1
|
Atkinson-Leadbeater K, Bertolesi GE, McFarlane S. Visual input regulates melanophore differentiation. Front Cell Dev Biol 2024; 12:1437613. [PMID: 39228400 PMCID: PMC11368843 DOI: 10.3389/fcell.2024.1437613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Developmental processes continue in organisms in which sensory systems have reached functional maturity, however, little research has focused on the influence of sensory input on cell and tissue development. Here, we explored the influence of visual system activity on the development of skin melanophores in Xenopus laevis. Methods Melanophore number was measured in X. laevis larvae after the manipulation of visual input through eye removal (enucleation) and/or incubation on a white or black substrate at the time when the visual system becomes functional (stage 40). To determine the developmental process impacted by visual input, migration, proliferation and differentiation of melanophores was assessed. Finally, the role of melatonin in driving melanophore differentiation was explored. Results Enucleating, or maintaining stage 40 larvae on a black background, results in a pronounced increase in melanophore number in the perioptic region within 24 h. Time lapse analysis revealed that in enucleated larvae new melanophores appear through gradual increase in pigmentation, suggesting unpigmented cells in the perioptic region differentiate into mature melanophores upon reduced visual input. In support, we observed increased expression of melanization genes tyr, tyrp1, and pmel in the perioptic region of enucleated or black background-reared larvae. Conversely, maintaining larvae in full light suppresses melanophore differentiation. Interestingly, an extra-pineal melatonin signal was found to be sufficient and necessary to promote the transition to differentiated melanophores. Discussion In this study, we found that at the time when the visual system becomes functional, X. laevis larvae possess a population of undifferentiated melanophores that can respond rapidly to changes in the external light environment by undergoing differentiation. Thus, we propose a novel mechanism of environmental influence where external sensory signals influence cell differentiation in a manner that would favor survival.
Collapse
Affiliation(s)
| | - Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Hiramoto M, Cline HT. Visual neurons recognize complex image transformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598314. [PMID: 38915552 PMCID: PMC11195111 DOI: 10.1101/2024.06.10.598314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Natural visual scenes are dominated by sequences of transforming images. Spatial visual information is thought to be processed by detection of elemental stimulus features which are recomposed into scenes. How image information is integrated over time is unclear. We explored visual information encoding in the optic tectum. Unbiased stimulus presentation shows that the majority of tectal neurons recognize image sequences. This is achieved by temporally dynamic response properties, which encode complex image transitions over several hundred milliseconds. Calcium imaging reveals that neurons that encode spatiotemporal image sequences fire in spike sequences that predict a logical diagram of spatiotemporal information processing. Furthermore, the temporal scale of visual information is tuned by experience. This study indicates how neurons recognize dynamic visual scenes that transform over time.
Collapse
Affiliation(s)
- Masaki Hiramoto
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Delia J, Gaines-Richardson M, Ludington SC, Akbari N, Vasek C, Shaykevich D, O’Connell LA. Tissue-specific in vivo transformation of plasmid DNA in Neotropical tadpoles using electroporation. PLoS One 2023; 18:e0289361. [PMID: 37590232 PMCID: PMC10434853 DOI: 10.1371/journal.pone.0289361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
Electroporation is an increasingly common technique used for exogenous gene expression in live animals, but protocols are largely limited to traditional laboratory organisms. The goal of this protocol is to test in vivo electroporation techniques in a diverse array of tadpole species. We explore electroporation efficiency in tissue-specific cells of five species from across three families of tropical frogs: poison frogs (Dendrobatidae), cryptic forest/poison frogs (Aromobatidae), and glassfrogs (Centrolenidae). These species are well known for their diverse social behaviors and intriguing physiologies that coordinate chemical defenses, aposematism, and/or tissue transparency. Specifically, we examine the effects of electrical pulse and injection parameters on species- and tissue-specific transfection of plasmid DNA in tadpoles. After electroporation of a plasmid encoding green fluorescent protein (GFP), we found strong GFP fluorescence within brain and muscle cells that increased with the amount of DNA injected and electrical pulse number. We discuss species-related challenges, troubleshooting, and outline ideas for improvement. Extending in vivo electroporation to non-model amphibian species could provide new opportunities for exploring topics in genetics, behavior, and organismal biology.
Collapse
Affiliation(s)
- Jesse Delia
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | | | - Sarah C. Ludington
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Najva Akbari
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Cooper Vasek
- Department of Biology, De Anza College, Cupertino, CA, United States of America
| | - Daniel Shaykevich
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
4
|
Santos RA, Del Rio R, Alvarez AD, Romero G, Vo BZ, Cohen-Cory S. DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target. Neural Dev 2022; 17:5. [PMID: 35422013 PMCID: PMC9011933 DOI: 10.1186/s13064-022-00161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Xenopus retinotectal circuit is organized topographically, where the dorsal-ventral axis of the retina maps respectively on to the ventral-dorsal axis of the tectum; axons from the nasal-temporal axis of the retina project respectively to the caudal-rostral axis of the tectum. Studies throughout the last two decades have shown that mechanisms involving molecular recognition of proper termination domains are at work guiding topographic organization. Such studies have shown that graded distribution of molecular cues is important for topographic mapping. However, the complement of molecular cues organizing topography along the developing optic nerve, and as retinal axons cross the chiasm and navigate towards and innervate their target in the tectum, remains unknown. Down syndrome cell adhesion molecule (DSCAM) has been characterized as a key molecule in axon guidance, making it a strong candidate involved in the topographic organization of retinal fibers along the optic path and at their target. METHODS Using a combination of whole-brain clearing and immunohistochemistry staining techniques we characterized DSCAM expression and the projection of ventral and dorsal retinal fibers starting from the eye, following to the optic nerve and chiasm, and into the terminal target in the optic tectum in Xenopus laevis tadpoles. We then assessed the effects of DSCAM on the establishment of retinotopic maps through spatially and temporally targeted DSCAM knockdown on retinal ganglion cells (RGCs) with axons innervating the optic tectum. RESULTS Highest expression of DSCAM was localized to the ventral posterior region of the optic nerve and chiasm; this expression pattern coincides with ventral fibers derived from ventral RGCs. Targeted downregulation of DSCAM expression on ventral RGCs affected the segregation of medial axon fibers from their dorsal counterparts within the tectal neuropil, indicating that DSCAM plays a role in retinotopic organization. CONCLUSION These findings together with previous studies demonstrating cell-autonomous roles for DSCAM during the development of pre- and postsynaptic arbors in the Xenopus retinotectal circuit indicates that DSCAM exerts multiple roles in coordinating axon targeting and structural connectivity in the developing vertebrate visual system.
Collapse
Affiliation(s)
- Rommel Andrew Santos
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Rodrigo Del Rio
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Alexander Delfin Alvarez
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Gabriela Romero
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Brandon Zarate Vo
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| |
Collapse
|
5
|
Schiapparelli LM, Sharma P, He HY, Li J, Shah SH, McClatchy DB, Ma Y, Liu HH, Goldberg JL, Yates JR, Cline HT. Proteomic screen reveals diverse protein transport between connected neurons in the visual system. Cell Rep 2022; 38:110287. [PMID: 35081342 PMCID: PMC8906846 DOI: 10.1016/j.celrep.2021.110287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022] Open
Abstract
Intercellular transfer of toxic proteins between neurons is thought to contribute to neurodegenerative disease, but whether direct interneuronal protein transfer occurs in the healthy brain is not clear. To assess the prevalence and identity of transferred proteins and the cellular specificity of transfer, we biotinylated retinal ganglion cell proteins in vivo and examined biotinylated proteins transported through the rodent visual circuit using microscopy, biochemistry, and mass spectrometry. Electron microscopy demonstrated preferential transfer of biotinylated proteins from retinogeniculate inputs to excitatory lateral geniculate nucleus (LGN) neurons compared with GABAergic neurons. An unbiased mass spectrometry-based screen identified ∼200 transneuronally transported proteins (TNTPs) isolated from the visual cortex. The majority of TNTPs are present in neuronal exosomes, and virally expressed TNTPs, including tau and β-synuclein, were detected in isolated exosomes and postsynaptic neurons. Our data demonstrate transfer of diverse endogenous proteins between neurons in the healthy intact brain and suggest that TNTP transport may be mediated by exosomes.
Collapse
Affiliation(s)
- Lucio M Schiapparelli
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pranav Sharma
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Xosomix, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Hai-Yan He
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jianli Li
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sahil H Shah
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Neuroscience Graduate Program and Medical Scientist Training Program, University of California, San Diego, La Jolla, CA 92093, USA; Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA 94303, USA
| | - Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuanhui Ma
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Han-Hsuan Liu
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey L Goldberg
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA 94303, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hollis T Cline
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Hogg PW, Coleman P, Dellazizzo Toth T, Haas K. Quantifying neuronal structural changes over time using dynamic morphometrics. Trends Neurosci 2021; 45:106-119. [PMID: 34815102 DOI: 10.1016/j.tins.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Brain circuit development involves tremendous structural formation and rearrangement of dendrites, axons, and the synaptic connections between them. Direct studies of neuronal morphogenesis are now possible through recent developments in multiple technologies, including single-neuron labeling, time-lapse imaging in intact tissues, and 4D rendering software capable of tracking neural growth over periods spanning minutes to days. These methods allow detailed quantification of structural changes of neurons over time, called dynamic morphometrics, providing new insights into fundamental growth patterns, underlying molecular mechanisms, and the intertwined influences of external factors, including neural activity, and intrinsic genetic programs. Here, we review the methods of dynamic morphometrics sampling and analyses, focusing on their applications to studies of activity-driven dendritogenesis in vertebrate systems.
