690293] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Lewy Body Disorders (LBDs) lie within the spectrum of age-related neurodegenerative diseases now frequently categorized as the synucleinopathies. LBDs are considered to be among the second most common form of neurodegenerative dementias after Alzheimer's disease. They are progressive conditions with variable clinical symptoms embodied within specific cognitive and behavioral disorders. There are currently no effective treatments for LBDs. LBDs are histopathologically characterized by the presence of abnormal neuronal inclusions commonly known as Lewy Bodies (LBs) and extracellular Lewy Neurites (LNs). The inclusions predominantly comprise aggregates of alpha-synuclein (aSyn). It has been proposed that post-translational modifications (PTMs) such as aSyn phosphorylation, ubiquitination SUMOylation, Nitration, o-GlcNacylation, and Truncation play important roles in the formation of toxic forms of the protein, which consequently facilitates the formation of these inclusions. This review focuses on the role of different PTMs in aSyn in the pathogenesis of LBDs. We highlight how these PTMs interact with aSyn to promote misfolding and aggregation and interplay with cell membranes leading to the potential functional and pathogenic consequences detected so far, and their involvement in the development of LBDs.
Collapse
Affiliation(s)
- Nelson de Oliveira Manzanza
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucia Sedlackova
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N. Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Biochemical pathways of copper complexes: progress over the past 5 years. Drug Discov Today 2021; 26:1086-1096. [PMID: 33486113 DOI: 10.1016/j.drudis.2021.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Copper is an essential trace element with vital roles in many metalloenzymes; it is also prominent among nonplatinum anticancer metallodrugs. Copper-based complexes are endogenously biocompatible, tenfold more potent than cisplatin, exhibit fewer adverse effects, and have a wide therapeutic window. In cancer biology, copper acts as an antitumor agent by inhibiting cancer via multiple pathways. Herein, we present an overview of advances in copper complexes as 'lead' antitumor drug candidates, and in understanding their biochemical and pharmacological pathways over the past 5 years. This review will help to develop more efficacious therapeutics to improve clinical outcomes for cancer treatments.
Collapse
|
7
|
Portilho LG, Duarte BCD, Queiroz FR, Ribeiro THC, Jeremias WDJ, Babá EH, Coelho PMZ, Morais ER, Cabral FJ, Caldeira RL, Gomes MDS. Genome-wide identification, characterisation and expression profiling of the ubiquitin-proteasome genes in Biomphalaria glabrata. Mem Inst Oswaldo Cruz 2019; 114:e190052. [PMID: 31166481 PMCID: PMC6548493 DOI: 10.1590/0074-02760190052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/02/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Biomphalaria glabrata is the major species used for the
study of schistosomiasis-related parasite-host relationships, and
understanding its gene regulation may aid in this endeavor. The
ubiquitin-proteasome system (UPS) performs post-translational regulation in
order to maintain cellular protein homeostasis and is related to several
mechanisms, including immune responses. OBJECTIVE The aims of this work were to identify and characterise the putative genes
and proteins involved in UPS using bioinformatic tools and also their
expression on different tissues of B. glabrata. METHODS The putative genes and proteins of UPS in B. glabrata were
predicted using BLASTp and as queries reference proteins from model
organism. We characterised these putative proteins using PFAM and CDD
software describing the conserved domains and active sites. The phylogenetic
analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation
was performed from 12 snail tissues using RPKM. FINDINGS 119 sequences involved in the UPS in B. glabrata were
identified, which 86 have been related to the ubiquitination pathway and 33
to proteasome. In addition, the conserved domains found were associated with
the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active
sites were lysine and cysteine residues. Lysines are responsible and the
starting point for the formation of polyubiquitin chains, while the cysteine
residues of the enzymes are responsible for binding to ubiquitin. The
phylogenetic analysis showed an organised distribution between the organisms
and the clades of the sequences, corresponding to the tree of life of the
animals, for all groups of sequences analysed. The ubiquitin sequence was
the only one with a high expression profile found in all libraries,
inferring its wide range of performance. MAIN CONCLUSIONS Our results show the presence, conservation and expression profile of the UPS
in this mollusk, providing a basis and new knowledge for other studies
involving this system. Due to the importance of the UPS and B.
glabrata, this work may influence the search for new
methodologies for the control of schistosomiasis.
Collapse
Affiliation(s)
- Laysa Gomes Portilho
- Universidade Federal de Uberlândia, Laboratório de Bioinformática e Análises Moleculares, Patos de Minas, MG, Brasil
| | - Bruna Custódio Dias Duarte
- Universidade Federal de Uberlândia, Laboratório de Bioinformática e Análises Moleculares, Patos de Minas, MG, Brasil
| | - Fábio Ribeiro Queiroz
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Biologia do Schistosoma mansoni e sua Interação com o Hospedeiro, Belo Horizonte, MG, Brasil
| | - Thales Henrique Cherubino Ribeiro
- Universidade Federal de Lavras, Departamento de Biologia, Seção de Fisiologia de Plantas, Laboratório de Fisiologia Molecular de Plantas, Lavras, MG, Brasil
| | - Wander de Jesus Jeremias
- Universidade Federal de Ouro Preto, Departamento de Farmácia/Escola de Farmácia, Ouro Preto, MG, Brasil
| | - Elio Hideo Babá
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Biologia do Schistosoma mansoni e sua Interação com o Hospedeiro, Belo Horizonte, MG, Brasil
| | - Paulo Marcos Zech Coelho
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Biologia do Schistosoma mansoni e sua Interação com o Hospedeiro, Belo Horizonte, MG, Brasil
| | - Enyara Rezende Morais
- Universidade Federal de Uberlândia, Laboratório de Bioquímica e Biologia Molecular, Patos de Minas, MG, Brasil
| | - Fernanda Janku Cabral
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Roberta Lima Caldeira
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Helmintologia e Malacologia Médica, Belo Horizonte, MG, Brasil
| | - Matheus de Souza Gomes
- Universidade Federal de Uberlândia, Laboratório de Bioinformática e Análises Moleculares, Patos de Minas, MG, Brasil
| |
Collapse
|
8
|
Transcriptome Analysis Shows That IFN-I Treatment and Concurrent SAV3 Infection Enriches MHC-I Antigen Processing and Presentation Pathways in Atlantic Salmon-Derived Macrophage/Dendritic Cells. Viruses 2019; 11:v11050464. [PMID: 31121853 PMCID: PMC6563251 DOI: 10.3390/v11050464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/17/2023] Open
Abstract
Type I interferons (IFNs) have been shown to play an important role in shaping adaptive immune responses in addition to their antiviral properties in immune cells. To gain insight into the impact of IFN-I-induced pathways involved in early adaptive immune responses, i.e., antigen-presenting pathways, in an Atlantic salmon-derived (Salmo salar L.) macrophage cell line (TO-cells), we used a comparative de novo transcriptome analysis where cells were treated with IFN-I or kept untreated and concurrently infected with salmonid alphavirus subtype 3 (SAV3). We found that concurrent treatment of TO-cells with IFN-I and SAV3 infection (SAV3/IFN+) significantly enriched the major histocompatibility complex class I (MHC-I) pathway unlike the non-IFN-I treated TO-cells (SAV3/IFN−) that had lower expression levels of MHC-I pathway-related genes. Genes such as the proteasomal activator (PA28) and β-2 microglobulin (β2M) were only differentially expressed in the SAV3/IFN+ cells and not in the SAV3/IFN− cells. MHC-I pathway genes like heat shock protein 90 (Hsp90), transporter of antigen associated proteins (TAPs) and tapasin had higher expression levels in the SAV3/IFN+ cells than in the SAV3/IFN− cells. There were no MHC-II pathway-related genes upregulated in SAV3/IFN+-treated cells, and cathepsin S linked to the degradation of endosomal antigens in the MHC-II pathway was downregulated in the SAV3/IFN− cells. Overall, our findings show that concurrent IFN-I treatment of TO-cells and SAV3 infection enriched gene expression linked to the MHC-I antigen presentation pathway. Data presented indicate a role of type I IFNs in strengthening antigen processing and presentation that may facilitate activation particularly of CD8+ T-cell responses following SAV3 infection, while SAV3 infection alone downplayed MHC-II pathways.
