1
|
Wolella EK, Cheng Z, Li M, Xia D, Zhang J, Duan L, Liu L, Li Z, Zhang J. Large-Scale Rice Mutant Establishment and High-Throughput Mutant Manipulation Help Advance Rice Functional Genomics. PLANTS (BASEL, SWITZERLAND) 2025; 14:1492. [PMID: 40431057 PMCID: PMC12114927 DOI: 10.3390/plants14101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
Rice (Oryza sativa L.) is a stable food for over half of the world population, contributing 50-80% of the daily calorie intake. The completion of rice genome sequencing marks a significant milestone in understanding functional genomics, yet the systematic identification of gene functions remains a bottleneck for rice improvement. Large-scale mutant libraries in which the functions of genes are lost or gained (e.g., through chemical/physical treatments, T-DNA, transposons, RNAi, CRISPR/Cas9) have proven to be powerful tools for the systematic linking of genotypes to phenotypes. So far, using different mutagenesis approaches, a million mutant lines have been established and about 5-10% of the predicted rice gene functions have been identified due to the high demands of labor and low-throughput utilization. DNA-barcoding-based large-scale mutagenesis offers unprecedented precision and scalability in functional genomics. This review summarizes large-scale loss-of-function and gain-of-function mutant library development approaches and emphasizes the integration of DNA barcoding for pooled analysis. Unique DNA barcodes can be tagged to transposons/retrotransposons, DNA constructs, miRNA/siRNA, gRNA, and cDNA, allowing for pooling analysis and the assignment of functions to genes that cause phenotype alterations. In addition, the integration of high-throughput phenotyping and OMICS technologies can accelerate the identification of gene functions.
Collapse
Affiliation(s)
- Eyob Kassaye Wolella
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (E.K.W.); (Z.C.)
- Department of Biology, College of Natural and Computational Sciences, Debre Tabor University, Debre Tabor P.O. Box 272, Ethiopia
| | - Zhen Cheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (E.K.W.); (Z.C.)
- School of Life Sciences, Hubei University, Wuhan 430062, China; (L.D.); (L.L.)
| | - Mengyuan Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (D.X.); (J.Z.)
| | - Dandan Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (D.X.); (J.Z.)
| | - Jianwei Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (D.X.); (J.Z.)
| | - Liu Duan
- School of Life Sciences, Hubei University, Wuhan 430062, China; (L.D.); (L.L.)
| | - Li Liu
- School of Life Sciences, Hubei University, Wuhan 430062, China; (L.D.); (L.L.)
| | - Zhiyong Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (E.K.W.); (Z.C.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (E.K.W.); (Z.C.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
2
|
Liu X, Guo X, Li T, Wang X, Guan Y, Wang D, Wang Y, Ji X, Gao Q, Ji J. OsGSK1 interacts with OsbZIP72 to regulate salt response in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70112. [PMID: 40121668 DOI: 10.1111/tpj.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/02/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Soil salinity remains a continuing threat to agriculture worldwide, greatly affecting seedling development and reducing crop yield. Thus, the cultivation of salt-resistant crops on salinized land is an excellent strategy to ensure food security. The rice GSK3-like protein kinase, OsGSK1, is known to play a role in the response to various abiotic stressors; however, the underlying molecular mechanism of this response remains unclear. Here, we aimed to elucidate the mechanism by which OsGSK1 regulates the salt stress response. We found that OsGSK1 interacts with OsbZIP72 to negatively regulate salt stress tolerance in rice plants. OsGSK1 is specifically induced by cold, salt stress, and abscisic acid (ABA) treatment. OsGSK1 was found to be localized in the nucleus and cytoplasm, where it physically interacts with OsbZIP72 - a positive regulator of the rice salt stress response. OsbZIP72 directly binds to the ABA response element in the OsNHX1 promoter to regulate its expression under salt stress, whereas OsGSK1 interacts with OsbZIP72 to repress OsNHX1 expression. The knockout of OsGSK1 increased salt tolerance without affecting the main agronomic traits of the mutant plants. Therefore, OsGSK1 could be used to maintain rice yield in salinized soil.
Collapse
Affiliation(s)
- Xi Liu
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Xin Guo
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Tingjing Li
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Xue Wang
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Yulu Guan
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Di Wang
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, 223001, China
| | - Yinjie Wang
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Xiaonan Ji
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Qingsong Gao
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Jianhui Ji
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| |
Collapse
|
3
|
Zhang Y, Dong G, Wu X, Chen F, Ruan B, Jiang Y, Zhang Y, Liu L, Yuan YW, Wu L, Wei J, Qian Q, Yu Y. Rice RuBisCO activase promotes the dark-induced leaf senescence by enhancing the degradation of filamentation temperature-sensitive H. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17267. [PMID: 39962361 DOI: 10.1111/tpj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 05/09/2025]
Abstract
Leaf senescence is a complex process that is triggered by many developmental and environmental factors. However, the mechanisms regulating leaf senescence remain unclear. Here, we revealed that rice ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RCA) promotes the onset of basal dark-induced senescence. RCA was mainly expressed in the leaves, and its expression level quickly declined under dark conditions. Furthermore, rca mutant plants presented a prolonged leaf longevity phenotype in the dark, whereas overexpression of the large isoform of RCA (RCAL), not small isoform (RCAS), in rice and Arabidopsis accelerated leaf senescence. Filamentation temperature-sensitive H (OsFtsH1), a zinc metalloprotease, interacts with RCAL and RCAS and presents a higher binding efficiency to RCAL than RCAS in darkness. Furthermore, we found that RCAL promotes 26S proteasome-mediated degradation of OsFtsH1 protein, which can be inhibited by protease inhibitor MG132. Consequently, OsFtsH1 loss-of-function mutants exhibit accelerated leaf senescence, whereas OsFtsH1-overexpressing plants display delayed senescence. Collectively, our findings highlight the significant role of RCAL isoform in regulating leaf senescence under dark conditions, particularly through enhancing the degradation of OsFtsH1.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Xiaoyue Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ying Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Lu Liu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jian Wei
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| |
Collapse
|
4
|
Shim Y, Kim B, Choi Y, Cho SH, Kim Y, Kim SH, Yim Y, Kang K, Paek NC. Rice OsDof12 enhances tolerance to drought stress by activating the phenylpropanoid pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17175. [PMID: 39615028 DOI: 10.1111/tpj.17175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025]
Abstract
Drought is a major abiotic stress that severely affects cereal production worldwide. Although several genes have been identified that enhance the ability of rice to withstand drought stress, further research is needed to fully understand the molecular mechanisms underlying the response to drought stress. Our study showed that overexpression of rice DNA binding with one finger 12 (OsDof12) enhances tolerance to drought stress. Rice plants overexpressing OsDof12 (OsDof12-OE) displayed significantly higher tolerance to drought stress than the parental japonica rice "Dongjin". Transcriptome analysis revealed that many genes involved in phenylpropanoid biosynthesis were upregulated in OsDof12-OE plants, including phenylalanine ammonia-lyase 4 (OsPAL4), OsPAL6, cinnamyl alcohol dehydrogenase 6 (CAD6), and 4-coumarate-coA ligase like 6 (4CLL6). Accordingly, this transcriptional alteration led to the substantial accumulation of phenolic compounds, such as sinapic acids, in the leaves of OsDof12-OE plants, effectively lowering the levels of reactive oxygen species. Notably, OsDof12 bound to the AAAG-rich core sequence of the OsPAL4 promoter and promoted transcription. In addition, GIGANTEA (OsGI) interacts with OsDof12 in the nucleus and attenuates the transactivation activity of OsDof12 on OsPAL4. Our findings reveal a novel role for OsDof12 in promoting phenylpropanoid-mediated tolerance to drought stress.
Collapse
Affiliation(s)
- Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Boyeong Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yumin Choi
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Yeonjoon Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Yehyun Yim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Zhang X, Kim YJ, Tan Q, Jung KH, Liang W. A leucine-rich-repeat receptor-like kinase regulates pollen aperture formation in rice. PLANT PHYSIOLOGY 2024; 196:2517-2530. [PMID: 39271180 DOI: 10.1093/plphys/kiae466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
Apertures in pollen grains exhibit species-specific patterns and provide an ideal model for studying cell surface patterning. Pollen apertures are critical for cereal crop fertility, and while DEFECTIVE IN APERTURE FORMATION1 (OsDAF1) and INAPERTURATE POLLEN1 (OsINP1) have been documented to participate in pollen aperture formation in rice (Oryza sativa), the molecular transduction pathway regulating aperture formation is largely unknown. Here, we report that a leucine-rich-repeat receptor-like kinase (LRR-RLK), APERTURE MISSING1 (AM1), plays a key role in rice pollen aperture formation. Mutations of OsAM1 lead to complete sterility due to the disappearance of the pollen aperture and failure in pollen tube germination. OsAM1 encodes a LRR-RLK that belongs to the STRUBBELIG-receptor family. Similar to other reported aperture regulators, OsAM1 assembles to future aperture sites on tetrads after meiosis to regulate aperture formation. The extracellular and intracellular domain of OsAM1 interacts with OsINP1 and OsDAF1, respectively. However, despite their interaction and the absence of aperture formation in osam1 pollen grains, OsINP1 and OsDAF1 localize to future aperture sites at the tetrad stage. Mutation of OsINP1, however, disrupts normal localization of OsAM1, indicating that OsAM1 acts downstream of OsINP1. Our findings reveal the role of a LRR-RLK protein in pollen aperture formation and shed light on the regulatory network of pollen aperture formation.
Collapse
Affiliation(s)
- Xu Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Qian Tan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Ki Hong Jung
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572024, China
| |
Collapse
|
6
|
Lee SJ, Kim Y, Kang K, Yoon H, Kang J, Cho SH, Paek NC. Rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE interacts with OsCRY2 and promotes flowering by upregulating Early heading date 1. PLANT, CELL & ENVIRONMENT 2024; 47:4498-4515. [PMID: 39012205 DOI: 10.1111/pce.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Flowering time is a crucial adaptive response to seasonal variation in plants and is regulated by environmental cues such as photoperiod and temperature. In this study, we demonstrated the regulatory function of rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE (OsCIBL1) in flowering time. Overexpression of OsCIB1L promoted flowering, whereas the oscib1l knockout mutation did not alter flowering time independent of photoperiodic conditions. Cryptochromes (CRYs) are blue light photoreceptors that enable plants to sense photoperiodic changes. OsCIBL1 interacted with OsCRY2, a member of the rice CRY family (OsCRY1a, OsCRY1b, and OsCRY2), and bound to the Early heading date 1 (Ehd1) promoter, activating the rice-specific Ehd1-Heading date 3a/RICE FLOWERING LOCUS T 1 pathway for flowering induction. Dual-luciferase reporter assays showed that the OsCIBL1-OsCRY2 complex required blue light to induce Ehd1 transcription. Natural alleles resulting from nonsynonymous single nucleotide polymorphisms in OsCIB1L and OsCRY2 may contribute to the adaptive expansion of rice cultivation areas. These results expand our understanding of the molecular mechanisms controlling rice flowering and highlight the importance of blue light-responsive genes in the geographic distribution of rice.