Collapse
Affiliation(s)
- Peter William Hogg
- Department of Cellular and Physiological Sciences, Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Patrick Coleman
- Department of Cellular and Physiological Sciences, Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Tristan Dellazizzo Toth
- Department of Cellular and Physiological Sciences, Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Kurt Haas
- Department of Cellular and Physiological Sciences, Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
7
|
Pratt KG. Electrophysiological Approaches to Studying Normal and Abnormal Retinotectal Circuit Development in the Xenopus Tadpole. Cold Spring Harb Protoc 2021; 2021:pdb.prot106898. [PMID: 33536288 DOI: 10.1101/pdb.prot106898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Xenopus tadpole retinotectal projection is the main component of the amphibian visual system. It comprises the retinal ganglion cells (RGCs) in the eye, which project an axon to synapse onto tectal neurons in the optic tectum. There are many attributes of this relatively simple projection that render it uniquely well-suited for studying the functional development of neural circuits. One major experimental advantage of this circuit is that it can be genetically or pharmacologically altered and then assessed at high resolution via whole-cell electrophysiological recordings using an ex vivo isolated brain preparation. This protocol provides instructions for performing such electrophysiological investigations using the ex-vivo-isolated brain preparation. It allows one to measure many different aspects of synaptic transmission between the RGC axons and individual postsynaptic tectal neurons, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) to NMDA (N-methyl-d-aspartate) ratios, strength of individual RGC axons, paired pulse facilitation, and strength of individual synapses.
Collapse
Affiliation(s)
- Kara G Pratt
- Department of Zoology and Physiology, and Program in Neuroscience, University of Wyoming, Laramie, Wyoming 82071, USA
| |
Collapse
|
8
|
Cline HT. Imaging Structural and Functional Dynamics in Xenopus Neurons. Cold Spring Harb Protoc 2021; 2022:pdb.top106773. [PMID: 34531329 DOI: 10.1101/pdb.top106773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In vivo time-lapse imaging has been a fruitful approach to identify structural and functional changes in the Xenopus nervous system in tadpoles and adult frogs. Structural imaging studies have identified fundamental aspects of brain connectivity, development, plasticity, and disease and have been instrumental in elucidating mechanisms regulating these events in vivo. Similarly, assessment of nervous system function using dynamic changes in calcium signals as a proxy for neuronal activity has demonstrated principles of neuron and circuit function and principles of information organization and transfer within the brain of living animals. Because of its many advantages as an experimental system, use of Xenopus has often been at the forefront of developing these imaging methods for in vivo applications. Protocols for in vivo structural and functional imaging-including cellular labeling strategies, image collection, and image analysis-will expand the use of Xenopus to understand brain development, function, and plasticity.
Collapse
Affiliation(s)
- Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Center, La Jolla, California 92039, USA
| |
Collapse
|
9
|
Hayashi Y. Molecular mechanism of hippocampal long-term potentiation - Towards multiscale understanding of learning and memory. Neurosci Res 2021; 175:3-15. [PMID: 34375719 DOI: 10.1016/j.neures.2021.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is considered to be a cellular counterpart of learning and memory. Activation of postsynaptic NMDA type glutamate receptor (NMDA-R) induces trafficking of AMPA type glutamate receptors (AMPA-R) and other proteins to the synapse in sequential fashion. At the same time, the dendritic spine expands for long-term and modulation of actin underlies this (structural LTP or sLTP). How these changes persist despite constant diffusion and turnover of the component proteins have been the central focus of the current LTP research. Signaling triggered by Ca2+-influx via NMDA-R triggers kinase including Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII can sustain longer-term biochemical signaling by forming a reciprocally-activating kinase-effector complex with its substrate proteins including Tiam1, thereby regulating persistence of the downstream signaling. Furthermore, activated CaMKII can condense at the synapse through the mechanism of liquid-liquid phase separation (LLPS). This increases the binding capacity at the synapse, thereby contributing to the maintenance of enlarged protein complexes. It may also serve as the synapse tag, which captures newly synthesized proteins.
Collapse
Affiliation(s)
- Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
10
|
Gore SV, James EJ, Huang LC, Park JJ, Berghella A, Thompson AC, Cline HT, Aizenman CD. Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis. eLife 2021; 10:62147. [PMID: 34282726 PMCID: PMC8315794 DOI: 10.7554/elife.62147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here, we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.
Collapse
Affiliation(s)
- Sayali V Gore
- Department of Neuroscience, Brown University, Providence, United States
| | - Eric J James
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Jenn J Park
- Department of Neuroscience, Brown University, Providence, United States
| | - Andrea Berghella
- Department of Neuroscience, Brown University, Providence, United States
| | - Adrian C Thompson
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
11
|
Khodakova AS, Vilchis DV, Blackburn D, Amanor F, Samuel BS. Population scale nucleic acid delivery to Caenorhabditis elegans via electroporation. G3 (BETHESDA, MD.) 2021; 11:jkab123. [PMID: 33872353 PMCID: PMC8495937 DOI: 10.1093/g3journal/jkab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/16/2021] [Indexed: 11/14/2022]
Abstract
The free-living nematode Caenorhabditis elegans remains one of the most robust and flexible genetic systems for interrogating the complexities of animal biology. Targeted genetic manipulations, such as RNA interference (RNAi), CRISPR/Cas9- or array-based transgenesis, all depend on initial delivery of nucleic acids. Delivery of dsRNA by feeding can be effective, but the expression in Escherichia coli is not conducive to experiments intended to remain sterile or with defined microbial communities. Soaking-based delivery requires prolonged exposure of animals to high-material concentrations without a food source and is of limited throughput. Last, microinjection of individual animals can precisely deliver materials to animals' germlines, but is limited by the need to target and inject each animal one-by-one. Thus, we sought to address some of these challenges in nucleic acid delivery by developing a population-scale delivery method. We demonstrate efficient electroporation-mediated delivery of dsRNA throughout the worm and effective RNAi-based silencing, including in the germline. Finally, we show that guide RNA delivered by electroporation can be utilized by transgenic Cas9 expressing worms for population-scale genetic targeting. Together, these methods expand the scale and scope of genetic methodologies that can be applied to the C. elegans system.
Collapse
Affiliation(s)
- Anastasia S Khodakova
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela Vidal Vilchis
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Blackburn
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ferdinand Amanor
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Faulkner RL, Wall NR, Callaway EM, Cline HT. Application of Recombinant Rabies Virus to Xenopus Tadpole Brain. eNeuro 2021; 8:ENEURO.0477-20.2021. [PMID: 34099488 PMCID: PMC8260272 DOI: 10.1523/eneuro.0477-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
The Xenopus laevis experimental system has provided significant insight into the development and plasticity of neural circuits. Xenopus neuroscience research would be enhanced by additional tools to study neural circuit structure and function. Rabies viruses are powerful tools to label and manipulate neural circuits and have been widely used to study mesoscale connectomics. Whether rabies virus can be used to transduce neurons and express transgenes in Xenopus has not been systematically investigated. Glycoprotein-deleted rabies virus transduces neurons at the axon terminal and retrogradely labels their cell bodies. We show that glycoprotein-deleted rabies virus infects local and projection neurons in the Xenopus tadpole when directly injected into brain tissue. Pseudotyping glycoprotein-deleted rabies with EnvA restricts infection to cells with exogenous expression of the EnvA receptor, TVA. EnvA pseudotyped virus specifically infects tadpole neurons with promoter-driven expression of TVA, demonstrating its utility to label targeted neuronal populations. Neuronal cell types are defined by a combination of features including anatomical location, expression of genetic markers, axon projection sites, morphology, and physiological properties. We show that driving TVA expression in one hemisphere and injecting EnvA pseudotyped virus into the contralateral hemisphere, retrogradely labels neurons defined by cell body location and axon projection site. Using this approach, rabies can be used to identify cell types in Xenopus brain and simultaneously to express transgenes which enable monitoring or manipulation of neuronal activity. This makes rabies a valuable tool to study the structure and function of neural circuits in Xenopus.Significance StatementStudies in Xenopus have contributed a great deal to our understanding of brain circuit development and plasticity, regeneration, and hormonal regulation of behavior and metamorphosis. Here, we show that recombinant rabies virus transduces neurons in the Xenopus tadpole, enlarging the toolbox that can be applied to studying Xenopus brain. Rabies can be used for retrograde labeling and expression of a broad range of transgenes including fluorescent proteins for anatomical tracing and studying neuronal morphology, voltage or calcium indicators to visualize neuronal activity, and photo- or chemosensitive channels to control neuronal activity. The versatility of these tools enables diverse experiments to analyze and manipulate Xenopus brain structure and function, including mesoscale connectivity.
Collapse
Affiliation(s)
- Regina L Faulkner
- Neuroscience Department and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla CA
| | | | | | - Hollis T Cline
- Neuroscience Department and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla CA
| |
Collapse
|
13
|
Liu K, Garcia A, Park JJ, Toliver AA, Ramos L, Aizenman CD. Early Developmental Exposure to Fluoxetine and Citalopram Results in Different Neurodevelopmental Outcomes. Neuroscience 2021; 467:110-121. [PMID: 34048796 DOI: 10.1016/j.neuroscience.2021.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022]
Abstract
Although selective serotonin reuptake inhibitors are commonly prescribed for prenatal depression, there exists controversy over adverse effects of SSRI use on fetal development. Few studies have adequately isolated outcomes due to SSRI exposure and those due to maternal psychiatric conditions. Here, we directly investigated outcomes of exposure to widely-used SSRIs Fluoxetine and Citalopram on the developing nervous system of Xenopus laevis tadpoles, using an integrative experimental approach. We exposed tadpoles to low doses of Citalopram and Fluoxetine during a critical developmental period and found that different experimental groups displayed opposing behavioral effects. While both groups showed reduced schooling behavior, the Fluoxetine group showed increased seizure susceptibility and reduced startle habituation. In contrast, Citalopram treated tadpoles had decreased seizure susceptibility and increased habituation. Both groups had abnormal dendritic morphology in the optic tectum, a brain area important for behaviors tested. Whole-cell electrophysiological recordings of tectal neurons showed no differences in synaptic function; however, tectal cells from Fluoxetine-treated tadpoles had decreased voltage gated K+ currents while cells in the Citalopram group had increased K+ currents. Both behavioral and electrophysiological findings indicate that cells and circuits in the Fluoxetine treated optic tecta are hyperexcitable, while the Citalopram group exhibits decreased excitability. Taken together, these results show that early developmental exposure to SSRIs is sufficient to induce neurodevelopmental effects, however these effects can be complex and vary depending on the SSRI. This may explain some discrepancies across human studies, and further underscores the importance of serotonergic signaling for the developing nervous system.