Collapse
|
9
|
Zhang J, Li X, Li JD. The Roles of Post-translational Modifications on α-Synuclein in the Pathogenesis of Parkinson's Diseases. Front Neurosci 2019; 13:381. [PMID: 31057362 PMCID: PMC6482271 DOI: 10.3389/fnins.2019.00381] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disorder. Although the pathogenesis of Parkinson’s disease is not entirely clear, the aberrant aggregation of α-synuclein has long been considered as an important risk factor. Elucidating the mechanisms that influence the aggregation of α-synuclein is essential for developing an effective diagnostic, preventative and therapeutic strategy to treat this devastating disease. The aggregation of α-synuclein is influenced by several post-translational modifications. Here, we summarized the major post-translational modifications (phosphorylation, ubiquitination, truncation, nitration, O-GlcNAcylation) of α-synuclein and the effect of these modifications on α-synuclein aggregation, which may provide potential targets for future therapeutics.
Collapse
Affiliation(s)
- Jiaming Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiaoping Li
- Center for Reproductive Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jia-Da Li
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
10
|
Wang L, Li H, Yang S, Ma W, Liu M, Guo S, Zhan J, Zhang H, Tsang SY, Zhang Z, Wang Z, Li X, Guo YD, Li X. Cyanidin-3-o-glucoside directly binds to ERα36 and inhibits EGFR-positive triple-negative breast cancer. Oncotarget 2018; 7:68864-68882. [PMID: 27655695 PMCID: PMC5356596 DOI: 10.18632/oncotarget.12025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
Anthocyanins have been shown to inhibit the growth and metastatic potential of breast cancer (BC) cells. However, the effects of individual anthocyanins on triple-negative breast cancer (TNBC) have not yet been studied. In this study, we found that cyanidin-3-o-glucoside (Cy-3-glu) preferentially promotes the apoptosis of TNBC cells, which co-express the estrogen receptor alpha 36 (ERα36) and the epidermal growth factor receptor (EGFR). We demonstrated that Cy-3-glu directly binds to the ligand-binding domain (LBD) of ERα36, inhibits EGFR/AKT signaling, and promotes EGFR degradation. We also confirmed the therapeutic efficacy of Cy-3-glu on TNBC in the xenograft mouse model. Our data indicates that Cy-3-glu could be a novel preventive/therapeutic agent against the TNBC co-expressed ERα36/EGFR.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Haifeng Li
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Shiping Yang
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Wenqiang Ma
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Mei Liu
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Shichao Guo
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Suk Ying Tsang
- School of Life Sciences and State Key Laboratory of Agro-Biotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Ziding Zhang
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Zhaoyi Wang
- Beijing Shenogen Pharma Group, Beijing, China
| | - Xiru Li
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Yang-Dong Guo
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Xiangdong Li
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Chen JY, Xu L, Fang WM, Han JY, Wang K, Zhu KS. Identification of PA28β as a potential novel biomarker in human esophageal squamous cell carcinoma. Tumour Biol 2017; 39:1010428317719780. [PMID: 29020885 DOI: 10.1177/1010428317719780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common and serious malignancies in China. However, the exact mechanisms of tumor formation and progression are unclear. As late diagnosis and poor therapeutic efficacy result in lower survival rates, identifying biomarkers for early detection, prognostic evaluation, and recurrence monitoring of ESCC is necessary. Here we analyzed 10 protein expression profiles of ESCC core tissues and paired normal esophageal epithelial tissues using two-dimensional gel electrophoresis. We excised 29 protein spots with two-fold or greater differential expression between cancer and normal tissues and identified them using matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight mass spectrometry. The role of PA28β in ESCC cell was confirmed using cell growth, colony formation and soft agar in TE-1 cells pre- and post- PA28β transfection. Compared to their expression in the adjacent normal epithelia, 12 proteins, including transgelin (TAGLN), were upregulated in ESCC tissues; 17 proteins, including proteasome activator 28-beta subunit (PA28β), were downregulated (p < 0.05). Western blotting and immunohistochemistry confirmed that PA28β was significantly underexpressed in ESCC tissues. The functional assays demonstrate that PA28β inhibited cell growth, proliferation and malignancy of TE-1 cells. Among the differentially expressed proteins, PA28β is a potential tumor inhibitor.
Collapse
Affiliation(s)
- Jin-Yan Chen
- 1 Institute for Immunology, Fujian Academy of Medical Sciences, Fuzhou, China.,2 Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, China
| | - Li Xu
- 3 Department of Physiology, Basic Medical College of Putian University, Putian, China
| | - Wei-Min Fang
- 4 Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Jun-Yong Han
- 1 Institute for Immunology, Fujian Academy of Medical Sciences, Fuzhou, China.,2 Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, China
| | - Kun Wang
- 1 Institute for Immunology, Fujian Academy of Medical Sciences, Fuzhou, China.,2 Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, China
| | - Kun-Shou Zhu
- 4 Fujian Provincial Cancer Hospital, Fuzhou, China
| |
Collapse
|
12
|
Palmieri G, Cocca E, Gogliettino M, Valentino R, Ruvo M, Cristofano G, Angiolillo A, Balestrieri M, Rossi M, Di Costanzo A. Low Erythrocyte Levels of Proteasome and Acyl-Peptide Hydrolase (APEH) Activities in Alzheimer’s Disease: A Sign of Defective Proteostasis? J Alzheimers Dis 2017; 60:1097-1106. [DOI: 10.3233/jad-170389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli, Italy
| | - Ennio Cocca
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli, Italy
| | - Marta Gogliettino
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli, Italy
| | - Roberta Valentino
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), Napoli, Italy
| | - Gloria Cristofano
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Antonella Angiolillo
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Marco Balestrieri
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli, Italy
| | - Mosè Rossi
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli, Italy
| | - Alfonso Di Costanzo
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
13
|
Phosphoproteomic profiling of selenate-treated Alzheimer's disease model cells. PLoS One 2014; 9:e113307. [PMID: 25485856 PMCID: PMC4259334 DOI: 10.1371/journal.pone.0113307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/21/2014] [Indexed: 11/19/2022] Open
Abstract
The reversible phosphorylation of proteins regulates most biological processes, while abnormal phosphorylation is a cause or consequence of many diseases including Alzheimer's disease (AD). One of the hallmarks of AD is the formation of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau proteins. Sodium selenate has been recently found to reduce tau hyperphosphorylation and NFTs formation, and to improve spatial learning and motor performance in AD mice. In the current study, the phosphoproteomics of N2aSW cells treated with selenate were investigated. To avoid missing low-abundance phosphoproteins, both the total proteins of cells and the phosphor-enriched proteins were extracted and subjected to the two-dimensional gel electrophoresis with Pro-Q diamond staining and then LC-MS/MS analysis. A total of 65 proteins were altered in phosphorylation level, of which 39 were up-regulated and 26 were down-regulated. All identified phosphoproteins were bioinformatically annotated according to their physiochemical features, subcellular location, and biological function. Most of these significantly changed phosphoproteins are involved in crucial neural processes such as protesome activity, oxidative stress, cysteine and methionine metabolism, and energy metabolism. Furthermore, decreases were found in homocysteine, phosphor-tau and amyloid β upon selenate treatment. Our results suggest that selenate may intervene in the pathological process of AD by altering the phosphorylation of some key proteins involved in oxidative stress, energy metabolism and protein degradation, thus play important roles in maintaining redox homeostasis, generating ATP, and clearing misfolded proteins and aggregates. The present paper provides some new clues to the mechanism of selenate in AD prevention.
