1
|
Qiu CW, Shi M, Zhaxi Q, Feng X, Jia Y, Li C, Wu F. HvAIR12 confers aluminum tolerance in barley by H 2O 2-mediated activation of HvEXPA4 to facilitate aluminum detoxification and improve root growth. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138293. [PMID: 40239528 DOI: 10.1016/j.jhazmat.2025.138293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/29/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Aluminum (Al) toxicity is a major constraint on crop productivity in acid soils, with barley being particularly susceptible. In our previous transcriptomic analysis, we identified HvAIR12 (AUXIN INDUCED IN ROOT CULTURES), a novel gene that is specifically induced by Al in the roots of the Al-tolerant Tibetan wild barley accession XZ16. In this study, we performed comprehensive physiological, transgenic, and molecular analyses to explore the role of HvAIR12 in Al tolerance. HvAIR12 encodes a plasma membrane-bound protein and is predominantly expressed in the roots, with its expression being strongly upregulated by Al exposure. Knockdown of HvAIR12 resulted in significantly reduced root growth and increased Al accumulation, whereas overexpression of HvAIR12 elevated H2O2 levels in the apoplast and promoted root growth-effects that were reversible by H2O2 scavengers. RNA sequencing further revealed that overexpression of HvAIR12 led to the transcriptional activation of several expansin genes, including HvEXPA4 and HvEXPB2. Functional characterization of HvEXPA4 transgenic lines and gene silencing experiments in HvAIR12-overexpressing backgrounds confirmed that HvEXPA4 is an essential downstream target of HvAIR12, mitigating Al toxicity by modulating cell wall components. This study uncovers the novel role of HvAIR12 in regulating apoplastic H2O2 levels and its interaction with other Al tolerance-related genes. Our findings highlight that HvAIR12 promotes Al tolerance through H2O2-mediated activation of HvEXPA4, forming a regulatory pathway critical for Al exclusion and root elongation under Al stress. These results providing valuable molecular insights and promising target genes for breeding more resilient cereal crops for cultivation in acid soils.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Min Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Quncuo Zhaxi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Agricultural Technology Extension and Service Center of Lhasa, Lhasa, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yong Jia
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre/Future Food Innovation Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre/Future Food Innovation Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Ye X, Xing J, Tao X, Yan Y, Li Y, Xie Z, Yang J, Zeng L, Wang Y, Li M, Wang M, Fu N, Wan Z, Kong H, Ye J, Hu W. Comparative transcriptome analysis provides insights into ABA alleviating postharvest physiological deterioration of cassava. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109773. [PMID: 40086129 DOI: 10.1016/j.plaphy.2025.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Cassava, a staple crop in tropical regions, suffers from rapid postharvest physiological deterioration (PPD), limiting its shelf life. Although abscisic acid (ABA) has shown potential in alleviating PPD, the underlying regulatory pathways remain largely unexplored. In this study, physiological assays demonstrated that exogenous ABA alleviated PPD in cassava by decreasing H2O2 content. Temporal-resolution transcriptome analyses identified gene expression changes in cassava tuberous roots during PPD, with 1,338, 2,718, and 5543 genes differentially expressed after 6, 12, and 48 h of treatment, respectively. GO enrichment analysis revealed that ABA-induced DEGs exhibited functions such as response to oxygen radical, lignin metabolic process, and positive regulation of signal transduction. Co-expression network analysis identified three significant gene modules comprising 167 transcription factors (TFs) from 28 families, with 17 TFs predicted to regulate six key antioxidant enzyme genes through corresponding promoter motifs. The upregulated expression of these genes was subsequently validated by quantitative real-time PCR (qRT-PCR). Furthermore, yeast one-hybrid (Y1H) and dual-luciferase assays provided direct evidences that MeMYB114 and MeHAT22 regulate the expression of MePOD10, while MeERF110, MeWRKY057, and MeHAT22 were shown to activate MePOD18 expression. These findings indicate that MeMYB114/MeHAT22/MeERF110/MeWRKY057-MePOD pathway is a crucial component involved in ABA-regulated PPD alleviation in cassava.
Collapse
Affiliation(s)
- Xiaoxue Ye
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Junchao Xing
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiangru Tao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Yan Yan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yu Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengnan Xie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jinghao Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liwang Zeng
- Institute of Scientific and Technical Information, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Yu Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Meiying Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ming Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Naifang Fu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Zhongqing Wan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Hua Kong
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Jianqiu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Wei Hu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
3
|
Li N, Gao Y, Pu K, Zhang M, Wang T, Li J, Xie J. Glycine betaine enhances tolerance of low temperature combined with low light in pepper (Capsicum annuum L.) by improving the antioxidant capacity and regulating GB metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109705. [PMID: 40022883 DOI: 10.1016/j.plaphy.2025.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Glycine betaine (GB) is commonly used as an osmotic regulator and a donor to facilitate changes in methylation in plants and animals, thereby enhancing stress resistance. However, low temperature combined with low light stress represent the most prevalent stresses during pepper growth period in northwest China, and limited studies have focused on the potential stress-mitigating effects of GB. Therefore, to examine the regulatory mechanism of GB-induced tolerance to LL stress, pepper seedlings were pretreated with 20 mmol L-1 GB and 60 μmol L-1 3-Deazaneplanocin A hydrochloride at a temperature of 10/5 °C and illumination of 100 μmol m-2 s-1. The results demonstrated that GB significantly alleviated the detrimental effects of low temperature combined with low light stress on growth of primary and lateral roots and increased the roots absorption of mineral nutrients (N, P, Ca, Fe, and Zn). In addition, GB induced the expression of the genes for CaSOD, CaPOD, CaCAT, CaGR1, and CaDHAR, improved osmotic regulation, and increased the activities of enzymatic (superoxide dismutase, peroxidase, catalase, glutathione reductase, and dehydroascorbate reductase) and non-enzymatic antioxidants (ascorbate and glutathione). This resulted in enhanced scavenging of reactive oxygen species, thereby maintaining a balanced oxidation-reduction within the cells. Furthermore, GB substituted S-adenosylmethionine, a partial methylation donor, during the methyl group metabolism process, altering the m6A methylation level and increasing the resistance of pepper seedlings to LL stress. Overall, exogenous GB pretreatment could be used as a potential strategy for enhancing the LL tolerance of plants.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Miao Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Tiantian Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China.
| |
Collapse
|
4
|
Gam HJ, Adhikari A, Kang Y, Injamum-Ul-Hoque M, Shaffique S, Woo JI, Jeon JR, An BK, Back MY, Kim KY, Kang SM, Lee IJ. Investigating the Allelopathic and Bioherbicidal Potential of Solidago altissima with a Focus on Chemical Signaling in Trifolium repens. PLANTS (BASEL, SWITZERLAND) 2024; 14:96. [PMID: 39795356 PMCID: PMC11723385 DOI: 10.3390/plants14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Invasive weed species exhibit both advantages, such as the potential for allelochemicals in bioherbicide development, and risks, including their threat to crop production. Therefore, this study aims to identify an allelochemical from Solidago altissima, an invasive weed species. The dose-dependent effects of S. altissima shoot and root extracts (SSE, SRE) on the signaling in the forage crop Trifolium repens and germination in various weed species (Echinochloa oryzicola, Cyperus microiria, Alopecurus aequalis, Portulaca oleracea, and Amaranthus retroflexus) were evaluated. The results showed that the T. repens seedlings treated with root extracts exhibited a significant decrease in plant height, dry weight, and chlorophyll content, along with an increase in H2O2 levels. Additionally, antioxidant activities, such as superoxide dismutase, catalase, and peroxidase enzyme activities, were significantly elevated in T. repens treated with SRE. Moreover, SRE treatment significantly inhibited the seed germination of all tested weed species in a concentration-dependent manner. Gas chromatography-mass spectrometry analysis of S. altissima root extract identified a high concentration of methyl kolavenate, a clerodane diterpene predicted to act as a phytotoxic agent. These findings highlight the potential of S. altissima for the development of crop-protective agents while emphasizing its potential risks in agriculture.