Collapse
Affiliation(s)
- Karine Liu
- Department of Neuroscience, Brown University, United States
| | - Alfonso Garcia
- Department of Neuroscience, Brown University, United States
| | - Jenn J Park
- Department of Neuroscience, Brown University, United States
| | | | | | | |
Collapse
|
14
|
He HY, Lin CY, Cline HT. In Vivo Time-Lapse Imaging and Analysis of Dendritic Structural Plasticity in Xenopus laevis Tadpoles. Cold Spring Harb Protoc 2021; 2022:pdb.prot106781. [PMID: 33790043 DOI: 10.1101/pdb.prot106781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vivo time-lapse imaging of complete dendritic arbor structures in tectal neurons of Xenopus laevis tadpoles has served as a powerful in vivo model to study activity-dependent structural plasticity in the central nervous system during early development. In addition to quantitative analysis of gross arbor structure, dynamic analysis of the four-dimensional data offers particularly valuable insights into the structural changes occurring in subcellular domains over experience/development-driven structural plasticity events. Such analysis allows not only quantifiable characterization of branch additions and retractions with high temporal resolution but also identification of the loci of action. This allows for a better understanding of the spatiotemporal association of structural changes to functional relevance. Here we describe a protocol for in vivo time-lapse imaging of complete dendritic arbors from individual neurons in the brains of anesthetized tadpoles with two-photon microscopy and data analysis of the time series of 3D dendritic arbors. For data analysis, we focus on dynamic analysis of reconstructed neuronal filaments using a customized open source computer program we developed (4D SPA), which allows aligning and matching of 3D neuronal structures across different time points with greatly improved speed and reliability. File converters are provided to convert reconstructed filament files from commercial reconstruction software to be used in 4D SPA. The program and user manual are publicly accessible and operate through a graphical user interface on both Windows and Mac OSX.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Biology, Georgetown University, Washington, D.C. 20057, USA
| | - Chih-Yang Lin
- Department of Optoelectronics and Materials Engineering, Chung Hua University, Hsinchu 30012, Taiwan
| | - Hollis T Cline
- Neuroscience Department, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
15
|
Abstract
The ability to microinject substances into the cytosol of living neutrophils opens the possibility of manipulating the chemistry within the cell and also of monitoring changes using indicators which otherwise cannot be introduced into the cell. However, neutrophils cannot be microinjected by the conventional glass pipette insertion method. Here we outline two techniques which work well with neutrophils, namely, SLAM (Simple Lipid-Assisted Microinjection) and electromicroinjection. As these methods utilize micropipettes, we also include a simple method which uses a micropipette to deliver a phagocytic stimulus to a specific cell at a defined time, enable detailed study of the phagocytic process from particle contact to particle internalization.
Collapse
|
16
|
Santos RA, Rio RD, Cohen-Cory S. Imaging the Dynamic Branching and Synaptic Differentiation of Xenopus Optic Axons In Vivo. Cold Spring Harb Protoc 2020; 2020:pdb.prot106823. [PMID: 32963083 DOI: 10.1101/pdb.prot106823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the developing Xenopus tadpole visual system, the targeting and branching of optic axons in the brain is a dynamic process that is closely intertwined with the morphological differentiation and maturation of their postsynaptic neurons and with the formation, stabilization, and elimination of functional synapses. The coordinated addition and retraction of axonal and dendritic branches guides the gradual recognition between pre- and postsynaptic neuronal partners, which subsequently allows synaptic connections to be formed. Axon and dendrite branching and selective synapse formation and stabilization are developmental mechanisms largely orchestrated by an array of signaling molecules that interact in vivo for the proper formation of functional visual circuits. In vivo real-time imaging of individual fluorophore-labeled neurons in living Xenopus tadpoles has allowed investigation of molecular and cellular mechanisms mediating circuit assembly at a cellular level in the intact organism. In this protocol, we describe the use of bulk and single-cell electroporation to rapidly and efficiently transfect individual retinal ganglion cells (RGCs) with different reagents and to simultaneously visualize optic axon arbor morphology and presynaptic sites in real time. Similar techniques for labeling and visualizing RGC axons can be combined with the use of morpholino antisense oligonucleotides, as we describe here, to alter gene expression cell autonomously.
Collapse
Affiliation(s)
- Rommel Andrew Santos
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697, USA
| | - Rodrigo Del Rio
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697, USA
| | - Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
17
|
Gupta P, Balasubramaniam N, Chang HY, Tseng FG, Santra TS. A Single-Neuron: Current Trends and Future Prospects. Cells 2020; 9:E1528. [PMID: 32585883 PMCID: PMC7349798 DOI: 10.3390/cells9061528] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
The brain is an intricate network with complex organizational principles facilitating a concerted communication between single-neurons, distinct neuron populations, and remote brain areas. The communication, technically referred to as connectivity, between single-neurons, is the center of many investigations aimed at elucidating pathophysiology, anatomical differences, and structural and functional features. In comparison with bulk analysis, single-neuron analysis can provide precise information about neurons or even sub-neuron level electrophysiology, anatomical differences, pathophysiology, structural and functional features, in addition to their communications with other neurons, and can promote essential information to understand the brain and its activity. This review highlights various single-neuron models and their behaviors, followed by different analysis methods. Again, to elucidate cellular dynamics in terms of electrophysiology at the single-neuron level, we emphasize in detail the role of single-neuron mapping and electrophysiological recording. We also elaborate on the recent development of single-neuron isolation, manipulation, and therapeutic progress using advanced micro/nanofluidic devices, as well as microinjection, electroporation, microelectrode array, optical transfection, optogenetic techniques. Further, the development in the field of artificial intelligence in relation to single-neurons is highlighted. The review concludes with between limitations and future prospects of single-neuron analyses.
Collapse
Affiliation(s)
- Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India; (P.G.); (N.B.)
| | - Nandhini Balasubramaniam
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India; (P.G.); (N.B.)
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India; (P.G.); (N.B.)
| |
Collapse
|
18
|
Gerdes C, Waal N, Offner T, Fornasiero EF, Wender N, Verbarg H, Manzini I, Trenkwalder C, Mollenhauer B, Strohäker T, Zweckstetter M, Becker S, Rizzoli SO, Basmanav FB, Opazo F. A nanobody-based fluorescent reporter reveals human α-synuclein in the cell cytosol. Nat Commun 2020; 11:2729. [PMID: 32483166 PMCID: PMC7264335 DOI: 10.1038/s41467-020-16575-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Aggregation and spreading of α-Synuclein (αSyn) are hallmarks of several neurodegenerative diseases, thus monitoring human αSyn (hαSyn) in animal models or cell cultures is vital for the field. However, the detection of native hαSyn in such systems is challenging. We show that the nanobody NbSyn87, previously-described to bind hαSyn, also shows cross-reactivity for the proteasomal subunit Rpn10. As such, when the NbSyn87 is expressed in the absence of hαSyn, it is continuously degraded by the proteasome, while it is stabilized when it binds to hαSyn. Here, we exploit this feature to design a new Fluorescent Reporter for hαSyn (FluoReSyn) by fusing NbSyn87 to fluorescent proteins, which results in fluorescence signal fluctuations depending on the presence and amounts of intracellular hαSyn. We characterize this biosensor in cells and tissues to finally reveal the presence of transmittable αSyn in human cerebrospinal fluid, demonstrating the potential of FluoReSyn for clinical research and diagnostics.
Collapse
Affiliation(s)
- Christoph Gerdes
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Natalia Waal
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig University Giessen, 35390, Giessen, Germany
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Nora Wender
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Hannes Verbarg
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig University Giessen, 35390, Giessen, Germany
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
| | - Claudia Trenkwalder
- Department of Neurosurgery, University Medical Center Göttingen, D-37075, Göttingen, Germany
- Paracelsus-Elena-Klinik, Klinikstraße 16, 34128, Kassel, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Klinikstraße 16, 34128, Kassel, Germany
- Department of Neurology, University Medical Center Göttingen, D-37075, Göttingen, Germany
| | - Timo Strohäker
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Göttingen, Germany
| | - Fitnat Buket Basmanav
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
- Campus Laboratory for Advanced Imaging, Microscopy and Spectroscopy, University of Göttingen, D-37073, Göttingen, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, D-37073, Göttingen, Germany.
| |
Collapse
|
19
|
Lhx2/9 and Etv1 Transcription Factors have Complementary roles in Regulating the Expression of Guidance Genes slit1 and sema3a. Neuroscience 2020; 434:66-82. [PMID: 32200077 DOI: 10.1016/j.neuroscience.2020.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023]
Abstract
During neural network development, growing axons read a map of guidance cues expressed in the surrounding tissue that lead the axons toward their targets. In particular, Xenopus retinal ganglion axons use the cues Slit1 and Semaphorin 3a (Sema3a) at a key guidance decision point in the mid-diencephalon in order to continue on to their midbrain target, the optic tectum. The mechanisms that control the expression of these cues, however, are poorly understood. Extrinsic Fibroblast Growth Factor (Fgf) signals are known to help coordinate the development of the brain by regulating gene expression. Here, we propose Lhx2/9 and Etv1 as potential downstream effectors of Fgf signalling to regulate slit1 and sema3a expression in the Xenopus forebrain. We find that lhx2/9 and etv1 mRNAs are expressed complementary to and within slit1/sema3a expression domains, respectively. Our data indicate that Lhx2 functions as an indirect repressor in that lhx2 overexpression within the forebrain downregulates the mRNA expression of both guidance genes, and in vitro lhx2/9 overexpression decreases the activity of slit1 and sema3a promoters. The Lhx2-VP16 constitutive activator fusion reduces sema3a promoter function, and the Lhx2-En constitutive repressor fusion increases slit1 induction. In contrast, etv1 gain of function transactivates both guidance genes in vitro and in the forebrain. Based on these data, together with our previous work, we hypothesize that Fgf signalling promotes both slit1 and sema3a expression in the forebrain through Etv1, while using Lhx2/9 to limit the extent of expression, thereby establishing the proper boundaries of guidance cue expression.
