1
|
Su Y, Xu X, Wang Y, Wang T, Yu J, Yang J, Li J, Gao Y, Wang Y, Sang W, Li C, Wang X, Zheng Z, Xie C, Ma J, Ma J. Identification of genetic loci and candidate genes underlying Fusarium crown rot resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:23. [PMID: 39779539 DOI: 10.1007/s00122-025-04818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
KEY MESSAGE A major locus Qfcr.cau-1B conferring resistance to Fusarium crown rot was identified and validated. The putative gene underlying this locus was pinpointed via virus-induced gene silencing. Fusarium crown rot (FCR), caused by various Fusarium pathogens such as Fusarium pseudograminearum and F. culmorum, is a severe soil-borne disease which significantly affected wheat (Triticum aestivum) production in many arid and semi-arid cropping regions of the world. In this study, a total of 5 QTLs associated with FCR resistance were detected on chromosomes 1B, 2B, 3A, 5A, and 7D using a population of 120 F8 recombinant inbred lines (RIL) derived from a cross between two Chinese germplasm 20828 and SY95-71. A major locus Qfcr.cau-1B, which accounted for up to 28.33% of the phenotypic variation with a LOD value of 10.99, was consistently detected across all three trials conducted. The effect of Qfcr.cau-1B on FCR resistance was further validated using a F5 RIL population between 20828 and BLS2. Integrated transcriptome and sequence variation analysis showed that three genes including TraesCS1B02G017700, TraesCS1B02G016400, and TraesCS1B02G022300 were potential candidate genes for Qfcr.cau-1B. Of these three genes, the virus-induced silencing of TraesCS1B02G022300 significantly promoted FCR severity, indicating its positive role in FCR resistance. Taken together, results from this study expand our understanding on genetic basis of FCR resistance in wheat and will be indicative for cloning genes conferring FCR resistance.
Collapse
Affiliation(s)
- Yuqing Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiangru Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yunqiao Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Tongzhu Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiazheng Yu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiatian Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinlong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yutian Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yixin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wei Sang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyi Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Zheng
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Chaojie Xie
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Mourad AMI, Ahmed AAM, Baenziger PS, Börner A, Sallam A. Broad-spectrum resistance to fungal foliar diseases in wheat: recent efforts and achievements. FRONTIERS IN PLANT SCIENCE 2024; 15:1516317. [PMID: 39735771 PMCID: PMC11671272 DOI: 10.3389/fpls.2024.1516317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024]
Abstract
Wheat (Triticum spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually. Out of these diseases, stripe rust, also known as yellow rust (Puccinia striiformis f. sp. tritici), stem rust (Puccinia graminis f. sp. tritici), leaf rust (Puccinia recondita), and powdery mildew (Blumeria graminis f. sp. tritici) are the most important fungal diseases that infect the foliar part of the plant. Many efforts were made to improve wheat resistance to these diseases. Due to the continuous advancement in sequencing methods and genomic tools, genome-wide association study has become available worldwide. This analysis enabled wheat breeders to detect genomic regions controlling the resistance in specific countries. In this review, molecular markers significantly associated with the resistance of the mentioned foliar diseases in the last five years were reviewed. Common markers that control broad-spectrum resistance in different countries were identified. Furthermore, common genes controlling the resistance of more than one of these foliar diseases were identified. The importance of these genes, their functional annotation, and the potential for gene enrichment are discussed. This review will be valuable to wheat breeders in producing genotypes with broad-spectrum resistance by applying genomic selection for the target common markers and associated genes.
Collapse
Affiliation(s)
- Amira M. I. Mourad
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Agronomy, Faculty of Agriculture, Assuit University, Assiut, Egypt
| | - Asmaa A. M. Ahmed
- Department of Genetics, Faculty of Agriculture, Assuit University, Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ahmed Sallam
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Genetics, Faculty of Agriculture, Assuit University, Assiut, Egypt
| |
Collapse
|
3
|
Liu X, Yang C, Dong H, Wu S, Wang G, Han X, Fan B, Shang Y, Dang C, Xie C, Wang Z. TaRLK2.4, a transgressive expression receptor like kinase, improves powdery mildew resistance in wheat. Int J Biol Macromol 2024; 277:134387. [PMID: 39111505 DOI: 10.1016/j.ijbiomac.2024.134387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024]
Abstract
Plants form two immune systems, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI), to combat Blumeria graminis f. sp. tritici (Bgt) infection during the evolutionary process. In PTI, receptor-like kinases (RLKs) play important roles during pathogen infections. Based on our previous reports, there were 280 TaRLKs identified in early response to powdery mildew infection, which were divided into 34 subfamilies in this study. Differences in gene structures, cis-acting elements, and expression levels implied the function diversity of TaRLKs. TaRLK2.4, a member of LRK10L-RLKs subfamily, contained 665 amino acids, and located on the cell membrane. The main objective of this study was to investigate the role of the receptor-like kinase gene TaRLK2.4 in conferring powdery mildew resistance in wheat. Real-time quantitative PCR results indicated that TaRLK2.4 expressed during Bgt infection process, and exhibited a transgressive expression characteristic in disease resistance NILs (BJ-1). To elucidate the function of TaRLK2.4 during Bgt infection, the comprehensive analysis of virus induced gene silence and over-expression demonstrated that TaRLK2.4 promoted powdery mildew resistance positively. In summary, these results contribute to a deeper understanding of the complex and diverse biological functions of RLKs, and provide new genetic resources for wheat molecular breeding.
Collapse
Affiliation(s)
- Xiaoying Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Chenxiao Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Huixuan Dong
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Siqi Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Guangyu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Xinyue Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Baoli Fan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Yuntao Shang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 30087, China
| | - Chen Dang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agro-biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agro-biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhenying Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
4
|
Bánfalvi Z, Kalapos B, Hamow KÁ, Jose J, Éva C, Odgerel K, Karsai-Rektenwald F, Villányi V, Sági L. Transcriptome, hormonal, and secondary metabolite changes in leaves of DEFENSE NO DEATH 1 (DND1) silenced potato plants. Sci Rep 2024; 14:20601. [PMID: 39232097 PMCID: PMC11375208 DOI: 10.1038/s41598-024-71380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
DEFENSE NO DEATH 1 (DND1) is a cyclic nucleotide-gated ion channel protein. Earlier, it was shown that the silencing of DND1 in the potato (Solanum tuberosum L.) leads to resistance to late blight, powdery mildew, and gray mold diseases. At the same time, however, it can reduce plant growth and cause leaf necrosis. To obtain knowledge of the molecular events behind the pleiotropic effect of DND1 downregulation in the potato, metabolite and transcriptome analyses were performed on three DND1 silenced lines of the cultivar 'Désirée.' A massive increase in the salicylic acid content of leaves was detected. Concentrations of jasmonic acid and chlorogenic acid and their derivatives were also elevated. Expression of 1866 genes was altered in the same way in all three DND1 silenced lines, including those related to the synthesis of secondary metabolites. The activation of several alleles of leaf rust, late blight, and other disease resistance genes, as well as the induction of pathogenesis-related genes, was detected. WRKY and NAC transcription factor families were upregulated, whereas bHLHs were downregulated, indicating their central role in transcriptome changes. These results suggest that the maintenance of the constitutive defense state leads to the reduced growth of DND1 silenced potato plants.
Collapse
Affiliation(s)
- Zsófia Bánfalvi
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary.
| | - Balázs Kalapos
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Kamirán Áron Hamow
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Jeny Jose
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Csaba Éva
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Khongorzul Odgerel
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Flóra Karsai-Rektenwald
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Vanda Villányi
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - László Sági
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| |
Collapse
|
5
|
Aoyagi LN, Ferreira EGC, da Silva DCG, Dos Santos AB, Avelino BB, Lopes-Caitar VS, de Oliveira MF, Abdelnoor RV, de Souto ER, Arias CA, Belzile F, Marcelino-Guimarães FC. Allelic variability in the Rpp1 locus conferring resistance to Asian soybean rust revealed by genome-wide association. BMC PLANT BIOLOGY 2024; 24:743. [PMID: 39095733 PMCID: PMC11297723 DOI: 10.1186/s12870-024-05454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars. Seven SNP markers were found to be associated with ASR resistance through GWAS, with three of them defining haplotypes that efficiently distinguished the accessions based on their ASR resistance and source of the Rpp gene. These haplotypes were subsequently validated using a bi-parental population and a diverse set of Rpp sources, demonstrating that the GWAS markers co-segregate with ASR resistance. We then examined the presence of these haplotypes in a diverse set of soybean genomes worldwide, finding a few new potential sources of Rpp1/Rpp1-b. Further genomic sequence analysis revealed nucleotide differences within the genes present in the Rpp1 locus, including the ULP1-NBS-LRR genes, which are potential R gene candidates. These results provide valuable insights into ASR resistance in soybean, thus helping the development of resistant soybean varieties through genetic breeding programs.
Collapse
Affiliation(s)
- Luciano Nobuhiro Aoyagi
- National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
- Maringá State University (UEM), Colombo Avenue, No. 5790, Maringá, PR, Brazil
| | | | - Danielle C Gregorio da Silva
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Adriana Brombini Dos Santos
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Bruna Barbosa Avelino
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Paraná, Brazil
| | | | - Marcelo Fernandes de Oliveira
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Ricardo V Abdelnoor
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | | | - Carlos Arrabal Arias
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - François Belzile
- Department of Plant Sciences and Institute of Integrative Biology and Systems (IBIS), Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Francismar C Marcelino-Guimarães
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil.
| |
Collapse
|
6
|
Ali S, Tyagi A, Mir ZA. Plant Immunity: At the Crossroads of Pathogen Perception and Defense Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:1434. [PMID: 38891243 PMCID: PMC11174815 DOI: 10.3390/plants13111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Plants are challenged by different microbial pathogens that affect their growth and productivity. However, to defend pathogen attack, plants use diverse immune responses, such as pattern-triggered immunity (PTI), effector-triggered immunity (ETI), RNA silencing and autophagy, which are intricate and regulated by diverse signaling cascades. Pattern-recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat (NLR) receptors are the hallmarks of plant innate immunity because they can detect pathogen or related immunogenic signals and trigger series of immune signaling cascades at different cellular compartments. In plants, most commonly, PRRs are receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that function as a first layer of inducible defense. In this review, we provide an update on how plants sense pathogens, microbe-associated molecular patterns (PAMPs or MAMPs), and effectors as a danger signals and activate different immune responses like PTI and ETI. Further, we discuss the role RNA silencing, autophagy, and systemic acquired resistance as a versatile host defense response against pathogens. We also discuss early biochemical signaling events such as calcium (Ca2+), reactive oxygen species (ROS), and hormones that trigger the activation of different plant immune responses. This review also highlights the impact of climate-driven environmental factors on host-pathogen interactions.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB R2M 0TB, Canada;
| |
Collapse
|
7
|
Salojärvi J, Rambani A, Yu Z, Guyot R, Strickler S, Lepelley M, Wang C, Rajaraman S, Rastas P, Zheng C, Muñoz DS, Meidanis J, Paschoal AR, Bawin Y, Krabbenhoft TJ, Wang ZQ, Fleck SJ, Aussel R, Bellanger L, Charpagne A, Fournier C, Kassam M, Lefebvre G, Métairon S, Moine D, Rigoreau M, Stolte J, Hamon P, Couturon E, Tranchant-Dubreuil C, Mukherjee M, Lan T, Engelhardt J, Stadler P, Correia De Lemos SM, Suzuki SI, Sumirat U, Wai CM, Dauchot N, Orozco-Arias S, Garavito A, Kiwuka C, Musoli P, Nalukenge A, Guichoux E, Reinout H, Smit M, Carretero-Paulet L, Filho OG, Braghini MT, Padilha L, Sera GH, Ruttink T, Henry R, Marraccini P, Van de Peer Y, Andrade A, Domingues D, Giuliano G, Mueller L, Pereira LF, Plaisance S, Poncet V, Rombauts S, Sankoff D, Albert VA, Crouzillat D, de Kochko A, Descombes P. The genome and population genomics of allopolyploid Coffea arabica reveal the diversification history of modern coffee cultivars. Nat Genet 2024; 56:721-731. [PMID: 38622339 PMCID: PMC11018527 DOI: 10.1038/s41588-024-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/23/2024] [Indexed: 04/17/2024]
Abstract
Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.