Collapse
Affiliation(s)
- Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Yosep Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Ji-In Woo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Jin Ryeol Jeon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Byeong-Kwan An
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Min Young Back
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Ki-Yong Kim
- National Institute of Animal Science, Rural Development Administration (RDA), Cheonan 31000, Republic of Korea;
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| |
Collapse
|
5
|
Tai L, Wu J, Jing Y, Liu H, Zeng Q, Xu X, Shi S, Wang H, Liu W, Sun J, Han DJ, Chen KM. A genome-wide association study uncovers that TaPI4K-2A regulates pre-harvest sprouting in wheat. PLANT COMMUNICATIONS 2024; 5:100739. [PMID: 37897040 PMCID: PMC11121176 DOI: 10.1016/j.xplc.2023.100739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Affiliation(s)
- Li Tai
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Jianhui Wu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Huaizeng Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Qingdong Zeng
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Xiaojing Xu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Shengdixin Shi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Hongjin Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Wenting Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China.
| | - De-Jun Han
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China.
| | - Kun-Ming Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China.
| |
Collapse
|
6
|
Bian S, Zhao M, Zhang H, Ren Y. Differentially Expressed Genes Identification of Kohlrabi Seedlings ( Brassica oleracea var. caulorapa L.) under Polyethylene Glycol Osmotic Stress and AP2/ERF Transcription Factor Family Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1167. [PMID: 38674577 PMCID: PMC11054715 DOI: 10.3390/plants13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Osmotic stress is a condition in which plants do not get enough water due to changes in environmental factors. Plant response to osmotic stress is a complex process involving the interaction of different stress-sensitive mechanisms. Differentially expressed genes and response mechanisms of kohlrabi have not been reported under osmotic stress. A total of 196,642 unigenes and 33,040 differentially expressed unigenes were identified in kohlrabi seedlings under polyethylene glycol osmotic stress. AP2/ERF, NAC and eight other transcription factor family members with a high degree of interaction with CAT and SOD antioxidant enzyme activity were identified. Subsequently, 151 AP2/ERF genes were identified and analyzed. Twelve conserved motifs were searched and all AP2/ERF genes were clustered into four groups. A total of 149 AP2/ERF genes were randomly distributed on the chromosome, and relative expression level analysis showed that BocAP2/ERF genes of kohlrabi have obvious specificity in different tissues. This study lays a foundation for explaining the osmotic stress resistance mechanism of kohlrabi and provides a theoretical basis for the functional analysis of BocAP2/ERF transcription factor family members.
Collapse
Affiliation(s)
- Shuanling Bian
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Mengliang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Huijuan Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Yanjing Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| |
Collapse
|
7
|
Zhao YW, Li WK, Wang CK, Sun Q, Wang WY, Huang XY, Xiang Y, Hu DG. MdPRX34L, a class III peroxidase gene, activates the immune response in apple to the fungal pathogen Botryosphaeria dothidea. PLANTA 2024; 259:86. [PMID: 38453695 DOI: 10.1007/s00425-024-04355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/27/2024] [Indexed: 03/09/2024]
Abstract
MAIN CONCLUSION MdPRX34L enhanced resistance to Botryosphaeria dothidea by increasing salicylic acid (SA) and abscisic acid (ABA) content as well as the expression of related defense genes. The class III peroxidase (PRX) multigene family is involved in complex biological processes. However, the molecular mechanism of PRXs in the pathogen defense of plants against Botryosphaeria dothidea (B. dothidea) remains unclear. Here, we cloned the PRX gene MdPRX34L, which was identified as a positive regulator of the defense response to B. dothidea, from the apple cultivar 'Royal Gala.' Overexpression of MdPRX34L in apple calli decreased sensitivity to salicylic acid (SA) and abscisic acid(ABA). Subsequently, overexpression of MdPRX34L in apple calli increased resistance to B. dothidea infection. In addition, SA contents and the expression levels of genes related to SA synthesis and signaling in apple calli overexpressing MdPRX34L were higher than those in the control after inoculation, suggesting that MdPRX34L enhances resistance to B. dothidea via the SA pathway. Interestingly, infections in apple calli by B. dothidea caused an increase in endogenous levels of ABA followed by induction of ABA-related genes expression. These findings suggest a potential mechanism by which MdPRX34L enhances plant-pathogen defense against B. dothidea by regulating the SA and ABA pathways.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wan-Kun Li
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ying Xiang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
8
|
Zhang TJ, Ma Z, Ma HJ, Tian XS, Guo WL, Zhang C. Metabolic pathways modulated by coumarin to inhibit seed germination and early seedling growth in Eleusine indica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108035. [PMID: 37729857 DOI: 10.1016/j.plaphy.2023.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Coumarin is an allelochemical that is widely present in the plant kingdom and has great potential for weed control. However, its mechanisms of action remain largely unknown. This study employed metabolomic and transcriptomic analyses along with evaluations of amino acid profiles and related physiological indicators to investigate how coumarin inhibits the germination and seedling growth of Eleusine indica by modifying metabolic pathways. At 72 h of germination at 50 and 100 mg L-1 coumarin, E. indica had lower levels of soluble sugar and activities of amylases and higher levels of starch, O2-, H2O2, auxin (IAA) and abscisic acid (ABA) compared to the control. Metabolomic analysis demonstrated that coumarin treatments had a significant impact on the pathways associated with amino acid metabolism and transport and aminoacyl-tRNA biosynthesis. Exposure to coumarin induced significant alterations in the levels of 19 amino acids, with a decrease in 15 of them, including Met, Leu and γ-aminobutyric acid (GABA). Additionally, transcriptomic analysis showed that coumarin significantly disrupted several essential biological processes, including protein translation, secondary metabolite synthesis, and hormone signal transduction. The decrease in TCA cycle metabolite (cis-aconitate, 2-oxoglutarate, and malate) contents was associated with the suppression of transcription for related enzymes. Our findings indicate that the inhibition of germination and growth in E. indica by coumarin involves the suppression of starch conversion to sugars, modification of the amino acid profile, interference of hormone signalling and the induction of oxidative stress. The TCA cycle appears to be one of the most essential pathways affected by coumarin.
Collapse
Affiliation(s)
- Tai-Jie Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China
| | - Zhao Ma
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hong-Ju Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xing-Shan Tian
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China
| | - Wen-Lei Guo
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China
| | - Chun Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China.
| |
Collapse
|
9
|
Bao X, Hou X, Duan W, Yin B, Ren J, Wang Y, Liu X, Gu L, Zhen W. Screening and evaluation of drought resistance traits of winter wheat in the North China Plain. FRONTIERS IN PLANT SCIENCE 2023; 14:1194759. [PMID: 37396647 PMCID: PMC10313073 DOI: 10.3389/fpls.2023.1194759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 07/04/2023]
Abstract
Background Drought-resistant varieties are an important way to address the conflict between wheat's high water demand and the scarcity of water resources in the North China Plain (NCP). Drought stress impacts many morphological and physiological indicators in winter wheat. To increase the effectiveness of breeding drought-tolerant varieties, choosing indices that can accurately indicate a variety's drought resistance is advantageous. Results From 2019 to 2021, 16 representative winter wheat cultivars were cultivated in the field, and 24 traits, including morphological, photosynthetic, physiological, canopy, and yield component traits, were measured to evaluate the drought tolerance of the cultivars. Principal component analysis (PCA) was used to transform 24 conventional traits into 7 independent, comprehensive indices, and 10 drought tolerance indicators were screened out by regression analysis. The 10 drought tolerance indicators were plant height (PH), spike number (SN), spikelet per spike(SP), canopy temperature (CT), leaf water content (LWC), photosynthetic rate (A), intercellular CO2 concentration (Ci), peroxidase activity (POD), malondialdehyde content (MDA), and abscisic acid (ABA). In addition, through membership function and cluster analysis, 16 wheat varieties were divided into 3 categories: drought-resistant, drought weak sensitive, and drought-sensitive. Conclusion JM418, HM19,SM22, H4399, HG35, and GY2018 exhibited excellent drought tolerance and,therefore, can be used as ideal references to study the drought tolerance mechanism in wheat and breeding drought-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Xiaoyuan Bao
- College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Xiaoyang Hou
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Weiwei Duan
- College of Agronomy, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Baozhong Yin
- Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Jianhong Ren
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yandong Wang
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xuejing Liu
- College of Agronomy, Hebei Agricultural University, Baoding, China
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Limin Gu
- College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Wenchao Zhen
- College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Wang L, Zhou Y, Ding Y, Chen C, Chen X, Su N, Zhang X, Pan Y, Li J. Novel flavin-containing monooxygenase protein FMO1 interacts with CAT2 to negatively regulate drought tolerance through ROS homeostasis and ABA signaling pathway in tomato. HORTICULTURE RESEARCH 2023; 10:uhad037. [PMID: 37101513 PMCID: PMC10124749 DOI: 10.1093/hr/uhad037] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Drought stress is the major abiotic factor that can seriously affect plant growth and crop production. The functions of flavin-containing monooxygenases (FMOs) are known in animals. They add molecular oxygen to lipophilic compounds or produce reactive oxygen species (ROS). However, little information on FMOs in plants is available. Here, we characterized a tomato drought-responsive gene that showed homology to FMO, and it was designated as FMO1. FMO1 was downregulated promptly by drought and ABA treatments. Transgenic functional analysis indicated that RNAi suppression of the expression of FMO1 (FMO1-Ri) improved drought tolerance relative to wild-type (WT) plants, whereas overexpression of FMO1 (FMO1-OE) reduced drought tolerance. The FMO1-Ri plants exhibited lower ABA accumulation, higher levels of antioxidant enzyme activities, and less ROS generation compared with the WT and FMO1-OE plants under drought stress. RNA-seq transcriptional analysis revealed the differential expression levels of many drought-responsive genes that were co-expressed with FMO1, including PP2Cs, PYLs, WRKY, and LEA. Using Y2H screening, we found that FMO1 physically interacted with catalase 2 (CAT2), which is an antioxidant enzyme and confers drought resistance. Our findings suggest that tomato FMO1 negatively regulates tomato drought tolerance in the ABA-dependent pathway and modulates ROS homeostasis by directly binding to SlCAT2.
