1
|
Huang TT, Liu YN, Huang JX, Yan PP, Wang JJ, Cao YX, Cao L. Sodium sulfite-driven Helicobacter pylori eradication: Unraveling oxygen dynamics through multi-omics investigation. Biochem Pharmacol 2024; 222:116055. [PMID: 38354959 DOI: 10.1016/j.bcp.2024.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Due to the emergence and spread of multidrug resistance in Helicobacter pylori (H. pylori), its eradication has become difficult. Sodium sulfite (SS), a widely used food additive for ensuring food safety and storage, has been recognized as an effective nonbactericidal agent for H. pylori eradication. However, the mechanism by which H. pylori adapts and eventually succumbs under low- or no-oxygen conditions remains unknown. In this study, we aimed to evaluate the anti-H. pylori effect of SS and investigated the multiomics mechanism by which SS kills H. pylori. The results demonstrated that SS effectively eradicated H. pylori both in vitro and in vivo. H. pylori responds to the oxygen changes regulated by SS, downregulates the HcpE gene, which is responsible for redox homeostasis in bacteria, decreases the activities of enzymes related to oxidative stress, and disrupts the outer membrane structure, increasing susceptibility to oxidative stress. Furthermore, SS downregulates the content of cytochrome C in the microaerobic respiratory chain, leading to a sharp decrease in ATP synthesis. Consequently, the accumulation of triglycerides (TGs) in bacteria due to oxidative stress supports anaerobic respiration, meeting their energy requirements. The multifaceted death of H. pylori caused by SS does not result in drug resistance. Thus, screening of the redox homeostasis of HcpE as a new target for H. pylori infection treatment could lead to the development of a novel approach for H. pylori eradication therapy.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Yan-Ni Liu
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jin-Xian Huang
- Software Department, East China University of Technology, Nanchang 330032, Jiangxi, China
| | - Ping-Ping Yan
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Ji-Jing Wang
- Department of Medical Biophysics and Biochemistry, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Lei Cao
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| |
Collapse
|
2
|
Denic M, Turlin E, Zamble DB, Betton JM, Vinella D, De Reuse H. The SlyD metallochaperone targets iron-sulfur biogenesis pathways and the TCA cycle. mBio 2023; 14:e0096723. [PMID: 37584558 PMCID: PMC10653786 DOI: 10.1128/mbio.00967-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/26/2023] [Indexed: 08/17/2023] Open
Abstract
IMPORTANCE Correct folding of proteins represents a crucial step for their functions. Among the chaperones that control protein folding, the ubiquitous PPIases catalyze the cis/trans-isomerization of peptidyl-prolyl bonds. Only few protein targets of PPIases have been reported in bacteria. To fill this knowledge gap, we performed a large-scale two-hybrid screen to search for targets of the Escherichia coli and Helicobacter pylori SlyD PPIase-metallochaperone. SlyD from both organisms interacts with enzymes (i) containing metal cofactors, (ii) from the central metabolism tricarboxylic acid (TCA) cycle, and (iii) involved in the formation of the essential and ancestral Fe-S cluster cofactor. E. coli and H. pylori ∆slyD mutants present similar phenotypes of diminished susceptibility to antibiotics and to oxidative stress. In H. pylori, measurements of the intracellular ATP content, proton motive force, and activity of TCA cycle proteins suggest that SlyD regulates TCA cycle enzymes by controlling the formation of their indispensable Fe-S clusters.