Collapse
|
14
|
Kumagai T, Usami H, Matsukawa N, Nakashima F, Chikazawa M, Shibata T, Noguchi N, Uchida K. Functional interaction between cyclooxygenase-2 and p53 in response to an endogenous electrophile. Redox Biol 2014; 4:74-86. [PMID: 25506925 PMCID: PMC4309852 DOI: 10.1016/j.redox.2014.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/01/2022] Open
Abstract
Cyclooxygenase-2 (Cox-2) is rapidly expressed by various stimuli and plays a key role in conversion of free arachidonic acid to prostaglandins. We have previously identified 4-hydroxy-2-nonenal (HNE), a lipid peroxidation-derived electrophile, as the potent Cox-2 inducer in rat epithelial RL34 cells and revealed that the HNE-induced Cox-2 expression resulted from the stabilization of Cox-2 mRNA that is mediated by the p38 mitogen-activated protein kinase signaling pathway. In the present study, we investigated an alternative regulatory mechanism of Cox-2 expression mediated by a transcription factor p53. In addition, to characterize the causal role for Cox-2, we examined the effects of Cox-2 overexpression in RL34 cells. To examine whether the HNE-induced Cox-2 expression was mechanistically linked to the p53 expression, we analyzed changes in Cox-2 and p53 expression levels in response to HNE and observed that the Cox-2 levels were inversely correlated with the p53 levels. Down-regulation of p53 followed by the activation of a transcription factor Sp1 was suggested to be involved in the HNE-induced Cox-2 gene expression. To characterize the effect of Cox-2 expression in the cells, we established the Cox-2-overexpressing derivatives of RL34 cells by stable transfection with Cox-2 cDNA. An oligonucleotide microarray analysis revealed a dramatic down-regulation of the proteasome subunit RC1 in the Cox-2 overexpressed cells compared to the empty-vector transfected control cells. Consistent with the Cox-2-mediated down-regulation of proteasome, a moderate reduction of the proteasome activities was observed. This proteasome dysfunction mediated by the Cox-2 overproduction was associated with the enhanced accumulation of p53 and ubiquitinated proteins, leading to the enhanced sensitivity toward electrophiles. These results suggest the existence of a causal link between Cox-2 and p53, which may represent a toxic mechanism of electrophilic lipid peroxidation products.
Collapse
Affiliation(s)
- Takeshi Kumagai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Usami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Nao Matsukawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Fumie Nakashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Miho Chikazawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Noriko Noguchi
- Systems Life Sciences, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
15
|
Díaz N, Ribas L, Piferrer F. Effects of changes in food supply at the time of sex differentiation on the gonadal transcriptome of juvenile fish. Implications for natural and farmed populations. PLoS One 2014; 9:e111304. [PMID: 25340342 PMCID: PMC4207807 DOI: 10.1371/journal.pone.0111304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/30/2014] [Indexed: 01/18/2023] Open
Abstract
Background Food supply is a major factor influencing growth rates in animals. This has important implications for both natural and farmed fish populations, since food restriction may difficult reproduction. However, a study on the effects of food supply on the development of juvenile gonads has never been transcriptionally described in fish. Methods and Findings This study investigated the consequences of growth on gonadal transcriptome of European sea bass in: 1) 4-month-old sexually undifferentiated fish, comparing the gonads of fish with the highest vs. the lowest growth, to explore a possible link between transcriptome and future sex, and 2) testis from 11-month-old juveniles where growth had been manipulated through changes in food supply. The four groups used were: i) sustained fast growth, ii) sustained slow growth, iii) accelerated growth, iv) decelerated growth. The transcriptome of undifferentiated gonads was not drastically affected by initial natural differences in growth. Further, changes in the expression of genes associated with protein turnover were seen, favoring catabolism in slow-growing fish and anabolism in fast-growing fish. Moreover, while fast-growing fish took energy from glucose, as deduced from the pathways affected and the analysis of protein-protein interactions examined, in slow-growing fish lipid metabolism and gluconeogenesis was favored. Interestingly, the highest transcriptomic differences were found when forcing initially fast-growing fish to decelerate their growth, while accelerating growth of initially slow-growing fish resulted in full transcriptomic convergence with sustained fast-growing fish. Conclusions Food availability during sex differentiation shapes the juvenile testis transcriptome, as evidenced by adaptations to different energy balances. Remarkably, this occurs in absence of major histological changes in the testis. Thus, fish are able to recover transcriptionally their testes if they are provided with enough food supply during sex differentiation; however, an initial fast growth does not represent any advantage in terms of transcriptional fitness if later food becomes scarce.
Collapse
Affiliation(s)
- Noelia Díaz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- * E-mail:
| |
Collapse
|
16
|
Zhou J, Zhu Z, Bai C, Sun H, Wang X. Proteomic profiling of lymphocytes in autoimmunity, inflammation and cancer. J Transl Med 2014; 12:6. [PMID: 24397796 PMCID: PMC3895788 DOI: 10.1186/1479-5876-12-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/04/2014] [Indexed: 11/10/2022] Open
Abstract
Lymphocytes play important roles in the balance between body defense and noxious agents involved in a number of diseases, e.g. autoimmune diseases, allergic inflammation and cancer. The proteomic analyses have been applied to identify and validate disease-associated and disease-specific biomarkers for therapeutic strategies of diseases. The proteomic profiles of lymphocytes may provide more information to understand their functions and roles in the development of diseases, although proteomic approaches in lymphocytes are still limited. The present review overviewed the proteomics-based studies on lymphocytes to headlight the proteomic profiles of lymphocytes in diseases, such as autoimmune diseases, allergic inflammation and cancer, with a special focus on lung diseases. We will explore the potential significance of diagnostic biomarkers and therapeutic targets from the current status in proteomic studies of lymphocytes and discuss the value of the currently available proteomic methodologies in the lymphocytes research.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Sun
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China.
| | | |
Collapse
|
17
|
Matsushita M, Matsudaira R, Ikeda K, Nawata M, Tamura N, Takasaki Y. Anti-proteasome activator 28α is a novel anti-cytoplasmic antibody in patients with systemic lupus erythematosus and Sjögren’s syndrome. Mod Rheumatol 2014. [DOI: 10.3109/s10165-009-0215-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res 2012; 349:765-82. [DOI: 10.1007/s00441-012-1370-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/07/2012] [Indexed: 12/17/2022]
|
19
|
Hossain Z, Nouri MZ, Komatsu S. Plant Cell Organelle Proteomics in Response to Abiotic Stress. J Proteome Res 2011; 11:37-48. [DOI: 10.1021/pr200863r] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zahed Hossain
- National Institute of Crop Science, Tsukuba 305-8518, Japan
- Department of Botany, West Bengal State University, Kolkata-700126, West Bengal, India
| | - Mohammad-Zaman Nouri
- National Institute of Crop Science, Tsukuba 305-8518, Japan
- Rice Research Institute of Iran, Deputy of Mazandaran, Amol 46191-91951, Iran
| | | |
Collapse
|
20
|
Jang C, Choi JK, Kim E, Park ES, Wasco W, Buxbaum JD, Kim YS, Choi EK. Calsenilin is degraded by the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 2011; 405:180-5. [PMID: 21216226 DOI: 10.1016/j.bbrc.2010.12.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 12/31/2010] [Indexed: 01/12/2023]
Abstract
Calsenilin, a neuronal calcium binding protein that has been shown to have multiple functions in the cell, interacts with presenilin 1 (PS1) and presenilin 2 (PS2), represses gene transcription and binds to A-type voltage-gated potassium channels. In addition, increased levels of calsenilin are observed in the brains of Alzheimer's disease and epilepsy patients. The present study was designed to investigate the molecular mechanism of calsenilin degradation pathways in cultured cells. Here, we demonstrate that inhibition of the ubiquitin-proteasomal pathway (UPP) but not lysosomal pathway markedly increased the expression levels of calsenilin. Immunofluorescence analysis revealed that following proteasomal inhibition calsenilin accumulated in the endoplasmic reticulum (ER) and Golgi, while lysosomal inhibition had no effect on calsenilin localization. In addition, we found the change of subcellular localization of PS1 from diffuse pattern to punctuate staining pattern in the ER and perinuclear region in the presence of calsenilin. These findings suggest that calsenilin degradation is primarily mediated by the UPP and that impairment in the UPP may contribute to the involvement of calsenilin in disease-associated neurodegeneration.