Collapse
Affiliation(s)
- Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Aditi Rambani
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Zhe Yu
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Susan Strickler
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Maud Lepelley
- Société des Produits Nestlé SA, Nestlé Research, Tours, France
| | - Cui Wang
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Sitaram Rajaraman
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniella Santos Muñoz
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - João Meidanis
- Institute of Computing, University of Campinas, Campinas, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, The Federal University of Technology - Paraná (UTFPR), Cornélio Procópio, Brazil
| | - Yves Bawin
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | | | - Zhen Qin Wang
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Steven J Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Rudy Aussel
- Société des Produits Nestlé SA, Nestlé Research, Tours, France
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
| | | | - Aline Charpagne
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Coralie Fournier
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Mohamed Kassam
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Gregory Lefebvre
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Métairon
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Déborah Moine
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Michel Rigoreau
- Société des Produits Nestlé SA, Nestlé Research, Tours, France
| | - Jens Stolte
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Perla Hamon
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Emmanuel Couturon
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | | | - Minakshi Mukherjee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jan Engelhardt
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Peter Stadler
- Department of Computer Science, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | | | | | - Ucu Sumirat
- Indonesian Coffee and Cocoa Research Institute (ICCRI), Jember, Indonesia
| | - Ching Man Wai
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicolas Dauchot
- Research Unit in Plant Cellular and Molecular Biology, University of Namur, Namur, Belgium
| | - Simon Orozco-Arias
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Andrea Garavito
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia
| | - Catherine Kiwuka
- National Agricultural Research Organization (NARO), Entebbe, Uganda
| | - Pascal Musoli
- National Agricultural Research Organization (NARO), Entebbe, Uganda
| | - Anne Nalukenge
- National Agricultural Research Organization (NARO), Entebbe, Uganda
| | - Erwan Guichoux
- Biodiversité Gènes & Communautés, INRA, Bordeaux, France
| | | | - Martin Smit
- Hortus Botanicus Amsterdam, Amsterdam, the Netherlands
| | | | - Oliveiro Guerreiro Filho
- Instituto Agronômico (IAC) Centro de Café 'Alcides Carvalho', Fazenda Santa Elisa, Campinas, Brazil
| | - Masako Toma Braghini
- Instituto Agronômico (IAC) Centro de Café 'Alcides Carvalho', Fazenda Santa Elisa, Campinas, Brazil
| | - Lilian Padilha
- Embrapa Café/Instituto Agronômico (IAC) Centro de Café 'Alcides Carvalho', Fazenda Santa Elisa, Campinas, Brazil
| | | | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Pierre Marraccini
- CIRAD - UMR DIADE (IRD-CIRAD-Université de Montpellier) BP 64501, Montpellier, France
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Alan Andrade
- Embrapa Café/Inovacafé Laboratory of Molecular Genetics Campus da UFLA-MG, Lavras, Brazil
| | - Douglas Domingues
- Group of Genomics and Transcriptomes in Plants, São Paulo State University, UNESP, Rio Claro, Brazil
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Lukas Mueller
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Luiz Filipe Pereira
- Embrapa Café/Lab. Biotecnologia, Área de Melhoramento Genético, Londrina, Brazil
| | | | - Valerie Poncet
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| | | | - Alexandre de Kochko
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France.
| | - Patrick Descombes
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland.
| |
Collapse
|
8
|
Winters NP, Wafula EK, Knollenberg BJ, Hämälä T, Timilsena PR, Perryman M, Zhang D, Sheaffer LL, Praul CA, Ralph PE, Prewitt S, Leandro-Muñoz ME, Delgadillo-Duran DA, Altman NS, Tiffin P, Maximova SN, dePamphilis CW, Marden JH, Guiltinan MJ. A combination of conserved and diverged responses underlies Theobroma cacao's defense response to Phytophthora palmivora. BMC Biol 2024; 22:38. [PMID: 38360697 PMCID: PMC10870529 DOI: 10.1186/s12915-024-01831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree crop Theobroma cacao L., as well as four non-cacao Theobroma species, with the goal of identifying genetic elements essential for protection against the oomycete pathogen Phytophthora palmivora. RESULTS We began by creating a new, highly contiguous genome assembly for the P. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k-900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao's defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor of Phytophthora spp. CONCLUSIONS Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance to P. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.
Collapse
Affiliation(s)
- Noah P Winters
- IGDP Ecology, The Pennsylvania State University, 422 Huck Life Sciences Building, University Park, PA, 16803, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Prakash R Timilsena
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Melanie Perryman
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, USA
| | - Lena L Sheaffer
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Craig A Praul
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sarah Prewitt
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Siela N Maximova
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Claude W dePamphilis
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- IGDP Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - James H Marden
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mark J Guiltinan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- IGDP Plant Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Gandhi A, Oelmüller R. Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses. Int J Mol Sci 2023; 24:14762. [PMID: 37834209 PMCID: PMC10573068 DOI: 10.3390/ijms241914762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany;
| |
Collapse
|
10
|
Chen A, Sun J, Viljoen A, Mostert D, Xie Y, Mangila L, Bothma S, Lyons R, Hřibová E, Christelová P, Uwimana B, Amah D, Pearce S, Chen N, Batley J, Edwards D, Doležel J, Crisp P, Brown AF, Martin G, Yahiaoui N, D'Hont A, Coin L, Swennen R, Aitken EAB. Genetic Mapping, Candidate Gene Identification and Marker Validation for Host Plant Resistance to the Race 4 of Fusarium oxysporum f. sp. cubense Using Musa acuminata ssp. malaccensis. Pathogens 2023; 12:820. [PMID: 37375510 PMCID: PMC10303076 DOI: 10.3390/pathogens12060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Fusarium wilt of banana is a devastating disease that has decimated banana production worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of 'DH-Pahang' reference assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of these genes may control resistance at this locus. To confirm the segregation of single-gene resistance, we generated an inter-cross between the resistant parent 'Ma850' and a susceptible line 'Ma848', to show that the STR4 resistance co-segregated with marker '28820' at this locus. Finally, an informative SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance at this locus, including lines known to be TR4-resistant, such as 'Pahang', 'SH-3362', 'SH-3217', 'Ma-ITC0250', and 'DH-Pahang/CIRAD 930'. Additional screening in the International Institute for Tropical Agriculture's collection suggests that the dominant allele is common among the elite 'Matooke' NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African highland bananas. Fine mapping and candidate gene identification will allow characterization of molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now aid the marker-assisted selection of TR4 resistance in breeding programs around the world.
Collapse
Affiliation(s)
- Andrew Chen
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Jiaman Sun
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
- School of Life Science, Jiaying University, Meizhou 514015, China
| | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Diane Mostert
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Yucong Xie
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Leroy Mangila
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Sheryl Bothma
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rebecca Lyons
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Bio-Technological and Agricultural Research, CZ-77900 Olomouc, Czech Republic
| | - Pavla Christelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Bio-Technological and Agricultural Research, CZ-77900 Olomouc, Czech Republic
| | - Brigitte Uwimana
- International Institute of Tropical Agriculture, Kampala P.O. Box 7878, Uganda
| | - Delphine Amah
- International Institute of Tropical Agriculture, Ibadan PMB 5320, Nigeria
| | - Stephen Pearce
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Ning Chen
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- The Centre for Applied Bioinformatics, University of Western Australia, Crawley, Perth, WA 6009, Australia
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Bio-Technological and Agricultural Research, CZ-77900 Olomouc, Czech Republic
| | - Peter Crisp
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Allan F Brown
- International Institute of Tropical Agriculture, Arusha P.O. Box 447, Tanzania
| | - Guillaume Martin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Angelique D'Hont
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Lachlan Coin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3004, Australia
| | - Rony Swennen
- International Institute of Tropical Agriculture, Kampala P.O. Box 7878, Uganda
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Elizabeth A B Aitken
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| |
Collapse
|
11
|
Carrasco D, Zhou-Tsang A, Rodriguez-Izquierdo A, Ocete R, Revilla MA, Arroyo-García R. Coastal Wild Grapevine Accession ( Vitis vinifera L. ssp. sylvestris) Shows Distinct Late and Early Transcriptome Changes under Salt Stress in Comparison to Commercial Rootstock Richter 110. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202688. [PMID: 36297712 PMCID: PMC9610063 DOI: 10.3390/plants11202688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/01/2023]
Abstract
Increase in soil salinity, driven by climate change, is a widespread constrain for viticulture across several regions, including the Mediterranean basin. The implementation of salt-tolerant varieties is sought after to reduce the negative impact of salinity in grape production. An accession of wild grapevine (Vitis vinifera L. ssp. sylvestris), named AS1B, found on the coastline of Asturias (Spain), could be of interest toward the achievement of salt-tolerant varieties, as it demonstrated the ability to survive and grow under high levels of salinity. In the present study, AS1B is compared against widely cultivated commercial rootstock Richter 110, regarding their survival capabilities, and transcriptomic profiles analysis allowed us to identify the genes by employing RNA-seq and gene ontology analyses under increasing salinity and validate (via RT-qPCR) seven salinity-stress-induced genes. The results suggest contrasting transcriptomic responses between AS1B and Richter 110. AS1B is more responsive to a milder increase in salinity and builds up specific mechanisms of tolerance over a sustained salt stress, while Richter 110 maintains a constitutive expression until high and prolonged saline inputs, when it mainly shows responses to osmotic stress. The genetic basis of AS1B's strategy to confront salinity could be valuable in cultivar breeding programs, to expand the current range of salt-tolerant rootstocks, aiming to improve the adaptation of viticulture against climate change.
Collapse
Affiliation(s)
- David Carrasco
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Andres Zhou-Tsang
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
- Waite Research Institute, The School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Glen Osmond, SA 5064, Australia
- ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, Glen Osmond, SA 5064, Australia
| | - Alberto Rodriguez-Izquierdo
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Rafael Ocete
- Laboratorio Entomología Aplicada, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| | - María Angeles Revilla
- Departamento Biología de Organismos y Sistemas, Facultad de Biología, Universidad de Oviedo, 33071 Oviedo, Spain
| | - Rosa Arroyo-García
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
12
|
Xie Y, Nachappa P, Nalam VJ, Pearce S. Genomic and Molecular Characterization of Wheat Streak Mosaic Virus Resistance Locus 2 ( Wsm2) in Common Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:928949. [PMID: 35845691 PMCID: PMC9285007 DOI: 10.3389/fpls.2022.928949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Wheat streak mosaic virus (WSMV) is an economically important viral pathogen that threatens global wheat production, particularly in the Great Plains of the United States. The Wsm2 locus confers resistance to WSMV and has been widely deployed in common wheat varieties adapted to this region. Characterizing the underlying causative genetic variant would contribute to our understanding of viral resistance mechanisms in wheat and aid the development of perfect markers for breeding. In this study, linkage mapping in a doubled-haploid (DH) mapping population confirmed Wsm2 as a major locus conferring WSMV resistance in wheat. The Wsm2 flanking markers were mapped to a 4.0 Mbp region at the distal end of chromosome 3BS containing 142 candidate genes. Eight haplotypes were identified from seventeen wheat genotypes collected from different agroecological zones, indicating that Wsm2 lies in a dynamic region of the genome with extensive structural variation and that it is likely a rare allele in most available genome assemblies of common wheat varieties. Exome sequencing of the variety "Snowmass", which carries Wsm2, revealed several loss-of-function mutations and copy number variants in the 142 candidate genes within the Wsm2 interval. Six of these genes are differentially expressed in "Snowmass" compared to "Antero," a variety lacking Wsm2, including a gene that encodes a nucleotide-binding site leucine-rich repeat (NBS-LRR) type protein with homology to RPM1. A de novo assembly of unmapped RNA-seq reads identified nine transcripts expressed only in "Snowmass," three of which are also induced in response to WSMV inoculation. This study sheds light on the variation underlying Wsm2 and provides a list of candidate genes for subsequent validation.