Collapse
Affiliation(s)
- Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yunjeong Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Hyeryung Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinku Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Lim C, Kang K, Lim J, Lee H, Cho SH, Paek NC. RICE LONG GRAIN 3 delays dark-induced senescence by downregulating abscisic acid signaling and upregulating reactive oxygen species scavenging activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1474-1487. [PMID: 39378337 DOI: 10.1111/tpj.17061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Leaf senescence is a complex developmental process influenced by abscisic acid (ABA) and reactive oxygen species (ROS), both of which increase during senescence. Understanding the regulatory mechanisms of leaf senescence can provide insights into enhancing crop yield and stress tolerance. In this study, we aimed to elucidate the role and mechanisms of rice (Oryza sativa) LONG GRAIN 3 (OsLG3), an APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factor, in orchestrating dark-induced leaf senescence. The transcript levels of OsLG3 gradually increased during dark-induced and natural senescence. Transgenic plants overexpressing OsLG3 exhibited delayed senescence, whereas CRISPR/Cas9-mediated oslg3 mutants exhibited accelerated leaf senescence. OsLG3 overexpression suppressed senescence-induced ABA signaling by downregulating OsABF4 (an ABA-signaling-related gene) and reduced ROS accumulation by enhancing catalase activity through upregulation of OsCATC. In vivo and in vitro binding assays demonstrated that OsLG3 downregulated OsABF4 and upregulated OsCATC by binding directly to their promoter regions. These results demonstrate the critical role of OsLG3 in fine-tuning leaf senescence progression by suppressing ABA-mediated signaling while simultaneously activating ROS-scavenging mechanisms. These findings suggest that OsLG3 could be targeted to enhance crop resilience and longevity.
Collapse
Affiliation(s)
- Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Jisun Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Haeun Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Lee SK, Shim SH, Eom JS, Cho JI, Kwak JU, Eom SC, Jeon JS. Cell Wall Invertases from Maternal Tissues Modulate Sucrose Flux in Apoplastic Pathways During Rice Anther and Seed Development. Int J Mol Sci 2024; 25:11557. [PMID: 39519110 PMCID: PMC11546591 DOI: 10.3390/ijms252111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Efficient sucrose transport and metabolism are vital for seed and pollen development in plants. Cell wall invertases (CINs) hydrolyze sucrose into glucose and fructose, maintaining a sucrose gradient in the apoplast of sink tissues. In rice, two CIN isoforms, OsCIN1 and OsCIN2, were identified as being specifically expressed in the anthers but not in pollen. Functional analyses through genetic crosses and mutant characterization showed that oscin1/2 double mutants exhibit a sporophytic male-sterile phenotype and produce shrunken seeds. This suggests that CIN activity is essential for proper pollen development and seed formation in rice. Observation of the progeny genotypes and phenotypes from various genetic crosses revealed that the phenotype of oscin1/2 seeds is determined by the genotype of the maternal tissue, indicating the critical role of CIN function in the apoplast between maternal and filial tissues for sucrose transport and metabolism. The CIN activity in the anthers and seeds of wild-type rice was found to be significantly higher-over 500-fold in the anthers and 5-fold in the seeds-than in the leaves, highlighting the importance of CIN in facilitating the efficient unloading of sucrose. These findings suggest that the fine-tuning of CIN activity in the apoplast, achieved through tissue-specific expression and CIN isoform regulation, plays a key role in determining the carbohydrate distribution across different tissues. Understanding this regulatory mechanism could provide opportunities to manipulate carbohydrate allocation to sink organs, potentially enhancing crop yields.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Division of Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-U.K.); (S.-C.E.)
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-H.S.); (J.-S.E.); (J.-I.C.)
| | - Joon-Seob Eom
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-H.S.); (J.-S.E.); (J.-I.C.)
| | - Jung-Il Cho
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-H.S.); (J.-S.E.); (J.-I.C.)
- Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Jae-Ung Kwak
- Division of Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-U.K.); (S.-C.E.)
| | - Seong-Cheol Eom
- Division of Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-U.K.); (S.-C.E.)
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-H.S.); (J.-S.E.); (J.-I.C.)
| |
Collapse
|
9
|
Do VG, Kim S, Win NM, Kwon SI, Kweon H, Yang S, Park J, Do G, Lee Y. Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium-Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2803. [PMID: 39409673 PMCID: PMC11478628 DOI: 10.3390/plants13192803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Genetic transformation is a critical tool for gene manipulation and functional analyses in plants, enabling the exploration of key phenotypes and agronomic traits at the genetic level. While dicotyledonous plants offer various tissues for in vitro culture and transformation, monocotyledonous plants, such as rice, have limited options. This study presents an efficient method for genetically transforming rice (Oryza sativa L.) using seed-derived embryogenic calli as explants. Two target genes were utilized to assess regeneration efficiency: green fluorescent protein (eGFP) and the apple FLOWERING LOCUS T (FT)-like gene (MdFT1). Antisense MdFT1 was cloned into a vector controlled by the rice α-amylase 3D (Ramy3D) promoter, while eGFP was fused to Cas9 under the Ubi promoter. These vectors were introduced separately into rice embryogenic calli from two Korean cultivars using Agrobacterium-mediated transformation. Transgenic seedlings were successfully regenerated via hygromycin selection using an in vitro cultivation system. PCR confirmed stable transgene integration in the transgenic calli and their progeny. Fluorescence microscopy revealed eGFP expression, and antisense MdFT1-expressing lines exhibited notable phenotypic changes, including variations in plant height and grain quality. High transformation efficiency and regeneration frequency were achieved for both tested cultivars. This study demonstrated the effective use of seed-derived embryogenic calli for rice transformation, offering a promising approach for developing transgenic plants in monocot species.
Collapse
Affiliation(s)
- Van Giap Do
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Seonae Kim
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Nay Myo Win
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Soon-Il Kwon
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Hunjoong Kweon
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Sangjin Yang
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Juhyeon Park
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Gyungran Do
- Postharvest Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea;
| | - Youngsuk Lee
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| |
Collapse
|
10
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Jeon J, Rahman MM, Yang HW, Kim J, Gam HJ, Song JY, Jeong SW, Kim JI, Choi MG, Shin DH, Choi G, Shim D, Jung JH, Lee IJ, Jeon JS, Park YI. Modulation of warm temperature-sensitive growth using a phytochrome B dark reversion variant, phyB[G515E], in Arabidopsis and rice. J Adv Res 2024; 63:57-72. [PMID: 37926145 PMCID: PMC11379985 DOI: 10.1016/j.jare.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Ambient temperature-induced hypocotyl elongation in Arabidopsis seedlings is sensed by the epidermis-localized phytochrome B (phyB) and transduced into auxin biosynthesis via a basic helix-loop-helix transcription factor, phytochrome-interacting factor 4 (PIF4). Once synthesized, auxin travels down from the cotyledons to the hypocotyl, triggering hypocotyl cell elongation. Thus, the phyB-PIF4 module involved in thermosensing and signal transduction is a potential genetic target for engineering warm temperature-insensitive plants. OBJECTIVES This study aims to manipulate warm temperature-induced elongation of plants at the post-translational level using phyB variants with dark reversion, the expression of which is subjected to heat stress. METHODS The thermosensitive growth response of Arabidopsis was manipulated by expressing the single amino acid substitution variant of phyB (phyB[G515E]), which exhibited a lower dark reversion rate than wild-type phyB. Other variants with slow (phyB[G564E]) or rapid (phyB[S584F]) dark reversion or light insensitivity (phyB[G767R]) were also included in this study for comparison. Warming-induced transient expression of phyB variants was achieved using heat shock-inducible promoters. Arabidopsis PHYB[G515E] and PHYB[G564E] were also constitutively expressed in rice in an attempt to manipulate the heat sensitivity of a monocotyledonous plant species. RESULTS At an elevated temperature, Arabidopsis seedlings transiently expressing PHYB[G515E] under the control of a heat shock-inducible promoter exhibited shorter hypocotyls than those expressing PHYB and other PHYB variant genes. This warm temperature-insensitive growth was related to the lowered PIF4 and auxin responses. In addition, transgenic rice seedlings expressing Arabidopsis PHYB[G515E] and PHYB[G564E] showed warm temperature-insensitive shoot growth. CONCLUSION Transient expression of phyB variants with altered dark reversion rates could serve as an effective optogenetic technique for manipulating PIF4-auxin-mediated thermomorphogenic responses in plants.
Collapse
Affiliation(s)
- Jin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Md Mizanor Rahman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seok Won Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Il Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Myoung-Goo Choi
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dong-Ho Shin
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
12
|
Kim JS, Chae S, Jo JE, Kim KD, Song SI, Park SH, Choi SB, Jun KM, Shim SH, Jeon JS, Lee GS, Kim YK. OsMYB14, an R2R3-MYB transcription factor, regulates plant height through the control of hormone metabolism in rice. Mol Cells 2024; 47:100093. [PMID: 39004308 PMCID: PMC11342784 DOI: 10.1016/j.mocell.2024.100093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Plant growth must be regulated throughout the plant life cycle. The myeloblastosis (MYB) transcription factor (TF) family is one of the largest TF families and is involved in metabolism, lignin biosynthesis, and developmental processes. Here, we showed that OsMYB14, a rice R2R3-MYB TF, was expressed in leaves and roots, especially in rice culm and panicles, and that it localized to the nucleus. Overexpression of OsMYB14 (OsMYB14-ox) in rice resulted in a 30% reduction in plant height compared to that of the wild type (WT), while the height of the osmyb14-knockout (osmyb14-ko) mutant generated using the CRISPR/Cas9 system was not significantly different. Microscopic observations of the first internode revealed that the cell size did not differ significantly among the lines. RNA sequencing analysis revealed that genes associated with plant development, regulation, lipid metabolism, carbohydrate metabolism, and gibberellin (GA) and auxin metabolic processes were downregulated in the OsMYB14-ox line. Hormone quantitation revealed that inactive GA19 accumulated in OsMYB14-ox but not in the WT or knockout plants, suggesting that GA20 generation was repressed. Indole-3-acetic acid (IAA) and IAA-aspartate accumulated in OsMYB14-ox and osmyb14-ko, respectively. Indeed, real-time PCR analysis revealed that the expression of OsGA20ox1, encoding GA20 oxidase 1, and OsGH3-2, encoding IAA-amido synthetase, was downregulated in OsMYB14-ox and upregulated in osmyb14-ko. A protein-binding microarray revealed the presence of a consensus DNA-binding sequence, the ACCTACC-like motif, in the promoters of the OsGA20ox1 and GA20ox2 genes. These results suggest that OsMYB14 may act as a negative regulator of biological processes affecting plant height in rice by regulating GA biosynthesis and auxin metabolism.
Collapse
Affiliation(s)
- Joung Sug Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jae Eun Jo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Kyung Do Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Sang-Ik Song
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Su Hyun Park
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Sang-Bong Choi
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene Biotech Inc, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, Jeollabuk-do 54875, Republic of Korea
| | - Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
13
|
Im G, Choi D. Molecular and physiological characterization of AIP1, encoding the acetolactate synthase regulatory subunit in rice. Biochem Biophys Res Commun 2024; 718:150087. [PMID: 38735139 DOI: 10.1016/j.bbrc.2024.150087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Flooding deprives plants of oxygen and thereby causes severe stress by interfering with energy production, leading to growth retardation. Enzymes and metabolites may help protect plants from waterlogging and hypoxic environmental conditions. Acetolactate synthase (ALS) is a key enzyme in the biosynthesis of branched-chain amino acids (BCAAs), providing the building blocks for proteins and various secondary metabolites. Additionally, under energy-poor conditions, free BCAAs can be used as an alternative energy source by mitochondria through a catabolic enzyme chain reaction. In this study, we characterized ALS-INTERACTING PROTEIN 1 (OsAIP1), which encodes the regulatory subunit of ALS in rice (Oryza sativa). This gene was expressed in all parts of the rice plant, and its expression level was significantly higher in submerged and low-oxygen environments. Rice transformants overexpressing OsAIP1 showed a higher survival rate under hypoxic stress than did non-transgenic control plants under the same conditions. The OsAIP1-overexpressing plants accumulated increased levels of BCAAs, demonstrating that OsAIP1 is an important factor in the hypoxia resistance mechanism. These results suggest that ALS proteins are part of a defense mechanism that improves the tolerance of plants to low-oxygen environments.