Collapse
Affiliation(s)
| | | | - Yin Ding
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Chunrui Chen
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xueting Chen
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Nini Su
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xingguo Zhang
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Yu Pan
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | | |
Collapse
|
11
|
Dervisi I, Petropoulos O, Agalou A, Podia V, Papandreou N, Iconomidou VA, Haralampidis K, Roussis A. The SAH7 Homologue of the Allergen Ole e 1 Interacts with the Putative Stress Sensor SBP1 (Selenium-Binding Protein 1) in Arabidopsis thaliana. Int J Mol Sci 2023; 24:3580. [PMID: 36834990 PMCID: PMC9962204 DOI: 10.3390/ijms24043580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, we focused on a member of the Ole e 1 domain-containing family, AtSAH7, in Arabidopsis thaliana. Our lab reports for the first time on this protein, AtSAH7, that was found to interact with Selenium-binding protein 1 (AtSBP1). We studied by GUS assisted promoter deletion analysis the expression pattern of AtSAH7 and determined that the sequence 1420 bp upstream of the transcription start can act as a minimal promoter inducing expression in vasculature tissues. Moreover, mRNA levels of AtSAH7 were acutely increased under selenite treatment in response to oxidative stress. We confirmed the aforementioned interaction in vivo, in silico and in planta. Following a bimolecular fluorescent complementation approach, we determined that the subcellular localization of the AtSAH7 and the AtSAH7/AtSBP1 interaction occur in the ER. Our results indicate the participation of AtSAH7 in a biochemical network regulated by selenite, possibly associated with responses to ROS production.
Collapse
Affiliation(s)
- Irene Dervisi
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Orfeas Petropoulos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Adamantia Agalou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control & Phytopharmacy, Benaki Phytopathological Institute (BPI), 8 Stefanou Delta Street, Kifissia, 14561 Athens, Greece
| | - Varvara Podia
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Nikolaos Papandreou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Vassiliki A. Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Kosmas Haralampidis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
12
|
Evolutionary Analysis of StSnRK2 Family Genes and Their Overexpression in Transgenic Tobacco Improve Drought Tolerance. Int J Mol Sci 2023; 24:ijms24021000. [PMID: 36674521 PMCID: PMC9861535 DOI: 10.3390/ijms24021000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Sucrose non-ferment 1-related protein kinase 2 (SnRK2) is a highly conserved protein kinase in plants that plays an important role in regulating plant response to drought stress. Although it has been reported in some plants, the evolutionary relationship of potato SnRK2s and their function in drought resistance have not been systematically analyzed. In this study, molecular characteristic analysis showed that 8 StSnRK2s were distributed on six chromosomes, coding proteins were divided into three subgroups, and StSnRK2s clustered in the same subgroup had similar conserved motifs and domains. In addition, StSnRK2 has a wide range of replication events in some species, making it closer to dicots in the process of evolution. In addition, the average nonsynonymous substitution rate/synonymous substitution rate (Ka/Ks) value of SnRK2s in monocots was higher than that of dicots. The codon usage index showed that SnRK2s prefer to use cytosine 3 (C3s), guanine 3 (G3s) and GC content (GC3s) in monocots, whereas thymine 3 (T3s) and adenine 3 (A3s) are preferred in dicots. Furthermore, stress response analysis showed that the expression of StSnRK2s under different degrees of drought stress significantly correlated with one or more stress-related physiological indices, such as proline and malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activity, ion leakage (IL) etc. The drought resistance of StSnRK2 transgenic plants was determined to occur in the order of StSnRK2.1/2.8 > StSnRK2.2/2.5 > StSnRK2.4/2.6 > StSnRK2.3 > StSnRK2.7, was attributed to not only lower IL but also higher proline, soluble sugar contents and stress-related genes in transgenic plants compared to wild type (WT). In conclusion, this study provides useful insights into the evolution and function of StSnRK2s and lays a foundation for further study on the molecular mechanism of StSnRK2s regulating potato drought resistance.
Collapse
|
13
|
Ascorbate-Glutathione Cycle Genes Families in Euphorbiaceae: Characterization and Evolutionary Analysis. BIOLOGY 2022; 12:biology12010019. [PMID: 36671712 PMCID: PMC9855080 DOI: 10.3390/biology12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Ascorbate peroxidase (APX), Monodehydroascorbate Reductase (MDAR), Dehydroascorbate Reductase (DHAR) and Glutathione Reductase (GR) enzymes participate in the ascorbate-glutathione cycle, which exerts a central role in the antioxidant metabolism in plants. Despite the importance of this antioxidant system in different signal transduction networks related to development and response to environmental stresses, the pathway has not yet been comprehensively characterized in many crop plants. Among different eudicotyledons, the Euphorbiaceae family is particularly diverse with some species highly tolerant to drought. Here the APX, MDAR, DHAR, and GR genes in Ricinus communis, Jatropha curcas, Manihot esculenta, and Hevea brasiliensis were identified and characterized. The comprehensive phylogenetic and genomic analyses allowed the classification of the genes into different classes, equivalent to cytosolic, peroxisomal, chloroplastic, and mitochondrial enzymes, and revealed the duplication events that contribute to the expansion of these families within plant genomes. Due to the high drought stress tolerance of Ricinus communis, the expression patterns of ascorbate-glutathione cycle genes in response to drought were also analyzed in leaves and roots, indicating a differential expression during the stress. Altogether, these data contributed to the characterization of the expression pattern and evolutionary analysis of these genes, filling the gap in the proposed functions of core components of the antioxidant mechanism during stress response in an economically relevant group of plants.
Collapse
|
14
|
A Tea Plant ( Camellia sinensis) FLOWERING LOCUS C-like Gene, CsFLC1, Is Correlated to Bud Dormancy and Triggers Early Flowering in Arabidopsis. Int J Mol Sci 2022; 23:ijms232415711. [PMID: 36555355 PMCID: PMC9779283 DOI: 10.3390/ijms232415711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Flowering and bud dormancy are crucial stages in the life cycle of perennial angiosperms in temperate climates. MADS-box family genes are involved in many plant growth and development processes. Here, we identified three MADS-box genes in tea plant belonging to the FLOWERING LOCUS C (CsFLC) family. We monitored CsFLC1 transcription throughout the year and found that CsFLC1 was expressed at a higher level during the winter bud dormancy and flowering phases. To clarify the function of CsFLC1, we developed transgenic Arabidopsis thaliana plants heterologously expressing 35S::CsFLC1. These lines bolted and bloomed earlier than the WT (Col-0), and the seed germination rate was inversely proportional to the increased CsFLC1 expression level. The RNA-seq of 35S::CsFLC1 transgenic Arabidopsis showed that many genes responding to ageing, flower development and leaf senescence were affected, and phytohormone-related pathways were especially enriched. According to the results of hormone content detection and RNA transcript level analysis, CsFLC1 controls flowering time possibly by regulating SOC1, AGL42, SEP3 and AP3 and hormone signaling, accumulation and metabolism. This is the first time a study has identified FLC-like genes and characterized CsFLC1 in tea plant. Our results suggest that CsFLC1 might play dual roles in flowering and winter bud dormancy and provide new insight into the molecular mechanisms of FLC in tea plants as well as other plant species.
Collapse
|
15
|
Transcriptomics Profiling of Acer pseudosieboldianum Molecular Mechanism against Freezing Stress. Int J Mol Sci 2022; 23:ijms232314676. [PMID: 36499002 PMCID: PMC9737005 DOI: 10.3390/ijms232314676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Low temperature is an important environmental factor that affects the growth and development of trees and leads to the introduction of failure in the genetic improvement of trees. Acer pseudosieboldianum is a tree species that is well-known for its bright red autumn leaf color. These trees are widely used in landscaping in northeast China. However, due to their poor cold resistance, introduced A. pseudosieboldianum trees suffer severe freezing injury in many introduced environments. To elucidate the physiological indicators and molecular mechanisms associated with freezing damage, we analyzed the physiological indicators and transcriptome of A. pseudosieboldianum, using kits and RNA-Seq technology. The mechanism of A. pseudosieboldianum in response to freezing stress is an important scientific question. In this study, we used the shoots of four-year-old A. pseudosieboldianum twig seedlings, and the physiological index and the transcriptome of A. pseudosieboldianum under low temperature stress were investigated. The results showed that more than 20,000 genes were detected in A. pseudosieboldianum under low temperature (4 °C) and freezing temperatures (-10 °C, -20 °C, -30 °C, and -40 °C). There were 2505, 6021, 5125, and 3191 differential genes (DEGs) between -10 °C, -20°C, -30°C, -40 °C, and CK (4 °C), respectively. Among these differential genes, 48 genes are involved in the MAPK pathway and 533 genes are involved in the glucose metabolism pathway. In addition, the important transcription factors (MYB, AP2/ERF, and WRKY) involved in freezing stress were activated under different degrees of freezing stress. A total of 10 sets of physiological indicators of A. pseudosieboldianum were examined, including the activities of five enzymes and the accumulation of five hormones. All of the physiological indicators except SOD and GSH-Px reached their maximum values at -30 °C. The enzyme activity of SOD was highest at -10 °C, and that of GSH-Px was highest at -20 °C. Our study is the first to provide a more comprehensive understanding of the differential genes (DEGs) involved in A. pseudosieboldianum under freezing stress at different temperatures at the transcriptome level. These results may help to clarify the molecular mechanism of cold tolerance of A. pseudosieboldianum and provide new insights and candidate genes for the genetic improvement of the freezing tolerance of A. pseudosieboldianum.