Collapse
Affiliation(s)
- Yucong Xie
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Vamsi J. Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
13
|
Cui M, Han S, Wang D, Haider MS, Guo J, Zhao Q, Du P, Sun Z, Qi F, Zheng Z, Huang B, Dong W, Li P, Zhang X. Gene Co-expression Network Analysis of the Comparative Transcriptome Identifies Hub Genes Associated With Resistance to Aspergillus flavus L. in Cultivated Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:899177. [PMID: 35812950 PMCID: PMC9264616 DOI: 10.3389/fpls.2022.899177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/06/2022] [Indexed: 06/08/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.), a cosmopolitan oil crop, is susceptible to a variety of pathogens, especially Aspergillus flavus L., which not only vastly reduce the quality of peanut products but also seriously threaten food safety for the contamination of aflatoxin. However, the key genes related to resistance to Aspergillus flavus L. in peanuts remain unclear. This study identifies hub genes positively associated with resistance to A. flavus in two genotypes by comparative transcriptome and weighted gene co-expression network analysis (WGCNA) method. Compared with susceptible genotype (Zhonghua 12, S), the rapid response to A. flavus and quick preparation for the translation of resistance-related genes in the resistant genotype (J-11, R) may be the drivers of its high resistance. WGCNA analysis revealed that 18 genes encoding pathogenesis-related proteins (PR10), 1-aminocyclopropane-1-carboxylate oxidase (ACO1), MAPK kinase, serine/threonine kinase (STK), pattern recognition receptors (PRRs), cytochrome P450, SNARE protein SYP121, pectinesterase, phosphatidylinositol transfer protein, and pentatricopeptide repeat (PPR) protein play major and active roles in peanut resistance to A. flavus. Collectively, this study provides new insight into resistance to A. flavus by employing WGCNA, and the identification of hub resistance-responsive genes may contribute to the development of resistant cultivars by molecular-assisted breeding.
Collapse
Affiliation(s)
- Mengjie Cui
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Suoyi Han
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Du Wang
- Key Laboratory of Detection for Mycotoxins, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | | | - Junjia Guo
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Qi Zhao
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
| | - Pei Du
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Ziqi Sun
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Feiyan Qi
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Zheng Zheng
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Bingyan Huang
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Wenzhao Dong
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| | - Peiwu Li
- Key Laboratory of Detection for Mycotoxins, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- The Shennong Laboratory, Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Science, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou, China
- Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou, China
- National Centre for Plant Breeding, Xinxiang, China
| |
Collapse
|
14
|
Ac/Ds-Induced Receptor-like Kinase Genes Deletion Provides Broad-Spectrum Resistance to Bacterial Blight in Rice. Int J Mol Sci 2022; 23:ijms23094561. [PMID: 35562952 PMCID: PMC9103808 DOI: 10.3390/ijms23094561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) seriously affects rice yield production. The discovery and application of broad-spectrum resistance genes are of great advance for disease resistance breeding. Previously, we identified that multiple receptor-like kinase (RLK) family gene deletions induced by the Ac/Ds system resulted in a lesion mimic symptom. In this study, the mutant #29 showed that this lesion mimic symptom was isolated. Further analysis identified that four RLK genes (RLK19-22) were deleted in the #29 mutant. The #29 mutant exhibited broad-spectrum resistance to Xoo and subsequent analyses identified that pathogenesis-related genes PR1a, PBZ1, and cellular H2O2 levels were significantly induced in the mutant compared to wild-type plants. A genetic analysis revealed that reconstruction of RLK20, RLK21, or RLK22 rescued the lesion mimic symptom of the #29 mutant, indicating that these three RLKs are responsible for broad-spectrum resistance in rice. Further yeast two hybrid and bimolecular fluorescence complementation assays demonstrated that RLK20 interacts with RBOHB, which is a ROS producer in plants. Compared to wild-type plants, the #29 mutant was more, while #29/RLK20ox was less, susceptible to MV (methyl-viologen), an ROS inducer. Co-expression of RLK20 and RBOHB reduced RBOHB-promoted H2O2 accumulation in the cells. Taken together, our research indicated that the RLKs may inhibit RBOHB activity to negatively regulate rice resistance to Xoo. These results provide the theoretical basis and valuable information about the target genes necessary for the successful breeding of rice cultivars resistant to bacterial blight.
Collapse
|
15
|
Vikas VK, Pradhan AK, Budhlakoti N, Mishra DC, Chandra T, Bhardwaj SC, Kumar S, Sivasamy M, Jayaprakash P, Nisha R, Shajitha P, Peter J, Geetha M, Mir RR, Singh K, Kumar S. Multi-locus genome-wide association studies (ML-GWAS) reveal novel genomic regions associated with seedling and adult plant stage leaf rust resistance in bread wheat (Triticum aestivum L.). Heredity (Edinb) 2022; 128:434-449. [PMID: 35418669 DOI: 10.1038/s41437-022-00525-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Leaf rust is one of the important diseases limiting global wheat production and productivity. To identify quantitative trait nucleotides (QTNs) or genomic regions associated with seedling and adult plant leaf rust resistance, multilocus genome-wide association studies (ML-GWAS) were performed on a panel of 400 diverse wheat genotypes using 35 K single-nucleotide polymorphism (SNP) genotyping assays and trait data of leaf rust resistance. Association analyses using six multi-locus GWAS models revealed a set of 201 significantly associated QTNs for seedling and 65 QTNs for adult plant resistance (APR), explaining 1.98-31.72% of the phenotypic variation for leaf rust. Among these QTNs, 51 reliable QTNs for seedling and 15 QTNs for APR were consistently detected in at least two GWAS models and were considered reliable QTNs. Three genomic regions were pleiotropic, each controlling two to three pathotype-specific seedling resistances to leaf rust. We also identified candidate genes, such as leucine-rich repeat receptor-like (LRR) protein kinases, P-loop containing nucleoside triphosphate hydrolase and serine-threonine/tyrosine-protein kinases (STPK), which have a role in pathogen recognition and disease resistance linked to the significantly associated genomic regions. The QTNs identified in this study can prove useful in wheat molecular breeding programs aimed at enhancing resistance to leaf rust and developing next-generation leaf rust-resistant varieties.
Collapse
Affiliation(s)
- V K Vikas
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | | | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | | | - Tilak Chandra
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal Pradesh, 171002, India
| | - M Sivasamy
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - P Jayaprakash
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - R Nisha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - P Shajitha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - John Peter
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - M Geetha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.,Genetic Resource Division, ICRISAT, Patancheru, Hyderabad, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| |
Collapse
|
16
|
Singh H, Kaur J, Bala R, Srivastava P, Sharma A, Grover G, Dhillon GS, Singh RP, Chhuneja P, Bains NS. Residual effect of defeated stripe rust resistance genes/QTLs in bread wheat against prevalent pathotypes of Puccinia striiformis f. sp. tritici. PLoS One 2022; 17:e0266482. [PMID: 35363829 PMCID: PMC8975100 DOI: 10.1371/journal.pone.0266482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
The periodic breakdowns of stripe rust resistance due to emergence of new virulent and more aggressive pathotypes of Puccinia striiformis f. sp. tritici have resulted in severe epidemics in India. This necessitates the search for new and more durable resistance sources against stripe rust. The three bread wheat cultivars PBW 343 (carries Yr9 and Yr27), PBW 621 (carries Yr17) and HD 2967 (gene not known) were highly popular among the farmers after their release in 2011. But presently all three cultivars are highly susceptible to stripe rust at seedling as well as at adult plant stages as their resistance has been broken down due to emergence of new pathotypes of the pathogen (110S119, 238S119). In previous study, the crosses of PBW 621 with PBW 343 and HD 2967 and evaluation of further generations (up to F4) against pathotype 78S84 resulted in resistant segregants. In the present study, the F5 and F6 RIL populations have been evaluated against new pathotypes of Pst. The RILs categorized based on the disease severity on the P (Penultimate leaf) and F (flag) leaf into three categories i.e., high, moderate and low level of APR (adult plant resistance) having 1–200, 201–400 and >400 values of AUDPC, respectively, upon infection with stripe rust. The various APR components (latent period, lesion growth rate, spore production and uredial density) were studied on each category, i.e., resistant, moderately resistant and susceptible. The values of APR parameters decreased as the level of resistance increased. Based on molecular analysis, the lines (representing different categories of cross PBW 621 X PBW 343) containing the genes Yr9 and Yr17 due to their interactive effect provide resistance. Based on BSA using 35k SNPs and KASP markers association with phenotypic data of the RIL population (PBW 621 X HD 2967) showed the presence of two QTLs (Q.Pst.pau-6B, Q.Pst.pau-5B) responsible for the residual resistance and two SNPs AX-94891670 and AX-94454107 were found to be associated with the trait of interest on chromosome 6B and 5B respectively. The present study concludes that in the population of both the crosses (PBW 621 X PBW 343 and PBW 621 X HD 2967) major defeated gene contributed towards residual resistance by interacting with minor gene/QTLs.
Collapse
Affiliation(s)
| | - Jaspal Kaur
- Department of Plant Breeding & Genetics, PAU, Ludhiana, India
- * E-mail:
| | - Ritu Bala
- Department of Plant Breeding & Genetics, PAU, Ludhiana, India
| | - Puja Srivastava
- Department of Plant Breeding & Genetics, PAU, Ludhiana, India
| | - Achla Sharma
- Department of Plant Breeding & Genetics, PAU, Ludhiana, India
| | - Gomti Grover
- Department of Plant Breeding & Genetics, PAU, Ludhiana, India
| | - Guriqbal Singh Dhillon
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | | | | | | |
Collapse
|
17
|
Amo A, Soriano JM. Unravelling consensus genomic regions conferring leaf rust resistance in wheat via meta-QTL analysis. THE PLANT GENOME 2022; 15:e20185. [PMID: 34918873 DOI: 10.1002/tpg2.20185] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Leaf rust, caused by the fungus Puccinia triticina Erikss (Pt), is a destructive disease affecting wheat (Triticum aestivum L.) and a threat to food security. Developing resistant cultivars represents a useful method of disease control, and thus, understanding the genetic basis for leaf rust resistance is required. To this end, a comprehensive bibliographic search for leaf rust resistance quantitative trait loci (QTL) was performed, and 393 QTL were collected from 50 QTL mapping studies. Afterward, a consensus map with a total length of 4,567 cM consisting of different types of markers (simple sequence repeat [SSR], diversity arrays technology [DArT], chip-based single-nucleotide polymorphism [SNP] markers, and SNP markers from genotyping-by-sequencing) was used for QTL projection, and meta-QTL (MQTL) analysis was performed on 320 QTL. A total of 75 MQTL were discovered and refined to 15 high-confidence MQTL (hcmQTL). The candidate genes discovered within the hcmQTL interval were then checked for differential expression using data from three transcriptome studies, resulting in 92 differentially expressed genes (DEGs). The expression of these genes in various leaf tissues during wheat development was explored. This study provides insight into leaf rust resistance in wheat and thereby provides an avenue for developing resistant cultivars by incorporating the most important hcmQTL.