Collapse
Affiliation(s)
- Geunmuk Im
- Department of Biological Science, Kunsan National University, Gunsan-si, 54150, Republic of Korea
| | - Dongsu Choi
- Department of Biological Science, Kunsan National University, Gunsan-si, 54150, Republic of Korea.
| |
Collapse
|
14
|
Chang Y, Fang Y, Liu J, Ye T, Li X, Tu H, Ye Y, Wang Y, Xiong L. Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice. Nat Commun 2024; 15:5877. [PMID: 38997294 PMCID: PMC11245485 DOI: 10.1038/s41467-024-50229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Drought and heat are major abiotic stresses frequently coinciding to threaten rice production. Despite hundreds of stress-related genes being identified, only a few have been confirmed to confer resistance to multiple stresses in crops. Here we report ONAC023, a hub stress regulator that integrates the regulations of both drought and heat tolerance in rice. ONAC023 positively regulates drought and heat tolerance at both seedling and reproductive stages. Notably, the functioning of ONAC023 is obliterated without stress treatment and can be triggered by drought and heat stresses at two layers. The expression of ONAC023 is induced in response to stress stimuli. We show that overexpressed ONAC23 is translocated to the nucleus under stress and evidence from protoplasts suggests that the dephosphorylation of the remorin protein OSREM1.5 can promote this translocation. Under drought or heat stress, the nuclear ONAC023 can target and promote the expression of diverse genes, such as OsPIP2;7, PGL3, OsFKBP20-1b, and OsSF3B1, which are involved in various processes including water transport, reactive oxygen species homeostasis, and alternative splicing. These results manifest that ONAC023 is fine-tuned to positively regulate drought and heat tolerance through the integration of multiple stress-responsive processes. Our findings provide not only an underlying connection between drought and heat responses, but also a promising candidate for engineering multi-stress-resilient rice.
Collapse
Affiliation(s)
- Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Jiahan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiantian Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Wu Y, Sun Y, Wang W, Xie Z, Zhan C, Jin L, Huang J. OsJAZ10 negatively modulates the drought tolerance by integrating hormone signaling with systemic electrical activity in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108683. [PMID: 38714129 DOI: 10.1016/j.plaphy.2024.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Jasmonic acid (JA) plays crucial functions in plant stress response, and the synergistic interaction between JA and abscisic acid (ABA) signaling is implicated to help plants adapt to environmental challenges, whereas the underlying molecular mechanism still needs to be revealed. Here, we report that OsJAZ10, a repressor in the JA signaling, represses rice drought tolerance via inhibition of JA and ABA biosynthesis. Function loss of OsJAZ10 markedly enhances, while overexpression of OsJAZ10ΔJas reduces rice drought tolerance. The osjaz10 mutant is more sensitive to exogenous ABA and MeJA, and produces higher levels of ABA and JA after drought treatment, indicating OsJAZ10 represses the biosynthesis of these two hormones. Mechanistic study demonstrated that OsJAZ10 physically interacts with OsMYC2. Transient transcriptional regulation assays showed that OsMYC2 activates the expression of ABA-biosynthetic gene OsNCED2, JA-biosynthetic gene OsAOC, and drought-responsive genes OsRAB21 and OsLEA3, while OsJAZ10 prevents OsMYC2 transactivation of these genes. Further, the electrophoretic mobility shift assay (EMSA) confirmed that OsMYC2 directly binds to the promoters of OsNCED2 and OsRAB21. Electrical activity has been proposed to activate JA biosynthesis. Interestingly, OsJAZ10 inhibits the propagation of osmotic stress-elicited systemic electrical signals, indicated by the significantly increased PEG-elicited slow wave potentials (SWPs) in osjaz10 mutant, which is in accordance with the elevated JA levels. Collectively, our findings establish that OsJAZ10 functions as a negative regulator in rice drought tolerance by repressing JA and ABA biosynthesis, and reveal an important mechanism that plants integrate electrical events with hormone signaling to enhance the adaption to environmental stress.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Wanmin Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
16
|
Sun Y, Xie Z, Jin L, Qin T, Zhan C, Huang J. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability. THE PLANT CELL 2024; 36:1913-1936. [PMID: 38242836 PMCID: PMC11062455 DOI: 10.1093/plcell/koae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Low temperature is a major environmental factor limiting plant growth and crop production. Epigenetic regulation of gene expression is important for plant adaptation to environmental changes, whereas the epigenetic mechanism of cold signaling in rice (Oryza sativa) remains largely elusive. Here, we report that the histone deacetylase (HDAC) OsHDA716 represses rice cold tolerance by interacting with and deacetylating the transcription factor OsbZIP46. The loss-of-function mutants of OsHDA716 exhibit enhanced chilling tolerance, compared with the wild-type plants, while OsHDA716 overexpression plants show chilling hypersensitivity. On the contrary, OsbZIP46 confers chilling tolerance in rice through transcriptionally activating OsDREB1A and COLD1 to regulate cold-induced calcium influx and cytoplasmic calcium elevation. Mechanistic investigation showed that OsHDA716-mediated OsbZIP46 deacetylation in the DNA-binding domain reduces the DNA-binding ability and transcriptional activity as well as decreasing OsbZIP46 protein stability. Genetic evidence indicated that OsbZIP46 deacetylation mediated by OsHDA716 reduces rice chilling tolerance. Collectively, these findings reveal that the functional interplay between the chromatin regulator and transcription factor fine-tunes the cold response in plant and uncover a mechanism by which HDACs repress gene transcription through deacetylating nonhistone proteins and regulating their biochemical functions.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
17
|
Shim KC, Luong NH, Tai TH, Lee GR, Ahn SN, Park I. T-DNA insertion mutants of Arabidopsis DA1 orthologous genes displayed altered plant height and yield-related traits in rice (O. Sativa L.). Genes Genomics 2024; 46:451-459. [PMID: 38436907 DOI: 10.1007/s13258-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The Arabidopsis DA1 gene is a key player in the regulation of organ and seed development. To extend our understanding of its functional counterparts in rice, this study investigates the roles of orthologous genes, namely DA1, HDR3, HDR3.1, and the DA2 ortholog GW2, through the analysis of T-DNA insertion mutants. OBJECTIVE The aim of this research is to elucidate the impact of T-DNA insertions in DA1, HDR3, HDR3.1, and GW2 on agronomic traits in rice. By evaluating homozygous plants, we specifically focus on key parameters such as plant height, tiller number, days to heading, and grain size. METHODS T-DNA insertion locations were validated using PCR, and subsequent analyses were conducted on homozygous plants. Agronomic traits, including plant height, tiller number, days to heading, and grain size, were assessed. Additionally, leaf senescence assays were performed under dark incubation conditions to gauge the impact of T-DNA insertions on this physiological aspect. RESULTS The study revealed distinctive phenotypic outcomes associated with T-DNA insertions in HDR3, HDR3.1, GW2, and DA1. Specifically, HDR3 and HDR3.1 mutants exhibited significantly reduced plant height and smaller grain size, while GW2 and DA1 mutants displayed a notable increase in both plant height and grain size compared to the wild type variety Dongjin. Leaf senescence assays further indicated delayed leaf senescence in hdr3.1 mutants, contrasting with slightly earlier leaf senescence observed in hdr3 mutants under dark incubation. CONCLUSIONS The findings underscore the pivotal roles of DA1 orthologous genes in rice, shedding light on their significance in regulating plant growth and development. The observed phenotypic variations highlight the potential of these genes as targets for crop improvement strategies, offering insights that could contribute to the enhancement of agronomic traits in rice and potentially other crops.
Collapse
Affiliation(s)
- Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA, 95616, USA.
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Thomas H Tai
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA, 95616, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Gyu-Ri Lee
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, Republic of Korea.
| |
Collapse
|
18
|
Xie Z, Jin L, Sun Y, Zhan C, Tang S, Qin T, Liu N, Huang J. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. PLANT COMMUNICATIONS 2024; 5:100782. [PMID: 38148603 PMCID: PMC10943586 DOI: 10.1016/j.xplc.2023.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The crosstalk between gibberellin (GA) and abscisic acid (ABA) signaling is crucial for balancing plant growth and adaption to environmental stress. Nevertheless, the molecular mechanism of their mutual antagonism still remains to be fully clarified. In this study, we found that knockout of the rice NAC (NAM, ATAF1/2, CUC2) transcription factor gene OsNAC120 inhibits plant growth but enhances drought tolerance, whereas OsNAC120 overexpression produces the opposite results. Exogenous GA can rescue the semi-dwarf phenotype of osnac120 mutants, and further study showed that OsNAC120 promotes GA biosynthesis by transcriptionally activating the GA biosynthetic genes OsGA20ox1 and OsGA20ox3. The DELLA protein SLENDER RICE1 (SLR1) interacts with OsNAC120 and impedes its transactivation ability, and GA treatment can remove the inhibition of transactivation activity caused by SLR1. On the other hand, OsNAC120 negatively regulates rice drought tolerance by repressing ABA-induced stomatal closure. Mechanistic investigation revealed that OsNAC120 inhibits ABA biosynthesis via transcriptional repression of the ABA biosynthetic genes OsNCED3 and OsNCED4. Rice OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (OsSAPK9) physically interacts with OsNAC120 and mediates its phosphorylation, which results in OsNAC120 degradation. ABA treatment accelerates OsNAC120 degradation and reduces its transactivation activity. Together, our findings provide evidence that OsNAC120 plays critical roles in balancing GA-mediated growth and ABA-induced drought tolerance in rice. This research will help us to understand the mechanisms underlying the trade-off between plant growth and stress tolerance and to engineer stress-resistant, high-yielding crops.
Collapse
Affiliation(s)
- Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Siqi Tang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Nian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
19
|
He J, Zeng C, Li M. Plant Functional Genomics Based on High-Throughput CRISPR Library Knockout Screening: A Perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300203. [PMID: 38465224 PMCID: PMC10919289 DOI: 10.1002/ggn2.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Indexed: 03/12/2024]
Abstract
Plant biology studies in the post-genome era have been focused on annotating genome sequences' functions. The established plant mutant collections have greatly accelerated functional genomics research in the past few decades. However, most plant genome sequences' roles and the underlying regulatory networks remain substantially unknown. Clustered, regularly interspaced short palindromic repeat (CRISPR)-associated systems are robust, versatile tools for manipulating plant genomes with various targeted DNA perturbations, providing an excellent opportunity for high-throughput interrogation of DNA elements' roles. This study compares methods frequently used for plant functional genomics and then discusses different DNA multi-targeted strategies to overcome gene redundancy using the CRISPR-Cas9 system. Next, this work summarizes recent reports using CRISPR libraries for high-throughput gene knockout and function discoveries in plants. Finally, this work envisions the future perspective of optimizing and leveraging CRISPR library screening in plant genomes' other uncharacterized DNA sequences.