Collapse
|
16
|
Farooqi MQU, Nawaz G, Wani SH, Choudhary JR, Rana M, Sah RP, Afzal M, Zahra Z, Ganie SA, Razzaq A, Reyes VP, Mahmoud EA, Elansary HO, El-Abedin TKZ, Siddique KHM. Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:965878. [PMID: 36212378 PMCID: PMC9538355 DOI: 10.3389/fpls.2022.965878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 06/12/2023]
Abstract
High-throughput sequencing technologies (HSTs) have revolutionized crop breeding. The advent of these technologies has enabled the identification of beneficial quantitative trait loci (QTL), genes, and alleles for crop improvement. Climate change have made a significant effect on the global maize yield. To date, the well-known omic approaches such as genomics, transcriptomics, proteomics, and metabolomics are being incorporated in maize breeding studies. These approaches have identified novel biological markers that are being utilized for maize improvement against various abiotic stresses. This review discusses the current information on the morpho-physiological and molecular mechanism of abiotic stress tolerance in maize. The utilization of omics approaches to improve abiotic stress tolerance in maize is highlighted. As compared to single approach, the integration of multi-omics offers a great potential in addressing the challenges of abiotic stresses of maize productivity.
Collapse
Affiliation(s)
| | - Ghazala Nawaz
- Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Jeet Ram Choudhary
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Maneet Rana
- Division of Crop Improvement, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rameswar Prasad Sah
- Division of Crop Improvement, ICAR-National Rice Research Institute, Cuttack, India
| | - Muhammad Afzal
- College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zahra Zahra
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA, United States
| | | | - Ali Razzaq
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | | | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Floriculture, Ornamental Horticulture, and Garden Design Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
- Department of Geography, Environmental Management, and Energy Studies, University of Johannesburg, Johannesburg, South Africa
| | - Tarek K. Zin El-Abedin
- Department of Agriculture & Biosystems Engineering, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
17
|
Niu L, Du C, Wang W, Zhang M, Wang W, Liu H, Zhang J, Wu X. Transcriptome and co-expression network analyses of key genes and pathways associated with differential abscisic acid accumulation during maize seed maturation. BMC PLANT BIOLOGY 2022; 22:359. [PMID: 35869440 PMCID: PMC9308322 DOI: 10.1186/s12870-022-03751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Currently, mechanical maize kernel harvesting has not been fully utilized in developing countries including China, partly due to the absence of suitable cultivars capable of rapid desiccation during seed maturation. The initiation of rapid desiccation during seed maturation is regulated by abscisic acid (ABA). For further characterization of ABA-regulated key genes and cellular events, it is necessary to perform transcriptome analysis of maize developing embryos. The ABA synthesis-deficient mutant (vp5) and normal maize (Vp5) seeds are suitable materials for such purpose. RESULTS In the present work, developing vp5 and Vp5 embryos were compared by ABA content and transcriptome analyses. Quantitative analysis revealed the significant difference in ABA synthesis between both genotypes. From 29 days after pollination (DAP), ABA content increased rapidly in Vp5 embryos, but decreased gradually in vp5 embryos. At 36 DAP, ABA level in vp5 decreased to 1/4 that of Vp5, suggesting that the differential ABA levels would affect seed maturation. Comparative transcriptomic analysis has found 1019 differentially expressed genes (DEGs) between both genotypes, with the most DEGs (818) at 36 DAP. Further, weighted correlation network analysis (WGCNA) revealed eight DEGs co-expression modules. Particularly, a module was negatively correlated with ABA content in vp5 embryos. The module was mainly involved in metabolic and cellular processes, and its hub genes encoded thiamine, NPF proteins, calmodulin, metallothionein etc. Moreover, the expression of a set of key genes regulated by ABA was further verified by RT-qPCR. The results of the present work suggested that because of ABA deficiency, the vp5 seeds maintained strong metabolic activities and lacked dormancy initiation during seed maturation. CONCLUSION Transcriptome and WGCNA analyses revealed significant ABA-related changes in metabolic pathways and DEGs between vp5 and Vp5 during seed maturation. The results would provide insights for elucidating the molecular mechanism of ABA signaling and developing high dehydration tolerance maize suitable for mechanical harvesting.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Cui Du
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenrui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Man Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Khan A, Khan V, Pandey K, Sopory SK, Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866409. [PMID: 35646001 PMCID: PMC9136941 DOI: 10.3389/fpls.2022.866409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/05/2023]
Abstract
Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
19
|
Transcriptome Analysis of Populus euphratica under Salt Treatment and PeERF1 Gene Enhances Salt Tolerance in Transgenic Populus alba × Populus glandulosa. Int J Mol Sci 2022; 23:ijms23073727. [PMID: 35409087 PMCID: PMC8998595 DOI: 10.3390/ijms23073727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Populus euphratica is mainly distributed in desert environments with dry and hot climate in summer and cold in winter. Compared with other poplars, P. euphratica is more resistant to salt stress. It is critical to investigate the transcriptome and molecular basis of salt tolerance in order to uncover stress-related genes. In this study, salt-tolerant treatment of P. euphratica resulted in an increase in osmo-regulatory substances and recovery of antioxidant enzymes. To improve the mining efficiency of candidate genes, the analysis combining both the transcriptome WGCNA and the former GWAS results was selected, and a range of key regulatory factors with salt resistance were found. The PeERF1 gene was highly connected in the turquoise modules with significant differences in salt stress traits, and the expression levels were significantly different in each treatment. For further functional verification of PeERF1, we obtained stable overexpression and dominant suppression transgenic lines by transforming into Populus alba × Populusglandulosa. The growth and physiological characteristics of the PeERF1 overexpressed plants were better than that of the wild type under salt stress. Transcriptome analysis of leaves of transgenic lines and WT revealed that highly enriched GO terms in DEGs were associated with stress responses, including abiotic stimuli responses, chemical responses, and oxidative stress responses. The result is helpful for in-depth analysis of the salt tolerance mechanism of poplar. This work provides important genes for poplar breeding with salt tolerance.
Collapse
|
20
|
Nitric Oxide and Abscisic Acid Mediate Heat Stress Tolerance through Regulation of Osmolytes and Antioxidants to Protect Photosynthesis and Growth in Wheat Plants. Antioxidants (Basel) 2022; 11:antiox11020372. [PMID: 35204254 PMCID: PMC8869392 DOI: 10.3390/antiox11020372] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO) and abscisic acid (ABA) play a significant role to combat abiotic stress. Application of 100 µM sodium nitroprusside (SNP, NO donor) or ABA alleviated heat stress effects on photosynthesis and growth of wheat (Triticum aestivum L.) plants exposed to 40 °C for 6 h every day for 15 days. We have shown that ABA and NO synergistically interact to reduce the heat stress effects on photosynthesis and growth via reducing the content of H2O2 and thiobarbituric acid reactive substances (TBARS), as well as maximizing osmolytes production and the activity and expression of antioxidant enzymes. The inhibition of NO and ABA using c-PTIO (2-4 carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and fluridone (Flu), respectively, reduced the osmolyte and antioxidant metabolism and heat stress tolerance. The inhibition of NO significantly reduced the ABA-induced osmolytes and antioxidant metabolism, exhibiting that the function of ABA in the alleviation of heat stress was NO dependent and can be enhanced with NO supplementation.Thus, regulating the activity and expression of antioxidant enzymes together with osmolytes production could act as a possible strategy for heat tolerance.