Collapse
Affiliation(s)
- Aduragbemi Amo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F Univ., Yangling, Shaanxi, China
| | - Jose Miguel Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, 25198, Spain
| |
Collapse
|
18
|
Xu M, Li G, Guo Y, Gao Y, Zhu L, Liu Z, Tian R, Gao C, Han P, Wang N, Guo F, Bao J, Jia C, Feng H, Huang L. A fungal microRNA-like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor-like kinase genes. THE NEW PHYTOLOGIST 2022; 233:2503-2519. [PMID: 34981514 DOI: 10.1111/nph.17945] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Small RNAs (sRNAs) play important roles in various biological processes by silencing their corresponding target genes in most eukaryotes. However, cross-kingdom regulation mediated by fungal microRNA-like RNAs (milRNAs) in plant-pathogen interactions is still largely unknown. Using molecular, genetic, histological, and biochemical approaches, we found that the apple tree Valsa canker pathogen Valsa mali milRNA Vm-milR1 could suppress the host immunity by silencing two host receptor-like kinase genes, MdRLKT1 and MdRLKT2. Vm-milR1 was highly induced during V. mali infection. Deletion of Vm-milR1 precursor abolished the generation of Vm-milR1 and reduced the virulence of V. mali. Inoculation of Vm-milR1 deletion mutants induced the host defence responses, including reactive oxygen species (ROS) accumulation, callose deposition, and high expression of defence-related genes. Furthermore, Vm-milR1 was confirmed to be able to suppress the expression of MdRLKT1 and MdRLKT2 in a sequence-specific manner. Moreover, overexpression of either MdRLKT1 or MdRLKT2 enhanced apple resistance to V. mali by activating the host defence responses. Furthermore, knockdown of MdRLKT1 or MdRLKT2 compromised the host resistance to V. mali. Our study revealed that V. mali was equipped with Vm-milR1 as an sRNA effector to silence host receptor-like kinase genes, suppress the host defence responses, and facilitate pathogen infection.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangyao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lihua Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoyang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengliang Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiyuan Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Conghui Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
19
|
Yu N, Sun H, Yang J, Li R. The Diesel Tree Sindora glabra Genome Provides Insights Into the Evolution of Oleoresin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 12:794830. [PMID: 35058955 PMCID: PMC8764381 DOI: 10.3389/fpls.2021.794830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Sindora glabra is an economically important tree that produces abundant oleoresin in the trunk. Here, we present a high-quality chromosome-scale assembly of S. glabra genome by combining Illumina HiSeq, Pacific Biosciences sequencing, and Hi-C technologies. The size of S. glabra genome was 1.11 Gb, with a contig N50 of 1.27 Mb and 31,944 predicted genes. This is the first sequenced genome of the subfamily Caesalpinioideae. As a sister taxon to Papilionoideae, S. glabra underwent an ancient genome triplication shared by core eudicots and further whole-genome duplication shared by early-legume in the last 73.3 million years. S. glabra harbors specific genes and expanded genes largely involved in stress responses and biosynthesis of secondary metabolites. Moreover, 59 terpene backbone biosynthesis genes and 64 terpene synthase genes were identified, which together with co-expressed transcription factors could contribute to the diversity and specificity of terpene compounds and high terpene content in S. glabra stem. In addition, 63 disease resistance NBS-LRR genes were found to be unique in S. glabra genome and their expression levels were correlated with the accumulation of terpene profiles, suggesting potential defense function of terpenes in S. glabra. These together provide new resources for understanding genome evolution and oleoresin production.
Collapse
Affiliation(s)
- Niu Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Haixi Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinchang Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Rongsheng Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
20
|
Huang Z, Shen F, Chen Y, Cao K, Wang L. Chromosome-scale genome assembly and population genomics provide insights into the adaptation, domestication, and flavonoid metabolism of Chinese plum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1174-1192. [PMID: 34473873 DOI: 10.1111/tpj.15482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Globally, commercialized plum cultivars are mostly diploid Chinese plums (Prunus salicina Lindl.), also known as Japanese plums, and are one of the most abundant and variable fruit tree species. To advance Prunus genomic research, we present a chromosome-scale P. salicina genome assembly, constructed using an integrated strategy that combines Illumina, Oxford Nanopore, and high-throughput chromosome conformation capture (Hi-C) sequencing. The high-quality genome assembly consists of a 318.6-Mb sequence (contig N50 length of 2.3 Mb) with eight pseudo-chromosomes. The expansion of the P. salicina genome is led by recent segmental duplications and a long terminal repeat burst of approximately 0.2 Mya. This resulted in a significant expansion of gene families associated with flavonoid metabolism and plant resistance, which impacted fruit flavor and increased species adaptability. Population structure and domestication history suggest that Chinese plum may have originated from South China and provides a domestication route with accompanying genomic variations. Selection sweep and genetic diversity analysis enabled the identification of several critical genes associated with flowering time, stress tolerance, and flavonoid metabolism, demonstrating the essential roles of related pathways during domestication. Furthermore, we reconstructed and exploited flavonoid-anthocyanin metabolism using multi-omics analysis in Chinese plum and proposed a complete metabolic pathway. Collectively, our results will facilitate further candidate gene discovery for important agronomic traits in Chinese plum and provide insights into future functional genomic studies and DNA-informed breeding.
Collapse
Affiliation(s)
- Zhenyu Huang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| | - Fei Shen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuling Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| |
Collapse
|
21
|
Biosynthetic Pathway of Proanthocyanidins in Major Cash Crops. PLANTS 2021; 10:plants10091792. [PMID: 34579325 PMCID: PMC8472070 DOI: 10.3390/plants10091792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
Proanthocyanidins (PAs) are a group of oligomers or polymers composed of monomeric flavanols. They offer many benefits for human fitness, such as antioxidant, anticancer, and anti-inflammatory activities. To date, three types of PA have been observed in nature: procyanidins, propelargonidins, and prodelphinidins. These are synthesized as some of the end-products of the flavonoid pathway by different consecutive enzymatic activities, from the same precursor—naringenin. Although the general biosynthetic pathways of PAs have been reported in a few model plant species, little is known about the species-specific pathways in major crops containing different types of PA. In the present study, we identified the species-specific pathways in 10 major crops, based on the presence/absence of flavanol-based intermediates in the metabolic pathway, and found 202 orthologous genes in the reference genomic database of each species, which may encode for key enzymes involved in the biosynthetic pathways of PAs. Parallel enzymatic reactions in the pathway are responsible for the ratio between PAs and anthocyanins, as well as among the three types of PAs. Our study suggests a promising strategy for molecular breeding, to regulate the content of PAs and anthocyanins and improve the nutritional quality of food sources globally.
Collapse
|
22
|
Adhikari P, Mideros SX, Jamann TM. Differential Regulation of Maize and Sorghum Orthologs in Response to the Fungal Pathogen Exserohilum turcicum. FRONTIERS IN PLANT SCIENCE 2021; 12:675208. [PMID: 34113371 PMCID: PMC8185347 DOI: 10.3389/fpls.2021.675208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
Pathogens that infect more than one host offer an opportunity to study how resistance mechanisms have evolved across different species. Exserohilum turcicum infects both maize and sorghum and the isolates are host-specific, offering a unique system to examine both compatible and incompatible interactions. We conducted transcriptional analysis of maize and sorghum in response to maize-specific and sorghum-specific E. turcicum isolates and identified functionally related co-expressed modules. Maize had a more robust transcriptional response than sorghum. E. turcicum responsive genes were enriched in core orthologs in both crops, but only up to 16% of core orthologs showed conserved expression patterns. Most changes in gene expression for the core orthologs, including hub genes, were lineage specific, suggesting a role for regulatory divergent evolution. We identified several defense-related shared differentially expressed (DE) orthologs with conserved expression patterns between the two crops, suggesting a role for parallel evolution of those genes in both crops. Many of the differentially expressed genes (DEGs) during the incompatible interaction were related to quantitative disease resistance (QDR). This work offers insights into how different hosts with relatively recent divergence interact with a common pathogen. Our results are important for developing resistance to this critical pathogen and understanding the evolution of host-pathogen interactions.
Collapse
|
23
|
Xia T, Yang Y, Zheng H, Han X, Jin H, Xiong Z, Qian W, Xia L, Ji X, Li G, Wang D, Zhang K. Efficient expression and function of a receptor-like kinase in wheat powdery mildew defence require an intron-located MYB binding site. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:897-909. [PMID: 33225586 PMCID: PMC8131041 DOI: 10.1111/pbi.13512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
The LRK10-like receptor kinases (LRK10L-RLKs) are ubiquitously present in higher plants, but knowledge of their expression and function is still limited. Here, we report expression and functional analysis of TtdLRK10L-1, a typical LRK10L-RLK in durum wheat (Triticum turgidum L. ssp. durum). The introns of TtdLRK10L-1 contained multiple kinds of predicted cis-elements. To investigate the potential effect of these cis-elements on TtdLRK10L-1 expression and function, two types of transgenic wheat lines were prepared, which expressed a GFP-tagged TtdLRK10L-1 protein (TtdLRK10L-1:GFP) from the cDNA or genomic DNA (gDNA) sequence of TtdLRK10L-1 under the native promoter. TtdLRK10L-1:GFP expression was up-regulated by the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) in both types of transgenic plants, with the scale of the elevation being much stronger in the gDNA lines. Both types of transgenic plants exhibited enhanced resistance to Bgt infection relative to wild type control. Notably, the Bgt defence activated in the gDNA lines was significantly stronger than that in the cDNA lines. Further analysis revealed that a putative MYB transcription factor binding site (MYB-BS, CAGTTA) located in TtdLRK10L-1 intron I was critical for the efficient expression and function of TtdLRK10L-1 in Bgt defence. This MYB-BS could also increase the activity of a superpromoter widely used in ectopic gene expression studies in plants. Together, our results deepen the understanding of the expression and functional characteristics of LRK10L-RLKs. TtdLRK10L-1 is likely useful for further dissecting the molecular processes underlying wheat defence against Bgt and for developing Bgt resistant wheat crops.
Collapse
Affiliation(s)
- Tengfei Xia
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yanping Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongyuan Zheng
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Huaibing Jin
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Zijun Xiong
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesPeking UniversityBeijingChina
| | - Lanqi Xia
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiang Ji
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Guangwei Li
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Daowen Wang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kunpu Zhang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
24
|
Fu W, da Silva Linge C, Gasic K. Genome-Wide Association Study of Brown Rot ( Monilinia spp.) Tolerance in Peach. FRONTIERS IN PLANT SCIENCE 2021; 12:635914. [PMID: 33790926 PMCID: PMC8006439 DOI: 10.3389/fpls.2021.635914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Brown rot, caused by Monilinia spp., is one of the most important diseases on stone fruit worldwide. Severe yield loss can be caused by pre- and post-harvest fruit decay. Although some degree of tolerance has been reported in peach and almond, the genetic resistance in peach cultivars is still lacking. To date, only few genomic regions associated with brown rot response in fruit skin and flesh have been detected in peach. Previous studies suggested brown rot tolerance in peach being a polygenic quantitative trait. More information is needed to uncover the genetics behind brown rot tolerance in peach. To identify the genomic regions in peach associated with this trait, 26 cultivars and progeny from 9 crosses with 'Bolinha' sources of tolerance, were phenotyped across two seasons (2015 and 2016) for brown rot disease severity index in wounded and non-wounded fruits and genotyped using a newly developed 9+9K peach SNP array. Genome wide association study using single- and multi-locus methods by GAPIT version 3, mrMLM 4.0, GAPIT and G Model, revealed 14 reliable SNPs significantly associated with brown rot infection responses in peach skin (10) and flesh (4) across whole genome except for chromosome 3. Candidate gene analysis within the haplotype regions of the detected markers identified 25 predicted genes associated with pathogen infection response/resistance. Results presented here facilitate further understanding of genetics behind brown rot tolerance in peach and provide an important foundation for DNA-assisted breeding.
Collapse
Affiliation(s)
| | | | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
25
|
Guan J, Xu Y, Yu Y, Fu J, Ren F, Guo J, Zhao J, Jiang Q, Wei J, Xie H. Genome structure variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion for fruit shape. Genome Biol 2021; 22:13. [PMID: 33402202 PMCID: PMC7784018 DOI: 10.1186/s13059-020-02239-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Structural variations (SVs), a major resource of genomic variation, can have profound consequences on phenotypic variation, yet the impacts of SVs remain largely unexplored in crops. RESULTS Here, we generate a high-quality de novo genome assembly for a flat-fruit peach cultivar and produce a comprehensive SV map for peach, as a high proportion of genomic sequence is occupied by heterozygous SVs in the peach genome. We conduct population-level analyses that indicate SVs have undergone strong purifying selection during peach domestication, and find evidence of positive selection, with a significant preference for upstream and intronic regions during later peach improvement. We perform a SV-based GWAS that identifies a large 1.67-Mb heterozygous inversion that segregates perfectly with flat-fruit shape. Mechanistically, this derived allele alters the expression of the PpOFP2 gene positioned near the proximal breakpoint of the inversion, and we confirm in transgenic tomatoes that PpOFP2 is causal for flat-fruit shape. CONCLUSIONS Thus, beyond introducing new genomics resources for peach research, our study illustrates how focusing on SV data can drive basic functional discoveries in plant science.