Collapse
|
20
|
Abstract
Antisense morpholino oligonucleotides (MOs) have become a valuable method to knockdown protein levels, to block with mRNA splicing and to interfere with miRNA function. MOs are widely used to alter gene expression in development of Xenopus and Zebrafish, where they are typically injected into the fertilized egg or blastomeres. Here we present methods to use electroporation to target delivery of MOs to the central nervous system of Xenopus laevis or Xenopus tropicalis tadpoles. Briefly, MO electroporation is accomplished by injecting MO solution into the brain ventricle and driving the MOs into cells of the brain with current passing between 2 platinum plate electrodes, positioned on either side of the target brain area. The method is relatively straightforward and uses standard equipment found in many neuroscience labs. A major advantage of electroporation is that it allows spatial and temporal control of MO delivery and therefore knockdown. Co-electroporation of MOs with cell type-specific fluorescent protein expression plasmids allows morphological analysis of cellular phenotypes. Furthermore, co-electroporation of MOs with rescuing plasmids allows assessment of specificity of the knockdown and phenotypic outcome. By combining MO-mediated manipulations with sophisticated assays of neuronal function, such as electrophysiological recording, behavioral assays, or in vivo time-lapse imaging of neuronal development, the functions of specific proteins and miRNAs within the developing nervous system can be elucidated. These methods can be adapted to apply antisense morpholinos to study protein and RNA function in a variety of complex tissues.
Collapse
Affiliation(s)
| | - Hollis T Cline
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
21
|
The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism. eNeuro 2019; 6:eN-NWR-0086-19. [PMID: 30993182 PMCID: PMC6464512 DOI: 10.1523/eneuro.0086-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
During development the axons of neurons grow toward and locate their synaptic partners to form functional neural circuits. Axons do so by reading a map of guidance cues expressed by surrounding tissues. Guidance cues are expressed at a precise space and time, but how guidance cue expression is regulated, and in a coordinated manner, is poorly understood. Semaphorins (Semas) and Slits are families of molecular ligands that guide axons. We showed previously that fibroblast growth factor (Fgf) signaling maintains sema3a and slit1 forebrain expression in Xenopus laevis, and these two repellents cooperate to guide retinal ganglion cell (RGC) axons away from the mid-diencephalon and on towards the optic tectum. Here, we investigate whether there are common features of the regulatory pathways that control the expression of these two guidance cues at this single axon guidance decision point. We isolated the sema3a proximal promoter and confirmed its responsiveness to Fgf signaling. Through misexpression of truncated Fgf receptors (Fgfrs), we found that sema3a forebrain expression is dependent on Fgfr2-4 but not Fgfr1. This is in contrast to slit1, whose expression we showed previously depends on Fgfr1 but not Fgfr2-4. Using pharmacological inhibitors and misexpression of constitutively active (CA) and dominant negative (DN) signaling intermediates, we find that while distinct Fgfrs regulate these two guidance genes, intracellular signaling downstream of Fgfrs appears to converge along the phosphoinositol 3-kinase (PI3K)-Akt signaling pathway. A common PI3K-Akt signaling pathway may allow for the coordinated expression of guidance cues that cooperate to direct axons at a guidance choice point.
Collapse
|
22
|
Gambrill AC, Faulkner RL, McKeown CR, Cline HT. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner. J Neurophysiol 2018; 121:306-320. [PMID: 30517041 DOI: 10.1152/jn.00664.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injuries introduce functional and structural circuit deficits that must be repaired for an organism to regain function. We developed an injury model in which Xenopus laevis tadpoles are given a penetrating stab wound that damages the optic tectal circuit and impairs visuomotor behavior. In tadpoles, as in other systems, injury induces neurogenesis. The newly generated neurons are thought to integrate into the existing circuit; however, whether they integrate via the same mechanisms that govern normal neuronal maturation during development is not understood. Development of the functional visuomotor circuit in Xenopus is driven by sensory activity. We hypothesized that enhanced visual experience would improve recovery from injury by facilitating integration of newly generated neurons into the tectal circuit. We labeled newly generated neurons in the injured tectum by green fluorescent protein expression and examined their circuit integration using electrophysiology and in vivo imaging. Providing animals with brief bouts of enhanced visual experience starting 24 h after injury increased synaptogenesis and circuit integration of new neurons and facilitated behavioral recovery. To investigate mechanisms of neuronal integration and behavioral recovery after injury, we interfered with N-methyl-d-aspartate (NMDA) receptor function. Ifenprodil, which blocks GluN2B-containing NMDA receptors, impaired dendritic arbor elaboration. GluN2B blockade inhibited functional integration of neurons generated in response to injury and prevented behavioral recovery. Furthermore, tectal GluN2B knockdown blocked the beneficial effects of enhanced visual experience on functional plasticity and behavioral recovery. We conclude that visual experience-mediated rehabilitation of the injured tectal circuit occurs by GluN2B-containing NMDA receptor-dependent integration of newly generated neurons. NEW & NOTEWORTHY Recovery from brain injury is difficult in most systems. The study of regenerative animal models that are capable of injury repair can provide insight into cellular and circuit mechanisms underlying repair. Using Xenopus tadpoles, we show enhanced sensory experience rehabilitates the injured visual circuit and that this experience-dependent recovery depends on N-methyl-d-aspartate receptor function. Understanding the mechanisms of rehabilitation in this system may facilitate recovery in brain regions and systems where repair is currently impossible.
Collapse
Affiliation(s)
- Abigail C Gambrill
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Regina L Faulkner
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Caroline R McKeown
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Hollis T Cline
- Department of Neuroscience, the Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
23
|
Sakaki KDR, Coleman P, Toth TD, Guerrier C, Haas K. Automating Event-detection of Brain Neuron Synaptic Activity and Action Potential Firing in vivo using a Random-access Multiphoton Laser Scanning Microscope for Real-time Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1-7. [PMID: 30440280 DOI: 10.1109/embc.2018.8512983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Determining how a neuron computes requires an understanding of the complex spatiotemporal relationship between its input (e.g. synaptic input as a result of external stimuli) and action potential output. Recent advances in in vivo, laser-scanning multiphoton technology, known as random-access microscopy (RAM), can capture this relationship by imaging fluorescent light, emitted from calcium-sensitive biosensors responding to synaptic and action potential firing in a neuron's full dendritic arbor and cell body. Ideally, a continuous output of fluorescent intensities from the neuron would be converted to a binary output (`event', 'or no-event'). These binary events can be used to correlate temporal and spatial associations between the input and output. However, neurons contain hundreds-to-thousands of synapses on the dendritic arbors generating an enormous quantity of data composed of physiological signals, which vary greatly in shape and size. Thus, automating data-processing tasks is essential to support high-throughput analysis for real-time/post-processing operations and to improve operators' comprehension of the data used to decipher neuron computations. Here, we describe an automated software algorithm to detect brain neuron events in real-time using an acousto-optic, multiphoton, laser scanning RAM developed in our laboratory. The fluorescent light intensities, from a genetically encoded, calcium biosensor (GCAMP 6m), are measured by our RAM system and are input to our 'event-detector', which converts them to a binary output meant for real-time applications. We evaluate three algorithms for this purpose: exponentially weighted moving average, cumulative sum, and template matching; present each algorithm's performance; and discuss user-feasibility of each. We validated our system in vivo, using the visual circuit of the Xenopus laevis.
Collapse
|
24
|
Yamaguchi A, Woller DJ, Rodrigues P. Development of an Acute Method to Deliver Transgenes Into the Brains of Adult Xenopus laevis. Front Neural Circuits 2018; 12:92. [PMID: 30416430 PMCID: PMC6213920 DOI: 10.3389/fncir.2018.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/03/2018] [Indexed: 01/06/2023] Open
Abstract
The central vocal pathway of the African clawed frog, Xenopus laevis, is a powerful vertebrate model to understand mechanisms underlying central pattern generation. However, fast and efficient methods of introducing exogenous genes into the neurons of adult X. laevis are currently not available. Here, we systematically tested methods of transgene delivery into adult X. laevis neurons. Although successfully used for tadpole neurons for over a decade, electroporation was not efficient in transfecting adult neurons. Similarly, adeno-associated virus (AAV) was not reliable, and lentivirus (LV) failed to function as viral vector in adult Xenopus neurons. In contrast, vesicular stomatitis virus (VSV) was a fast and robust vector for adult X. laevis neurons. Although toxic to the host cells, VSV appears to be less virulent to frog neurons than they are to mice neurons. At a single cell level, infected neurons showed normal physiological properties up to 7 days post infection and vocal circuits that included infected neurons generated normal fictive vocalizations up to 9 days post infection. The relatively long time window during which the physiology of VSV-infected neurons can be studied presents an ideal condition for the use of optogenetic tools. We showed that VSV does not gain entry into myelinated axons, but is taken up by both the soma and axon terminal; this is an attractive feature that drives transgene expression in projection neurons. Previous studies showed that VSVs can spread across synapses in anterograde or retrograde directions depending on the types of glycoprotein that are encoded. However, rVSV did not spread across synapses in the Xenopus central nervous system. The successful use of VSV as a transgene vector in amphibian brains not only allows us to exploit the full potential of the genetic tools to answer questions central to understanding central pattern generation, but also opens the door to other research programs that focus on non-genetic model organisms to address unique questions.