Collapse
|
21
|
Yang J, Gu W, Feng Z, Yu B, Niu J, Wang G. Synthesis of Abscisic Acid in Neopyropia yezoensis and Its Regulation of Antioxidase Genes Expressions Under Hypersaline Stress. Front Microbiol 2022; 12:775710. [PMID: 35082766 PMCID: PMC8784606 DOI: 10.3389/fmicb.2021.775710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Abscisic acid (ABA) is regarded as crucial for plant adaptation to water-limited conditions and it functions evolutionarily conserved. Thus, insights into the synthesis of ABA and its regulation on downstream stress-responsive genes in Neopyropia yezoensis, a typical Archaeplastida distributed in intertidal zone, will improve the knowledge about how ABA signaling evolved in plants. Here, the variations in ABA contents, antioxidant enzyme activities and expression of the target genes were determined under the presence of exogenous ABA and two specific inhibitors of the ABA precursor synthesis. ABA content was down-regulated under the treatments of each or the combination of the two inhibitors. Antioxidant enzyme activities like SOD, CAT and APX were decreased slightly with inhibitors, but up-regulated when the addition of exogenous ABA. The quantitative assays using real-time PCR (qRT-PCR) results were consistent with the enzyme activities. All the results suggested that ABA can also alleviate oxidative stress in N. yezoensis as it in terrestrial plant. Combined with the transcriptome assay, it was hypothesized that ABA is synthesized in N. yezoensis via a pathway that is similar to the carotenoid pathway in higher plants, and both the MVA and that the MEP pathways for isoprenyl pyrophosphate (IPP) synthesis likely exist simultaneously. The ABA signaling pathway in N. yezoensis was also analyzed from an evolutionary standpoint and it was illustrated that the emergence of the ABA signaling pathway in this alga is an ancestral one. In addition, the presence of the ABRE motif in the promoter region of antioxidase genes suggested that the antioxidase system is regulated by the ABA signaling pathway.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Zezhong Feng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Bin Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Niu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| |
Collapse
|
22
|
Berrío RT, Nelissen H, Inzé D, Dubois M. Increasing yield on dry fields: molecular pathways with growing potential. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:323-341. [PMID: 34695266 PMCID: PMC7612350 DOI: 10.1111/tpj.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 05/02/2023]
Abstract
Drought stress constitutes one of the major constraints to agriculture all over the world, and its devastating effect is only expected to increase in the following years due to climate change. Concurrently, the increasing food demand in a steadily growing population requires a proportional increase in yield and crop production. In the past, research aimed to increase plant resilience to severe drought stress. However, this often resulted in stunted growth and reduced yield under favorable conditions or moderate drought. Nowadays, drought tolerance research aims to maintain plant growth and yield under drought conditions. Overall, recently deployed strategies to engineer drought tolerance in the lab can be classified into a 'growth-centered' strategy, which focuses on keeping growth unaffected by the drought stress, and a 'drought resilience without growth penalty' strategy, in which the main aim is still to boost drought resilience, while limiting the side effects on plant growth. In this review, we put the scope on these two strategies and some molecular players that were successfully engineered to generate drought-tolerant plants: abscisic acid, brassinosteroids, cytokinins, ethylene, ROS scavenging genes, strigolactones, and aquaporins. We discuss how these pathways participate in growth and stress response regulation under drought. Finally, we present an overview of the current insights and future perspectives in the development of new strategies to improve drought tolerance in the field.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Corresponding Author: Dirk Inzé VIB Center for Plant Systems Biology Ghent University, Department of Plant Biotechnology Technologiepark 71 B-9052 Ghent (Belgium) Tel.: +32 9 3313800; Fax: +32 9 3313809;
| | - Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
23
|
Lv Y, Li Y, Liu X, Xu K. Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa): Growth, health risks and silicon mitigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117321. [PMID: 33975211 DOI: 10.1016/j.envpol.2021.117321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The negative impact of antibiotic pollution on the agricultural system and human health is a hot issue in the world. However, little information is available on the antibiotics toxicity mechanism and the role of silicon (Si) to alleviate the antibiotics toxicity. In this study, strawberry (Fragaria ananassa) showed excitatory response to low-dose SMZ (1 mg L-1), but strawberry root and photosynthetic efficiency were damaged under high level. When SMZ level exceeded 10 mg L-1, H202, O2-, MDA and relative conductivity increased, while SOD and CAT activities first increased and then decreased. SMZ accumulated more in roots and fruits, but less in stems, and the accumulation increased with the increase of SMZ-dose. Under 1 mg L-1 SMZ, the SMZ accumulation in fruits was 110.54 μg kg-1, which exceeded the maximum residue limit. SMZ can induce the expression of sul1, sul2 and intI1, and intI1 had the highest abundance. Exogenous application of Si alleviated the toxicity of SMZ, which is mainly related to the degradation of SMZ in soil and the reduction of SMZ absorption by strawberry. In addition, Si relieved root damage, promoted the increase of photosynthetic efficiency, and improved the antioxidant system to resist SMZ toxicity.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China.
| |
Collapse
|
24
|
Yue K, Lingling L, Xie J, Coulter JA, Luo Z. Synthesis and regulation of auxin and abscisic acid in maize. PLANT SIGNALING & BEHAVIOR 2021; 16:1891756. [PMID: 34057034 PMCID: PMC8205056 DOI: 10.1080/15592324.2021.1891756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 05/12/2023]
Abstract
Indole-3-acetic acid (IAA), the primary auxin in higher plants, and abscisic acid (ABA) play crucial roles in the ability of maize (Zea mays L.) to acclimatize to various environments by mediating growth, development, defense and nutrient allocation. Although understanding the biochemical reactions for IAA and ABA biosynthesis and signal transduction has progressed, the mechanisms by which auxin and ABA are synthesized and transduced in maize have not been fully elucidated to date. The synthesis and signal transduction pathway of IAA and ABA in maize can be analyzed using an existing model. This article focuses on the research progress toward understanding the synthesis and signaling pathways of IAA and ABA, as well as IAA and ABA regulation of maize growth, providing insight for future development and the significance of IAA and ABA for maize improvement.
Collapse
Affiliation(s)
- Kai Yue
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Li Lingling
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Junhong Xie
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jeffrey A. Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Zhuzhu Luo
- College of Resource and Environment, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
25
|
Ramachandran M, Arulbalachandran D, Dilipan E, Ramya S. Comparative analysis of abscisic acid recovery on two varieties of rice (Oryza sativa L.) under drought condition. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
27
|
Goyal V, Jhanghel D, Mehrotra S. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. PHYSIOLOGIA PLANTARUM 2021; 171:896-908. [PMID: 33665834 DOI: 10.1111/ppl.13380] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The agriculture sector is vulnerable to various environmental stresses, which significantly affect plant growth, performance, and development. Abiotic stresses, such as salinity and drought, cause severe losses in crop productivity worldwide. Soil salinity is a major stress suppressing plant development through osmotic stress accompanied by ion toxicity, nutritional imbalance, and oxidative stress. Various defense mechanisms like osmolytes accumulations, activation of stress-induced genes, and transcription factors, production of plant growth hormones, accumulation of antioxidants, and redox defense system in plants are responsible for combating salt stress. Nitric oxide (NO) and hydrogen sulphide (H2 S) have emerged as novel bioactive gaseous signaling molecules that positively impact seed germination, homeostasis, plant metabolism, growth, and development, and are involved in several plant acclimation responses to impart stress tolerance in plants. NO and H2 S trigger cell signaling by activating a cascade of biochemical events that result in plant tolerance to environmental stresses. NO- and H2 S-mediated signaling networks, interactions, and crosstalks facilitate stress tolerance in plants. Research on the roles and mechanisms of NO and H2 S as challengers of salinity is entering an exponential exploration era. The present review focuses on the current knowledge of the mechanisms of stress tolerance in plants and the role of NO and H2 S in adaptive plant responses to salt stress and provides an overview of the signaling mechanisms and interplay of NO and H2 S in the regulation of growth and development as well as modulation of defense responses in plants and their long term priming effects for imparting salinity tolerance in plants.
Collapse
Affiliation(s)
- Vinod Goyal
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Dharmendra Jhanghel
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Shweta Mehrotra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
28
|
Bigott Y, Chowdhury SP, Pérez S, Montemurro N, Manasfi R, Schröder P. Effect of the pharmaceuticals diclofenac and lamotrigine on stress responses and stress gene expression in lettuce (Lactuca sativa) at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123881. [PMID: 33264951 DOI: 10.1016/j.jhazmat.2020.123881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Vegetable crops irrigated with treated wastewater can take up the environmentally persistent pharmaceuticals diclofenac and lamotrigine. This study aimed at quantifying the uptake and translocation of the two pharmaceuticals in lettuce (Lactuca sativa) as well as on the elucidation of the molecular and physiological changes triggered by them. Therefore, plants were cultivated in a phytochamber in hydroponic systems under controlled conditions and treated independently with diclofenac (20 μg L-1) and lamotrigine (60 μg L-1) for 48 h. A low translocation of lamotrigine but not of diclofenac or its metabolite 4'-hydroxydiclofenac to leaves was observed, which corresponded with the expression of stress related genes only in roots of diclofenac treated plants. We observed an oxidative burst in roots and leaves occurring around the same time point when lamotrigine was detected in leaves. This could be responsible for the significantly changed gene expression pattern in both tissues. Our results showed for the first time that pharmaceuticals like lamotrigine or diclofenac might act as signals or zeitgebers, affecting the circadian expression of stress related genes in lettuce possibly causing a repressed physiological status of the plant.