Collapse
Affiliation(s)
- Jiantao Guan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Yaoguang Xu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Yang Yu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Jun Fu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Fei Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jiying Guo
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jianbo Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Quan Jiang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China.
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China.
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China.
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China.
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China.
| |
Collapse
|
26
|
Rollar S, Serfling A, Geyer M, Hartl L, Mohler V, Ordon F. QTL mapping of adult plant and seedling resistance to leaf rust (Puccinia triticina Eriks.) in a multiparent advanced generation intercross (MAGIC) wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:37-51. [PMID: 33201290 PMCID: PMC7813716 DOI: 10.1007/s00122-020-03657-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/28/2020] [Indexed: 05/22/2023]
Abstract
The Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines was phenotyped for Puccinia triticina resistance in multi-years' field trials at three locations and in a controlled environment seedling test. Simple intervall mapping revealed 19 QTL, corresponding to 11 distinct chromosomal regions. The biotrophic rust fungus Puccinia triticina is one of the most important wheat pathogens with the potential to cause yield losses up to 70%. Growing resistant cultivars is the most cost-effective and environmentally friendly way to encounter this problem. The emergence of leaf rust races being virulent against common resistance genes increases the demand for wheat varieties with novel resistances. In the past decade, the use of complex experimental populations, like multiparent advanced generation intercross (MAGIC) populations, has risen and offers great advantages for mapping resistances. The genetic diversity of multiple parents, which has been recombined over several generations, leads to a broad phenotypic diversity, suitable for high-resolution mapping of quantitative traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for leaf rust resistance in the Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs for adult plant resistance was carried out in field trials at three locations and two years, as well as in a controlled-environment seedling inoculation test. In total, interval mapping revealed 19 QTL, which corresponded to 11 distinct chromosomal regions controlling leaf rust resistance. Six of these regions may represent putative new QTL. Due to the elite parental material, RILs identified to be resistant to leaf rust can be easily introduced in breeding programs.
Collapse
Affiliation(s)
- Sandra Rollar
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur‑Straße 27, 06484 Quedlinburg, Germany
| | - Albrecht Serfling
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur‑Straße 27, 06484 Quedlinburg, Germany
| | - Manuel Geyer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 8, Freising, Germany
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 8, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 8, Freising, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur‑Straße 27, 06484 Quedlinburg, Germany
| |
Collapse
|
27
|
Jang IH, Kang IJ, Kim JM, Kang ST, Jang YE, Lee S. Genetic Mapping of a Resistance Locus to Phytophthora sojae in the Korean Soybean Cultivar Daewon. THE PLANT PATHOLOGY JOURNAL 2020; 36:591-599. [PMID: 33312094 PMCID: PMC7721532 DOI: 10.5423/ppj.oa.09.2020.0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 05/19/2023]
Abstract
Phytophthora root and stem rot reduce soybean yields worldwide. The use of R-gene type resistance is currently crucial for protecting soybean production. The present study aimed to identify the genomic location of a gene conferring resistance to Phytophthora sojae isolate 2457 in the recombinant inbred line population developed by a cross of Daepung × Daewon. Single-marker analysis identified 20 single nucleotide polymorphisms associated with resistance to the P. sojae isolate 2457, which explained ~67% of phenotypic variance. Daewon contributed a resistance allele for the locus. This region is a well-known location for Rps1 and Rps7. The present study is the first, however, to identify an Rps gene locus from a major soybean variety cultivated in South Korea. Linkage analysis also identified a 573 kb region on chromosome 3 with high significance (logarithm of odds = 13.7). This genomic region was not further narrowed down due to lack of recombinants within the interval. Based on the latest soybean genome, ten leucine-rich repeat coding genes and four serine/threonine protein kinase-coding genes are annotated in this region, which all are well-known types of genes for conferring disease resistance in crops. These genes would be candidates for molecular characterization of the resistance in further studies. The identified R-gene locus would be useful in developing P. sojae resistant varieties in the future. The results of the present study provide foundational knowledge for researchers who are interested in soybean-P. sojae interaction.
Collapse
Affiliation(s)
- Ik-Hyun Jang
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 3434, Korea
| | - In Jeong Kang
- Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613, Korea
| | - Ji-Min Kim
- Department of Crop Science and Biotechnology, College of Bioresource Science, Dankook University, Cheonan 1116, Korea
| | - Sung-Taeg Kang
- Department of Crop Science and Biotechnology, College of Bioresource Science, Dankook University, Cheonan 1116, Korea
| | - Young Eun Jang
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 3434, Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 3434, Korea
- Corresponding author. Phone) +82-42-821-5727 , FAX) +82-42-822-2631, E-mail) , ORCID, Sungwoo Lee, https://orcid.org/0000-0003-3564-236
| |
Collapse
|
28
|
Sapkota S, Mergoum M, Kumar A, Fiedler JD, Johnson J, Bland D, Lopez B, Sutton S, Ghimire B, Buck J, Chen Z, Harrison S. A novel adult plant leaf rust resistance gene Lr2K38 mapped on wheat chromosome 1AL. THE PLANT GENOME 2020; 13:e20061. [PMID: 33169935 DOI: 10.1002/tpg2.20061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Soft red winter wheat (SRWW) cultivar AGS 2038 has a high level of seedling and adult plant leaf rust (LR) resistance. To map and characterize LR resistance in AGS 2038, a recombinant inbred line (RIL) population consisting of 225 lines was developed from a cross between AGS 2038 and moderately resistant line UGA 111729. The parents and RIL population were phenotyped for LR response in three field environments at Plains and Griffin, GA, in the 2017-2018 and 2018-2019 growing seasons, one greenhouse environment at the adult-plant stage, and at seedling stage. The RIL population was genotyped with the Illumina iSelect 90K SNP marker array, and a total of 7667 polymorphic markers representing 1513 unique loci were used to construct a linkage map. Quantitative trait loci (QTL) analysis detected six QTL, QLr.ags-1AL, QLr.ags-2AS, QLr.ags-2BS1, QLr.ags-2BS2, QLr.ags-2BS3, and QLr.ags-2DS, for seedling and adult plant LR resistance. Of these, the major adult plant leaf rust resistance QTL, QLr.ags-1AL, was detected on all field and greenhouse adult plant tests and explained up to 34.45% of the phenotypic variation. QLr.ags-1AL, tightly flanked by IWB20487 and IWA4022 markers, was contributed by AGS 2038. Molecular marker analysis using a diagnostic marker linked to Lr59 showed that QLr.ags-1AL was different from Lr59, the only known LR resistance gene on 1AL. Therefore, the QTL was temporarily designated as Lr2K38. Lr2K38-linked marker IWB20487 was highly polymorphic among 30 SRWW lines and should be useful for selecting the Lr2K38 in wheat breeding programs.
Collapse
Affiliation(s)
- Suraj Sapkota
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Mohamed Mergoum
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Jerry Johnson
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Dan Bland
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Benjamin Lopez
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Steve Sutton
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Bikash Ghimire
- Department of Plant Pathology, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - James Buck
- Department of Plant Pathology, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Zhenbang Chen
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Stephen Harrison
- School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
29
|
Berg JA, Hermans FWK, Beenders F, Lou L, Vriezen WH, Visser RGF, Bai Y, Schouten HJ. Analysis of QTL DM4.1 for Downy Mildew Resistance in Cucumber Reveals Multiple subQTL: A Novel RLK as Candidate Gene for the Most Important subQTL. FRONTIERS IN PLANT SCIENCE 2020; 11:569876. [PMID: 33193500 PMCID: PMC7649820 DOI: 10.3389/fpls.2020.569876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/28/2020] [Indexed: 05/28/2023]
Abstract
One of the biggest problems in cucumber cultivation is cucurbit downy mildew (DM), caused by the obligate biotroph Pseudoperonospora cubensis. Whereas DM in cucumber was previously efficiently controlled by the dm-1 gene from Indian cucumber accession PI 197087, this resistance was broken by new DM strains, prompting the search for novel sources of resistance. A promising source of resistance is the wild cucumber accession PI 197088. It was previously shown that DM resistance in this genotype inherits polygenically. In this paper, we put the focus on one of the QTL, DM4.1 that is located on chromosome 4. QTL DM4.1 was shown to consist of three subQTL: DM4.1.1 affected pathogen-induced necrosis, DM4.1.2 was shown to have an additive effect on sporulation, and DM4.1.3 had a recessive effect on chlorosis as well as an effect on sporulation. Near-isogenic lines (NILs) were produced by introgressing the subQTLs into a susceptible cucumber line (HS279) with good horticultural traits. Transcriptomic analysis revealed that many genes in general, and defense pathway genes in particular, were differentially expressed in NIL DM4.1.1/.2 compared to NIL DM4.1.3 and the susceptible parent HS279. This indicates that the resistance from subQTL DM4.1.1 and/or subQTL DM4.1.2 likely involves defense signaling pathways, whereas resistance due to subQTL DM4.1.3 is more likely to be independent of known defense pathways. Based on fine-mapping data, we identified the RLK gene CsLRK10L2 as a likely candidate for subQTL DM4.1.2, as this gene was found to have a loss-of-function mutation in the susceptible parent HS279, and was strongly upregulated by P. cubensis inoculation in NIL DM4.1.1/.2. Heterologous expression of this gene triggered necrosis, providing further evidence that this gene is indeed causal for subQTL DM4.1.2.
Collapse
Affiliation(s)
- Jeroen A. Berg
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Lina Lou
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | | | | | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Henk J. Schouten
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
30
|
Luan W, Dai Y, Li XY, Wang Y, Tao X, Li CX, Mao P, Ma XR. Identification of tRFs and phasiRNAs in tomato (Solanum lycopersicum) and their responses to exogenous abscisic acid. BMC PLANT BIOLOGY 2020; 20:320. [PMID: 32635887 PMCID: PMC7339384 DOI: 10.1186/s12870-020-02528-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 06/26/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND The non-coding small RNA tRFs (tRNA-derived fragments) and phasiRNAs (plant-specific) exert important roles in plant growth, development and stress resistances. However, whether the tRFs and phasiRNAs respond to the plant important stress hormone abscisic acid (ABA) remain enigma. RESULTS Here, the RNA-sequencing was implemented to decipher the landscape of tRFs and phasiRNAs in tomato (Solanum lycopersicum) leaves and their responses when foliar spraying exogenous ABA after 24 h. In total, 733 tRFs and 137 phasiRNAs were detected. The tRFs were mainly derived from the tRNAAla transporting alanine, which tended to be cleaved at the 5'terminal guanine site and D loop uracil site to produce tRFAla with length of 20 nt. Most of phasiRNAs originated from NBS-LRR resistance genes. Expression analysis revealed that 156 tRFs and 68 phasiRNAs expressed differentially, respectively. Generally, exogenous ABA mainly inhibited the expression of tRFs and phasiRNAs. Furthermore, integrating analysis of target gene prediction and transcriptome data presented that ABA significantly downregulated the abundance of phsaiRNAs associated with biological and abiotic resistances. Correspondingly, their target genes such as AP2/ERF, WRKY and NBS-LRR, STK and RLK, were mainly up-regulated. CONCLUSIONS Combined with the previous analysis of ABA-response miRNAs, it was speculated that ABA can improve the plant resistances to various stresses by regulating the expression and interaction of small RNAs (such as miRNAs, tRFs, phasiRNAs) and their target genes. This study enriches the plant tRFs and phasiRNAs, providing a vital basis for further investigating ABA response-tRFs and phasiRNAs and their functions in biotic and abiotic stresses.