Collapse
Affiliation(s)
- Jianjie He
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Can Zeng
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| |
Collapse
|
20
|
Baek D, Hong S, Kim HJ, Moon S, Jung KH, Yang WT, Kim DH. OsMYB58 Negatively Regulates Plant Growth and Development by Regulating Phosphate Homeostasis. Int J Mol Sci 2024; 25:2209. [PMID: 38396886 PMCID: PMC10889527 DOI: 10.3390/ijms25042209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice (Oryza sativa) R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles in Pi starvation signaling and Pi homeostasis. Here, we identified the R2R3-MYB transcription factor gene OsMYB58, which shares high sequence similarity with AtMYB58. OsMYB58 expression was induced more strongly by Pi starvation than by other micronutrient deficiencies. Overexpressing OsMYB58 in Arabidopsis thaliana and rice inhibited plant growth and development under Pi-deficient conditions. In addition, the overexpression of OsMYB58 in plants exposed to Pi deficiency strongly affected root development, including seminal root, lateral root, and root hair formation. Overexpressing OsMYB58 strongly decreased the expression of the rice microRNAs OsmiR399a and OsmiR399j. By contrast, overexpressing OsMYB58 strongly increased the expression of rice PHOSPHATE 2 (OsPHO2), whose expression is repressed by miR399 during Pi starvation signaling. OsMYB58 functions as a transcriptional repressor of the expression of its target genes, as determined by a transcriptional activity assay. These results demonstrate that OsMYB58 negatively regulates OsmiR399-dependent Pi starvation signaling by enhancing OsmiR399s expression.
Collapse
Affiliation(s)
- Dongwon Baek
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Soyeon Hong
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Hye Jeong Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.M.); (K.H.J.)
| | - Ki Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.M.); (K.H.J.)
| | - Won Tae Yang
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| |
Collapse
|
21
|
Lim C, Kim Y, Shim Y, Cho SH, Yang TJ, Song YH, Kang K, Paek NC. Rice OsGATA16 is a positive regulator for chlorophyll biosynthesis and chloroplast development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:599-615. [PMID: 37902786 DOI: 10.1111/tpj.16517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Chloroplasts are essential organelles in plants that contain chlorophylls and facilitate photosynthesis for growth and development. As photosynthetic efficiency significantly impacts crop productivity, understanding the regulatory mechanisms of chloroplast development has been crucial in increasing grain and biomass production. This study demonstrates the involvement of OsGATA16, an ortholog of Arabidopsis GATA, NITRATE INDUCIBLE, CARBON-METABOLISM INVOLVED (GNC), and GNC-LIKE/CYTOKININ-RESPONSIVE GATA FACTOR 1 (GNL/CGA1), in chlorophyll biosynthesis and chloroplast development in rice (Oryza sativa). The osgata16-1 knockdown mutants produced pale-green leaves, while OsGATA16-overexpressed plants (OsGATA16-OE1) generated dark-green leaves, compared to their parental japonica rice. Reverse transcription and quantitative PCR analysis revealed downregulation of genes related to chloroplast division, chlorophyll biosynthesis, and photosynthesis in the leaves of osgata16-1 and upregulation in those of OsGATA16-OE1. Additionally, in vivo binding assays showed that OsGATA16 directly binds to the promoter regions of OsHEMA, OsCHLH, OsPORA, OsPORB, and OsFtsZ, and upregulates their expression. These findings indicate that OsGATA16 serves as a positive regulator controlling chlorophyll biosynthesis and chloroplast development in rice.
Collapse
Affiliation(s)
- Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Youngoh Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Duan A, Liu R, Liu C, Wu F, Su H, Zhou S, Huang M, Tian X, Jia H, Liu Y, Li M, Du H. Mutation of the gene encoding the PHD-type transcription factor SAB23 confers submergence tolerance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:168-179. [PMID: 37798132 DOI: 10.1093/jxb/erad388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Submergence is a major constraint on rice production in South and Southeast Asia. In this study, we determined that a gene of the Sub1A-binding protein family, SAB23, encodes a plant homeodomain (PHD)-type transcription factor that has a novel function of negatively regulating submergence tolerance in rice. The T-DNA insertion mutant sab23 displayed reduced plant height, delayed seed maturation, and lower percentage seed set. Importantly, this mutant also exhibited enhanced submergence tolerance. In addition, CRISPR/Cas9 knock out of SAB23 resulted in a significant reduction in the content of the gibberellin GA4 and a dramatic increase in the content of GA1 in the plants. SAB23 binds to the promoter of CYTOCHROME P450 714B2 (CYP714B2), which encodes a GA13-oxidase that catalyses the conversion of GA53 to GA19. Disruption of SAB23 function led to increased CYP714B2 transcription, and overexpression of CYP714B2 produced phenotypes similar to those of the SAB23-knockout plants. Taken together, our results reveal that SAB23 negatively regulates rice submergence tolerance by modulating CYP714B2 expression, which has significant potential for use in future breeding.
Collapse
Affiliation(s)
- Ao Duan
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Rui Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Changchang Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Fei Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Hang Su
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Shuangzhen Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Min Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Xiaohai Tian
- Hubei Collaborative Innovation Center for Grain Crops, Yangzte University, Jingzhou 434025, P.R. China
| | - Haitao Jia
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, P.R. China
| | - Ya Liu
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097, P.R. China
| | - Manfei Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
- Hubei Collaborative Innovation Center for Grain Crops, Yangzte University, Jingzhou 434025, P.R. China
| |
Collapse
|
23
|
Sun L, Alariqi M, Wang Y, Wang Q, Xu Z, Zafar MN, Yang G, Jia R, Hussain A, Chen Y, Ding X, Zhou J, Wang G, Wang F, Li J, Zou J, Zhu X, Yu L, Sun Y, Liang S, Hui F, Chen L, Guo W, Wang Y, Zhu H, Lindsey K, Nie X, Zhang X, Jin S. Construction of Host Plant Insect-Resistance Mutant Library by High-Throughput CRISPR/Cas9 System and Identification of A Broad-Spectrum Insect Resistance Gene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306157. [PMID: 38032126 PMCID: PMC10811493 DOI: 10.1002/advs.202306157] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Insects pose significant challenges in cotton-producing regions. Here, they describe a high-throughput CRISPR/Cas9-mediated large-scale mutagenesis library targeting endogenous insect-resistance-related genes in cotton. This library targeted 502 previously identified genes using 968 sgRNAs, generated ≈2000 T0 plants and achieved 97.29% genome editing with efficient heredity, reaching upto 84.78%. Several potential resistance-related mutants (10% of 200 lines) their identified that may contribute to cotton-insect molecular interaction. Among these, they selected 139 and 144 lines showing decreased resistance to pest infestation and targeting major latex-like protein 423 (GhMLP423) for in-depth study. Overexpression of GhMLP423 enhanced insect resistance by activating the plant systemic acquired resistance (SAR) of salicylic acid (SA) and pathogenesis-related (PR) genes. This activation is induced by an elevation of cytosolic calcium [Ca2+ ]cyt flux eliciting reactive oxygen species (ROS), which their demoted in GhMLP423 knockout (CR) plants. Protein-protein interaction assays revealed that GhMLP423 interacted with a human epidermal growth factor receptor substrate15 (EPS15) protein at the cell membrane. Together, they regulated the systemically propagating waves of Ca2+ and ROS, which in turn induced SAR. Collectively, this large-scale mutagenesis library provides an efficient strategy for functional genomics research of polyploid plant species and serves as a solid platform for genetic engineering of insect resistance.
Collapse
Affiliation(s)
- Lin Sun
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
- Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanShandong250100China
| | - Muna Alariqi
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
- Department of Agronomy and Pastures, Faculty of AgricultureSana’a UniversitySana’aYemen
| | - Yaxin Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Qiongqiong Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Zhongping Xu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Muhammad Naeem Zafar
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guangqin Yang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Ruoyu Jia
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Amjad Hussain
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Yilin Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xiao Ding
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jiawei Zhou
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guanying Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Fuqiu Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jianying Li
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jiawei Zou
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xiangqian Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Lu Yu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Yiwen Sun
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Sijia Liang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Fengjiao Hui
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Luo Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Weifeng Guo
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinTarim UniversityAlaerXinjiang843300China
| | - Yanqin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinTarim UniversityAlaerXinjiang843300China
| | - Huaguo Zhu
- College of Biology and Agricultural ResourcesHuanggang Normal UniversityHuanggangHubei438000China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiangChina
| | - Xianlong Zhang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Shuangxia Jin
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
24
|
Kim SH, Yoon J, Kim H, Lee SJ, Paek NC. Rice Basic Helix-Loop-Helix 079 (OsbHLH079) Delays Leaf Senescence by Attenuating ABA Signaling. RICE (NEW YORK, N.Y.) 2023; 16:60. [PMID: 38093151 PMCID: PMC10719235 DOI: 10.1186/s12284-023-00673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Leaf senescence represents the final phase of leaf development and is characterized by a highly organized degenerative process involving the active translocation of nutrients from senescing leaves to growing tissues or storage organs. To date, a large number of senescence-associated transcription factors (sen-TFs) have been identified that regulate the initiation and progression of leaf senescence. Many of these TFs, including NAC (NAM/ATAF1/2/CUC2), WRKY, and MYB TFs, have been implicated in modulating the expression of downstream senescence-associated genes (SAGs) and chlorophyll degradation genes (CDGs) under the control of phytohormones. However, the involvement of basic helix-loop-helix (bHLH) TFs in leaf senescence has been less investigated. Here, we show that OsbHLH079 delays both natural senescence and dark-induced senescence: Overexpression of OsbHLH079 led to a stay-green phenotype, whereas osbhlh079 knockout mutation displayed accelerated leaf senescence. Similar to other sen-TFs, OsbHLH079 showed a gradual escalation in expression as leaves underwent senescence. During this process, the mRNA levels of SAGs and CDGs remained relatively low in OsbHLH079 overexpressors, but increased sharply in osbhlh079 mutants, suggesting that OsbHLH079 negatively regulates the transcription of SAGs and CDGs under senescence conditions. Additionally, we found that OsbHLH079 delays ABA-induced senescence. Subsequent RT-qPCR and dual-luciferase reporter assays revealed that OsbHLH079 downregulates the expression of ABA signaling genes, such as OsABF2, OsABF4, OsABI5, and OsNAP. Taken together, these results demonstrate that OsbHLH079 functions in delaying leaf yellowing by attenuating the ABA responses.
Collapse
Affiliation(s)
- Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jungwon Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hanna Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Chen R, Luo L, Li K, Li Q, Li W, Wang X. Dormancy-Associated Gene 1 (OsDRM1) as an axillary bud dormancy marker: Retarding Plant Development, and Modulating Auxin Response in Rice (Oryza sativa L.). JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154117. [PMID: 37924628 DOI: 10.1016/j.jplph.2023.154117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
Dormancy-Associated Genes 1/Auxin-Repressed Proteins (DRM1/ARP) are associated with bud dormancy, repression of plant growth, and responsiveness to hormones. To further explore the function of DRM1 proteins in rice, we isolated a dormancy-associated gene1 (OsDRM1) through microarray analysis. In situ hybridization analyses revealed that OsDRM1 is predominantly expressed in dormant axillary buds, while it is weakly expressed in growing buds, indicating that OsDRM1 gene can be used as a molecular marker for bud dormancy in rice. Overexpression of OsDRM1 in transgenic plants delayed axillary bud outgrowth by suppressing cell division within the buds. Further studies in OsDRM1-overexpressing transgenic plants showed a reduction in plant height, inhibition of root and hypocotyl elongation, and delayed heading time. Under auxin treatment, overexpression of OsDRM1 in transgenic lines partially rescued the shortened length of the primary and crown root. Taken together, these results indicated that OsDRM1 delayed bud growth by arresting the cell cycle and act as a growth repressor affect rice development by modulated auxin signaling.