Collapse
Affiliation(s)
- Changhwan Jang
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Early-age-related changes in proteostasis augment immunopathogenesis of sepsis and acute lung injury. PLoS One 2010; 5:e15480. [PMID: 21085581 PMCID: PMC2981560 DOI: 10.1371/journal.pone.0015480] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 09/23/2010] [Indexed: 12/29/2022] Open
Abstract
Background The decline of proteasomal activity is known to be associated with the age-related disorders but the early events involved in this process are not apparent. To address this, we investigated the early-age-related (pediatric vs. adult) mechanisms that augment immunopathogenesis of sepsis and acute lung injury. Methodology/Principal Findings The 3-weeks (pediatric) and 6-months (adult) old C57BL/6 mice were selected as the study groups. Mice were subjected to 1×20 cecal ligation and puncture (CLP) mediated sepsis or intratracheal Psuedomonas aeruginosa (Pa)-LPS induced acute lung injury (ALI).We observed a significant increase in basal levels of pro-inflammatory cytokine, IL-6 and neutrophil activity marker, myeloperoxidase (MPO) in the adult mice compared to the pediatric indicating the age-related constitutive increase in inflammatory response. Next, we found that age-related decrease in PSMB6 (proteasomal subunit) expression in adult mice results in accumulation of ubiquitinated proteins that triggers the unfolded protein response (UPR). We identified that Pa-LPS induced activation of UPR modifier, p97/VCP (valosin-containing protein) in the adult mice lungs correlates with increase in Pa-LPS induced NFκB levels. Moreover, we observed a constitutive increase in p-eIF2α indicating a protective ER stress response to accumulation of ubiquitinated-proteins. We used MG-132 treatment of HBE cells as an in vitro model to standardize the efficacy of salubrinal (inhibitor of eIF2α de-phosphorylation) in controlling the accumulation of ubiquitinated proteins and the NFκB levels. Finally, we evaluated the therapeutic efficacy of salubrinal to correct proteostasis-imbalance in the adult mice based on its ability to control CLP induced IL-6 secretion or recruitment of pro-inflammatory cells. Conclusions/Significance Our data demonstrate the critical role of early-age-related proteostasis-imbalance as a novel mechanism that augments the NFκB mediated inflammation in sepsis and ALI. Moreover, our data suggest the therapeutic efficacy of salubrinal in restraining NFκB mediated inflammation in the adult or older subjects.
Collapse
|
22
|
Shi X, Curran JE, Liao Z, Gordon RK. The biological activity of ubiquitinated BoNT/B light chain in vitro and in human SHSY-5Y neuronal cells. J Cell Biochem 2009; 108:660-7. [PMID: 19681043 DOI: 10.1002/jcb.22300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BoNT/B light chain is a zinc-dependent endopeptidase. After entering its target, the neuronal cell, BoNT/B is responsible for synaptobrevin-2 (VAMP-2) cleavage. This results in reduced neurotransmitter (acetylcholine) release from synaptic vesicles, yielding muscular paralysis. Since the toxin persists in neuronal cells for an extended period, regeneration of VAMP-2 is prevented. We evaluated therapeutic targets to overcome botulinum persistence because early removal would rescue the neuronal cell. The ubiquitination/proteasome cellular pathway is responsible for removing "old" or undesirable proteins. Therefore, we assessed ubiquitination of BoNT/B light chain in vitro, and characterized the effects of ubiquitination modulating drugs, PMA (phorbol 12-myristate 13-acetate) and expoxomicin, on ubiquitination of BoNT/B light chain in neuronal cells. Both drugs altered BoNT/B light chain ubiquitination. Ubiquitination in vitro and in cells decreased the biological activity of BoNT/B light chain. These results further elucidate BoNT protein degradation pathways in intoxicated neuronal cells and mechanisms to enhance toxin removal.
Collapse
Affiliation(s)
- Xuerong Shi
- Department of Regulated Laboratories, Division of Regulated Activities, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | |
Collapse
|
23
|
Matsushita M, Matsudaira R, Ikeda K, Nawata M, Tamura N, Takasaki Y. Anti-proteasome activator 28alpha is a novel anti-cytoplasmic antibody in patients with systemic lupus erythematosus and Sjögren's syndrome. Mod Rheumatol 2009; 19:622-8. [PMID: 19688289 DOI: 10.1007/s10165-009-0215-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/14/2009] [Indexed: 11/26/2022]
Abstract
We evaluated the extent to which anti-proteasome activator (PA) 28alpha antibodies act as anti-cytoplasmic antibodies in systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). Sera from 46 SLE patients without SS, 11 SLE patients with SS, and 45 primary SS patients were tested. Using anti-PA28alpha and anti-PA28gamma (Ki) antibodies purified from nitrocellulose membranes onto which recombinant PA28alpha and Ki had been transferred, the cellular distributions of the targeted antigens were analyzed immunohistochemically. In addition, the incidence of anti-PA28alpha antibodies was compared with those of other anti-cytoplasmic antibodies. Immunofluorescent staining showed that purified anti-PA28alpha antibodies reacted with the cytoplasm of HEp-2 cells, whereas purified anti-Ki antibodies reacted with nucleoplasm. Among the 15 SLE patients without SS, the six SLE patients with SS, and the 30 primary SS patients who were anti-cytoplasmic-antibody positive, anti-SS-A/Ro antibodies were the most frequently detected (53, 67, and 70%, respectively); anti-PA28alpha antibodies were, respectively, detected in 33, 50, and 40% of those patient groups, incidences that were higher than those of anti-ribosomal P, anti-smooth muscle and anti-mitochondrial M2 antibodies. These results show that anti-PA28alpha antibodies are major anti-cytoplasmic antibodies in patients with SLE and SS, and the distinct cellular distributions of PA28alpha and Ki suggest these proteins are associated with different cellular functions.
Collapse
Affiliation(s)
- Masakazu Matsushita
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Ohta T, Wu W, Koike A, Asakawa H, Koizumi H, Fukuda M. Contemplating chemosensitivity of basal-like breast cancer based on BRCA1 dysfunction. Breast Cancer 2009; 16:268-74. [PMID: 19459031 DOI: 10.1007/s12282-009-0115-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 03/09/2009] [Indexed: 12/29/2022]
Abstract
Gene-expression profiling classified breast cancer to intrinsic subtypes, including luminal A and B, HER2 positive, normal-breast-like, and basal-like tumors. Of these, basal-like tumors that express basal cytokeratins and that are negative for estrogen receptor alpha, progesterone receptor, and HER2 show the most aggressive phenotype with a poor prognosis. Analyses of clinical samples and basic research indicate that basal-like breast cancer is caused by deficiencies in the breast cancer susceptibility protein, BRCA1. Indeed, conditionally deleting BRCA1 from the mammary gland causes mice to develop basal-like cancers at high rates. One of the major functions of BRCA1 is DNA double-strand break (DSB) repair, and its failure to perform causes increased sensitivity of cells to DNA damage-inducing agents, such as PARP inhibitors, DNA cross-linkers, or topoisomerase inhibitors. Therefore, BRCA1 dysfunction could be a principal target for therapeutic application of basal-like breast cancer. Recently, significant progress has been made in understanding the BRCA1 cascade in response to DSBs, where ubiquitin polymer formation plays critical roles. Ubiquitination was indeed found to be an apparent early response of breast cancer to neoadjuvant treatment with epirubicin and cyclophosphamide. Deducing the role of BRCA1 ubiquitin E3 ligase activity in this pathway is a critical challenge to further clarify its functional mechanism. In individualized treatment of breast cancer, evaluation of the DNA repair capacity by the BRCA1 pathway may be an important issue when determining proper treatment of basal-like breast cancer.
Collapse
Affiliation(s)
- Tomohiko Ohta
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Yang F, Yang YP, Mao CJ, Cao BY, Cai ZL, Shi JJ, Huang JZ, Zhang P, Liu CF. Role of autophagy and proteasome degradation pathways in apoptosis of PC12 cells overexpressing human alpha-synuclein. Neurosci Lett 2009; 454:203-8. [PMID: 19429084 DOI: 10.1016/j.neulet.2009.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 02/18/2009] [Accepted: 03/09/2009] [Indexed: 01/28/2023]
Abstract
Parkinson's disease is a common neurodegenerative disease in the elderly. Its causes and mechanisms are not clearly understood. To explore the specific role of autophagy and the ubiquitin-proteasome pathway in apoptosis, a specific proteasome inhibitor and macroautophagy inhibitor and stimulator were selected to investigate pheochromocytoma (PC12) cell lines transfected with human mutant (A30P) and wild-type (WT) alpha-synuclein. The apoptosis ratio was assessed by flow cytometry. LC3, heat shock protein 70 (hsp70) and caspase-3 expression in cell culture were determined by Western blot. The hallmarks of apoptosis and autophagy were assessed with transmission electron microscopy. Compared to the control group or the rapamycin (autophagy stimulator) group, the apoptosis ratio in A30P and WT cells was significantly higher after treatment with inhibitors of the proteasome and macroautophagy. The results of Western blots for caspase-3 expression were similar to those of flow cytometry; hsp70 protein was significantly higher in the proteasome inhibitor group than in control, but in the autophagy inhibitor and stimulator groups, hsp70 was similar to control. These findings show that inhibition of the proteasome and autophagy promotes apoptosis, and the macroautophagy stimulator rapamycin reduces the apoptosis ratio. And inhibiting or stimulating autophagy has less impact on hsp70 than the proteasome pathway.