Collapse
Affiliation(s)
- Yvonne Bigott
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Sandra Pérez
- ENFOCHEM, Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Nicola Montemurro
- ENFOCHEM, Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Rayana Manasfi
- UMR HydroSciences Montpellier, Montpellier University, IRD, 15 Ave Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
29
|
Wang X, Li Q, Xie J, Huang M, Cai J, Zhou Q, Dai T, Jiang D. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2020.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Baldus M, Heukäufer F, Großpietsch C, Methner FJ. Accumulation of Hydrogen Peroxide in Barley Seeds – A Key Factor for Malt Quality? JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2020.1865247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Matthias Baldus
- Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestraße 13, D-13353 Berlin, Germany
| | - Florian Heukäufer
- Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestraße 13, D-13353 Berlin, Germany
| | - Carla Großpietsch
- Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestraße 13, D-13353 Berlin, Germany
| | - Frank-Jürgen Methner
- Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestraße 13, D-13353 Berlin, Germany
| |
Collapse
|
31
|
Ding M, Dong H, Xue Y, Su S, Wu Y, Li S, Liu H, Li H, Han J, Shan X, Yuan Y. Transcriptomic analysis reveals somatic embryogenesis-associated signaling pathways and gene expression regulation in maize (Zea mays L.). PLANT MOLECULAR BIOLOGY 2020; 104:647-663. [PMID: 32910317 DOI: 10.1007/s11103-020-01066-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Transcriptome analysis of maize embryogenic callus and somatic embryos reveals associated genes reprogramming, hormone signaling pathways and transcriptional regulation involved in somatic embryogenesis in maize. Somatic embryos are widely utilized in propagation and genetic engineering of crop plants. In our laboratory, an elite maize inbred line Y423 that could generate intact somatic embryos was obtained and applied to genetic transformation. To enhance our understanding of regulatory mechanisms during maize somatic embryogenesis, we used RNA-based sequencing (RNA-seq) to characterize the transcriptome of immature embryo (IE), embryogenic callus (EC) and somatic embryo (SE) from maize inbred line Y423. The number of differentially expressed genes (DEGs) in three pairwise comparisons (IE-vs-EC, IE-vs-SE and EC-vs-SE) was 5767, 7084 and 1065, respectively. The expression patterns of DEGs were separated into eight major clusters. Somatic embryogenesis associated genes were mainly grouped into cluster A or B with an expression trend toward up-regulation during dedifferentiation. GO annotation and KEGG pathway analysis revealed that DEGs were implicated in plant hormone signal transduction, stress response and metabolic process. Among the differentially expressed transcription factors, the most frequently represented families were associated with the common stress response or related to cell differentiation, embryogenic patterning and embryonic maturation processes. Genes include hormone response/transduction and stress response, as well as several transcription factors were discussed in this study, which may be potential candidates for further analyses regarding their roles in somatic embryogenesis. Furthermore, the temporal expression patterns of candidate genes were analyzed to reveal their roles in somatic embryogenesis. This transcriptomic data provide insights into future functional studies, which will facilitate further dissections of the molecular mechanisms that control maize somatic embryogenesis.
Collapse
Affiliation(s)
- Meiqi Ding
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Haixiao Dong
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yingjie Xue
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shengzhong Su
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Ying Wu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shipeng Li
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Hongkui Liu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - He Li
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Yaping Yuan
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
32
|
Xu D, Pan H, Yao J, Feng Y, Wu P, Shao K. Stress responses and biological residues of sulfanilamide antibiotics in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110727. [PMID: 32446101 DOI: 10.1016/j.ecoenv.2020.110727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Sulfonamides (SAs) are antibiotics widely used in clinical practice, livestock and poultry production, and the aquaculture industry. The compounds enter the soil environment largely through livestock and poultry manure application to farmland. SAs not only affect plant growth, but also pose a potential threat to human health through SA residues in plant tissues. In particular, sulfamethoxazole (SMZ) has been classified as a Category 3 carcinogen by the World Health Organization, and thus its soil ecological toxicity and possible health risks are of concern. Using A. thaliana as a model plant, stress responses and biological residues of sulfadiazine (SD), sulfametoxydiazine (SMD), and SMZ were investigated in the present study. Root length and aboveground plant biomass were significantly inhibited by the three types of SA, whereas lateral roots exposed to SMD grew vigorously. The contents of chlorophyll a and chlorophyll b and photosystem II maximum photochemical quantum yield declined with increase in drug concentration, which indicated that exposure to SAs affected photosynthesis and inhibited chlorophyll synthesis in A. thaliana. With increase in drug concentration, reactive oxygen species (ROS) accumulation in the leaves increased significantly. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were activated at low SA concentrations, but increased lipid peroxidation occurred with increase in SA concentration. Of the three compounds, SMZ was the most toxic to A. thaliana, followed by SD, and SMD was the least toxic. The results indicated that the risk of SMD entering an organism through the food chain is greater than that for SMZ and SD.
Collapse
Affiliation(s)
- Dongmei Xu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Hua Pan
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yixuan Feng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Panpan Wu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Kai Shao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| |
Collapse
|
33
|
Nadarajah KK. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E5208. [PMID: 32717820 PMCID: PMC7432042 DOI: 10.3390/ijms21155208] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change-induced abiotic stress results in crop yield and production losses. These stresses result in changes at the physiological and molecular level that affect the development and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to cells while the same molecule can function as a signal transducer that activates a local and systemic plant defense response against stress. The effects, perception, signaling, and activation of ROS and their antioxidative responses are elaborated in this review. This review aims to provide a purview of processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways in understanding the mechanism of resistance in plants and the importance of this information in breeding and genetically developing crops for resistance against abiotic stress in plants.
Collapse
Affiliation(s)
- Kalaivani K Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM BANGI, Malaysia
| |
Collapse
|
34
|
Gietler M, Fidler J, Labudda M, Nykiel M. Abscisic Acid-Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int J Mol Sci 2020; 21:E4607. [PMID: 32610484 PMCID: PMC7369871 DOI: 10.3390/ijms21134607] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/12/2023] Open
Abstract
Abscisic acid (ABA) is well-known phytohormone involved in the control of plant natural developmental processes, as well as the stress response. Although in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) its role in mechanism of the tolerance to most common abiotic stresses, such as drought, salinity, or extreme temperatures seems to be fairly well recognized, not many authors considered that changes in ABA content may also influence the sensitivity of cereals to adverse environmental factors, e.g., by accelerating senescence, lowering pollen fertility, and inducing seed dormancy. Moreover, recently, ABA has also been regarded as an element of the biotic stress response; however, its role is still highly unclear. Many studies connect the susceptibility to various diseases with increased concentration of this phytohormone. Therefore, in contrast to the original assumptions, the role of ABA in response to biotic and abiotic stress does not always have to be associated with survival mechanisms; on the contrary, in some cases, abscisic acid can be one of the factors that increases the susceptibility of plants to adverse biotic and abiotic environmental factors.
Collapse
Affiliation(s)
- Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (J.F.); (M.L.); (M.N.)
| | | | | | | |
Collapse
|
35
|
Hazubska-Przybył T, Ratajczak E, Obarska A, Pers-Kamczyc E. Different Roles of Auxins in Somatic Embryogenesis Efficiency in Two Picea Species. Int J Mol Sci 2020; 21:E3394. [PMID: 32403374 PMCID: PMC7246981 DOI: 10.3390/ijms21093394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 12/18/2022] Open
Abstract
The effects of auxins 2,4-D (2,4-dichlorophenoxyacetic acid), NAA (1-naphthaleneacetic acid) or picloram (4-amino-3,5,6-trichloropicolinic acid; 9 µM) and cytokinin BA (benzyloadenine; 4.5 µM) applied in the early stages of somatic embryogenesis (SE) on specific stages of SE in Picea abies and P. omorika were investigated. The highest SE initiation frequency was obtained after 2,4-D application in P. omorika (22.00%) and picloram application in P. abies (10.48%). NAA treatment significantly promoted embryogenic tissue (ET) proliferation in P. abies, while 2,4-D treatment reduced it. This reduction was related to the oxidative stress level, which was lower with the presence of NAA in the proliferation medium and higher with the presence of 2,4-D. The reduced oxidative stress level after NAA treatment suggests that hydrogen peroxide (H2O2) acts as a signalling molecule and promotes ET proliferation. NAA and picloram in the proliferation medium decreased the further production and maturation of P. omorika somatic embryos compared with that under 2,4-D. The quality of the germinated P. abies embryos and their development into plantlets depended on the auxin type and were the highest in NAA-originated embryos. These results show that different auxin types can generate different physiological responses in plant materials during SE in both spruce species.
Collapse
Affiliation(s)
- Teresa Hazubska-Przybył
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland; (E.R.); (A.O.); (E.P.-K.)
| | | | | | | |
Collapse
|
36
|
Zong N, Wang H, Li Z, Ma L, Xie L, Pang J, Fan Y, Zhao J. Maize NCP1 negatively regulates drought and ABA responses through interacting with and inhibiting the activity of transcription factor ABP9. PLANT MOLECULAR BIOLOGY 2020; 102:339-357. [PMID: 31894455 DOI: 10.1007/s11103-019-00951-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/18/2019] [Indexed: 05/06/2023]
Abstract
NCP1, a NINJA family protein lacking EAR motif, acts as a negative regulator of ABA signaling by interacting with and inhibiting the activity of transcriptional activator ABP9. The phytohormone abscisic acid plays a pivotal role in regulating plant responses to a variety of abiotic stresses including drought and salinity. Maize ABP9 is an ABRE-binding bZIP transcription activator that enhances plant tolerance to multiple stresses by positively regulating ABA signaling, but the molecular mechanism by which ABP9 is regulated in mediating ABA responses remains unknown. Here, we report the identification of an ABP9-interacting protein, named ABP Nine Complex Protein 1 (NCP1) and its functional characterization. NCP1 belongs to the recently identified NINJA family proteins, but lacks the conserved EAR motif, which is a hallmark of this class of transcriptional repressors. In vitro and in vivo assays confirmed that NCP1 physically interacts with ABP9 and that they are co-localized in the nucleus. In addition, NCP1 and ABP9 are similarly induced with similar patterns by ABA treatment and osmotic stress. Interestingly, NCP1 over-expressing Arabidopsis plants exhibited a reduced sensitivity to ABA and decreased drought tolerance. Transient assay in maize protoplasts showed that NCP1 inhibits the activity of ABP9 in activating ABRE-mediated reporter gene expression, a notion further supported by genetic analysis of drought and ABA responses in the transgenic plants over-expressing both ABP9 and NCP1. These data together suggest that NCP1 is a novel negative regulator of ABA signaling via interacting with and inhibiting the activity of ABP9.