Collapse
Affiliation(s)
- Ruihong Chen
- Horticultural Science Research Center, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Li
- College of Forest, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Li
- Horticultural Science Research Center, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaofeng Wang
- Horticultural Science Research Center, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
26
|
Kim JH, Lim SD, Jung KH, Jang CS. Overexpression of a C3HC4-type E3-ubiquitin ligase contributes to salinity tolerance by modulating Na + homeostasis in rice. PHYSIOLOGIA PLANTARUM 2023; 175:e14075. [PMID: 38148225 DOI: 10.1111/ppl.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023]
Abstract
Soil salinity has a negative effect on crop yield. Therefore, plants have evolved many strategies to overcome decreases in yield under saline conditions. Among these, E3-ubiquitin ligase regulates salt tolerance. We characterized Oryza sativa Really Interesting New Gene (RING) Finger C3HC4-type E3 ligase (OsRFPHC-4), which plays a positive role in improving salt tolerance. The expression of OsRFPHC-4 was downregulated by high NaCl concentrations and induced by abscisic acid (ABA) treatment. GFP-fused OsRFPHC-4 was localized to the plasma membrane of rice protoplasts. OsRFPHC-4 encodes a cellular protein with a C3HC4-RING domain with E3 ligase activity. However, its variant OsRFPHC-4C161A does not possess this activity. OsRFPHC-4-overexpressing plants showed enhanced salt tolerance due to low accumulation of Na+ in both roots and leaves, low Na+ transport in the xylem sap, high accumulation of proline and soluble sugars, high activity of reactive oxygen species (ROS) scavenging enzymes, and differential regulation of Na+ /K+ transporter expression compared to wild-type (WT) and osrfphc-4 plants. In addition, OsRFPHC-4-overexpressing plants showed higher ABA sensitivity under exogenous ABA treatment than WT and osrfphc-4 plants. Overall, these results suggest that OsRFPHC-4 contributes to the improvement of salt tolerance and Na+ /K+ homeostasis via the regulation of changes in Na+ /K+ transporters.
Collapse
Affiliation(s)
- Jong Ho Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Sung Don Lim
- Molecular Plant Physiology Laboratory, Department of Plant Life & Resource Sciences, Sangji University, Wonju, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
27
|
Kishi-Kaboshi M, Abe F, Kamiya Y, Kawaura K, Hisano H, Sato K. Optimizing genome editing efficiency in wheat: Effects of heat treatments and different promoters for single guide RNA expression. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:237-245. [PMID: 38420565 PMCID: PMC10901157 DOI: 10.5511/plantbiotechnology.23.0717a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/17/2023] [Indexed: 03/02/2024]
Abstract
Genome editing is a promising method for simultaneously mutagenizing homoeologs in the three subgenomes of wheat (Triticum aestivum L.). However, the mutation rate via genome editing must be improved in order to analyze gene function and to quickly modify agronomic traits in wheat. Here, we examined the Cas9-induced mutation rates in wheat plants using two promoters for single guide RNA (sgRNA) expression and applying heat treatment during Agrobacterium tumefaciens-mediated transformation. Using the TaU6 promoter instead of the OsU6 promoter from rice (Oryza sativa L.) to drive sgRNA expression greatly improved the Cas9-induced mutation rate. Moreover, a heat treatment of 30°C for 1 day during tissue culture increased the Cas9-induced mutation rate and the variety of mutations obtained compared to tissue culture at the normal temperature (25°C). The same heat treatment did not affect the regeneration rates of transgenic plants but tended to increase the number of transgene integration sites in each transgenic plant. These results lay the foundation for improving the Cas9-induced mutation rate in wheat to enhance research on gene function and crop improvement.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan
| | - Fumitaka Abe
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan
| | - Yoko Kamiya
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa 244-0813, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa 244-0813, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
28
|
Hoang TV, Vo KTX, Rahman MM, Zhong R, Lee C, Ketudat Cairns JR, Ye ZH, Jeon JS. SPOTTED-LEAF7 targets the gene encoding β-galactosidase9, which functions in rice growth and stress responses. PLANT PHYSIOLOGY 2023; 193:1109-1125. [PMID: 37341542 PMCID: PMC10517187 DOI: 10.1093/plphys/kiad359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023]
Abstract
β-Galactosidases (Bgals) remove terminal β-D-galactosyl residues from the nonreducing ends of β-D-galactosidases and oligosaccharides. Bgals are present in bacteria, fungi, animals, and plants and have various functions. Despite the many studies on the evolution of BGALs in plants, their functions remain obscure. Here, we identified rice (Oryza sativa) β-galactosidase9 (OsBGAL9) as a direct target of the heat stress-induced transcription factor SPOTTED-LEAF7 (OsSPL7), as demonstrated by protoplast transactivation analysis and yeast 1-hybrid and electrophoretic mobility shift assays. Knockout plants for OsBGAL9 (Osbgal9) showed short stature and growth retardation. Histochemical β-glucuronidase (GUS) analysis of transgenic lines harboring an OsBGAL9pro:GUS reporter construct revealed that OsBGAL9 is mainly expressed in internodes at the mature stage. OsBGAL9 expression was barely detectable in seedlings under normal conditions but increased in response to biotic and abiotic stresses. Ectopic expression of OsBGAL9 enhanced resistance to the rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, as well as tolerance to cold and heat stress, while Osbgal9 mutant plants showed the opposite phenotypes. OsBGAL9 localized to the cell wall, suggesting that OsBGAL9 and its plant putative orthologs likely evolved functions distinct from those of its closely related animal enzymes. Enzyme activity assays and analysis of the cell wall composition of OsBGAL9 overexpression and mutant plants indicated that OsBGAL9 has activity toward galactose residues of arabinogalactan proteins (AGPs). Our study clearly demonstrates a role for a member of the BGAL family in AGP processing during plant development and stress responses.
Collapse
Affiliation(s)
- Trung Viet Hoang
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Md Mizanor Rahman
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Chanhui Lee
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
29
|
Wen P, He J, Zhang Q, Qi H, Zhang A, Liu D, Sun Q, Wang Y, Li Q, Wang W, Chen Z, Wang Y, Liu Y, Wan J. SET Domain Group 703 Regulates Planthopper Resistance by Suppressing the Expression of Defense-Related Genes. Int J Mol Sci 2023; 24:13003. [PMID: 37629184 PMCID: PMC10455402 DOI: 10.3390/ijms241613003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Plant defense responses against insect pests are intricately regulated by highly complex regulatory networks. Post-translational modifications (PTMs) of histones modulate the expression of genes involved in various biological processes. However, the role of PTMs in conferring insect resistance remains unclear. Through the screening of a T-DNA insertion activation-tagged mutant collection in rice, we identified the mutant planthopper susceptible 1 (phs1), which exhibits heightened expression of SET domain group 703 (SDG703). This overexpression is associated with increased susceptibility to the small brown planthopper (SBPH), an economically significant insect pest affecting rice crops. SDG703 is constitutively expressed in multiple tissues and shows substantial upregulation in response to SBPH feeding. SDG703 demonstrates the activity of histone H3K9 methyltransferase. Transcriptomic analysis revealed the downregulation of genes involved in effector-triggered immunity (ETI) and pattern-triggered immunity (PTI) in plants overexpressing SDG703. Among the downregulated genes, the overexpression of SDG703 in plants resulted in a higher level of histone H3K9 methylation compared to control plants. Collectively, these findings indicate that SDG703 suppresses the expression of defense-related genes through the promotion of histone methylation, consequently leading to reduced resistance against SBPH. The defense-related genes regulated by histone methylation present valuable targets for developing effective pest management strategies in future studies. Furthermore, our study provides novel insight into the epigenetic regulation involved in plant-insect resistance.
Collapse
Affiliation(s)
- Peizheng Wen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Jun He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Qiong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Hongzhi Qi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Aoran Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Daoming Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Quanguang Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Yongsheng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Qi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Wenhui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Zhanghao Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Yuqiang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing 210095, China; (P.W.); (J.H.); (Q.Z.); (H.Q.); (A.Z.); (D.L.); (Q.S.); (Y.W.); (Q.L.); (W.W.); (Z.C.); (Y.W.)
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
30
|
Kang JW, Lee SK, Shim SH, Shin D, Cho JH, Lee JY, Ko JM, Ji H, Park HM, Ahn EK, Lee JH, Jeon JS. Dry-milled flour rice 'Seolgaeng' harbors a mutated fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase2. FRONTIERS IN PLANT SCIENCE 2023; 14:1231914. [PMID: 37636104 PMCID: PMC10449481 DOI: 10.3389/fpls.2023.1231914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
'Seolgaeng', an opaque-endosperm rice (Oryza sativa) mutant, is used to prepare high-quality dry-milled rice flour. The mutation causing its opaque-endosperm phenotype was unknown. Map-based cloning identified a missense mutation in the gene FRUCTOSE-6-PHOSPHATE 2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE 2 (OsF2KP2) in Seolgaeng. Transfer DNA insertion and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-induced f2kp2 mutants exhibited opaque endosperm. Rice harbors another F2KP gene, OsF2KP1. CRISPR/Cas9-induced double mutants of OsF2KP1 and OsF2KP2 (f2kp-d) possessed more opaque endosperm compared to f2kp2 single mutants, whereas the endosperm of the f2kp1 single mutant was normal. Grain hardness and damaged starch content were significantly reduced in f2kp2 mutants compared to the wild type and f2kp1. Amylose content was lower than normal in f2kp2 mutants but not f2kp1. Grain hardness and amylose content were much lower in f2kp-d than in f2kp2. Starch polymerization analysis revealed altered amylopectin structure in f2kp2 and f2kp-d mutants. F2KP activity was lower in f2kp2 and much lower in the double mutants when compared to the wild types, but f2kp1 showed no significant difference. In coleoptiles, hypoxia induced OsF2KP2 expression but downregulated OsF2KP1. These results suggest that OsF2KP2 functions as the main F2KP isoform in endosperm experiencing hypoxia, but OsF2KP1 may partially compensate for the absence of OsF2KP2. We propose that F2KP has a crucial role in inorganic pyrophosphate-utilizing energy metabolism for starch biosynthesis in rice endosperm.