Collapse
Affiliation(s)
- Fang Yang
- Department of Neurology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China; Department of Neurology, Nanjing Jinling Hospital, Nanjing 210002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Perturbation of DNA repair pathways by proteasome inhibitors corresponds to enhanced chemosensitivity of cells to DNA damage-inducing agents. Cancer Chemother Pharmacol 2009; 64:1039-46. [PMID: 19274461 PMCID: PMC2728221 DOI: 10.1007/s00280-009-0961-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 02/17/2009] [Indexed: 02/03/2023]
Abstract
Purpose Breast cancer treatment often employs DNA double-strand breaks (DSBs), such as that induced by irradiation or anticancer agents. Ubiquitination is required at the site of DNA damage and plays a crucial role in the DSB repair pathway. We investigated the effect of proteasome inhibitors on the pathway after exposure to chemotherapeutic agents and examined its correlation with cytotoxicity. Methods Cells were exposed for 1 h to DNA damage-inducing chemotherapeutic agents. After DNA damage, nuclear foci formation of conjugated ubiquitin (Ub-foci) and cell viability were examined in the absence or presence of proteasome inhibitors MG132 and epoxomicin. Results Proteasome inhibitors trapped conjugated ubiquitin in the cytosol and blocked irinotecan (CPT-11)- and epirubicin-induced Ub-foci formation in MCF10A cells and HeLa cells, but not in MCF7 cells. MG132 sensitized MCF10A cells to CPT-11 and epirubicin treatment, demonstrating a synergistic effect. This synergistic effect is likely due to the failure to repair DNA, because a significant rise in unrepaired DNA damage was observed in the cells treated with MG132. On the other hand, no synergy was observed in MCF7 cells or when MG132 was combined with docetaxel. Conclusions The synergistic effect of proteasome inhibitors in combination with DNA damage-inducing agents warrants further investigating into its effectiveness in the treatment of breast cancer.
Collapse
|
27
|
Gavilán MP, Castaño A, Torres M, Portavella M, Caballero C, Jiménez S, García-Martínez A, Parrado J, Vitorica J, Ruano D. Age-related increase in the immunoproteasome content in rat hippocampus: molecular and functional aspects. J Neurochem 2009; 108:260-72. [DOI: 10.1111/j.1471-4159.2008.05762.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Volcy K, Dewhurst S. Proteasome inhibitors enhance bacteriophage lambda (lambda) mediated gene transfer in mammalian cells. Virology 2008; 384:77-87. [PMID: 19064273 PMCID: PMC2654414 DOI: 10.1016/j.virol.2008.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/10/2008] [Accepted: 11/11/2008] [Indexed: 11/05/2022]
Abstract
Bacteriophage lambda vectors can transfer their genomes into mammalian cells, resulting in expression of phage-encoded genes. However, this process is inefficient. Experiments were therefore conducted to delineate the rate limiting step(s) involved, using a phage vector that contains a mammalian luciferase reporter gene cassette. The efficiency of phage-mediated gene transfer in mammalian cells was quantitated, in the presence or absence of pharmacologic inhibitors of cell uptake and degradation pathways. Inhibitors of lysosomal proteases and proteasome inhibitors strongly enhanced phage-mediated luciferase expression, suggesting that these pathways contribute to the destruction of intracellular phage particles. In contrast, inhibition of endosome acidification had no effect on phage-mediated gene transfer, presumably because phage lambda is tolerant to extended exposure to low pH. These findings provide insights into the pathways by which phage vectors enter and transduce mammalian cells, and suggest that it may be possible to pharmacologically enhance the efficiency of phage-mediated gene transfer in mammalian cells. Finally, the data also suggest that the proteasome complex may serve as an innate defense mechanism that restricts the infection of mammalian cells by diverse viral agents.
Collapse
Affiliation(s)
- Ketna Volcy
- Department of Microbiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
29
|
Fitzgerald JC, Plun-Favreau H. Emerging pathways in genetic Parkinson’s disease: Autosomal-recessive genes in Parkinson’s disease - a common pathway? FEBS J 2008; 275:5758-66. [DOI: 10.1111/j.1742-4658.2008.06708.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
High affinity Zn2+ inhibitory site(s) for the trypsin-like peptidase of the 20S proteasome. Arch Biochem Biophys 2008; 477:113-20. [DOI: 10.1016/j.abb.2008.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/26/2008] [Accepted: 04/29/2008] [Indexed: 11/22/2022]
|
31
|
Li L, Liang D, Li JY, Zhao RY. APOBEC3G-UBA2 fusion as a potential strategy for stable expression of APOBEC3G and inhibition of HIV-1 replication. Retrovirology 2008; 5:72. [PMID: 18680593 PMCID: PMC2535603 DOI: 10.1186/1742-4690-5-72] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/04/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although APOBEC3G protein is a potent and innate anti-HIV-1 cellular factor, HIV-1 Vif counteracts the effect of APOBEC3G by promoting its degradation through proteasome-mediated proteolysis. Thus, any means that could prevent APOBEC3G degradation could potentially enhance its anti-viral effect. The UBA2 domain has been identified as an intrinsic stabilization signal that protects protein from proteasomal degradation. In this pilot study, we tested whether APOBEC3G, when it is fused with UBA2, can resist Vif-mediated proteasomal degradation and further inhibit HIV-1 infection. RESULTS APOBEC3G-UBA2 fusion protein is indeed more resistant to Vif-mediated degradation than APOBEC3G. The ability of UBA2 domain to stabilize APOBEC3G was diminished when polyubiquitin was over-expressed and the APOBEC3G-UBA2 fusion protein was found to bind less polyubiquitin than APOBEC3G, suggesting that UBA2 stabilizes APOBEC3G by preventing ubiquitin chain elongation and proteasome-mediated proteolysis. Consistently, treatment of cells with a proteasome inhibitor MG132 alleviated protein degradation of APOBEC3G and APOBEC3G-UBA2 fusion proteins. Analysis of the effect of APOBEC3G-UBA2 fusion protein on viral infectivity indicated that infection of virus packaged from HEK293 cells expressing APOBEC3G-UBA2 fusion protein is significantly lower than those packaged from HEK293 cells over-producing APOBEC3G or APOBEC3G-UBA2 mutant fusion proteins. CONCLUSION Fusion of UBA2 to APOBEC3G can make it more difficult to be degraded by proteasome. Thus, UBA2 could potentially be used to antagonize Vif-mediated APOBEC3G degradation by preventing polyubiquitination. The stabilized APOBEC3G-UBA2 fusion protein gives stronger inhibitory effect on viral infectivity than APOBEC3G without UBA2.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, University of Maryland, 10 South Pine Street, MSTF700A, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
32
|
Autophagy modulates keratin-containing inclusion formation and apoptosis in cell culture in a context-dependent fashion. Exp Cell Res 2008; 314:1753-64. [PMID: 18343366 DOI: 10.1016/j.yexcr.2008.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/09/2008] [Accepted: 01/31/2008] [Indexed: 12/18/2022]
Abstract
The major pathways for protein degradation are the proteasomal and lysosomal systems. Derangement of protein degradation causes the formation of intracellular inclusions, and apoptosis and is associated with several diseases. We utilized hepatocyte-derived cell lines to examine the consequences of the cytoplasmic hepatocyte Mallory-Denk body-like inclusions on organelle organization, autophagy and apoptosis, and tested the hypothesis that autophagy affects inclusion turnover. Proteasome inhibitors (PIs) generate keratin-containing Mallory-Denk body-like inclusions in cultured cells and cause reorganization of mitochondria and other organelles, autophagy and apoptosis. In cultured hepatoma cells, caspase inhibition blocks PI-induced apoptosis but not inclusion formation or autophagy activation. Autophagy induction by rapamycin decreases the extent of PI-induced inclusions and apoptosis in Huh7 and OUMS29 cells. Surprisingly, blocking of autophagy sequestration by 3 methyl adenine or beclin 1 siRNA, but not bafilomycin A1 inhibition of autophagic degradation, also inhibits inclusion formation in the tested cells. Therefore, autophagy can be upstream of apoptosis and may promote or alleviate inclusion formation in cell culture in a context-dependent manner via putative autophagy-associated molecular triggers. Manipulation of autophagy may offer a strategy to address the importance of inclusion formation and its significance in inclusion-associated diseases.