Collapse
Affiliation(s)
- Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| | - Diana J Woller
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| | - Paulo Rodrigues
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
25
|
Liu Z, Thakar A, Santoro SW, Pratt KG. Presenilin Regulates Retinotectal Synapse Formation through EphB2 Receptor Processing. Dev Neurobiol 2018; 78:1171-1190. [PMID: 30246932 DOI: 10.1002/dneu.22638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/18/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Abstract
As the catalytic component of γ-secretase, presenilin (PS) has long been studied in the context of Alzheimer's disease through cleaving the amyloid precursor protein. PS/γ-secretase, however, also cleaves a multitude of single-pass transmembrane proteins that are important during development, including Notch, the netrin receptor DCC, cadherins, drebrin-A, and the EphB2 receptor. Because transgenic PS-KO mice do not survive to birth, studies of this molecule during later embryonic or early postnatal stages of development have been carried out using cell cultures or conditional knock-out mice, respectively. As a result, the function of PS in synapse formation had not been well-addressed. Here, we study the role of PS in the developing Xenopus tadpole retinotectal circuit, an in-vivo model that allows for protein expression to be manipulated specifically during the peak of synapse formation between retinal ganglion cells and tectal neurons. We found that inhibiting PS in the postsynaptic tectal neurons impaired tadpole visual avoidance behavior. Whole cell recordings indicated weaker retinotectal synaptic transmission which was characterized by significant reductions in both NMDA receptor (NMDAR)- and AMPA receptor (AMPAR)-mediated currents. We also found that expression of the C-tail fragment of the EphB2 receptor, which is normally cleaved by PS/γ-secretase and which has been shown to upregulate NMDARs at the synapse, rescued the reduced NMDAR-mediated responses. Our data determine that normal PS function is important for proper formation and strengthening of retinotectal synapses through cleaving the EphB2 receptor.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Amit Thakar
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Stephen W Santoro
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Kara G Pratt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
26
|
Yang JLJ, Bertolesi GE, Hehr CL, Johnston J, McFarlane S. Fibroblast growth factor receptor 1 signaling transcriptionally regulates the axon guidance cue slit1. Cell Mol Life Sci 2018; 75:3649-3661. [PMID: 29705951 PMCID: PMC11105281 DOI: 10.1007/s00018-018-2824-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Axons sense molecular cues in their environment to arrive at their post-synaptic targets. While many of the molecular cues have been identified, the mechanisms that regulate their spatiotemporal expression remain elusive. We examined here the transcriptional regulation of the guidance gene slit1 both in vitro and in vivo by specific fibroblast growth factor receptors (Fgfrs). We identified an Fgf-responsive 2.3 kb slit1 promoter sequence that recapitulates spatiotemporal endogenous expression in the neural tube and eye of Xenopus embryos. We found that signaling through Fgfr1 is the main regulator of slit1 expression both in vitro in A6 kidney epithelial cells, and in the Xenopus forebrain, even when other Fgfr subtypes are present in cells. These data argue that a specific signaling pathway downstream of Fgfr1 controls in a cell-autonomous manner slit1 forebrain expression and are novel in identifying a specific growth factor receptor for in vivo control of the expression of a key embryonic axon guidance cue.
Collapse
Affiliation(s)
- Jung-Lynn Jonathan Yang
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Carrie L Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Jillian Johnston
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
27
|
Hallin EI, Eriksen MS, Baryshnikov S, Nikolaienko O, Grødem S, Hosokawa T, Hayashi Y, Bramham CR, Kursula P. Structure of monomeric full-length ARC sheds light on molecular flexibility, protein interactions, and functional modalities. J Neurochem 2018; 147:323-343. [DOI: 10.1111/jnc.14556] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Erik I. Hallin
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - Maria S. Eriksen
- Department of Biomedicine; University of Bergen; Bergen Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders; University of Bergen; Bergen Norway
| | - Sergei Baryshnikov
- Department of Biomedicine; University of Bergen; Bergen Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders; University of Bergen; Bergen Norway
| | - Oleksii Nikolaienko
- Department of Biomedicine; University of Bergen; Bergen Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders; University of Bergen; Bergen Norway
| | - Sverre Grødem
- Department of Biomedicine; University of Bergen; Bergen Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders; University of Bergen; Bergen Norway
| | - Tomohisa Hosokawa
- Department of Pharmacology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Yasunori Hayashi
- Department of Pharmacology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Clive R. Bramham
- Department of Biomedicine; University of Bergen; Bergen Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders; University of Bergen; Bergen Norway
| | - Petri Kursula
- Department of Biomedicine; University of Bergen; Bergen Norway
- Faculty of Biochemistry and Molecular Medicine; University of Oulu; Oulu Finland
| |
Collapse
|
28
|
DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring. Neural Dev 2018; 13:22. [PMID: 30219101 PMCID: PMC6138929 DOI: 10.1186/s13064-018-0118-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/26/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Proper patterning of dendritic and axonal arbors is a critical step in the formation of functional neuronal circuits. Developing circuits rely on an array of molecular cues to shape arbor morphology, but the underlying mechanisms guiding the structural formation and interconnectivity of pre- and postsynaptic arbors in real time remain unclear. Here we explore how Down syndrome cell adhesion molecule (DSCAM) differentially shapes the dendritic morphology of central neurons and their presynaptic retinal ganglion cell (RGC) axons in the developing vertebrate visual system. METHODS The cell-autonomous role of DSCAM, in tectal neurons and in RGCs, was examined using targeted single-cell knockdown and overexpression approaches in developing Xenopus laevis tadpoles. Axonal arbors of RGCs and dendritic arbors of tectal neurons were visualized using real-time in vivo confocal microscopy imaging over the course of 3 days. RESULTS In the Xenopus visual system, DSCAM immunoreactivity is present in RGCs, cells in the optic tectum and the tectal neuropil at the time retinotectal synaptic connections are made. Downregulating DSCAM in tectal neurons significantly increased dendritic growth and branching rates while inducing dendrites to take on tortuous paths. Overexpression of DSCAM, in contrast, reduced dendritic branching and growth rate. Functional deficits mediated by tectal DSCAM knockdown were examined using visually guided behavioral assays in swimming tadpoles, revealing irregular behavioral responses to visual stimulus. Functional deficits in visual behavior also corresponded with changes in VGLUT/VGAT expression, markers of excitatory and inhibitory transmission, in the tectum. Conversely, single-cell DSCAM knockdown in the retina revealed that RGC axon arborization at the target is influenced by DSCAM, where axons grew at a slower rate and remained relatively simple. In the retina, dendritic arbors of RGCs were not affected by the reduction of DSCAM expression. CONCLUSIONS Together, our observations implicate DSCAM in the control of both pre- and postsynaptic structural and functional connectivity in the developing retinotectal circuit, where it primarily acts as a neuronal brake to limit and guide postsynaptic dendrite growth of tectal neurons while it also facilitates arborization of presynaptic RGC axons cell autonomously.
Collapse
|
29
|
Gambrill AC, Faulkner RL, Cline HT. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles. J Neurophysiol 2018; 119:1947-1961. [PMID: 29442555 DOI: 10.1152/jn.00051.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The circuit controlling visually guided behavior in nonmammalian vertebrates, such as Xenopus tadpoles, includes retinal projections to the contralateral optic tectum, where visual information is processed, and tectal motor outputs projecting ipsilaterally to hindbrain and spinal cord. Tadpoles have an intertectal commissure whose function is unknown, but it might transfer information between the tectal lobes. Differences in visual experience between the two eyes have profound effects on the development and function of visual circuits in animals with binocular vision, but the effects on animals with fully crossed retinal projections are not clear. We tested the effect of monocular visual experience on the visuomotor circuit in Xenopus tadpoles. We show that cutting the intertectal commissure or providing visual experience to one eye (monocular visual experience) is sufficient to disrupt tectally mediated visual avoidance behavior. Monocular visual experience induces asymmetry in tectal circuit activity across the midline. Repeated exposure to monocular visual experience drives maturation of the stimulated retinotectal synapses, seen as increased AMPA-to-NMDA ratios, induces synaptic plasticity in intertectal synaptic connections, and induces bilaterally asymmetric changes in the tectal excitation-to-inhibition ratio (E/I). We show that unilateral expression of peptides that interfere with AMPA or GABAA receptor trafficking alters E/I in the transfected tectum and is sufficient to degrade visuomotor behavior. Our study demonstrates that monocular visual experience in animals with fully crossed visual systems produces asymmetric circuit function across the midline and degrades visuomotor behavior. The data further suggest that intertectal inputs are an integral component of a bilateral visuomotor circuit critical for behavior. NEW & NOTEWORTHY The developing optic tectum of Xenopus tadpoles represents a unique circuit in which laterally positioned eyes provide sensory input to a circuit that is transiently monocular, but which will be binocular in the animal's adulthood. We challenge the idea that the two lobes of tadpole optic tectum function independently by testing the requirement of interhemispheric communication and demonstrate that unbalanced sensory input can induce structural and functional plasticity in the tectum sufficient to disrupt function.