Collapse
Affiliation(s)
- Ju-Won Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang,
Republic of Korea
| | - Sang-Kyu Lee
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin,
Republic of Korea
- Division of Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju,
Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin,
Republic of Korea
| | - Dongjin Shin
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang,
Republic of Korea
| | - Jun-Hyeon Cho
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang,
Republic of Korea
| | - Ji-Yoon Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang,
Republic of Korea
| | - Jong-min Ko
- Extension Service Bureau, Rural Development Administration, Jeonju,
Republic of Korea
| | - Hyeonso Ji
- National Institute of Agricultural Science, Rural Development Administration, Jeonju,
Republic of Korea
| | - Hyang-Mi Park
- National Institute of Crop Science, Rural Development Administration, Suwon,
Republic of Korea
| | - Eok-Keun Ahn
- National Institute of Crop Science, Rural Development Administration, Suwon,
Republic of Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang,
Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin,
Republic of Korea
| |
Collapse
|
31
|
Shim Y, Seong G, Choi Y, Lim C, Baek SA, Park YJ, Kim JK, An G, Kang K, Paek NC. Suppression of cuticular wax biosynthesis mediated by rice LOV KELCH REPEAT PROTEIN 2 supports a negative role in drought stress tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:1504-1520. [PMID: 36683564 DOI: 10.1111/pce.14549] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Drought tolerance is important for grain crops, including rice (Oryza sativa); for example, rice cultivated under intermittent irrigation produces less methane gas compared to rice grown in anaerobic paddy field conditions, but these plants require greater drought tolerance. Moreover, the roles of rice circadian-clock genes in drought tolerance remain largely unknown. Here, we show that the mutation of LOV KELCH REPEAT PROTEIN 2 (OsLKP2) enhanced drought tolerance by increasing cuticular wax biosynthesis. Among ZEITLUPE family genes, OsLKP2 expression specifically increased under dehydration stress. OsLKP2 knockdown (oslkp2-1) and knockout (oslkp2-2) mutants exhibited enhanced drought tolerance. Cuticular waxes inhibit non-stomatal water loss. Under drought conditions, total wax loads on the leaf surface increased by approximately 10% in oslkp2-1 and oslkp2-2 compared to the wild type, and the transcript levels of cuticular wax biosynthesis genes were upregulated in the oslkp2 mutants. Yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that OsLKP2 interacts with GIGANTEA (OsGI) in the nucleus. The osgi mutants also showed enhanced tolerance to drought stress, with a high density of wax crystals on their leaf surface. These results demonstrate that the OsLKP2-OsGI interaction negatively regulates wax accumulation on leaf surfaces, thereby decreasing rice resilience to drought stress.
Collapse
Affiliation(s)
- Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gayeong Seong
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yumin Choi
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung-A Baek
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Young Jin Park
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Kato-Noguchi H. Defensive Molecules Momilactones A and B: Function, Biosynthesis, Induction and Occurrence. Toxins (Basel) 2023; 15:toxins15040241. [PMID: 37104180 PMCID: PMC10140866 DOI: 10.3390/toxins15040241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Labdane-related diterpenoids, momilactones A and B were isolated and identified in rice husks in 1973 and later found in rice leaves, straws, roots, root exudate, other several Poaceae species and the moss species Calohypnum plumiforme. The functions of momilactones in rice are well documented. Momilactones in rice plants suppressed the growth of fungal pathogens, indicating the defense function against pathogen attacks. Rice plants also inhibited the growth of adjacent competitive plants through the root secretion of momilactones into their rhizosphere due to the potent growth-inhibitory activity of momilactones, indicating a function in allelopathy. Momilactone-deficient mutants of rice lost their tolerance to pathogens and allelopathic activity, which verifies the involvement of momilactones in both functions. Momilactones also showed pharmacological functions such as anti-leukemia and anti-diabetic activities. Momilactones are synthesized from geranylgeranyl diphosphate through cyclization steps, and the biosynthetic gene cluster is located on chromosome 4 of the rice genome. Pathogen attacks, biotic elicitors such as chitosan and cantharidin, and abiotic elicitors such as UV irradiation and CuCl2 elevated momilactone production through jasmonic acid-dependent and independent signaling pathways. Rice allelopathy was also elevated by jasmonic acid, UV irradiation and nutrient deficiency due to nutrient competition with neighboring plants with the increased production and secretion of momilactones. Rice allelopathic activity and the secretion of momilactones into the rice rhizosphere were also induced by either nearby Echinochloa crus-galli plants or their root exudates. Certain compounds from Echinochloa crus-galli may stimulate the production and secretion of momilactones. This article focuses on the functions, biosynthesis and induction of momilactones and their occurrence in plant species.
Collapse
|
33
|
Li J, Zhang C, Luo X, Zhang T, Zhang X, Liu P, Yang W, Lei Y, Tang S, Kang L, Huang L, Li T, Wang Y, Chen W, Yuan H, Qin P, Li S, Ma B, Tu B. Fine mapping of the grain chalkiness quantitative trait locus qCGP6 reveals the involvement of Wx in grain chalkiness formation. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad112. [PMID: 36964899 DOI: 10.1093/jxb/erad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 06/18/2023]
Abstract
Grain chalkiness is an important index of rice appearance quality and is negatively associated with rice processing and eating qualities. However, the genetic mechanism underlying chalkiness formation is largely unknown. To identify the genetic basis of chalkiness, 410 recombinant inbred lines (RILs) derived from two representative indica rice varieties, Shuhui498 (R498) and Yihui3551 (R3551), were used to discover quantitative trait loci (QTL). The two parental lines and RILs were grown in three locations in China under three controlled fertilizer application level. Analyses indicated that chalkiness was significantly affected by genotype, the environment, and the interaction between the two, and that heritability was high. Several QTLs were isolated, including the two stable QTLs, i.e., qCGP6 and qCGP8. Fine mapping and candidate gene verification of qCGP6 showed that Wx may play a key role in chalkiness formation. Chromosomal segment substitution lines (CSSLs) and near-isogenic lines (NILs) carrying the Wxa or Wxin allele produced more chalky grain than the R498 parent. A similar result was also observed in the 3611 background. Notably, the effect of the Wx genotype on rice chalkiness was shown to be dependent on environmental conditions and Wx alleles exhibited different sensitivities to shading treatment. Using CRISPR/Cas9, the Wxa promoter region was successfully edited, down-regulating Wx alleviates chalkiness formation in NILR498-Wxa. This study developed a new strategy for synergistic improvement of eating and appearance qualities in rice, and created a novel Wx allele with great potential in breeding applications.
Collapse
Affiliation(s)
- Jialian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang, Liaoning 110101, China
| | - Xia Luo
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyu Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Pin Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Yang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yuekun Lei
- Chengdu Juannong Intelligent Agriculture Technology Development Co., Ltd
| | - Siwen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Liangzhu Kang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
34
|
Mu N, Li Y, Li S, Shi W, Shen Y, Yang H, Zhang F, Tang D, Du G, You A, Cheng Z. MUS81 is required for atypical recombination intermediate resolution but not crossover designation in rice. THE NEW PHYTOLOGIST 2023; 237:2422-2434. [PMID: 36495065 DOI: 10.1111/nph.18668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The endonuclease methyl methanesulfonate and UV-sensitive protein 81 (MUS81) has been reported to participate in DNA repair during mitosis and meiosis. However, the exact meiotic function of MUS81 in rice remains unclear. Here, we use a combination of physiological, cytological, and genetic approaches to provide evidence that MUS81 functions in atypical recombination intermediate resolution rather than crossover designation in rice. Cytological and genetic analysis revealed that the total chiasma numbers in mus81 mutants were indistinguishable from wild-type. The numbers of HEI10 foci (the sites of interference-sensitive crossovers) in mus81 were also similar to that of wild-type. Moreover, disruption of MUS81 in msh5 or msh4 msh5 background did not further decrease chiasmata frequency, suggesting that rice MUS81 did not function in crossover designation. Mutation of FANCM and ZEP1 could enhance recombination frequency. Unexpectedly, chromosome fragments and bridges were frequently observed in mus81 zep1 and mus81 fancm, illustrating that MUS81 may resolve atypical recombination intermediates. Taken together, our data suggest that MUS81 contributes little to crossover designation but plays a crucial role in the resolution of atypical meiotic intermediates by working together with other anti-crossover factors.
Collapse
Affiliation(s)
- Na Mu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225009, Yangzhou, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sanhe Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Han Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fanfan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Aiqing You
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhukuan Cheng
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225009, Yangzhou, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Tun W, Yoon J, Vo KTX, Cho LH, Hoang TV, Peng X, Kim EJ, Win KTYS, Lee SW, Jung KH, Jeon JS, An G. Sucrose preferentially promotes expression of OsWRKY7 and OsPR10a to enhance defense response to blast fungus in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1117023. [PMID: 36778713 PMCID: PMC9911862 DOI: 10.3389/fpls.2023.1117023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Sucrose controls various developmental and metabolic processes in plants. It also functions as a signaling molecule in the synthesis of carbohydrates, storage proteins, and anthocyanins, as well as in floral induction and defense response. We found that sucrose preferentially induced OsWRKY7, whereas other sugars (such as mannitol, glucose, fructose, galactose, and maltose) did not have the same effect. A hexokinase inhibitor mannoheptulose did not block the effect of sucrose, which is consequently thought to function directly. MG132 inhibited sucrose induction, suggesting that a repressor upstream of OsWRKY7 is degraded by the 26S proteasome pathway. The 3-kb promoter sequence of OsWRKY7 was preferentially induced by sucrose in the luciferase system. Knockout mutants of OsWRKY7 were more sensitive to the rice blast fungus Magnaporthe oryzae, whereas the overexpression of OsWRKY7 enhanced the resistance, indicating that this gene is a positive regulator in the plant defense against this pathogen. The luciferase activity driven by the OsPR10a promoter was induced by OsWRKY7 and this transcription factor bound to the promoter region of OsPR10a, suggesting that OsWRKY7 directly controls the expression of OsPR10a. We conclude that sucrose promotes the transcript level of OsWRKY7, thereby increasing the expression of OsPR10a for the defense response in rice.
Collapse
Affiliation(s)
- Win Tun
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea
| | - Jinmi Yoon
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Trung Viet Hoang
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea
| | - Xin Peng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Eui-Jung Kim
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea
| | - Kay Tha Ye Soe Win
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea
| | - Sang-Won Lee
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea
| | - Gynheung An
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
36
|
Kim SH, Yoon J, Kim H, Lee SJ, Kim T, Kang K, Paek NC. OsMYB7 determines leaf angle at the late developmental stage of lamina joints in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1167202. [PMID: 37123839 PMCID: PMC10140434 DOI: 10.3389/fpls.2023.1167202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Leaf angle shapes plant architecture, allowing for optimal light interception to maximize photosynthesis and yield, and therefore is a crucial agronomic trait. Here, we show that the rice (Oryza sativa L.) R2R3-type MYB transcription factor OsMYB7 determines leaf angle in a developmental stage-specific manner. OsMYB7-overexpressing lines produced wide-angled leaves and osmyb7 knockout mutants exhibited erect leaves. This phenotype was restricted to the lamina joints at the late developmental stage. In agreement with these observations, OsMYB7 was preferentially expressed in the lamina joints of post-mature leaves. Since OsMYB7 homologs are transcriptional repressors of lignin biosynthesis, we examined whether OsMYB7 might inhibit thickening of secondary cell walls. Although OsMYB7 repressed lignin biosynthesis, it enhanced thickening of sclerenchyma cell walls by elevating cellulose contents at the lamina joints. Furthermore, we found that OsMYB7 affects endogenous auxin levels in lamina joints, and the adaxial cells of lamina joints in OsMYB7-overexpressing lines and osmyb7 knockout mutants exhibited enhanced and reduced elongation, respectively, compared to the wild type. These results suggest that OsMYB7 promotes leaf inclination partially through decreasing free auxin levels and promoting cell elongation at the adaxial side of lamina joints.