Collapse
Affiliation(s)
- Wei Luan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Yu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cai-Xia Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Mao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xin-Rong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
31
|
Castro Aviles A, Alan Harrison S, Joseph Arceneaux K, Brown-Guidera G, Esten Mason R, Baisakh N. Identification of QTLs for Resistance to Fusarium Head Blight Using a Doubled Haploid Population Derived from Southeastern United States Soft Red Winter Wheat Varieties AGS 2060 and AGS 2035. Genes (Basel) 2020; 11:genes11060699. [PMID: 32630440 PMCID: PMC7349885 DOI: 10.3390/genes11060699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fusarium head blight (FHB), caused primarily by the fungus Fusarium graminearum, is one of the most damaging diseases of wheat, causing significant loss of yield and quality worldwide. Warm and wet conditions during flowering, a lack of resistant wheat varieties, and high inoculum pressure from corn stubble contribute to frequent FHB epidemics in the southern United States. The soft red winter wheat variety AGS 2060 is moderately susceptible (as opposed to susceptible) to FHB and regularly found in pedigrees of resistant breeding lines. AGS 2060 does not carry any known resistance genes or quantitative trait loci (QTL). A QTL mapping study was conducted to determine the location and genetic effect of its resistance using a doubled haploid mapping population produced from a cross between wheat varieties AGS 2060 and AGS 2035 (FHB susceptible). The population was genotyped using the Illumina iSelect single nucleotide polymorphism (SNP) array for wheat and phenotyped in Baton Rouge and Winnsboro, Louisiana and Newport, Arkansas in 2018 and 2019. The effect of genotype was significant for Fusarium damaged kernels (FDK) and deoxynivalenol (DON) content across all locations and years, indicating genetic variation in the population. The study detected 13 QTLs (one each on chromosome 1A, 1B, 1D, 2A, 2B, 6A, 6B, 7A, and 7B, and two each on 5A and 5B) responsible for the reduction of FDK and/or DON. Of these, nine QTLs for FHB resistance were identified in Winnsboro, Louisiana, in 2019. QTLs on chromosomes 2A and 7A could be valuable sources of resistance to both DON and FDK over several environments and were likely the best candidates for use in marker-assisted selection. Consistently expressed QTLs on chromosomes 5A, 6B, and 7A were potentially newly identified sources of resistance to FHB in soft red winter wheat.
Collapse
Affiliation(s)
- Alejandro Castro Aviles
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (A.C.A.); (S.A.H.); (K.J.A.)
| | - Stephen Alan Harrison
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (A.C.A.); (S.A.H.); (K.J.A.)
| | - Kelly Joseph Arceneaux
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (A.C.A.); (S.A.H.); (K.J.A.)
| | | | - Richard Esten Mason
- Crop, Soil and Environmental Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (A.C.A.); (S.A.H.); (K.J.A.)
- Correspondence:
| |
Collapse
|
32
|
Bokore FE, Knox RE, Cuthbert RD, Pozniak CJ, McCallum BD, N’Diaye A, DePauw RM, Campbell HL, Munro C, Singh A, Hiebert CW, McCartney CA, Sharpe AG, Singh AK, Spaner D, Fowler DB, Ruan Y, Berraies S, Meyer B. Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers. PLoS One 2020; 15:e0230855. [PMID: 32267842 PMCID: PMC7141615 DOI: 10.1371/journal.pone.0230855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/10/2020] [Indexed: 01/27/2023] Open
Abstract
Growing resistant wheat (Triticum aestivum L) varieties is an important strategy for the control of leaf rust, caused by Puccinia triticina Eriks. This study sought to identify the chromosomal location and effects of leaf rust resistance loci in five Canadian spring wheat cultivars. The parents and doubled haploid lines of crosses Carberry/AC Cadillac, Carberry/Vesper, Vesper/Lillian, Vesper/Stettler and Stettler/Red Fife were assessed for leaf rust severity and infection response in field nurseries in Canada near Swift Current, SK from 2013 to 2015, Morden, MB from 2015 to 2017 and Brandon, MB in 2016, and in New Zealand near Lincoln in 2014. The populations were genotyped with the 90K Infinium iSelect assay and quantitative trait loci (QTL) analysis was performed. A high density consensus map generated based on 14 doubled haploid populations and integrating SNP and SSR markers was used to compare QTL identified in different populations. AC Cadillac contributed QTL on chromosomes 2A, 3B and 7B (2 loci), Carberry on 1A, 2B (2 loci), 2D, 4B (2 loci), 5A, 6A, 7A and 7D, Lillian on 4A and 7D, Stettler on 2D and 6B, Vesper on 1B, 1D, 2A, 6B and 7B (2 loci), and Red Fife on 7A and 7B. Lillian contributed to a novel locus QLr.spa-4A, and similarly Carberry at QLr.spa-5A. The discovery of novel leaf rust resistance QTL QLr.spa-4A and QLr.spa-5A, and several others in contemporary Canada Western Red Spring wheat varieties is a tremendous addition to our present knowledge of resistance gene deployment in breeding. Carberry demonstrated substantial stacking of genes which could be supplemented with the genes identified in other cultivars with the expectation of increasing efficacy of resistance to leaf rust and longevity with little risk of linkage drag.
Collapse
Affiliation(s)
- Firdissa E Bokore
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Ron E. Knox
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
- * E-mail: (REK); (RDC); (CJP)
| | - Richard D. Cuthbert
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
- * E-mail: (REK); (RDC); (CJP)
| | - Curtis J. Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
- * E-mail: (REK); (RDC); (CJP)
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Amidou N’Diaye
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | - Heather L. Campbell
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Catherine Munro
- Plant and Food Research, Canterbury Agriculture and Science Centre, Lincoln, New Zealand
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Colin W. Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Curt A. McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Andrew G. Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Dean Spaner
- Department of Agricultural, Food and Nutritional Science, 4–10N Agriculture-Forestry Centre, University of Alberta, Edmonton, Canada
| | - D. B. Fowler
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Samia Berraies
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Brad Meyer
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| |
Collapse
|
33
|
Lim J, Lim CW, Lee SC. Pepper Novel Serine-Threonine Kinase CaDIK1 Regulates Drought Tolerance via Modulating ABA Sensitivity. FRONTIERS IN PLANT SCIENCE 2020; 11:1133. [PMID: 32793275 PMCID: PMC7390950 DOI: 10.3389/fpls.2020.01133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Adaptation to drought stress is essential for plant growth and development. Plants often adapt to water deficit conditions by activating the ABA signaling. Here, we report that the pepper CaDIK1 (Capsicum annuum Drought Induced Kinase 1) gene is essential for plant tolerance to drought stress. CaDIK1 contains a serine-threonine kinase domain, which plays a role for attachment of phosphate to the target protein. The expression levels of CaDIK1 are upregulated in pepper leaves by ABA, drought, NaCl and H2O2 treatments suggesting its role in abiotic stress response. We used CaDIK1-silenced pepper and CaDIK1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to ABA and drought. CaDIK1-silenced pepper plants conferred a reduced ABA sensitivity and drought hypersensitivity, which was accompanied by high levels of transpirational water loss. CaDIK1-OX plants displayed opposite phenotypes to CaDIK1-silenced peppers. In contrast, substitution of Lys350 to Asn in the kinase domain of CaDIK1 did not lead to alteration of drought sensitivity. Collectively, these data indicate that CaDIK1 is a positive regulator of the ABA-mediated drought-stress tolerance.
Collapse
|
34
|
Rice Senescence-Induced Receptor-Like Kinase ( OsSRLK) Is Involved in Phytohormone-Mediated Chlorophyll Degradation. Int J Mol Sci 2019; 21:ijms21010260. [PMID: 31905964 PMCID: PMC6982081 DOI: 10.3390/ijms21010260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023] Open
Abstract
Chlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (OsSRLK), whose transcription was upregulated in senescing rice leaves. The detached leaves of ossrlk mutant (ossrlk) contained more green pigment than those of the wild type (WT) during dark-induced senescence (DIS). HPLC and immunoblot assay revealed that degradation of chlorophyll and photosystem II proteins was repressed in ossrlk during DIS. Furthermore, ultrastructural analysis revealed that ossrlk leaves maintained the chloroplast structure with intact grana stacks during dark incubation; however, the retained green color and preserved chloroplast structures of ossrlk did not enhance the photosynthetic competence during age-dependent senescence in autumn. In ossrlk, the panicles per plant was increased and the spikelets per panicle were reduced, resulting in similar grain productivity between WT and ossrlk. By transcriptome analysis using RNA sequencing, genes related to phytohormone, senescence, and chlorophyll biogenesis were significantly altered in ossrlk compared to those in WT during DIS. Collectively, our findings indicate that OsSRLK may degrade chlorophyll by participating in a phytohormone-mediated pathway.
Collapse
|
35
|
Skolotneva ES, Salina EA. Resistance mechanisms involved in complex immunity of wheat against rust diseases. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The review is devoted to the disclosure of the modern concept of plant immunity as a hierarchical system of plant host protection, controlled by combinations of major and minor resistance genes (loci). The “zigzag” model is described in detail for discussing the molecular bases of plant immunity with key concepts: pathogen-associated molecular patterns triggering innate immunity, ambivalent effectors causing susceptibility, but when interacting with resistance genes, a hypersensitive reaction or alternative defense mechanisms. There are three types of resistance in cereals: (1) basal resistance provided by plasma membrane-localized receptors proteins; (2) racespecific resistance provided by intracellular immune R-receptors; (3) partial resistance conferred by quantitative gene loci. The system ‘wheat (Triticum aestivum) – the fungus causing leaf rust (Puccinia triticina)’ is an interesting model for observing all the resistance mechanisms listed above, since the strategy of this pathogen is aimed at the constitutive use of host resources. The review focuses on known wheat genes responsible for various types of resistance to leaf rust: race-specific genes Lr1, Lr10, Lr19, and Lr21; adult resistance genes which are hypersensitive Lr12, Lr13, Lr22a, Lr22b, Lr35, Lr48, and Lr49; nonhypersensitive genes conferring partial resistance Lr34, Lr46, Lr67, and Lr77. The involvement of some wheat R-genes in pre-haustorial resistance to leaf rust has been discovered recently: Lr1, Lr3a, Lr9, LrB, Lr19, Lr21, Lr38. The presence of these genes in the genotype ensures the interruption of early pathogenesis through the following mechanisms: disorientation and branching of the germ tube; formation of aberrant fungal penetration structures (appressorium, substomatal vesicle); accumulation of callose in mesophyll cell walls. Breeding for immunity is accelerated by implementation of data on various mechanisms of wheat resistance to rust diseases, which are summarized in this review.
Collapse
|
36
|
Detection of QTLs associated with mungbean yellow mosaic virus (MYMV) resistance using the interspecific cross of Vigna radiata × Vigna umbellata. J Appl Genet 2019; 60:255-268. [PMID: 31332718 DOI: 10.1007/s13353-019-00506-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022]
Abstract
Mungbean (Vigna radiata) and ricebean (V. umbellata) were utilized to obtain an inter-specific recombinant inbred line (RIL) population with the objective of detecting quantitative trait loci (QTL) associated with mungbean yellow mosaic virus (MYMV) resistance. To precisely map QTLs, accurate genetic linkage maps are essential. In the present study, genotyping-by-sequencing (GBS) platform was utilized to develop the genetic linkage map. The map contained 538 single nucleotide polymorphism (SNP) markers, consisted of 11 linkage groups and spanned for 1291.7 cM with an average marker distance of 2.40 cM. The individual linkage group ranged from 90.2 to 149.1 cM in length, and the SNP markers were evenly distributed in the genetic linkage map, with 30-79 SNP markers per chromosome. The QTL analysis using the genetic map and 2 years (2015 and 2016) of phenotyping data identified five QTLs with phenotypic variation explained (PVE) from 10.11 to 20.04%. Of these, a QTL on chromosome 4, designated as qMYMV4-1, was major and stably detected in the same marker interval in both years. This QTL region harbours possible candidate genes for controlling MYMV resistance. The linkage map and QTL/gene (s) for MYMV resistance identified in this study should be useful for QTL fine mapping and cloning for further studies.