Collapse
Affiliation(s)
- Abigail C Gambrill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Regina L Faulkner
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
30
|
Weiss L, Offner T, Hassenklöver T, Manzini I. Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System. Methods Mol Biol 2018; 1865:217-231. [PMID: 30151769 DOI: 10.1007/978-1-4939-8784-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Electroporation is an efficient method of transferring charged macromolecules into living cells in order to study their morphology, function, and connectivity within neuronal networks. Labeling cells with fluorophore-coupled macromolecules can be used to trace projections of whole neuronal ensembles, as well as the fine morphology of single cells. Here, we present a protocol to visualize pre- and postsynaptic components of a sensory relay synapse in the brain, using the olfactory system of Xenopus laevis tadpoles as a model. We apply bulk electroporation to trace projections of receptor neurons from the nose to the brain, and single cell electroporation to visualize the morphology of their synaptic target cells, the mitral-tufted cells. Labeling the receptor neurons with a calcium-sensitive dye allows us to record stimulus-induced presynaptic input to the dendrites of the postsynaptic cells via functional calcium imaging.
Collapse
Affiliation(s)
- Lukas Weiss
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Offner
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
31
|
Multiple events of gene manipulation via in pouch electroporation in a marsupial model of mammalian forebrain development. J Neurosci Methods 2018; 293:45-52. [DOI: 10.1016/j.jneumeth.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 01/23/2023]
|
32
|
Hawkins SJ, Weiss L, Offner T, Dittrich K, Hassenklöver T, Manzini I. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit. Front Cell Neurosci 2017; 11:380. [PMID: 29234276 PMCID: PMC5712363 DOI: 10.3389/fncel.2017.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.
Collapse
Affiliation(s)
- Sara J Hawkins
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lukas Weiss
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Offner
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Katarina Dittrich
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
33
|
Bender MC, Sifuentes CJ, Denver RJ. Leptin Induces Mitosis and Activates the Canonical Wnt/β-Catenin Signaling Pathway in Neurogenic Regions of Xenopus Tadpole Brain. Front Endocrinol (Lausanne) 2017; 8:99. [PMID: 28533765 PMCID: PMC5421298 DOI: 10.3389/fendo.2017.00099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
In addition to its well-known role as an adipostat in adult mammals, leptin has diverse physiological and developmental actions in vertebrates. Leptin has been shown to promote development of hypothalamic circuits and to induce mitosis in different brain areas of mammals. We investigated the ontogeny of leptin mRNA, leptin actions on cell proliferation in the brain, and gene expression in the preoptic area/hypothalamus of tadpoles of Xenopus laevis. The level of leptin mRNA was low in premetamorphic tadpoles, but increased strongly at the beginning of metamorphosis and peaked at metamorphic climax. This increase in leptin mRNA at the onset of metamorphosis correlated with increased cell proliferation in the neurogenic zones of tadpole brain. We found that intracerebroventricular (i.c.v.) injection of recombinant Xenopus leptin (rxLeptin) in premetamorphic tadpoles strongly increased cell proliferation in neurogenic zones throughout the tadpole brain. We conducted gene expression profiling of genes induced at 2 h following i.c.v. injection of rxLeptin. This analysis identified 2,322 genes induced and 1,493 genes repressed by rxLeptin. The most enriched Kyoto Encyclopedia of Genes and Genomes term was the canonical Wnt/β-catenin pathway. Using electroporation-mediated gene transfer into tadpole brain of a reporter vector responsive to the canonical Wnt/β-catenin signaling pathway, we found that i.c.v. rxLeptin injection activated Wnt/β-catenin-dependent transcriptional activity. Our findings show that leptin acts on the premetamorphic tadpole brain to induce cell proliferation, possibly acting via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Melissa Cui Bender
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Christopher J. Sifuentes
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Abstract
Myelination by oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system is essential for nervous system function and health. Despite its importance, we have a relatively poor understanding of the molecular and cellular mechanisms that regulate myelination in the living animal, particularly in the CNS. This is partly due to the fact that myelination commences around birth in mammals, by which time the CNS is complex and largely inaccessible, and thus very difficult to image live in its intact form. As a consequence, in recent years much effort has been invested in the use of smaller, simpler, transparent model organisms to investigate mechanisms of myelination in vivo. Although the majority of such studies have employed zebrafish, the Xenopus tadpole also represents an important complementary system with advantages for investigating myelin biology in vivo. Here we review how the natural features of zebrafish embryos and larvae and Xenopus tadpoles make them ideal systems for experimentally interrogating myelination by live imaging. We outline common transgenic technologies used to generate zebrafish and Xenopus that express fluorescent reporters, which can be used to image myelination. We also provide an extensive overview of the imaging modalities most commonly employed to date to image the nervous system in these transparent systems, and also emerging technologies that we anticipate will become widely used in studies of zebrafish and Xenopus myelination in the near future.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - David A Lyons
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
N-Cadherin is Involved in Neuronal Activity-Dependent Regulation of Myelinating Capacity of Zebrafish Individual Oligodendrocytes In Vivo. Mol Neurobiol 2016; 54:6917-6930. [PMID: 27771903 DOI: 10.1007/s12035-016-0233-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023]
Abstract
Stimulating neuronal activity increases myelin sheath formation by individual oligodendrocytes, but how myelination is regulated by neuronal activity in vivo is still not fully understood. While in vitro studies have revealed the important role of N-cadherin in myelination, our understanding in vivo remains quite limited. To obtain the role of N-cadherin during activity-dependent regulation of myelinating capacity of individual oligodendrocytes, we successfully built an in vivo dynamic imaging model of the Mauthner cell at the subcellular structure level in the zebrafish central nervous system. Enhanced green fluorescent protein (EGFP)-tagged N-cadherin was used to visualize the stable accumulations and mobile transports of N-cadherin by single-cell electroporation at the single-cell level. We found that pentylenetetrazol (PTZ) significantly enhanced the accumulation of N-cadherin in Mauthner axons, a response that was paralleled by enhanced sheath number per oligodendrocytes. By offsetting this phenotype using oligopeptide (AHAVD) which blocks the function of N-cadherin, we showed that PTZ regulates myelination in an N-cadherin-dependent manner. What is more, we further suggested that PTZ influences N-cadherin and myelination via a cAMP pathway. Consequently, our data indicated that N-cadherin is involved in neuronal activity-dependent regulation of myelinating capacity of zebrafish individual oligodendrocytes in vivo.
Collapse
|
36
|
Gao J, Ruan H, Qi X, Tao Y, Guo X, Shen W. HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum. Front Cell Neurosci 2016; 10:221. [PMID: 27729849 PMCID: PMC5037170 DOI: 10.3389/fncel.2016.00221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/09/2016] [Indexed: 01/12/2023] Open
Abstract
Radial glial cells (RGs) are one of the important progenitor cells that can differentiate into neurons or glia to form functional neural circuits in the developing central nervous system (CNS). Histone deacetylases (HDACs) has been associated with visual activity dependent changes in BrdU-positive progenitor cells in the developing brain. We previously have shown that HDAC1 is involved in the experience-dependent proliferation of RGs. However, it is less clear whether two other members of class I HDACs, HDAC2 and HDAC3, are involved in the regulation of radial glia proliferation. Here, we reported that HDAC2 and HDAC3 expression were developmentally regulated in tectal cells, especially in the ventricular layer of the BLBP-positive RGs. Pharmacological blockade using an inhibitor of class I HDACs, MS-275, decreased the number of BrdU-positive dividing progenitor cells. Specific knockdown of HDAC3 but not HDAC2 decreased the number of BrdU- and BLBP-labeled cells, suggesting that the proliferation of radial glia was selectively mediated by HDAC3. Visual deprivation induced selective augmentation of histone H4 acetylation at lysine 16 in BLBP-positive cells. Furthermore, the visual deprivation-induced increase in BrdU-positive cells was partially blocked by HDAC3 downregulation but not by HDAC2 knockdown at stage 49 tadpoles. These data revealed a specific role of HDAC3 in experience-dependent radial glia proliferation during the development of Xenopus tectum.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, Zhejiang, China
| | - Hangze Ruan
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, Zhejiang, China
| | - Xianjie Qi
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, Zhejiang, China
| | - Yi Tao
- Department of Neurosurgery, Nanjing Medical University and Jiangsu Cancer Hospital Nanjing, Jiangsu, China
| | - Xia Guo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, Zhejiang, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Gambrill AC, Faulkner R, Cline HT. Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles. J Neurophysiol 2016; 116:2281-2297. [PMID: 27582296 DOI: 10.1152/jn.00611.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/29/2016] [Indexed: 01/11/2023] Open
Abstract
Communication between optic tecta/superior colliculi is thought to be required for sensorimotor behaviors by comparing inputs across the midline, however the development of and the role of visual experience in the function and plasticity of intertectal connections are unclear. We combined neuronal tracing, in vivo time-lapse imaging, and electrophysiology to characterize the structural and functional development of intertectal axons and synapses in Xenopus tadpole optic tectum. We find that intertectal connections are established early during optic tectal circuit development. We determined the neurotransmitter identity of intertectal neurons using both rabies virus-mediated tracing combined with post-hoc immunohistochemistry, and electrophysiology. Excitatory and inhibitory intertectal neuronal somata are similarly distributed throughout the tectum. Excitatory and inhibitory intertectal axons are structurally similar and elaborate broadly in the contralateral tectum. We demonstrate that intertectal and retinotectal axons converge onto tectal neurons by recording postsynaptic currents after stimulating intertectal and retinotectal inputs. Cutting the intertectal commissure removes synaptic responses to contralateral tectal stimulation. In vivo time-lapse imaging demonstrated that visual experience drives plasticity in intertectal bouton size and dynamics. Finally, visual experience coordinately drives the maturation of excitatory and inhibitory intertectal inputs by increasing AMPA- and GABA-receptor mediated currents, comparable to experience-dependent maturation of retinotectal inputs. These data indicate that visual experience regulates plasticity of excitatory and inhibitory intertectal inputs, maintaining the excitatory: inhibitory ratio of intertectal input. These studies place intertectal inputs as key players in tectal circuit development and suggest that they may play a role in sensory information processing critical to sensorimotor behaviors.