Collapse
Affiliation(s)
- Na Zong
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Hanqian Wang
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Zaoxia Li
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Li Ma
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Li Xie
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Junling Pang
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yunliu Fan
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Jun Zhao
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
37
|
Du HY, Chen GS, Yu JM, Bao YY, Liu GT, Liu HP, Gupta R. Involvement of putrescine in osmotic stress-induced ABA signaling in leaves of wheat seedlings. J Biosci 2019. [DOI: 10.1007/s12038-019-9949-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Alexander RD, Wendelboe-Nelson C, Morris PC. The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:246-253. [PMID: 31374377 DOI: 10.1016/j.plaphy.2019.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 05/07/2023]
Abstract
Transcription factors such as MYB have previously been associated with the plant response to drought. In this work, studies on the function of the barley (Hordeum vulgare L.) transcription factor HvMYB1 show that gene expression is upregulated in wildtype barley roots and leaves under drought and osmotic stress. Transgenic barley plants that overexpress HvMYB1 were found to be more resistant to drought, showing enhanced relative water content and reduced water loss rate and stomatal conductance as compared to control plants. Levels of the osmolyte proline were enhanced as was expression of dehydrin HvDNH6 in the transgenic lines under drought conditions. The levels of the reactive oxygen species H2O2 were enhanced in wildtype roots and leaves by drought, but less so in the HvMYB1 overexpressing lines. Enzyme activity of the low affinity H2O2 degrading enzyme catalase (EC 1.11.1.6) was also lower in droughted HvMYB1 overexpressing lines. Gene expression of the high affinity ROS scavengers ASCORBATE PEROXIDASE and GLUTATHIONE PEROXIDASE was found to be constitutively high in the overexpressing lines, whereas CATALASE gene expression was similar to the control plants. These results suggest a role for HvMYB1 in protecting plants against drought in the vegetative plant by acting as a mediator of abscisic acid action.
Collapse
Affiliation(s)
- Ross D Alexander
- Institute for Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| | - Charlotte Wendelboe-Nelson
- Institute for Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| | - Peter C Morris
- Institute for Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
39
|
Joshi R, Paul M, Kumar A, Pandey D. Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants. Gene 2019; 714:144004. [PMID: 31351124 DOI: 10.1016/j.gene.2019.144004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Calreticulin (CRT) is calcium binding protein of endoplasmic reticulum (ER) which performs plethora of functions besides it's role as molecular chaperone. Among the three different isoforms of this protein, CRT3 is most closely related to primitive CRT gene of higher plants. Based on their distinct structural and functional organisation, the plant CRTs have been known to contain three different domains: N, P and the C domain. The domain organisation and various biochemical characterstics of plant and animal CRTs are common with the exception of some differences. In plant calreticulin, the important N-glycosylation site(s) are replaced by the glycan chain(s) and several consensus sequences for in vitro phosphorylation by protein kinase CK2 (casein kinase-2), are also present unlike the animal calreticulin. Biotic and abiotic stresses play a significant role in bringing down the crop production. The role of various phytohormones in defense against fungal pathogens is well documented. CRT3 has been reported to play important role in protecting the plants against fungal and bacterial pathogens and in maintaining plant innate immunity. There is remarkable crosstalk between CRT mediated signalling and biotic, abiotic stress, and phytohormone mediated signalling pathways The role of CRT mediated pathway in mitigating biotic and abiotic stress can be further explored in plants so as to strategically modify it for development of stress tolerant plants.
Collapse
Affiliation(s)
- Rini Joshi
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Ag.& Tech., Pantnagar 263145, Uttarakhand, India
| | - Meenu Paul
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Ag.& Tech., Pantnagar 263145, Uttarakhand, India
| | - Anil Kumar
- Rani Laxmi Bai Central Agriculture University, Jhansi, Uttar Pradesh 284003, India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Ag.& Tech., Pantnagar 263145, Uttarakhand, India.
| |
Collapse
|
40
|
Tounsi S, Kamoun Y, Feki K, Jemli S, Saïdi MN, Ziadi H, Alcon C, Brini F. Localization and expression analysis of a novel catalase from Triticum monococcum TmCAT1 involved in response to different environmental stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:366-378. [PMID: 30954019 DOI: 10.1016/j.plaphy.2019.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 05/09/2023]
Abstract
Catalase proteins play a crucial role in detoxifying hydrogen peroxide, generated during plant growth, and in response to various environmental stresses. Despite their importance, little is known about their localization and expression in wheat. In this study, we identified and characterized a novel peroxisomal catalase gene from Triticum monococcum, designated as TmCAT1. Phylogenetic analysis revealed that TmCAT1 shared high identity with TdCAT1 and other plant catalases belonging to subfamily 1. We predicted the 3D structure model and the oligomerization arrangement of TmCAT1. Besides, we displayed an arrangement in asymmetric unit, which involved interactions including, mainly, residues from N-terminal domain. Interestingly, sequence analysis indicated that TmCAT1, like TdCAT1, had the peroxisomal targeting signal (PTS1) around its C-terminus. Transient expression of TmCAT1-GFP and TdCAT1-GFP in tobacco leaves revealed that the two fused proteins are targeted into peroxisomes. However, the truncated forms lacking the tripeptide QKL remained in the cytosol. Concerning the expression profile analysis, TmCAT1 is expressed especially in leaves in normal condition. On the other hand, it is up-regulated by different stress incorporating salt, osmotic, oxidative, heavy metal and hormones stresses. Functional analysis by heterologous expression in yeast cells showed that TmCAT1 improved tolerance to multiple abiotic stresses. The presence of important cis-regulatory elements in the promoter region of TmCAT1 strongly reinforces the interest of this gene in plant adaptation to various stresses.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Yosra Kamoun
- Laboratory of Molecular Biotechnology of Eukaryotes, Centre of Biotechnology of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Kaouthar Feki
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia; Laboratory of Legumes, Centre of Biotechnology Bordj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Mohamed Najib Saïdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Hajer Ziadi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Carine Alcon
- Biochimie & Physiologie Moléculaire des Plantes, PHIV Platform, UMR 5004 CNRS/386 INRA/Supagro Montpellier / Université Montpellier 2, Campus Supagro-INRA, 34060, Montpellier Cedex 2, France
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia.
| |
Collapse
|
41
|
Baliño P, Gómez-Cadenas A, López-Malo D, Romero FJ, Muriach M. Is There A Role for Abscisic Acid, A Proven Anti-Inflammatory Agent, in the Treatment of Ischemic Retinopathies? Antioxidants (Basel) 2019; 8:E104. [PMID: 30999583 PMCID: PMC6523110 DOI: 10.3390/antiox8040104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/03/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
Ischemic retinopathies (IRs) are the main cause of severe visual impairment and sight loss, and are characterized by loss of blood vessels, accompanied by hypoxia, and neovascularization. Actual therapies, based on anti-vascular endothelial growth factor (VEGF) strategies, antioxidants or anti-inflammatory therapies are only partially effective or show some adverse side effects. Abscisic acid (ABA) is a phytohormone present in vegetables and fruits that can be naturally supplied by the dietary intake and has been previously studied for its benefits to human health. It has been demonstrated that ABA plays a key role in glucose metabolism, inflammation, memory and tumor growth. This review focuses on a novel and promising role of ABA as a potential modulator of angiogenesis, oxidative status and inflammatory processes in the retina, which are the most predominant characteristics of the IRs. Thus, this nutraceutical compound might shed some light in new therapeutic strategies focused in the prevention or amelioration of IRs-derived pathologies.
Collapse
Affiliation(s)
- Pablo Baliño
- Unitat predepartamental de Medicina, Universitat Jaume I, 12071 Castellón de la Plana, Spain.
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castellón de la Plana, Spain.
| | - Daniel López-Malo
- Departamento de Ciencias Biomédicas, Universidad Europea de Valencia, 46010 Valencia, Spain.
| | - Francisco Javier Romero
- Departamento de Ciencias Biomédicas, Universidad Europea de Valencia, 46010 Valencia, Spain.
| | - María Muriach
- Universitat Jaume I, Unitat predepartamental de Medicina, Avda/Sos Baynat, S/N, 12071 Castellón de la Plana, Spain.
| |
Collapse
|
42
|
Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward. Appl Biochem Biotechnol 2018; 186:306-334. [PMID: 29611134 DOI: 10.1007/s12010-018-2738-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023]
Abstract
Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.