Collapse
|
37
|
Zhong C, Li Y, Sun S, Duan C, Zhu Z. Genetic Mapping and Molecular Characterization of a Broad-spectrum Phytophthora sojae Resistance Gene in Chinese Soybean. Int J Mol Sci 2019; 20:E1809. [PMID: 31013701 PMCID: PMC6515170 DOI: 10.3390/ijms20081809] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/26/2023] Open
Abstract
Phytophthora root rot (PRR) causes serious annual soybean yield losses worldwide. The most effective method to prevent PRR involves growing cultivars that possess genes conferring resistance to Phytophthora sojae (Rps). In this study, QTL-sequencing combined with genetic mapping was used to identify RpsX in soybean cultivar Xiu94-11 resistance to all P. sojae isolates tested, exhibiting broad-spectrum PRR resistance. Subsequent analysis revealed RpsX was located in the 242-kb genomic region spanning the RpsQ locus. However, a phylogenetic investigation indicated Xiu94-11 carrying RpsX is distantly related to the cultivars containing RpsQ, implying RpsX and RpsQ have different origins. An examination of candidate genes revealed RpsX and RpsQ share common nonsynonymous SNP and a 144-bp insertion in the Glyma.03g027200 sequence encoding a leucine-rich repeat (LRR) region. Glyma.03g027200 was considered to be the likely candidate gene of RpsQ and RpsX. Sequence analyses confirmed that the 144-bp insertion caused by an unequal exchange resulted in two additional LRR-encoding fragments in the candidate gene. A marker developed based on the 144-bp insertion was used to analyze the genetic population and germplasm, and proved to be useful for identifying the RpsX and RpsQ alleles. This study implies that the number of LRR units in the LRR domain may be important for PRR resistance in soybean.
Collapse
Affiliation(s)
- Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yinping Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China.
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Canxing Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
38
|
Loarce Y, Dongil P, Fominaya A, González JM, Ferrer E. PK-profiling method for identifying the expression of resistance-associated genes in partially resistant oats to crown rust. BMC PLANT BIOLOGY 2018; 18:376. [PMID: 30594125 PMCID: PMC6311036 DOI: 10.1186/s12870-018-1604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Protein kinases play a key role in plant cell homeostasis and the activation of defense mechanisms. Partial resistance to fungi in plants is interesting because of its durability. However, the variable number of minor loci associated with this type of resistance hampers the reliable identification of the full range of genes involved. The present work reports the technique of protein kinase (PK)-profiling for the identification of the PK genes induced in the partially resistant oats line MN841801-1 following exposure to the fungus Puccinia coronata. This is the first time this technique has been used with cDNA (complementary DNA) from a suppression subtractive hybridization library obtained after the hybridization of cDNAs from inoculated and mock-inoculated plants. RESULTS Six degenerate primers based on the conserved domains of protein kinases were used in a PK-profiling assay including cDNA from mock-inoculated leaves and subtracted cDNA. Of the 75.7% of sequences cloned and sequenced that showed significant similarity to resistance genes, 76% were found to code for PKs. Translation and ClustalW2 alignment of each sequence cloned with the complete sequences of the most similar B. distachyon PKs allowed those of the partially resistant oat line to be deduced and characterized. Further, a phylogenetic study carried out after alignment of these B. distachyon PK sequences with the most similar protein sequences of related species also allowed to deduce different functions for the PK cloned. RT-qPCR (Reverse Transcription-quantitative PCR) was analyzed on nine representative sequences to validate the reliability of the employed PK-profiling method as a tool for identifying the expression of resistance-associated genes. CONCLUSIONS PK-profiling would appear to be a useful tool for the identification of the PKs expressed in oats after challenge by P. coronata, and perhaps other pathogens. Most of the PKs studied are related to receptor-like protein kinases expressed shortly after infection. This is in agreement with previous studies indicating a close relationship between partial resistance and the first layer of defense against pathogen used by plants.
Collapse
Affiliation(s)
- Yolanda Loarce
- Department of Biomedicine and Biotechnology, University of Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid Spain
| | - Pilar Dongil
- Department of Biomedicine and Biotechnology, University of Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid Spain
| | - Araceli Fominaya
- Department of Biomedicine and Biotechnology, University of Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid Spain
| | - Juan M. González
- Department of Biomedicine and Biotechnology, University of Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid Spain
| | - Esther Ferrer
- Department of Biomedicine and Biotechnology, University of Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid Spain
| |
Collapse
|
39
|
Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP. Disease Resistance Mechanisms in Plants. Genes (Basel) 2018; 9:E339. [PMID: 29973557 PMCID: PMC6071103 DOI: 10.3390/genes9070339] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Plants have developed a complex defense system against diverse pests and pathogens. Once pathogens overcome mechanical barriers to infection, plant receptors initiate signaling pathways driving the expression of defense response genes. Plant immune systems rely on their ability to recognize enemy molecules, carry out signal transduction, and respond defensively through pathways involving many genes and their products. Pathogens actively attempt to evade and interfere with response pathways, selecting for a decentralized, multicomponent immune system. Recent advances in molecular techniques have greatly expanded our understanding of plant immunity, largely driven by potential application to agricultural systems. Here, we review the major plant immune system components, state of the art knowledge, and future direction of research on plant⁻pathogen interactions. In our review, we will discuss how the decentralization of plant immune systems have provided both increased evolutionary opportunity for pathogen resistance, as well as additional mechanisms for pathogen inhibition of such defense responses. We conclude that the rapid advances in bioinformatics and molecular biology are driving an explosion of information that will advance agricultural production and illustrate how complex molecular interactions evolve.
Collapse
Affiliation(s)
- Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Shaukat Ali
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Emmanuel Byamukama
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| |
Collapse
|
40
|
Meng Q, Gupta R, Min CW, Kim J, Kramer K, Wang Y, Park SR, Finkemeier I, Kim ST. A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves. J Proteomics 2018; 196:120-130. [PMID: 29970347 DOI: 10.1016/j.jprot.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022]
Abstract
Previously, we reported a novel Magnaporthe oryzae- secreted protein MSP1, which triggers cell death and pathogen-associated molecular pattern (PAMP)-triggered immune (PTI) responses in rice. To investigate the MSP1 induced defense response in rice at the protein level, we employed a label-free quantitative proteomic approach, in parallel with flg22 treatment, which is a well-known elicitor. Exogenous application of MSP1 to rice leaves induced an oxidative burst, MAPK3/6 activation, and activation of pathogenesis-related genes (DUF26, PBZ, and PR-10). MaxQuant based label free proteome analysis led to the identification of 4167 protein groups of which 433 showed significant differences in response to MSP1 and/or flg22 treatment. Functional annotation of the differential proteins showed that majority of the proteins related to primary, secondary, and lipid metabolism were decreased, while proteins associated mainly with the stress response, post-translational modification and signaling were increased in abundance. Moreover, several peroxidases and receptor kinases were induced by both the elicitors, highlighting their involvement in MSP1 and flg22 induced signaling in rice. Taken together, the results reported here contribute to our understanding of MSP1 and flg22 triggered immune responses at the proteome level, thereby increasing our overall understanding of PTI signaling in rice. BIOLOGICAL SIGNIFICANCE: MSP1 is a M. oryzae secreted protein, which triggers defense responses in rice. Previous reports have shown that MSP1 is required for the pathogenicity of rice blast fungus, however, the exact mechanism of its action and its downstream targets in rice are currently unknown. Identification of the downstream targets is required in order to understand the MSP1 induced signaling in rice. Moreover, key proteins identified could also serve as potential candidates for the generation of disease resistance crops by modulating stress signaling pathways. Therefore, here we employed, for the first time, a label-free quantitative proteomic approach to investigate the MSP1 induced signaling in rice together with flg22. Functional annotation of the differential proteins showed that majority of the proteins related to primary, secondary, and lipid metabolism were decreased, while proteins related to the defense response, signaling and ROS detoxification were majorly increased. Thus, as an elicitor, recombinant MSP1 proteins could be utilized to inducing broad pathogen resistance in crops by priming the local immune responses.
Collapse
Affiliation(s)
- Qingfeng Meng
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea.
| | - Chul Woo Min
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea
| | - Jongyun Kim
- Division of Biotechnology, Korea University, Seoul 02841, South Korea
| | - Katharina Kramer
- Plant Proteomics Group, Max Planck Institute for Plant Breeding Research, Germany
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Sang-Ryeol Park
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, South Korea
| | - Iris Finkemeier
- Plant Proteomics Group, Max Planck Institute for Plant Breeding Research, Germany; Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149 Muenster, Germany
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 627-706, South Korea.
| |
Collapse
|
41
|
Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM. Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. Int J Mol Sci 2018; 19:E1662. [PMID: 29867062 PMCID: PMC6032283 DOI: 10.3390/ijms19061662] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Cristina Crosatti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Vania Michelotti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Anna M Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy.
| |
Collapse
|
42
|
Zhong C, Sun S, Yao L, Ding J, Duan C, Zhu Z. Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean. FRONTIERS IN PLANT SCIENCE 2018; 9:44. [PMID: 29441079 PMCID: PMC5797622 DOI: 10.3389/fpls.2018.00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 05/19/2023]
Abstract
Phytophthora root rot (PRR) caused by Phytophthora sojae is a major soybean disease that causes severe economic losses worldwide. Using soybean cultivars carrying a Rps resistance gene is the most effective strategy for controlling this disease. We previously detected a novel Phytophthora resistance gene, RpsZS18, on chromosome 2 of the soybean cultivar Zaoshu18. The aim of the present study was to identify and finely map RpsZS18. We used 232 F2:3 families generated from a cross between Zaoshu18 (resistant) and Williams (susceptible) as the mapping population. Simple sequence repeat (SSR) markers distributed on chromosome 2 were used to map RpsZS18. First, 12 SSR markers linked with RpsZS18 were identified by linkage analyses, including two newly developed SSR markers, ZCSSR33 and ZCSSR46, that flanked the gene at distances of 0.9 and 0.5 cM, respectively. Second, PCR-based InDel markers were developed based on sequence differences between the two parents and used to further narrow down the mapping region of RpsZS18 to 71.3 kb. Third, haplotype analyses were carried out in the RpsZS18 region using 14 soybean genotypes with whole-genome resequencing. We detected six genes with unique haplotype sequences in Zaoshu18. Finally, quantitative real-time PCR assays of the six genes revealed an EF-hand calcium-binding domain containing protein encoding gene (Glyma.02g245700), a pfkB carbohydrate kinase encoding gene (Glyma.02g245800), and a gene with no functional annotation (Glyma.02g246300), are putative candidate PRR resistance genes. This study provides useful information for breeding P. sojae-resistant soybean cultivars.
Collapse
Affiliation(s)
- Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Canxing Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Wang Z, Cheng J, Fan A, Zhao J, Yu Z, Li Y, Zhang H, Xiao J, Muhammad F, Wang H, Cao A, Xing L, Wang X. LecRK-V, an L-type lectin receptor kinase in Haynaldia villosa, plays positive role in resistance to wheat powdery mildew. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:50-62. [PMID: 28436098 PMCID: PMC5811777 DOI: 10.1111/pbi.12748] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/21/2017] [Accepted: 04/14/2017] [Indexed: 05/25/2023]
Abstract
Plant sense potential microbial pathogen using pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs). The Lectin receptor-like kinase genes (LecRKs) are involved in various cellular processes mediated by signal transduction pathways. In the present study, an L-type lectin receptor kinase gene LecRK-V was cloned from Haynaldia villosa, a diploid wheat relative which is highly resistant to powdery mildew. The expression of LecRK-V was rapidly up-regulated by Bgt inoculation and chitin treatment. Its transcript level was higher in the leaves than in roots, culms, spikes and callus. Single-cell transient overexpression of LecRK-V led to decreased haustorium index in wheat variety Yangmai158, which is powdery mildew susceptible. Stable transformation LecRK-V into Yangmai158 significantly enhanced the powdery mildew resistance at both seedling and adult stages. At seedling stage, the transgenic line was highly resistance to 18 of the tested 23 Bgt isolates, hypersensitive responses (HR) were observed for 22 Bgt isolates, and more ROS at the Bgt infection sites was accumulated. These indicated that LecRK-V confers broad-spectrum resistance to powdery mildew, and ROS and SA pathways contribute to the enhanced powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Zongkuan Wang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Jiangyue Cheng
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Anqi Fan
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Jia Zhao
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Zhongyu Yu
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Yingbo Li
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Heng Zhang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Faheem Muhammad
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Aizhong Cao
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Liping Xing
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| |
Collapse
|
44
|
Rui R, Liu S, Karthikeyan A, Wang T, Niu H, Yin J, Yang Y, Wang L, Yang Q, Zhi H, Li K. Fine-mapping and identification of a novel locus Rsc15 underlying soybean resistance to Soybean mosaic virus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2395-2410. [PMID: 28825113 DOI: 10.1007/s00122-017-2966-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE Rsc15, a novel locus underlying soybean resistance to SMV, was fine mapped to a 95-kb region on chromosome 6. The Rsc15- mediated resistance is likely attributed to the gene GmPEX14 , the relative expression of which was highly correlated with the accumulation of H 2 O 2 along with the activities of POD and CAT during the early stages of SMV infection in RN-9. Soybean mosaic virus (SMV) causes severe yield losses and seed quality deterioration in soybean [Glycine max (L.) Merr.] worldwide. A series of single dominant SMV resistance genes have been identified on respective soybean chromosomes 2, 13 and 14, while one novel locus, Rsc15, underlying resistance to the virulent SMV strain SC15 from soybean cultivar RN-9 has been recently mapped to a 14.6-cM region on chromosome 6. However, candidate gene has not yet been identified within this region. In the present study, we aimed to fine map the Rsc15 region and identify candidate gene(s) for this invaluable locus. High-resolution fine-mapping revealed that the Rsc15 gene was located in a 95-kb genomic region which was flanked by the two simple sequence repeat (SSR) markers SSR_06_17 and BARCSOYSSR_06_0835. Allelic sequence comparison and expression profile analysis of candidate genes inferred that the gene Glyma.06g182600 (designated as GmPEX14) was the best candidate gene attributing for the resistance of Rsc15, and that genes encoding receptor-like kinase (RLK) (i.e., Glyma.06g175100 and Glyma.06g184400) and serine/threonine kinase (STK) (i.e., Glyma.06g182900 and Glyma.06g183500) were also potential candidates. High correlations were established between the relative expression level of GmPEX14 and the hydrogen peroxide (H2O2) concentration and activities of catalase (CAT) and peroxidase (POD) during the early stages of SMV-SC15 infection in RN-9. The results of the present study will be useful in marker-assisted breeding for SMV resistance and will lead to further understanding of the molecular mechanisms of host resistance against SMV.