Collapse
|
38
|
Brinkmann A, Okom C, Kludt E, Schild D. Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis. J Vis Exp 2016. [PMID: 27286501 PMCID: PMC4927760 DOI: 10.3791/54108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The olfactory system, specialized in the detection, integration and processing of chemical molecules is likely the most thoroughly studied sensory system. However, there is piling evidence that olfaction is not solely limited to chemical sensitivity, but also includes temperature sensitivity. Premetamorphic Xenopus laevis are translucent animals, with protruding nasal cavities deprived of the cribriform plate separating the nose and the olfactory bulb. These characteristics make them well suited for studying olfaction, and particularly thermosensitivity. The present article describes the complete procedure for measuring temperature responses in the olfactory bulb of X. laevis larvae. Firstly, the electroporation of olfactory receptor neurons (ORNs) is performed with spectrally distinct dyes loaded into the nasal cavities in order to stain their axon terminals in the bulbar neuropil. The differential staining between left and right receptor neurons serves to identify the γ-glomerulus as the only structure innervated by contralateral presynaptic afferents. Secondly, the electroporation is combined with focal bolus loading in the olfactory bulb in order to stain mitral cells and their dendrites. The 3D brain volume is then scanned under line-illumination microscopy for the acquisition of fast calcium imaging data while small temperature drops are induced at the olfactory epithelium. Lastly, the post-acquisition analysis allows the morphological reconstruction of the thermosensitive network comprising the γ-glomerulus and its innervating mitral cells, based on specific temperature-induced Ca2+ traces. Using chemical odorants as stimuli in addition to temperature jumps enables the comparison between thermosensitive and chemosensitive networks in the olfactory bulb.
Collapse
Affiliation(s)
- Alexander Brinkmann
- Institute of Neurophysiology and Cellular Biophysics, Georg-August-Universität Göttingen; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-Universität Göttingen
| | - Camille Okom
- Institute of Neurophysiology and Cellular Biophysics, Georg-August-Universität Göttingen; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-Universität Göttingen
| | - Eugen Kludt
- Institute of Neurophysiology and Cellular Biophysics, Georg-August-Universität Göttingen; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-Universität Göttingen; German Hearing Center Hannover
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, Georg-August-Universität Göttingen; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-Universität Göttingen; DFG Excellence Cluster 171, Georg-August-Universität Göttingen;
| |
Collapse
|
39
|
Atkinson-Leadbeater K, Hehr CL, Johnston J, Bertolesi G, McFarlane S. EGCG stabilizes growth cone filopodia and impairs retinal ganglion cell axon guidance. Dev Dyn 2016; 245:667-77. [DOI: 10.1002/dvdy.24406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/05/2016] [Accepted: 03/12/2016] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Carrie L. Hehr
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| | - Jill Johnston
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| | - Gabriel Bertolesi
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| | - Sarah McFarlane
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| |
Collapse
|
40
|
Erdogan B, Ebbert PT, Lowery LA. Using Xenopus laevis retinal and spinal neurons to study mechanisms of axon guidance in vivo and in vitro. Semin Cell Dev Biol 2016; 51:64-72. [PMID: 26853934 DOI: 10.1016/j.semcdb.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 11/26/2022]
Abstract
The intricate and precise establishment of neuronal connections in the developing nervous system relies on accurate navigation of growing axons. Since Ramón y Cajal's discovery of the growth cone, the phenomenon of axon guidance has been revealed as a coordinated operation of guidance molecules, receptors, secondary messengers, and responses driven by the dynamic cytoskeleton within the growth cone. With the advent of new and accelerating techniques, Xenopus laevis emerged as a robust model to investigate neuronal circuit formation during development. We present here the advantages of the Xenopus nervous system to our growing understanding of axon guidance.
Collapse
Affiliation(s)
- Burcu Erdogan
- Department of Biology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| | - Patrick T Ebbert
- Department of Biology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| | - Laura Anne Lowery
- Department of Biology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
41
|
Huang Y, Wilkie R, Wilson V. Methods for Precisely Localized Transfer of Cells or DNA into Early Postimplantation Mouse Embryos. J Vis Exp 2015:e53295. [PMID: 26780672 PMCID: PMC4780859 DOI: 10.3791/53295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Manipulation and culture of early mouse embryos is a powerful yet largely under-utilized technology enhancing the value of this model system. Conversely, cell culture has been widely used in developmental biology studies. However, it is important to determine whether in vitro cultured cells truly represent in vivo cell types. Grafting cells into embryos, followed by an assessment of their contribution during development is a useful method to determine the potential of in vitro cultured cells. In this study, we describe a method for grafting cells into a defined site of early postimplantation mouse embryos, followed by ex vivo culture. We also introduce an optimized electroporation method that uses glass capillaries of known diameter, allowing precise localization and adjustment of the number of cells receiving exogenous DNA with both high transfection efficiency and low cell death. These techniques, which do not require any specialized equipment, render experimental manipulations of the gastrulation and early organogenesis-stage mouse embryo possible, allowing analysis of commitment in cultured cell subpopulations and the effect of genetic manipulations in situ on cell differentiation.
Collapse
Affiliation(s)
- Yali Huang
- MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh;
| | - Ron Wilkie
- MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh
| |
Collapse
|
42
|
Albrecht O, Klug A. Laser-guided Neuronal Tracing In Brain Explants. J Vis Exp 2015:53333. [PMID: 26649948 PMCID: PMC4692760 DOI: 10.3791/53333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We present a technique which combines an in vitro tracer injection protocol, which uses a series of electrical and pressure pulses to increase dye uptake through electroporation in brain explants with targeted laser illumination and matching filter goggles during the procedure. The described technique of in vitro electroporation by itself yields relatively good visual control for targetting certain areas of the brain. By combining it with laser excitation of fluorescent genetic markers and their read-out through band-passing filter goggles, which can pick up the emissions of the genetically labeled cells/nuclei and the fluorescent tracing dye, a researcher can substantially increase the accuracy of injections by finding the area of interest and controlling for the dye-spread/uptake in the injection area much more efficiently. In addition, the laser illumination technique allows to study the functionality of a given neurocircuit by providing information about the type of neurons projecting to a certain area in cases where the GFP expression is linked to the type of transmitter expressed by a subpopulation of neurons.
Collapse
Affiliation(s)
- Otto Albrecht
- Department of Physiology and Biophysics, University of Colorado School of Medicine;
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado School of Medicine
| |
Collapse
|
43
|
Cechmanek PB, Hehr CL, McFarlane S. Rho kinase is required to prevent retinal axons from entering the contralateral optic nerve. Mol Cell Neurosci 2015; 69:30-40. [PMID: 26455469 DOI: 10.1016/j.mcn.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 01/21/2023] Open
Abstract
To grow out to contact target neurons an axon uses its distal tip, the growth cone, as a sensor of molecular cues that help the axon make appropriate guidance decisions at a series of choice points along the journey. In the developing visual system, the axons of the output cells of the retina, the retinal ganglion cells (RGCs), cross the brain midline at the optic chiasm. Shortly after, they grow past the brain entry point of the optic nerve arising from the contralateral eye, and extend dorso-caudally through the diencephalon towards their optic tectum target. Using the developing visual system of the experimentally amenable model Xenopus laevis, we find that RGC axons are normally prevented from entering the contralateral optic nerve. This mechanism requires the activity of a Rho-associated kinase, Rock, known to function downstream of a number of receptors that recognize cues that guide axons. Pharmacological inhibition of Rock in an in vivo brain preparation causes mis-entry of many RGC axons into the contralateral optic nerve, and this defect is partially phenocopied by selective disruption of Rock signaling in RGC axons. These data implicate Rock downstream of a molecular mechanism that is critical for RGC axons to be able to ignore a domain, the optic nerve, which they previously found attractive.
Collapse
Affiliation(s)
- Paula B Cechmanek
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada
| | - Carrie L Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada.
| |
Collapse
|
44
|
Dittrich K, Kuttler J, Hassenklöver T, Manzini I. Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis. J Comp Neurol 2015; 524:986-98. [PMID: 26294036 DOI: 10.1002/cne.23887] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/08/2022]
Abstract
The amphibian olfactory system undergoes massive remodeling during metamorphosis. The transition from aquatic olfaction in larvae to semiaquatic or airborne olfaction in adults requires anatomical, cellular, and molecular modifications. These changes are particularly pronounced in Pipidae, whose adults have secondarily adapted to an aquatic life style. In the fully aquatic larvae of Xenopus laevis, the main olfactory epithelium specialized for sensing water-borne odorous substances lines the principal olfactory cavity (PC), whereas a separate olfactory epithelium lies in the vomeronasal organ (VNO). During metamorphosis, the epithelium of the PC is rearranged into the adult "air nose," whereas a new olfactory epithelium, the adult "water nose," forms in the emerging middle cavity (MC). Here we performed a stage-by-stage investigation of the anatomical changes of the Xenopus olfactory organ during metamorphosis. We quantified cell death in all olfactory epithelia and found massive cell death in the PC and the VNO, suggesting that the majority of larval sensory neurons is replaced during metamorphosis in both sensory epithelia. The moderate cell death in the MC shows that during the formation of this epithelium some cells are sorted out. Our results show that during MC formation some supporting cells, but not sensory neurons, are relocated from the PC to the MC and that they are eventually eliminated during metamorphosis. Together our findings illustrate the structural and cellular changes of the Xenopus olfactory organ during metamorphosis.