Collapse
|
33
|
Kimura N, Kumamoto T, Ueyama H, Horinouchi H, Ohama E. Role of proteasomes in the formation of neurofilamentous inclusions in spinal motor neurons of aluminum-treated rabbits. Neuropathology 2007; 27:522-30. [DOI: 10.1111/j.1440-1789.2007.00822.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Yang W, Tiffany-Castiglioni E. The bipyridyl herbicide paraquat induces proteasome dysfunction in human neuroblastoma SH-SY5Y cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1849-1857. [PMID: 17934957 DOI: 10.1080/15287390701459262] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Paraquat (PQ) is suspected to be an environmental risk factor for Parkinson's disease (PD). A strong correlation between exposure to paraquat and the occurrence of PD was reported in Canada, Taiwan, and the United States. This correlation is supported by in vivo work showing that paraquat produces dopaminergic pathogenesis. In particular, paraquat forms abnormal protein aggregates in dopaminergic neurons of mice. However, it is not clear how paraquat produces this pathology. Given that proteasome dysfunction induces aberrant protein aggregation, it was hypothesized that paraquat induces proteasome dysfunction. To explore this possibility, proteasome activity and some factors possibly contributing to proteasome dysfunction were investigated in dopaminergic SY5Y cells treated with paraquat. Furthermore, levels of alpha-synuclein and ubiquitin-conjugated proteins were measured to test whether paraquat induces protein accumulation in SY5Y cells. Results showed that at a concentration of paraquat that reduced viability by about 60% at 48 h (0.5 mM) loss of proteasome activity occurred. In addition, the cells showed decreased ATP levels and reduced mitochondrial complex V activity. These changes were significant 24 h after treatment with paraquat. Furthermore, paraquat-treated cells showed decreased protein levels of proteasome 19S subunits, but not 20S alpha or beta subunits, suggesting that the effects observed were not the result of general cytotoxicity. Paraquat also increased levels of alpha-synuclein and ubiquitinated proteins, suggesting that paraquat-induced proteasome dysfunction leads to aberrant protein accumulation. Taken together, these findings support the hypothesis that paraquat impairs proteasome function in SY5Y cells.
Collapse
Affiliation(s)
- Wonsuk Yang
- Department of Integrative Biosciences and Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA
| | | |
Collapse
|
35
|
Lee CL, Jiang PP, Sit WH, Wan JMF. Proteome of human T lymphocytes with treatment of cyclosporine and polysaccharopeptide: Analysis of significant proteins that manipulate T cells proliferation and immunosuppression. Int Immunopharmacol 2007; 7:1311-24. [PMID: 17673146 DOI: 10.1016/j.intimp.2007.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 05/21/2007] [Accepted: 05/24/2007] [Indexed: 11/25/2022]
Abstract
The aberrant activation of T lymphocyte proliferation is one of the key events in organ transplant recipients and autoimmune disorders. The present study adopted a gel-based proteomics approach to define the proteins representative of the T cell proliferation and to discover the molecules that play critical roles during the suppression of T cell proliferation. Human T lymphocytes were isolated from healthy donors and primed with phytohemagglutinin (PHA) to undergo proliferation. Two medical fungal products with specific T cell activation inhibitory properties, cyclosporine A (CsA) and polysaccharopeptide (PSP), were used to study the proteins that manipulate T cell proliferation. After demonstrating their similar effects on cell proliferation, cell survival and interleuklin-2 (IL-2) secretion, significant quantitative protein alterations were detected between the CsA- and PSP-treated T cell proteome. These altered proteins were identified by MALDI-TOF and classified into 3 categories: (i) proteins affected by both CsA and PSP, (ii) proteins affected by CsA alone, and (iii) proteins affected by PSP alone. Most of these altered proteins have functional significance in protein degradation, the antioxidant pathway, energy metabolism and immune cell regulation.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | | | | |
Collapse
|
36
|
He G, Qing H, Tong Y, Cai F, Ishiura S, Song W. Degradation of nicastrin involves both proteasome and lysosome. J Neurochem 2007; 101:982-92. [PMID: 17326768 DOI: 10.1111/j.1471-4159.2007.04449.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The glycoprotein nicastrin (NCT) is an essential component of the gamma-secretase complex, a high molecular weight complex which also contains the presenilin proteins, Aph-1 and Pen-2. The gamma-secretase complex is not only involved in APP processing but also in the processing of an increasing number of other type I integral membrane proteins. As the largest subunit of the gamma-secretase complex, NCT plays a crucial role in its activation. Considerable information exists on the distribution, structure and function of NCT; however, little is known of its proteolysis. The present study is aimed at exploring the molecular mechanism of NCT degradation. We found that either proteasomal or lysosomal inhibition can significantly increase the levels of both endogenous and exogenous NCT in various cell lines, and the effect of these inhibitions on NCT was time- and dose-dependent. Immunofluorescent microscopic analysis revealed that NCT accumulates in the ER and Golgi apparatus after proteasomal inhibition, while lysosomal inhibition leads to the accumulation of NCT in the lysosomal apparatus. Co-immunoprecipitation can pull down both NCT and ubiquitin. Taken together, our results demonstrate that NCT degradation involves both the proteasome and the lysosome.
Collapse
Affiliation(s)
- Guiqiong He
- Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Wang YF, Li Y, Liu B, Yu M, Fan B, Zhu MJ, Xiong TA, Li K. Partial molecular characterization, polymorphism and chromosomal localization of the porcine PSMD4 gene. J Anim Breed Genet 2006; 122:247-50. [PMID: 16060491 DOI: 10.1111/j.1439-0388.2005.00522.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The complete coding sequence of porcine PSMD4 gene encoding proteasome 26S non-ATPase subunit 4 was obtained by the reverse transcriptase-polymerase chain reaction (RT-PCR) and deposited in GenBank nucleotide database (AY704418). The nucleotide sequence and the predicted protein sequence shared the high sequence identity with their mammalian counterparts. A G/A single nucleotide polymorphism in intron 9 detected as Hin6I PCR-restriction fragment length polymorphism (PCR-RFLP) shows allele frequency differences between Meishan, Erhualian, Tibetan, Large White and Duroc breeds. Analyses of somatic cell hybrid panel (SCHP) and radiation hybrid (IMpRH) panel revealed that PSMD4 gene maps to SSC 4q21-q23 and closely linked the SW512 (14 cR, LOD = 19.47).
Collapse
Affiliation(s)
- Y F Wang
- Laboratory of Molecular Biology and Animal Breeding, School of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | |
Collapse
|
39
|
Abd El Mohsen MM, Iravani MM, Spencer JPE, Rose S, Fahim AT, Motawi TMK, Ismail NAF, Jenner P. Age-associated changes in protein oxidation and proteasome activities in rat brain: Modulation by antioxidants. Biochem Biophys Res Commun 2005; 336:386-91. [PMID: 16139799 DOI: 10.1016/j.bbrc.2005.07.201] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 07/30/2005] [Indexed: 11/26/2022]
Abstract
The free radical theory of ageing postulates that age-associated neurodegeneration is caused by an imbalance between pro-oxidants and antioxidants resulting in oxidative stress. The current study showed regional variation in brain susceptibility to age-associated oxidative stress as shown by increased lipofuscin deposition and protein carbonyl levels in male rats of age 15-16 months compared to control ones (3-5 months). The hippocampus is the area most vulnerable to change compared to the cortex and cerebellum. However, proteasomal enzyme activity was not affected by age in any of the brain regions studied. Treatment with melatonin or coenzyme Q10 for 4 weeks reduced the lipofuscin content of the hippocampus and carbonyl level. However, both melatonin and coenzyme Q10 treatments inhibited beta-glutamyl peptide hydrolase activity. This suggests that these molecules can alter proteasome function independently of their antioxidant actions.
Collapse
Affiliation(s)
- Manal M Abd El Mohsen
- Molecular Nutrition Group, School of Food Biosciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yamashita M, Shinnakasu R, Asou H, Kimura M, Hasegawa A, Hashimoto K, Hatano N, Ogata M, Nakayama T. Ras-ERK MAPK cascade regulates GATA3 stability and Th2 differentiation through ubiquitin-proteasome pathway. J Biol Chem 2005; 280:29409-19. [PMID: 15975924 DOI: 10.1074/jbc.m502333200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Differentiation of naive CD4 T cells into Th2 cells requires protein expression of GATA3. Interleukin-4 induces STAT6 activation and subsequent GATA3 transcription. Little is known, however, on how T cell receptor-mediated signaling regulates GATA3 and Th2 cell differentiation. Here we demonstrated that T cell receptor-mediated activation of the Ras-ERK MAPK cascade stabilizes GATA3 protein in developing Th2 cells through the inhibition of the ubiquitin-proteasome pathway. Mdm2 was associated with GATA3 and induced ubiquitination on GATA3, suggesting its role as a ubiquitin-protein isopeptide ligase for GATA3 ubiquitination. Thus, the Ras-ERK MAPK cascade controls GATA3 protein stability by a post-transcriptional mechanism and facilitates GATA3-mediated chromatin remodeling at Th2 cytokine gene loci leading to successful Th2 cell differentiation.