Collapse
Affiliation(s)
- Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jungwon Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hanna Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Taehoon Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- *Correspondence: Nam-Chon Paek,
| |
Collapse
|
37
|
Guo X, Zhang D, Wang Z, Xu S, Batistič O, Steinhorst L, Li H, Weng Y, Ren D, Kudla J, Xu Y, Chong K. Cold-induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice. EMBO J 2022; 42:e110518. [PMID: 36341575 PMCID: PMC9811624 DOI: 10.15252/embj.2021110518] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait. Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL-interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock-out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B-like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold-sensing mechanism that simultaneously conveys cold-induced protein conformational change, enhances kinase activity, and Ca2+ signal generation to facilitate chilling tolerance in rice.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Dajian Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Zhongliang Wang
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Shujuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Leonie Steinhorst
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Hao Li
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Kang Chong
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
38
|
Li S, Wang C, You C, Zhou X, Zhou H. T-LOC: A comprehensive tool to localize and characterize T-DNA integration sites. PLANT PHYSIOLOGY 2022; 190:1628-1639. [PMID: 35640125 PMCID: PMC9614469 DOI: 10.1093/plphys/kiac225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/23/2022] [Indexed: 05/30/2023]
Abstract
Scientists have developed many approaches based on PCR or next-generation sequencing to localize and characterize integrated T-DNAs in transgenic plants generated by Agrobacterium tumefaciens-mediated T-DNA transfer. However, none of these methods has the robust ability to handle all transgenic plants with diversified T-DNA patterns. Utilizing the valuable information in the whole-genome sequencing data of transgenic plants, we have developed a comprehensive approach (T-LOC) to localize and characterize T-DNA integration sites (TISs). We evaluated the performance of T-LOC on genome sequencing data from 48 transgenic rice (Oryza sativa) plants that provide real and unbiased resources of T-DNA integration patterns. T-LOC discovered 75 full TISs and reported a diversified pattern of T-DNA integration: the ideal single-copy T-DNA between two borders, multiple-copy of T-DNAs in tandem or inverted repeats, truncated partial T-DNAs with or without the selection hygromycin gene, the inclusion of T-DNA backbone, the integration at the genome repeat region, and the concatenation of multiple ideal or partial T-DNAs. In addition, we reported that DNA fragments from the two A. tumefaciens plasmids can be fused with T-DNA and integrated into the plant genome. Besides, T-LOC characterizes the genomic changes at TISs, including deletion, duplication, accurate repair, and chromosomal rearrangement. Moreover, we validated the robustness of T-LOC using PCR, Sanger sequencing, and Nanopore sequencing. In summary, T-LOC is a robust approach to studying the TISs independent of the integration pattern and can recover all types of TISs in transgenic plants.
Collapse
Affiliation(s)
| | | | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | |
Collapse
|
39
|
Mason GA. T-LOCked in: Identifying T-DNA insertions in plant genomes. PLANT PHYSIOLOGY 2022; 190:1547-1549. [PMID: 35976147 PMCID: PMC9614492 DOI: 10.1093/plphys/kiac365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Affiliation(s)
- G Alex Mason
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| |
Collapse
|
40
|
Nguyen NK, Wang J, Liu D, Hwang BK, Jwa NS. Rice iron storage protein ferritin 2 (OsFER2) positively regulates ferroptotic cell death and defense responses against Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:1019669. [PMID: 36352872 PMCID: PMC9639352 DOI: 10.3389/fpls.2022.1019669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ferritin is a ubiquitous iron storage protein that regulates iron homeostasis and oxidative stress in plants. Iron plays an important role in ferroptotic cell death response of rice (Oryza sativa) to Magnaporthe oryzae infection. Here, we report that rice ferritin 2, OsFER2, is required for iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death and defense response against the avirulent M. oryzae INA168. The full-length ferritin OsFER2 and its transit peptide were localized to the chloroplast, the most Fe-rich organelle for photosynthesis. This suggests that the transit peptide acts as a signal peptide for the rice ferritin OsFER2 to move into chloroplasts. OsFER2 expression is involved in rice resistance to M. oryzae infection. OsFER2 knock-out in wild-type rice HY did not induce ROS and ferric ion (Fe3+) accumulation, lipid peroxidation and hypersensitive response (HR) cell death, and also downregulated the defense-related genes OsPAL1, OsPR1-b, OsRbohB, OsNADP-ME2-3, OsMEK2 and OsMPK1, and vacuolar membrane transporter OsVIT2 expression. OsFER2 complementation in ΔOsfer2 knock-out mutants restored ROS and iron accumulation and HR cell death phenotypes during infection. The iron chelator deferoxamine, the lipid-ROS scavenger ferrostatin-1, the actin microfilament polymerization inhibitor cytochalasin E and the redox inhibitor diphenyleneiodonium suppressed ROS and iron accumulation and HR cell death in rice leaf sheaths. However, the small-molecule inducer erastin did not trigger iron-dependent ROS accumulation and HR cell death induction in ΔOsfer2 mutants. These combined results suggest that OsFER2 expression positively regulates iron- and ROS-dependent ferroptotic cell death and defense response in rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Dongping Liu
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| |
Collapse
|
41
|
Yun P, Li Y, Wu B, Zhu Y, Wang K, Li P, Gao G, Zhang Q, Li X, Li Z, He Y. OsHXK3 encodes a hexokinase-like protein that positively regulates grain size in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3417-3431. [PMID: 35941236 DOI: 10.1007/s00122-022-04189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
We report the map-based cloning and functional characterization of SNG1, which encodes OsHXK3, a hexokinase-like protein that plays a pivotal role in controlling grain size in rice. Grain size is an important agronomic trait determining grain yield and appearance quality in rice. Here, we report the discovery of rice mutant short and narrow grain1 (sng1) with reduced grain length, width and weight. Map-based cloning revealed that the mutant phenotype was caused by loss of function of gene OsHXK3 that encodes a hexokinase-like (HKL) protein. OsHXK3 was associated with the mitochondria and was ubiquitously distributed in various organs, predominately in younger organs. Analysis of glucose (Glc) phosphorylation activities in young panicles and protoplasts showed that OsHXK3 was a non-catalytic hexokinase (HXK). Overexpression of OsHXK3 could not complement the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, indicating that OsHXK3 lacked Glc signaling activity. Scanning electron microscopy analysis revealed that OsHXK3 affects grain size by promoting spikelet husk cell expansion. Knockout of other nine OsHXK genes except OsHXK3 individually did not change grain size, indicating that functions of OsHXKs have differentiated in rice. OsHXK3 influences gibberellin (GA) biosynthesis and homeostasis. Compared with wild type, OsGA3ox2 was significantly up-regulated and OsGA2ox1 was significantly down-regulated in young panicle of sng1, and concentrations of biologically active GAs were significantly decreased in young panicles of the mutants. The yield per plant of OsHXK3 overexpression lines (OE-4 and OE-35) was increased by 10.91% and 7.62%, respectively, compared to that of wild type. Our results provide evidence that an HXK lacking catalytic and sensory functions plays an important role in grain size and has the potential to increase yield in rice.
Collapse
Affiliation(s)
- Peng Yun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiyue Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zefu Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
42
|
Jian L, Kang K, Choi Y, Suh MC, Paek NC. Mutation of OsMYB60 reduces rice resilience to drought stress by attenuating cuticular wax biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:339-351. [PMID: 35984735 DOI: 10.1111/tpj.15947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The cuticular wax layer on leaf surfaces limits non-stomatal water loss to the atmosphere and protects against pathogen invasion. Although many genes associated with wax biosynthesis and wax transport in plants have been identified, their regulatory mechanisms remain largely unknown. Here, we show that the MYB transcription factor OsMYB60 positively regulates cuticular wax biosynthesis and this helps rice (Oryza sativa) plants tolerate drought stress. Compared with the wild type (japonica cultivar 'Dongjin'), osmyb60 null mutants (osmyb60-1 and osmyb60-2) exhibited increased drought sensitivity, with more chlorophyll leaching and higher rates of water loss. Quantitative reverse-transcription PCR showed that the loss of function of OsMYB60 led to downregulation of wax biosynthesis genes, leading to reduced amounts of total wax components on leaf surfaces under normal conditions. Yeast one-hybrid, luciferase transient transcriptional activity, and chromatin immunoprecipitation assays revealed that OsMYB60 directly binds to the promoter of OsCER1 (a key gene involved in very-long-chain alkane biosynthesis) and upregulates its expression. Taken together, these results demonstrate that OsMYB60 enhances rice resilience to drought stress by promoting cuticular wax biosynthesis on leaf surfaces.
Collapse
Affiliation(s)
- Lei Jian
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yumin Choi
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mi Chung Suh
- Department of Life Sciences, Sogang University, Seoul, 04107, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
43
|
Kim SH, Shim KC, Lee HS, Jeon YA, Adeva C, Luong NH, Ahn SN. Brassinosteroid biosynthesis gene OsD2 is associated with low-temperature germinability in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:985559. [PMID: 36204076 PMCID: PMC9530605 DOI: 10.3389/fpls.2022.985559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
In rice, low-temperature germinability (LTG) is essential for stable stand establishment using the direct seeding method in temperate and high-altitude areas. Previously, we reported that the quantitative trait locus qLTG1 is associated with LTG. qLTG1 is also associated with tolerance to several abiotic stresses, such as salt and osmotic conditions. In this study, map-based cloning and sequence analysis indicated that qLTG1 is allelic to DWARF2 (OsD2), which encodes cytochrome P450 D2 (LOC_Os01g10040) involved in brassinosteroid (BR) biosynthesis. Sequence comparison of the two parental lines, Hwaseong and Oryza rufipogon (IRGC 105491), revealed five single nucleotide polymorphisms (SNPs) in the coding region. Three of these SNPs led to missense mutations in OsD2, whereas the other two SNPs were synonymous. We evaluated two T-DNA insertion mutants, viz., overexpression (OsD2-OE) and knockdown (OsD2-KD) mutants of OsD2, with the Dongjin genetic background. OsD2-KD plants showed a decrease in LTG and grain size. In contrast, OsD2-OE plants showed an increase in grain size and LTG. We also examined the expression levels of several BR signaling and biosynthetic genes using the T-DNA insertion mutants. Gene expression analysis and BR application experiments demonstrated that BR enhanced the seed germination rate under low-temperature conditions. These results suggest that OsD2 is associated with the regulation of LTG and improving grain size. Thus, OsD2 may be a suitable target for rice breeding programs to improve rice yield and LTG.
Collapse
Affiliation(s)
- Sun Ha Kim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun-Sook Lee
- Crop Breeding Division, National Institute of Crop Science, Wanju-Gun, South Korea
| | - Yun-A Jeon
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
44
|
Chen Y, Wang J, Nguyen NK, Hwang BK, Jwa NS. The NIN-Like Protein OsNLP2 Negatively Regulates Ferroptotic Cell Death and Immune Responses to Magnaporthe oryzae in Rice. Antioxidants (Basel) 2022; 11:antiox11091795. [PMID: 36139868 PMCID: PMC9495739 DOI: 10.3390/antiox11091795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Nodule inception (NIN)-like proteins (NLPs) have a central role in nitrate signaling to mediate plant growth and development. Here, we report that OsNLP2 negatively regulates ferroptotic cell death and immune responses in rice during Magnaporthe oryzae infection. OsNLP2 was localized to the plant cell nucleus, suggesting that it acts as a transcription factor. OsNLP2 expression was involved in susceptible disease development. ΔOsnlp2 knockout mutants exhibited reactive oxygen species (ROS) and iron-dependent ferroptotic hypersensitive response (HR) cell death in response to M. oryzae. Treatments with the iron chelator deferoxamine, lipid-ROS scavenger ferrostatin-1, actin polymerization inhibitor cytochalasin A, and NADPH oxidase inhibitor diphenyleneiodonium suppressed the accumulation of ROS and ferric ions, lipid peroxidation, and HR cell death, which ultimately led to successful M. oryzae colonization in ΔOsnlp2 mutants. The loss-of-function of OsNLP2 triggered the expression of defense-related genes including OsPBZ1, OsPIP-3A, OsWRKY104, and OsRbohB in ΔOsnlp2 mutants. ΔOsnlp2 mutants exhibited broad-spectrum, nonspecific resistance to diverse M. oryzae strains. These combined results suggest that OsNLP2 acts as a negative regulator of ferroptotic HR cell death and defense responses in rice, and may be a valuable gene source for molecular breeding of rice with broad-spectrum resistance to blast disease.