Collapse
Affiliation(s)
- Katarina Dittrich
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, 37073, Göttingen, Germany
| | - Josua Kuttler
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, 37073, Göttingen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, 37073, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073, Göttingen, Germany
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, 37073, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073, Göttingen, Germany
| |
Collapse
|
45
|
Abstract
Autism spectrum disorder (ASD) is increasingly thought to result from low-level deficits in synaptic development and neural circuit formation that cascade into more complex cognitive symptoms. However, the link between synaptic dysfunction and behavior is not well understood. By comparing the effects of abnormal circuit formation and behavioral outcomes across different species, it should be possible to pinpoint the conserved fundamental processes that result in disease. Here we use a novel model for neurodevelopmental disorders in which we expose Xenopus laevis tadpoles to valproic acid (VPA) during a critical time point in brain development at which neurogenesis and neural circuit formation required for sensory processing are occurring. VPA is a commonly prescribed antiepileptic drug with known teratogenic effects. In utero exposure to VPA in humans or rodents results in a higher incidence of ASD or ASD-like behavior later in life. We find that tadpoles exposed to VPA have abnormal sensorimotor and schooling behavior that is accompanied by hyperconnected neural networks in the optic tectum, increased excitatory and inhibitory synaptic drive, elevated levels of spontaneous synaptic activity, and decreased neuronal intrinsic excitability. Consistent with these findings, VPA-treated tadpoles also have increased seizure susceptibility and decreased acoustic startle habituation. These findings indicate that the effects of VPA are remarkably conserved across vertebrate species and that changes in neural circuitry resulting from abnormal developmental pruning can cascade into higher-level behavioral deficits.
Collapse
|
46
|
Otmakhov N, Gorbacheva EV, Regmi S, Yasuda R, Hudmon A, Lisman J. Excitotoxic insult results in a long-lasting activation of CaMKIIα and mitochondrial damage in living hippocampal neurons. PLoS One 2015; 10:e0120881. [PMID: 25793533 PMCID: PMC4368532 DOI: 10.1371/journal.pone.0120881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 02/11/2015] [Indexed: 12/11/2022] Open
Abstract
Over-activation of excitatory NMDA receptors and the resulting Ca2+ overload is the main cause of neuronal toxicity during stroke. CaMKII becomes misregulated during such events. Biochemical studies show either a dramatic loss of CaMKII activity or its persistent autonomous activation after stroke, with both of these processes being implicated in cell toxicity. To complement the biochemical data, we monitored CaMKII activation in living hippocampal neurons in slice cultures using high spatial/temporal resolution two-photon imaging of the CaMKIIα FRET sensor, Camui. CaMKII activation state was estimated by measuring Camui fluorescence lifetime. Short NMDA insult resulted in Camui activation followed by a redistribution of its protein localization: an increase in spines, a decrease in dendritic shafts, and concentration into numerous clusters in the cell soma. Camui activation was either persistent (> 1-3 hours) or transient (~20 min) and, in general, correlated with its protein redistribution. After longer NMDA insult, however, Camui redistribution persisted longer than its activation, suggesting distinct regulation/phases of these processes. Mutational and pharmacological analysis suggested that persistent Camui activation was due to prolonged Ca2+ elevation, with little impact of autonomous states produced by T286 autophosphorylation and/or by C280/M281 oxidation. Cell injury was monitored using expressible mitochondrial marker mito-dsRed. Shortly after Camui activation and clustering, NMDA treatment resulted in mitochondrial swelling, with persistence of the swelling temporarily linked to the persistence of Camui activation. The results suggest that in living neurons excitotoxic insult produces long-lasting Ca2+-dependent active state of CaMKII temporarily linked to cell injury. CaMKII function, however, is to be restricted due to strong clustering. The study provides the first characterization of CaMKII activation dynamics in living neurons during excitotoxic insults.
Collapse
Affiliation(s)
- Nikolai Otmakhov
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
- * E-mail:
| | - Elena V. Gorbacheva
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
| | - Shaurav Regmi
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
| | - Ryohei Yasuda
- Max Planck Florida Institute, One Max Planck Way, Jupiter, Florida, 33458, United States of America
| | - Andy Hudmon
- STARK Neuroscience Research Institute, Indiana University School of Medicine, 950 West Walnut Street, Research Building II, Room 480, Indianapolis, Indiana, 46202, United States of America
| | - John Lisman
- Biology Department, Brandeis University, Waltham, Massachusetts, 02454, United States of America
| |
Collapse
|
47
|
Tao Y, Ruan H, Guo X, Li L, Shen W. HDAC1 regulates the proliferation of radial glial cells in the developing Xenopus tectum. PLoS One 2015; 10:e0120118. [PMID: 25789466 PMCID: PMC4366096 DOI: 10.1371/journal.pone.0120118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/04/2015] [Indexed: 12/01/2022] Open
Abstract
In the developing central nervous system (CNS), progenitor cells differentiate into progeny to form functional neural circuits. Radial glial cells (RGs) are a transient progenitor cell type that is present during neurogenesis. It is thought that a combination of neural trophic factors, neurotransmitters and electrical activity regulates the proliferation and differentiation of RGs. However, it is less clear how epigenetic modulation changes RG proliferation. We sought to explore the effect of histone deacetylase (HDAC) activity on the proliferation of RGs in the visual optic tectum of Xenopus laevis. We found that the number of BrdU-labeled precursor cells along the ventricular layer of the tectum decrease developmentally from stage 46 to stage 49. The co-labeling of BrdU-positive cells with brain lipid-binding protein (BLBP), a radial glia marker, showed that the majority of BrdU-labeled cells along the tectal midline are RGs. BLBP-positive cells are also developmentally decreased with the maturation of the brain. Furthermore, HDAC1 expression is developmentally down-regulated in tectal cells, especially in the ventricular layer of the tectum. Pharmacological blockade of HDACs using Trichostatin A (TSA) or Valproic acid (VPA) decreased the number of BrdU-positive, BLBP-positive and co-labeling cells. Specific knockdown of HDAC1 by a morpholino (HDAC1-MO) decreased the number of BrdU- and BLBP-labeled cells and increased the acetylation level of histone H4 at lysine 12 (H4K12). The visual deprivation-induced increase in BrdU- and BLBP-positive cells was blocked by HDAC1 knockdown at stage 49 tadpoles. These data demonstrate that HDAC1 regulates radial glia cell proliferation in the developing optical tectum of Xenopus laevis.
Collapse
Affiliation(s)
- Yi Tao
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Hangze Ruan
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xia Guo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lixin Li
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
- * E-mail: (LL); (WS)
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- * E-mail: (LL); (WS)
| |
Collapse
|
48
|
Kirkham M, Joven A. Studying newt brain regeneration following subtype specific neuronal ablation. Methods Mol Biol 2015; 1290:91-99. [PMID: 25740479 DOI: 10.1007/978-1-4939-2495-0_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The realization that neuronal injury does not result in permanent functional or cellular loss in all vertebrates has fascinated regenerative biologists. Neuronal regeneration occurs in a subset of species, including lizards, teleost fish, axolotls, and newts. One tool for studying neuronal regeneration in the adult brain is intraventricular injection of selective neuronal toxins, which leads to loss of subpopulations of neurons. To trace cells involved in the regeneration process, plasmids encoding reporter proteins can be electroporated in vivo into the cells of interest. This protocol describes methods to label the ependymoglial cells of the brain of the red spotted newt Notophthalmus viridescens and follow their response after ablation of dopaminergic neurons.
Collapse
Affiliation(s)
- Matthew Kirkham
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, Stockholm, 171 77, Sweden,
| | | |
Collapse
|
49
|
Hassenklöver T, Manzini I. The olfactory system as a model to study axonal growth patterns and morphology in vivo. J Vis Exp 2014:e52143. [PMID: 25406975 PMCID: PMC4353389 DOI: 10.3791/52143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The olfactory system has the unusual capacity to generate new neurons throughout the lifetime of an organism. Olfactory stem cells in the basal portion of the olfactory epithelium continuously give rise to new sensory neurons that extend their axons into the olfactory bulb, where they face the challenge to integrate into existing circuitry. Because of this particular feature, the olfactory system represents a unique opportunity to monitor axonal wiring and guidance, and to investigate synapse formation. Here we describe a procedure for in vivo labeling of sensory neurons and subsequent visualization of axons in the olfactory system of larvae of the amphibian Xenopus laevis. To stain sensory neurons in the olfactory organ we adopt the electroporation technique. In vivo electroporation is an established technique for delivering fluorophore-coupled dextrans or other macromolecules into living cells. Stained sensory neurons and their axonal processes can then be monitored in the living animal either using confocal laser-scanning or multiphoton microscopy. By reducing the number of labeled cells to few or single cells per animal, single axons can be tracked into the olfactory bulb and their morphological changes can be monitored over weeks by conducting series of in vivo time lapse imaging experiments. While the described protocol exemplifies the labeling and monitoring of olfactory sensory neurons, it can also be adopted to other cell types within the olfactory and other systems.
Collapse
Affiliation(s)
- Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics and Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics and Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen;
| |
Collapse
|
50
|
Chen SX, Haas K. Function directs form of neuronal architecture. BIOARCHITECTURE 2014; 1:2-4. [PMID: 21866253 DOI: 10.4161/bioa.1.1.14429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 12/29/2022]
Affiliation(s)
- Simon Xuan Chen
- Department of Cellular and Physiological Sciences and the Brain Research Centre; University of British Columbia; Vancouver, BC Canada
| | | |
Collapse
|