Collapse
Affiliation(s)
- Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Usami H, Kusano Y, Kumagai T, Osada S, Itoh K, Kobayashi A, Yamamoto M, Uchida K. Selective induction of the tumor marker glutathione S-transferase P1 by proteasome inhibitors. J Biol Chem 2005; 280:25267-76. [PMID: 15863507 DOI: 10.1074/jbc.m501014200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of cells to a wide variety of chemoprotective compounds confers resistance to a broad set of carcinogens. For a subset of the chemoprotective compounds, protection is generated by an increase in the abundance of phase 2 detoxification enzymes such as glutathione S-transferases (GSTs). Transcription factor Nrf2, which is sequestered in the cytoplasm by Keap1 (Kelch-like ECH-associated protein-1) under unstimulated conditions, regulates the induction of phase 2 enzymes. In this study, to explore the role of the proteasome in the detoxification response, we tested the effect of proteasome inhibitors such as MG132, clasto-lactacystin beta-lactone, and lactacystin on the induction of GST isozymes and found that these inhibitors selectively induced the class Pi GST isozyme (GST P1). Down-regulation of the proteasome by antisense oligonucleotides or RNA interference indeed resulted in significant up-regulation of GST P1, suggesting that a decline in the proteasome activity could be directly or indirectly linked to the induction of GST P1. From the functional analysis of various deletion constructs of the upstream regulatory region of the GST P1 promoter, GST P1 enhancer I was identified as the response element for proteasome inhibition. Overexpression of the wild-type and dominant-negative forms of Nrf2 and Keap1 had little effect on the induction of GST P1 not only by the proteasome inhibitor, but also by phase 2-inducing isothiocyanate, suggesting that there may be a process of GST P1 induction distinct from other phase 2 gene induction mechanisms. Because GST P1 is highly and specifically induced during early hepatocarcinogenesis as well as in hepatocellular carcinoma cells, these data may provide a potential critical role for the proteasome in the induction of a cellular defense program associated with carcinogenesis.
Collapse
Affiliation(s)
- Hiroko Usami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zeng BY, Medhurst AD, Jackson M, Rose S, Jenner P. Proteasomal activity in brain differs between species and brain regions and changes with age. Mech Ageing Dev 2005; 126:760-6. [PMID: 15888331 DOI: 10.1016/j.mad.2005.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/27/2005] [Accepted: 01/27/2005] [Indexed: 11/15/2022]
Abstract
Age-related increase in protein oxidation in brain coupled to an impairment of proteasomal activity may underline neuronal loss but differences in susceptibility between species and brain regions remain unexplained. We now investigate differences in proteasomal activity, measured as chymotrypsin-, trypsin- and peptidylglutamyl-like hydrolysing activities between brain regions in rats, mice and common marmosets. In aged rats and mice, proteasomal activity was decreased in the cortex, striatum, cerebellum, globus pallidus and substantia nigra overall when compared to young animals. However, in the aged brain only chymotrypsin-like activity was decreased in the cortex and the globus pallidus while only trypsin-like activity was reduced in the cerebellum. In contrast, in the striatum, both chymotrypsin-like and trypsin-like activities were reduced and in the substantia nigra, all the three catalytic activities of proteasome were significantly impaired. Chymotrypsin-like and trypsin-like activities were significantly higher in all the brain regions of marmosets compared to those of mice and rats. Peptidylglutamyl-like activity was only significantly higher in the cerebellum and striatum of marmoset compared to rodents. The data suggest that there is higher proteasome activity in common marmoset brain compared to rat and mouse and that the basal ganglia are more prone to an age-related decrease in proteasomal activity. This may explain the involvement of altered ubiquitin-proteasome system activity in Parkinson's disease and the relationship to ageing.
Collapse
Affiliation(s)
- B-Y Zeng
- Neurodegenerative Disease Research Centre, GKT School of Biomedical Sciences, King's College, London, UK
| | | | | | | | | |
Collapse
|
43
|
Dodd RB, Allen MD, Brown SE, Sanderson CM, Duncan LM, Lehner PJ, Bycroft M, Read RJ. Solution structure of the Kaposi's sarcoma-associated herpesvirus K3 N-terminal domain reveals a Novel E2-binding C4HC3-type RING domain. J Biol Chem 2004; 279:53840-7. [PMID: 15465811 DOI: 10.1074/jbc.m409662200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RING domains are found in a large number of eukaryotic proteins. Most function as E3 ubiquitin-protein ligases, catalyzing the terminal step in the ubiquitination process. Structurally, these domains have been characterized as binding two zinc ions in a stable cross-brace motif. The tumorigenic human gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus encodes a ubiquitin-protein ligase termed K3, which functions as an immune evasion molecule by ubiquitinating major histocompatibility complex class I. K3 possesses at its N terminus a domain related to cellular RING domains but with an altered zinc ligand arrangement. This domain was initially characterized as a plant homeodomain, a structure not previously known to function as an E3. Here, it is conclusively demonstrated that the K3 N-terminal domain is a variant member of the RING domain family and not a plant homeodomain. The domain is found to interact with the cellular ubiquitin-conjugating enzymes UbcH5A to -C and UbcH13, which dock to the equivalent surface as on classical cellular RING domains. Interaction with UbcH13 suggests a possible role for K3 in catalyzing Lys(63)-linked ubiquitination.
Collapse
Affiliation(s)
- Roger B Dodd
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Qing H, Zhou W, Christensen MA, Sun X, Tong Y, Song W. Degradation of BACE by the ubiquitin‐proteasome pathway. FASEB J 2004; 18:1571-3. [PMID: 15289451 DOI: 10.1096/fj.04-1994fje] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The amyloid beta protein (Abeta) is derived from beta-amyloid precursor protein (APP). Cleavage of APP by beta-secretase generates a C-terminal fragment (APPCTFbeta or C99), which is subsequently cleaved by gamma-secretase to produce Abeta. BACE (or BACE1), the major beta-secretase involved in cleaving APP, has been identified as a Type 1 membrane-associated aspartyl protease. In this study, we found that treatment with proteasome inhibitors resulted in an increase in APP C99 levels, suggesting that APP processing at the beta-secretase site may be affected by the ubiquitin-proteasome pathway. To investigate whether the degradation of BACE is mediated by the proteasome pathway, cells stably transfected with BACE were treated with lactacystin. We found that BACE protein degradation was inhibited by lactacystin in a time- and dose-dependent manner. Non-proteasome protease inhibitors had no effect on BACE degradation. BACE protein is ubiquitinated. Furthermore, lactacystin increased APP C99 production and Abeta generation. Our data demonstrate that the degradation of BACE proteins and APP processing are regulated by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Hong Qing
- Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Ding Q, Bruce-Keller AJ, Chen Q, Keller JN. Analysis of gene expression in neural cells subject to chronic proteasome inhibition. Free Radic Biol Med 2004; 36:445-55. [PMID: 14975447 DOI: 10.1016/j.freeradbiomed.2003.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 10/22/2003] [Accepted: 10/31/2003] [Indexed: 11/23/2022]
Abstract
A number of studies have suggested that proteasome inhibition plays a causal role in the neuropathological processes observed in aging, Alzheimer's disease (AD), and Parkinson's disease (PD). Although the effects of acute and toxic proteasome inhibition on neural viability are well documented, at present little is known about the effects of chronic low-level proteasome inhibition on neural homeostasis. In order to address this issue we have established clonal lines of neural SH-SY5Y cells, which were generated after continual exposure to low concentrations of a pharmacological proteasome inhibitor. We have recently utilized these clonal cell lines to demonstrate that chronic low-level proteasome inhibition induces neural alterations that are highly relevant to aging, AD, and PD. The focus of this study was to elucidate the alterations in gene expression that occurred in our clonal cell lines after chronic low-level proteasome inhibition. Taken together, data presented in this report indicate that, although chronic low-level proteasome inhibition alters the expression of a limited number of genes (less than 0.8%), it is observed to significantly alter the expression of genes within specific categories that are highly relevant to aging, AD, and PD. Perhaps just as importantly, our analysis revealed that the vast majority of genes altered by chronic low-level proteasome inhibition have not been significantly characterized, suggesting that proteasome inhibition may mediate effects on neural homeostasis through as yet unidentified cellular processes.