Collapse
Affiliation(s)
- Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 06213, Korea
| | - Nam Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- Correspondence:
| |
Collapse
|
45
|
Jiang Y, Peng X, Zhang Q, Liu Y, Li A, Cheng B, Wu J. Regulation of Drought and Salt Tolerance by OsSKL2 and OsASR1 in Rice. RICE (NEW YORK, N.Y.) 2022; 15:46. [PMID: 36036369 PMCID: PMC9424430 DOI: 10.1186/s12284-022-00592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/22/2022] [Indexed: 05/26/2023]
Abstract
Abiotic stresses such as salinity and drought greatly impact the growth and production of crops worldwide. Here, a shikimate kinase-like 2 (SKL2) gene was cloned from rice and characterized for its regulatory function in salinity and drought tolerance. OsSKL2 was localized in the chloroplast, and its transcripts were significantly induced by drought and salinity stress as well as H2O2 and abscisic acid (ABA) treatment. Meanwhile, overexpression of OsSKL2 in rice increased tolerance to salinity, drought and oxidative stress by increasing antioxidant enzyme activity, and reducing levels of H2O2, malondialdehyde, and relative electrolyte leakage. In contrast, RNAi-induced suppression of OsSKL2 increased sensitivity to stress treatment. Interestingly, overexpression of OsSKL2 also increased sensitivity to exogenous ABA, with an increase in reactive oxygen species (ROS) accumulation. Moreover, OsSKL2 was found to physically interact with OsASR1, a well-known chaperone-like protein, which also exhibited positive roles in salt and drought tolerance. A reduction in ROS production was also observed in leaves of Nicotiana benthamiana showing transient co-expression of OsSKL2 with OsASR1. Taken together, these findings suggest that OsSKL2 together with OsASR1 act as important regulatory factors that confer salt and drought tolerance in rice via ROS scavenging.
Collapse
Affiliation(s)
- Yingli Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaojian Peng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yuqing Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Aiqi Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
46
|
Lee SJ, Kang K, Lim JH, Paek NC. Natural alleles of CIRCADIAN CLOCK ASSOCIATED1 contribute to rice cultivation by fine-tuning flowering time. PLANT PHYSIOLOGY 2022; 190:640-656. [PMID: 35723564 PMCID: PMC9434239 DOI: 10.1093/plphys/kiac296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 05/11/2023]
Abstract
The timing of flowering is a crucial factor for successful grain production at a wide range of latitudes. Domestication of rice (Oryza sativa) included selection for natural alleles of flowering-time genes that allow rice plants to adapt to broad geographic areas. Here, we describe the role of natural alleles of CIRCADIAN CLOCK ASSOCIATED1 (OsCCA1) in cultivated rice based on analysis of single-nucleotide polymorphisms deposited in the International Rice Genebank Collection Information System database. Rice varieties harboring japonica-type OsCCA1 alleles (OsCCA1a haplotype) flowered earlier than those harboring indica-type OsCCA1 alleles (OsCCA1d haplotype). In the japonica cultivar "Dongjin", a T-DNA insertion in OsCCA1a resulted in late flowering under long-day and short-day conditions, indicating that OsCCA1 is a floral inducer. Reverse transcription quantitative PCR analysis showed that the loss of OsCCA1a function induces the expression of the floral repressors PSEUDO-RESPONSE REGULATOR 37 (OsPRR37) and Days to Heading 8 (DTH8), followed by repression of the Early heading date 1 (Ehd1)-Heading date 3a (Hd3a)-RICE FLOWERING LOCUS T 1 (RFT1) pathway. Binding affinity assays indicated that OsCCA1 binds to the promoter regions of OsPRR37 and DTH8. Naturally occurring OsCCA1 alleles are evolutionarily conserved in cultivated rice (O. sativa). Oryza rufipogon-I (Or-I) and Or-III type accessions, representing the ancestors of O. sativa indica and japonica, harbored indica- and japonica-type OsCCA1 alleles, respectively. Taken together, our results demonstrate that OsCCA1 is a likely domestication locus that has contributed to the geographic adaptation and expansion of cultivated rice.
Collapse
Affiliation(s)
- Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jung-Hyun Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
47
|
Zhang Q, Liu Y, Jiang Y, Li A, Cheng B, Wu J. OsASR6 Enhances Salt Stress Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23169340. [PMID: 36012605 PMCID: PMC9408961 DOI: 10.3390/ijms23169340] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
High salinity seriously affects crop growth and yield. Abscisic acid-, stress-, and ripening-induced (ASR) proteins play an important role in plant responses to multiple abiotic stresses. In this study, we identified a new salt-induced ASR gene in rice (OsASR6) and functionally characterized its role in mediating salt tolerance. Transcript levels of OsASR6 were upregulated under salinity stress, H2O2 and abscisic acid (ABA) treatments. Nuclear and cytoplasmic localization of the OsASR6 protein were confirmed. Meanwhile, a transactivation activity assay in yeast demonstrated no self-activation ability. Furthermore, transgenic rice plants overexpressing OsASR6 showed enhanced salt and oxidative stress tolerance as a result of reductions in H2O2, malondialdehyde (MDA), Na/K and relative electrolyte leakage. In contrast, OsASR6 RNAi transgenic lines showed opposite results. A higher ABA content was also measured in the OsASR6 overexpressing lines compared with the control. Moreover, OsNCED1, a key enzyme of ABA biosynthesis, was found to interact with OsASR6. Collectively, these results suggest that OsASR6 serves primarily as a functional protein, enhancing tolerance to salt stress, representing a candidate gene for genetic manipulation of new salinity-resistant lines in rice.
Collapse
|
48
|
Shim Y, Lim C, Seong G, Choi Y, Kang K, Paek NC. The AP2/ERF transcription factor LATE FLOWERING SEMI-DWARF suppresses long-day-dependent repression of flowering. PLANT, CELL & ENVIRONMENT 2022; 45:2446-2459. [PMID: 35610056 DOI: 10.1111/pce.14365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The vegetative-to-reproductive transition requires the complex, coordinated activities of many transcriptional regulators. Rice (Oryza sativa), a facultative short-day (SD) plant, flowers early under SD (≤10 h light/day) and late under long-day (LD; ≥14 h light/day) conditions. Here, we demonstrate that rice LATE FLOWERING SEMI-DWARF (LFS) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factor that promotes flowering under non-inductive LD conditions. LFS showed diurnal expression peaking at dawn, and transcript levels increased gradually until heading. Mutation of LFS delayed flowering under LD but not SD conditions. Expression of the LD-specific floral repressor gene LEAFY COTYLEDON2 AND FUSCA3-LIKE 1 (OsLFL1) was upregulated in lfs knockout mutants, and LFS bound directly to the GCC-rich motif in the OsLFL1 promoter, repressing OsLFL1 expression. This suggests that increased LFS activity during vegetative growth gradually attenuates OsLFL1 activity. Subsequent increases in Early heading date 1, Heading date 3a, and RICE FLOWERING LOCUS T 1 expression result in flowering under non-inductive LD conditions. LFS did not affect the expression of other OsLFL1 regulators, including OsMADS50, OsMADS56, VERNALIZATION INSENSITIVE3-LIKE 2, and GERMINATION DEFECTIVE 1, or interact with them. Our results demonstrate the novel roles of LFS in inducing flowering under natural LD conditions.
Collapse
Affiliation(s)
- Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gayeong Seong
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yumin Choi
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Chakraborty T, Trujillo JT, Kendall T, Mosher RA. A null allele of the pol IV second subunit impacts stature and reproductive development in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:748-755. [PMID: 35635763 DOI: 10.1111/tpj.15848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
All eukaryotes possess three DNA-dependent RNA polymerases, Pols I-III, while land plants possess two additional polymerases, Pol IV and Pol V. Derived through duplication of Pol II subunits, Pol IV produces 24-nt short interfering RNAs that interact with Pol V transcripts to target de novo DNA methylation and silence transcription of transposons. Members of the grass family encode additional duplicated subunits of Pol IV and V, raising questions regarding the function of each paralog. In this study, we identify a null allele of the putative Pol IV second subunit, NRPD2, and demonstrate that NRPD2 is the sole subunit functioning with NRPD1 in small RNA production and CHH methylation in leaves. Homozygous nrpd2 mutants have neither gametophytic defects nor embryo lethality, although adult plants are dwarf and sterile.
Collapse
Affiliation(s)
- Tania Chakraborty
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Joshua T Trujillo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Timmy Kendall
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
50
|
Min CW, Jang JW, Lee GH, Gupta R, Yoon J, Park HJ, Cho HS, Park SR, Kwon SW, Cho LH, Jung KH, Kim YJ, Wang Y, Kim ST. TMT-based quantitative membrane proteomics identified PRRs potentially involved in the perception of MSP1 in rice leaves. J Proteomics 2022; 267:104687. [PMID: 35914717 DOI: 10.1016/j.jprot.2022.104687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022]
Abstract
Pathogen-associated molecular patterns (PAMPs) play a key role in triggering PAMPs triggered immunity (PTI) in plants. In the case of the rice-Magnaporthe oryzae pathosystem, fewer PAMPs and their pattern recognition receptors (PRRs) have been characterized. Recently, a M. oryzae snodprot1 homolog protein (MSP1) has been identified that functions as PAMP and triggering the PTI responses in rice. However, the molecular mechanism underlying MSP1-induced PTI is currently elusive. Therefore, we generated MSP1 overexpressed transgenic lines of rice, and a tandem mass tag (TMT)-based quantitative membrane proteomic analysis was employed to decipher the potential MSP1-induced signaling in rice using total cytosolic as well as membrane protein fractions. This approach led to the identification of 8033 proteins of which 1826 were differentially modulated in response to overexpression of MSP1 and/or exogenous jasmonic acid treatment. Of these, 20 plasma membrane-localized receptor-like kinases (RLKs) showed increased abundance in MSP1 overexpression lines. Moreover, activation of proteins related to the protein degradation and modification, calcium signaling, redox, and MAPK signaling was observed in transgenic lines expressing MSP1 in the apoplast. Taken together, our results identified potential PRR candidates involved in MSP1 recognition and suggested the overview mechanism of the MSP1-induced PTI signaling in rice leaves. SIGNIFICANCE: In plants, recognition of pathogen pathogen-derived molecules, such as PAMPs, by plant plant-derived PRRs has an essential role for in the activation of PTI against pathogen invasion. Typically, PAMPs are recognized by plasma membrane (PM) localized PRRs, however, identifying the PM-localized PRR proteins is challenging due to their low abundance. In this study, we performed an integrated membrane protein enrichment by microsomal membrane extraction (MME) method and subsequent TMT-labeling-based quantitative proteomic analysis using MSP1 overexpressed rice. Based on these results, we successfully identified various intracellular and membrane membrane-localized proteins that participated in the MSP1-induced immune response and characterized the potential PM-localized PRR candidates in rice.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Gi Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Jinmi Yoon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Hyun Ji Park
- Plant System Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hye Sun Cho
- Plant System Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Yiming Wang
- Key Laboratory of Biological Interactions and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|