Collapse
Affiliation(s)
- Fawad Kaleem
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Ghulam Shabir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Kashif Aslam
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Masood Shah
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| |
Collapse
|
43
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
44
|
Sugiyama A, Ikoma Y, Fujii H, Endo T, Nesumi H, Shimada T, Omura M. Allelic diversity of phytoene synthase gene influences the transcription level in citrus fruit among a citrus F 1 hybrid population. BREEDING SCIENCE 2017; 67:382-392. [PMID: 29085248 PMCID: PMC5654466 DOI: 10.1270/jsbbs.17033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/04/2017] [Indexed: 06/07/2023]
Abstract
Phytoene synthase (PSY) is one of the key regulatory enzyme on the biosynthesis and accumulation of carotenoid in citrus fruits. The transcriptional diversity of PSY is mainly attributed to the structural variation in promoter region among PSY alleles. In aim to clarify how this transcriptional diversity is regulated among them, PSY alleles responsible for carotenoid biosynthesis in the fruits are characterized and their promoter sequences were compared. Based on gene structure and expression pattern of PSY homologues on the clementine mandarin genome sequence, PSY alleles responsible for carotenoid biosynthesis are derived from a single locus in the scaffold 6. AG mapping population possessed four PSY alleles derived from parent lines of A255 and G434, and their F1 individuals with PSY-g2 allele tended to have low transcription level. From sequence comparison of their promoter regions, the cis-motif alternation from MYBPZM to RAV1AAT might be a candidate to influence the transcription level. Among the ancestral pedigree varieties of AG mapping population, the transcription level of PSY correlated with genotypes of MYBPZM and RAV1AAT motifs in the promoter region of PSY alleles, so that homozygous genotype of MYBPZM showed higher transcription level while heterozygous genotype of MYBPZM and RAV1AAT showed lower transcription level.
Collapse
Affiliation(s)
- Aiko Sugiyama
- The United Graduate School of Agriculture Science, Gifu University,
Gifu 501-1193,
Japan
| | - Yoshinori Ikoma
- National Agriculture and Food Research Organization Institute of Fruit Tree and Tea Science,
Shimizu, Shizuoka 424-0292,
Japan
| | - Hiroshi Fujii
- National Agriculture and Food Research Organization Institute of Fruit Tree and Tea Science,
Shimizu, Shizuoka 424-0292,
Japan
| | - Tomoko Endo
- National Agriculture and Food Research Organization Institute of Fruit Tree and Tea Science,
Shimizu, Shizuoka 424-0292,
Japan
| | - Hirohisa Nesumi
- National Agriculture and Food Research Organization Institute of Fruit Tree and Tea Science,
Shimizu, Shizuoka 424-0292,
Japan
| | - Takehiko Shimada
- National Agriculture and Food Research Organization Institute of Fruit Tree and Tea Science,
Shimizu, Shizuoka 424-0292,
Japan
| | - Mitsuo Omura
- Faculty of Agriculture, Shizuoka University,
Suruga, Shizuoka 422-8529,
Japan
| |
Collapse
|
45
|
Alqurashi M, Thomas L, Gehring C, Marondedze C. A Microsomal Proteomics View of H₂O₂- and ABA-Dependent Responses. Proteomes 2017; 5:proteomes5030022. [PMID: 28820483 PMCID: PMC5620539 DOI: 10.3390/proteomes5030022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/22/2023] Open
Abstract
The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H2O2)-dependent proteins, little is known about the ABA- and H2O2-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H2O2 or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H2O2-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H2O2. Of these, aconitase 3 responded to both H2O2 and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as ‘response to stress’ and ‘transport’ were enriched, suggesting that H2O2 or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.
Collapse
Affiliation(s)
- May Alqurashi
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Ludivine Thomas
- HM. Clause, rue Louis Saillant, Z.I. La Motte, BP83, 26802 Portes-lès-Valence, France.
| | - Chris Gehring
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno 74, 06121 Perugia, Italy.
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/BIG, 17, avenue des Martyrs, 38054 Grenoble, France.
| |
Collapse
|
46
|
Bonesso JL, Leggat W, Ainsworth TD. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 2017; 5:e3719. [PMID: 28828283 PMCID: PMC5564385 DOI: 10.7717/peerj.3719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 07/29/2017] [Indexed: 12/28/2022] Open
Abstract
Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals’ upper thermal limits. The temperatures at which a breakdown of the coral-Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals’ nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals’ bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.
Collapse
Affiliation(s)
- Joshua Louis Bonesso
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - William Leggat
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | | |
Collapse
|
47
|
Zhou Y, Liu S, Yang Z, Yang Y, Jiang L, Hu L. CsCAT3, a catalase gene from Cucumis sativus, confers resistance to a variety of stresses to Escherichia coli. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1360797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Sciences, Jiangxi Agricultural University, Nanchang, PR China
| | - Shiqiang Liu
- Department of Biochemistry and Molecular Biology, School of Sciences, Jiangxi Agricultural University, Nanchang, PR China
| | - Zijian Yang
- Department of Horticulture, School of Agriculture, Jiangxi Agricultural University, Nanchang, PR China
| | - Yingui Yang
- Department of Horticulture, School of Agriculture, Jiangxi Agricultural University, Nanchang, PR China
| | - Lunwei Jiang
- Department of Biochemistry and Molecular Biology, School of Sciences, Jiangxi Agricultural University, Nanchang, PR China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, PR China
| |
Collapse
|
48
|
Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. FRONTIERS IN PLANT SCIENCE 2017; 8:1077. [PMID: 28690620 PMCID: PMC5481406 DOI: 10.3389/fpls.2017.01077] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 05/20/2023]
Abstract
Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.
Collapse
Affiliation(s)
- Thais H. S. Ferreira
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Max S. Tsunada
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Denis Bassi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Pedro Araújo
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Lucia Mattiello
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Giovanna V. Guidelli
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Germanna L. Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Vanessa R. Gonçalves
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| |
Collapse
|
49
|
Fierro C, López-Cristoffanini C, Meynard A, Lovazzano C, Castañeda F, Guajardo E, Contreras-Porcia L. Expression profile of desiccation tolerance factors in intertidal seaweed species during the tidal cycle. PLANTA 2017; 245:1149-1164. [PMID: 28289905 DOI: 10.1007/s00425-017-2673-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/02/2017] [Indexed: 05/26/2023]
Abstract
The transcriptional modulation of desiccation tolerance factors in P. orbicularis explains its successful recuperation after water deficit. Differential responses to air exposure clarify seaweed distribution along intertidal rocky zones. Desiccation-tolerant seaweed species, such as Pyropia orbicularis, can tolerate near 96% water loss during air exposure. To understand the phenotypic plasticity of P. orbicularis to desiccation, several tolerance factors were assessed by RT-qPCR, Western-blot analysis, and enzymatic assays during the natural desiccation-rehydration cycle. Comparative enzymatic analyses were used to evidence differential responses between P. orbicularis and desiccation-sensitive species. The results showed that during desiccation, the relative mRNA levels of genes associated with basal metabolism [trehalose phosphate synthase (tps) and pyruvate dehydrogenase (pdh)] were overexpressed in P. orbicularis. Transcript levels related to antioxidant metabolism [peroxiredoxin (prx); thioredoxin (trx); catalase (cat); lipoxygenase (lox); ferredoxin (fnr); glutathione S-transferase (gst)], cellular detoxification [ABC transporter (abc) and ubiquitin (ubq)], and signal transduction [calmodulin (cam)] increased approximately 15- to 20-fold, with the majority returning to basal levels during the final hours of rehydration. In contrast, actin (act) and transcription factor 1 (tf1) transcripts were down-regulated. ABC transporter protein levels increased in P. orbicularis during desiccation, whereas PRX transcripts decreased. The antioxidant enzymes showed higher specific activity in P. orbicularis under desiccation, and sensitive species exhibited enzymatic inactivation and scarce ABC and PRX protein detection following prolonged desiccation. In conclusion, the reported findings contribute towards understanding the ecological distribution of intertidal seaweeds at the molecular and functional levels.
Collapse
Affiliation(s)
- Camila Fierro
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Camilo López-Cristoffanini
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Carlos Lovazzano
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Francisco Castañeda
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Eduardo Guajardo
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Avda. Bernardo O'Higgins 340, Santiago, Chile.
| |
Collapse
|
50
|
Bi C, Ma Y, Wu Z, Yu YT, Liang S, Lu K, Wang XF. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination. PLANT MOLECULAR BIOLOGY 2017; 94:197-213. [PMID: 28391398 PMCID: PMC5437177 DOI: 10.1007/s11103-017-0603-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/13/2017] [Indexed: 05/18/2023]
Abstract
It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H2O2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.
Collapse
Affiliation(s)
- Chao Bi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu Ma
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhen Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yong-Tao Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shan Liang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kai Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Fang Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|