Collapse
Affiliation(s)
- Ren Rui
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Shichao Liu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Adhimoolam Karthikeyan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Tao Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Haopeng Niu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Jinlong Yin
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Yunhua Yang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Liqun Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Qinghua Yang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Haijian Zhi
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China.
| | - Kai Li
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, People's Republic of China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
45
|
Dezhsetan S. Genome scanning for identification and mapping of receptor-like kinase (RLK) gene superfamily in Solanum tuberosum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:755-765. [PMID: 29158626 PMCID: PMC5671453 DOI: 10.1007/s12298-017-0471-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 05/19/2023]
Abstract
Receptor-like kinases (RLKs) are a key class of genes that contribute to diverse phenomena from plant development to defense responses. The availability of completed potato genome sequences provide an excellent opportunity to identify and characterize RLK gene superfamily in this lineage. We identified 747 non-redundant RLK genes in the potato genome that were classified into 52 subfamilies, of which 58% members organized into tandem repeats. Nine of potato RLK subfamilies organized into tandem repeats. Also, six subfamilies exhibited lineage-specific expansion compared to Arabidopsis. The majority of RLK genes were physically organized within heterogeneous and homogeneous clusters on chromosomes and were unevenly distributed on the genome. Chromosome 2, 3 and 7 contained the highest number of RLK genes and the most underrepresented chromosomes were chromosome 8, 10 and 11. Taken together, our results provide a framework for future efforts on comparative, evolutionary and functional studies of the members of RLK superfamily.
Collapse
|
46
|
Zeng B, Yan H, Liu X, Zang W, Zhang A, Zhou S, Huang L, Liu J. Genome-wide association study of rust traits in orchardgrass using SLAF-seq technology. Hereditas 2017; 154:5. [PMID: 28250720 PMCID: PMC5322626 DOI: 10.1186/s41065-017-0027-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/24/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND While orchardgrass (Dactylis glomerata L.) is a well-known perennial forage species, rust diseases cause serious reductions in the yield and quality of orchardgrass; however, genetic mechanisms of rust resistance are not well understood in orchardgrass. RESULTS In this study, a genome-wide association study (GWAS) was performed using specific-locus amplified fragment sequencing (SLAF-seq) technology in orchardgrass. A total of 2,334,889 SLAF tags were generated to produce 2,309,777 SNPs. ADMIXTURE analysis revealed unstructured subpopulations for 33 accessions, indicating that this orchardgrass population could be used for association analysis. Linkage disequilibrium (LD) analysis revealed an average r2 of 0.4 across all SNP pairs, indicating a high extent of LD in these samples. Through GWAS, a total of 4,604 SNPs were found to be significantly (P < 0.01) associated with the rust trait. The bulk analysis discovered a number of 5,211 SNPs related to rust trait. Two candidate genes, including cytochrome P450, and prolamin were implicated in disease resistance through prediction of functional genes surrounding each high-quality SNP (P < 0.01) associated with rust traits based on GWAS analysis and bulk analysis. CONCLUSIONS The large number of SNPs associated with rust traits and these two candidate genes may provide the basis for further research on rust resistance mechanisms and marker-assisted selection (MAS) for rust-resistant lineages.
Collapse
Affiliation(s)
- Bing Zeng
- Department of Animal Science, Southwest University, Rongchang, Chongqing, 402460 China
| | - Haidong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xinchun Liu
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wenjing Zang
- College of Life Science, China West Normal University, Nanchong, 637009 China
| | - Ailing Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Sifan Zhou
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jinping Liu
- College of Life Science, China West Normal University, Nanchong, 637009 China
| |
Collapse
|
47
|
Martinelli F, Reagan RL, Dolan D, Fileccia V, Dandekar AM. Proteomic analysis highlights the role of detoxification pathways in increased tolerance to Huanglongbing disease. BMC PLANT BIOLOGY 2016; 16:167. [PMID: 27465111 PMCID: PMC4963945 DOI: 10.1186/s12870-016-0858-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/20/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Huanglongbing (HLB) disease is still the greatest threat to citriculture worldwide. Although there is not any resistance source in the Citrus germplasm, a certain level of moderated tolerance is present. A large-scale analysis of proteomic responses of Citrus may help: 1) clarifying physiological and molecular effects of disease progression, 2) validating previous data at transcriptomic level, and 3) identifying biomarkers for development of early diagnostics, short-term therapeutics and long-term genetic resistance. RESULTS In this work we have conducted a proteomic analysis of mature leaves of two Citrus genotypes with well-known differing tolerances to HLB: Navel orange (highly susceptible) and Volkameriana (moderately tolerant). Pathway enrichment analysis showed that amino acid degradation processes occurred to a larger degree in the Navel orange. No clear differences between the two genotypes were observed for primary metabolic pathways. The most important finding was that four glutathione-S-transferases were upregulated in Volkameriana and not in Navel orange. These proteins are involved in radical ion detoxification. CONCLUSIONS Upregulation of proteins involved in radical ion detoxification should be considered as an important mechanism of increased tolerance to HLB.
Collapse
Affiliation(s)
- Federico Martinelli
- Department of Agricultural and Forest Sciences, University of Palermo, viale delle scienze ed. 4, 90128 Palermo, Italy
| | - Russell L. Reagan
- Plant Sciences Department, University of California, One Shields Avenue, 95616 Davis, CA USA
| | - David Dolan
- Plant Sciences Department, University of California, One Shields Avenue, 95616 Davis, CA USA
| | - Veronica Fileccia
- Department of Agricultural and Forest Sciences, University of Palermo, viale delle scienze ed. 4, 90128 Palermo, Italy
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California, One Shields Avenue, 95616 Davis, CA USA
| |
Collapse
|
48
|
Xuan YH, Peterson T, Han CD. Generation and Analysis of Transposon Ac/Ds-Induced Chromosomal Rearrangements in Rice Plants. Methods Mol Biol 2016; 1469:49-61. [PMID: 27557685 DOI: 10.1007/978-1-4939-4931-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Closely-located transposable elements (TEs) have been known to induce chromosomal breakage and rearrangements via alternative transposition. To study genome rearrangements in rice, an Ac/Ds system has been employed. This system comprises an immobile Ac element expressed under the control of CaMV 35S promoter, and a modified Ds element. A starter line carried Ac and a single copy of Ds at the OsRLG5 (Oryza sativa receptor-like gene 5). To enhance the transpositional activity, seed-derived calli were cultured and regenerated into plants. Among 270 lines regenerated from the starter, one line was selected that contained a pair of inversely-oriented Ds elements at the OsRLG5 (Oryza sativa receptor-like gene 5). The selected line was again subjected to tissue culture to obtain a regenerant population. Among 300 regenerated plants, 107 (36 %) contained chromosomal rearrangements including deletions, duplications, and inversions of various sizes. From 34 plants, transposition mechanisms leading to such genomic rearrangements were analyzed. The rearrangements were induced by sister chromatid transposition (SCT), homologous recombination (HR), and single chromatid transposition (SLCT). Among them, 22 events (65 %) were found to be transmitted to the next generation. These results demonstrate a great potential of tissue culture regeneration and the Ac/Ds system in understanding alternative transposition mechanisms and in developing chromosome engineering in plants.
Collapse
Affiliation(s)
- Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning, 110866, China.,Division of Applied Life Science (BK21 Program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, Korea
| | - Thomas Peterson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
| | - Chang-Deok Han
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, Korea.
| |
Collapse
|
49
|
Du Z, Che M, Li G, Chen J, Quan W, Guo Y, Wang Z, Ren J, Zhang H, Zhang Z. A QTL with major effect on reducing leaf rust severity on the short arm of chromosome 1A of wheat detected across different genetic backgrounds and diverse environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1579-94. [PMID: 25982130 DOI: 10.1007/s00122-015-2533-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/02/2015] [Indexed: 05/02/2023]
Abstract
Selection for QLr.cau - 1AS (a major QTL detected in wheat for reducing leaf rust severity) based on the DNA marker gpw2246 was as effective as selection for Lr34 based on cssfr5. Leaf rust is an important disease of wheat worldwide. Utilization of slow-rusting resistance constitutes a strategy to sustainably control this disease. The American wheat cultivar Luke exhibits slow leaf-rusting resistance at the adult plant stage. The objectives of this study were to detect and validate QTL for the resistance in Luke. Three winter wheat populations were used, namely, 149 recombinant inbred lines (RILs) derived from the cross Luke × Aquileja, 307 RILs from Luke × AQ24788-83, and 80 F2:3 families selected from Lingxing66 × KA298. Aquileja and Lingxing66 are highly susceptible to leaf rust. AQ24788-83 shows high (susceptible) infection type but contains the slow-rusting gene Lr34 as diagnosed by the gene-specific marker cssfr5. KA298, an F9 RIL selected from Luke × AQ24788-83, contains Lr34 and QLr.cau-1AS (a major QTL originated from Luke, this study). These wheats were evaluated for leaf rust in 12 field and greenhouse environments involving four locations and five seasons. Genotyping was done using simple sequence repeat (SSR) and diversity arrays technology markers. Of the detected QTLs, QLr.cau-1AS was significant consistently across all the genetic backgrounds, test environments, and likely a wide range of pathogen races. QLr.cau-1AS explained 22.3-55.2% of leaf rust phenotypic variation, being comparable to Lr34 in effect size. A co-dominant SSR marker (gpw2246, http://wheat.pw.usda.gov/GG2/index.shtml ) was identified to be tightly linked to QLr.cau-1AS. Selection based on gpw2246 for QLr.cau-1AS was as effective as the selection based on cssfr5 for Lr34. QLr.cau-1AS will be helpful for increasing the genetic diversity of slow leaf-rusting resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Ziyi Du
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ma C, Wang H, Macnish AJ, Estrada-Melo AC, Lin J, Chang Y, Reid MS, Jiang CZ. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia. HORTICULTURE RESEARCH 2015; 2:15034. [PMID: 26504577 PMCID: PMC4595987 DOI: 10.1038/hortres.2015.34] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 05/18/2023]
Abstract
The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Hong Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Andrew J Macnish
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | | | - Jing Lin
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Youhong Chang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Michael S Reid
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
| |
Collapse
|