Collapse
Affiliation(s)
- Qunxing Ding
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
46
|
Dobly A, Martin SAM, Blaney SC, Houlihan DF. Protein growth rate in rainbow trout (Oncorhynchus mykiss) is negatively correlated to liver 20S proteasome activity. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:75-85. [PMID: 14720593 DOI: 10.1016/j.cbpb.2003.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The efficiency with which fish and other animals add and maintain body proteins is a balance between synthesis of proteins and their degradation. In fish that have similar food consumption and protein synthesis rates, a greater ratio of synthesis to degradation would be expected to produce more efficient conversion of food into growth. In addition, we hypothesised that high activities of the proteasome, a major pathway of protein degradation, would be negatively correlated with growth rate. In order to test this hypothesis we maintained rainbow trout for 62 days, during which repeat measurements of food consumption and growth were made. We selected fish for high and low growth efficiencies. Protein degradation was estimated from the difference between protein synthesis (determined by 15N flux) and protein growth. We found that protein synthesis rates were significantly higher in the low growth efficiency group, as were estimated protein degradation rates. In another group of fish that also did not differ in food consumption, the activity of the proteasome in the liver, but not in the muscle, was negatively correlated with growth rates. These two experiments showed that high proteasome activity is linked to decreased growth efficiency.
Collapse
Affiliation(s)
- A Dobly
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | | | | | | |
Collapse
|
47
|
Harada M, Kumemura H, Omary MB, Kawaguchi T, Maeyama N, Hanada S, Taniguchi E, Koga H, Suganuma T, Ueno T, Sata M. Proteasome inhibition induces inclusion bodies associated with intermediate filaments and fragmentation of the Golgi apparatus. Exp Cell Res 2003; 288:60-9. [PMID: 12878159 DOI: 10.1016/s0014-4827(03)00162-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ubiquitin-proteasome system is involved in a variety of biological processes. Inclusion bodies associated with intermediate filaments (IFs) and ubiquitin are observed in various diseases; however, the precise mechanisms of formation and the pathological significance of inclusion bodies have not been fully understood. We examined the effect of proteasome inhibitors on the structure of IF using anti-cytokeratin antibodies or transfection of green fluorescent protein-fused cytokeratin 18 in a hepatoma cell line, Huh7. Intracellular organelles were visualized by immunofluorescent and electron microscopies. Proteasome inhibitors induced IF inclusions associated with ubiquitin. Electron microscopic examination revealed inclusion bodies surrounded by filamentous structures. Autophagic vacuoles and lysosomes were frequently observed, and the organization of the Golgi apparatus was disrupted in these cells. After the removal of the proteasome inhibitors, the IF network and organization of the Golgi apparatus were restored. The IF inclusions could be induced by inhibition of the proteasome function. IF inclusions induced fragmentation of the Golgi apparatus and might inhibit the function of this important station of membrane traffic. The IF inclusions disappeared by restoring proteasome function, and autophagy and lysosomal degradation might be, at least in part, associated with the elimination of inclusion bodies.
Collapse
Affiliation(s)
- Masaru Harada
- Second Department of Medicine and Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dissemond J, Goette P, Moers J, Lindeke A, Goos M, Ferrone S, Wagner SN. Immunoproteasome subunits LMP2 and LMP7 downregulation in primary malignant melanoma lesions: association with lack of spontaneous regression. Melanoma Res 2003; 13:371-7. [PMID: 12883363 DOI: 10.1097/00008390-200308000-00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recently, expression of the immunoproteasome subunits low molecular protein (LMP) 2 or LMP7 was shown to reduce the presentation of certain major histocompatibility complex (MHC) class I-restricted tumour peptide epitopes in renal cell carcinoma and melanoma cells. This may provide the tumour cells with an immune escape mechanism. To test the relevance of this hypothesis, we have taken advantage of the fact that spontaneous regression of human primary melanoma is thought to be the result of a successful peptide-specific cellular immune response in vivo. Immunohistochemical staining with anti-LMP2 and anti-LMP7 xenoantibodies showed a significantly higher expression of these immunoproteasome subunits in primary melanoma lesions exhibiting histological signs of tumour regression than in primary melanoma lesions without regression phenomena. In spontaneously regressing melanoma lesions, LMP2 and LMP7 expression was significantly associated with the presence of tumour-infiltrating lymphocytes. Our results are compatible with the possibility that the expression of the immunoproteasome subunits LMP2 and LMP7 rather than their downregulation in melanoma cells is associated with the presence of a successful anti-melanoma immune response.
Collapse
Affiliation(s)
- Joachim Dissemond
- Department of Dermatology, University School of Medicine, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Hagemann C, Patel R, Blank JL. MEKK3 interacts with the PA28 gamma regulatory subunit of the proteasome. Biochem J 2003; 373:71-9. [PMID: 12650640 PMCID: PMC1223459 DOI: 10.1042/bj20021758] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Revised: 03/07/2003] [Accepted: 03/21/2003] [Indexed: 11/17/2022]
Abstract
The proteasome is a multisubunit proteolytic enzyme comprising activator complexes bound to the 20 S catalytic core. The functions of the proteasomal activator (PA) 700 in ubiquitin/ATP-dependent protein degradation and of the PA28 alpha/beta activators in antigen presentation are well defined. However, the function of a third PA, PA28 gamma, remains elusive. We now show that mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) kinase kinase 3 (MEKK3), a MAPK kinase kinase (MAPKKK) involved in MAPK kinase 7 (MKK7)-c-Jun N-terminal kinase ('JNK') and MKK6-p38 signalling, can bind PA28 gamma but not PA28 alpha. In contrast, B-Raf, a MAPKKK specific for the MAPK/ERK kinase ('MEK')-ERK module, binds PA28 gamma and alpha. The PA28 gamma-binding domain of MEKK3 is located within its N-terminal regulatory domain (amino acids 1-178). Expression of MEKK3 in Cos-7 cells led to an increase in endogenous and co-expressed PA28 gamma protein levels, whereas kinase-deficient MEKK3 had no effect on PA28 gamma expression. Furthermore, in vitro assays indicated that PA28 gamma was a MEKK3 substrate. MEKK3 represents the first protein kinase capable of binding and phosphorylating a PA, and provides a potential mechanism to link stress-activated protein kinase signalling with the PA28 gamma-dependent proteasome.
Collapse
Affiliation(s)
- Carsten Hagemann
- Department of Cell Physiology and Pharmacology, University of Leicester, Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | | | | |
Collapse
|
50
|
Zhao Y, Hegde AN, Martin KC. The ubiquitin proteasome system functions as an inhibitory constraint on synaptic strengthening. Curr Biol 2003; 13:887-98. [PMID: 12781127 DOI: 10.1016/s0960-9822(03)00332-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Long-lasting forms of synaptic plasticity have been shown to depend on changes in gene expression. Although many studies have focused on the regulation of transcription and translation during learning-related synaptic plasticity, regulated protein degradation provides another common means of altering the macromolecular composition of cells. RESULTS We have investigated the role of the ubiquitin proteasome system in long-lasting forms of learning-related plasticity in Aplysia sensory-motor synapses. We find that inhibition of the proteasome produces a long-lasting (24 hr) increase in synaptic strength between sensory and motor neurons and that it dramatically enhances serotonin-induced long-term facilitation. The increase in synaptic strength produced by proteasome inhibitors is dependent on translation but not transcription. In addition to the increase in synaptic strength, proteasome inhibition leads to an increase in the number of synaptic contacts formed between the sensory and motor neurons. Blockade of the proteasome in isolated postsynaptic motor neurons produces an increase in the glutamate-evoked postsynaptic potential, and blockade of the proteasome in the isolated presynaptic sensory cells produces increases in neurite length and branching. CONCLUSIONS We conclude that both pre- and postsynaptic substrates of the ubiquitin proteasome function constitutively to regulate synaptic strength and growth and that the ubiquitin proteasome pathway functions in mature neurons as an inhibitory constraint on synaptic strengthening.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Physiological Sciences and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|