Collapse
Affiliation(s)
- Milica Denic
- Unité Pathogenèse de Helicobacter, Département de Microbiologie, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Evelyne Turlin
- Unité Pathogenèse de Helicobacter, Département de Microbiologie, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
| | - Deborah B. Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jean-Michel Betton
- Unité Adaptation au stress et Métabolisme chez les entérobactéries, Département de Microbiologie, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
| | - Daniel Vinella
- Unité Pathogenèse de Helicobacter, Département de Microbiologie, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hilde De Reuse
- Unité Pathogenèse de Helicobacter, Département de Microbiologie, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Gam ZBA, Thioye A, Cayol JL, Postec A, Bartoli-Joseph M, Vandecasteele C, Erauso G, Labat M. Thermospira aquatica gen. nov., sp. nov., a novel thermophilic spirochete isolated from a Tunisian hot spring, and description of the novel family Thermospiraceae. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748411 DOI: 10.1099/ijsem.0.005690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A novel thermophilic, anaerobic bacterium, strain F1F22T, was isolated from hot spring water collected in northern Tunisia. The cells were non-motile, Gram-negative and helical with hooked ends, 0.5×10-32 µm in size. Growth of the strain was observed at 45-70 °C (optimum, 55 °C), in 0.0-1.0 % (w/v) NaCl (optimum without NaCl) and at pH 6.5-8.5 (optimum, pH 7.5). Yeast extract was required for growth, and the strain grew on glucose, sucrose and maltose. The major fatty acids were C16:0 (40.2 %), iso-C16: 0 (30.2 %) and C16 :0 DMA (14.5 %). The genome consisted of a circular chromosome (2.5 Mb) containing 2672 predicted protein-encoding genes with a G+C content of 43.15 mol %. Based on a comparative 16S rRNA gene sequence analysis, strain F1F22T formed a deeply branching lineage within the phylum Spirochaetota, class Spirochaetia, order Brevinematales, and had only low sequence similarity to other species of the phylum (lower than 83 %). Genome-based analysis of average nucleotide identity and digital DNA-DNA hybridization of strain F1F22T with Treponema caldarium DSM 7334T, Brevinema andersonii ATCC 43811T and Spirochaeta thermophila DSM 6578T showed values between 63.26 and 63.52 %, and between 20 and 25 %. Hence, we propose strain F1F22T as a representative of a novel family (Thermospiraceae fam. nov.), genus and species of Brevinematales: Thermospira aquatica gen. nov., sp. nov. (type strain F1F22T=JCM 31314T=DSM 101182T).
Collapse
Affiliation(s)
- Zouhaier Ben Ali Gam
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Abdoulaye Thioye
- Université Cheikh Anta Diop, Ecole Supérieure Polytechnique, Laboratoire de Microbiologie Appliquée et de Génie Industriel, BP 5005, Dakar-Fann, Dakar, Sénégal
| | - Jean-Luc Cayol
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Anne Postec
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Manon Bartoli-Joseph
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | | | - Gaël Erauso
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Marc Labat
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| |
Collapse
|
4
|
Yang X, Zhang X, Shu X, Zhang W, Kai J, Tang M, Gong J, Yang J, Lin J, Chai Y, Liu J. Effects of multi-walled carbon nanotubes in soil on earthworm growth and reproduction, enzymatic activities, and metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114158. [PMID: 36228358 DOI: 10.1016/j.ecoenv.2022.114158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Increased production and environmental release of multi-walled carbon nanotubes (MWCNTs) increase soil exposure and potential risk to earthworms. However, MWCNT toxicity to earthworms remains unclear, with some studies identifying negative effects and others negligible effects. In this study, to determine whether exposure to MWCNTs negatively affects earthworms and to elucidate possible mechanisms of toxicity, earthworms were exposed to sublethal soil concentrations of MWCNTs (10, 50, and 100 mg/kg) for 28 days. Earthworm growth and reproduction, activities of cytochrome P450 (CYP) isoforms (1A2, 2C9, and 3A4) and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST)), and metabolomics were determined. Effects of MWCNTs on earthworms depended on exposure concentration. Exposure to MWCNTs did not significantly affect growth and reproduction of individual earthworms. Exposure to 50 mg/kg MWCNTs significantly increased activities of CYP2C9, CYP3A4, SOD, CAT, and GST but clearly reduced levels of L-aspartate, L-asparagine, and glutamine. With exposure to 100 mg/kg MWCNTs, toxic effects on earthworms were observed, with significant inhibition in activities of CYP isoenzymes and SOD, significant reductions in L-aspartate, L-asparagine, glutamine, and tryptophan, and simultaneous accumulations of citrate, isocitrate, fumarate, 2-oxoglutarate, pyruvate, D-galactose, carbamoyl phosphate, formyl anthranilate, hypoxanthine, and xanthine. Results suggest that toxicity of MWCNTs to earthworms is associated with reduced detoxification capacity, excessive oxidative stress, and disturbance of multiple metabolic pathways, including amino acids metabolism, the tricarboxylic acid cycle, pyruvate metabolism, D-galactose metabolism, and purine metabolism. The study provides new insights to better understand and predict the toxicity of MWCNTs in soil.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China.
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Xiao Shu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Wei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Jianrong Kai
- Institute of Quality Standard and Testing Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750000, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Mingfeng Tang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China.
| | - Jiuping Gong
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Junjie Lin
- Institute of Quality Standard and Testing Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750000, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Yong Chai
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Jianfei Liu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| |
Collapse
|
5
|
Peng C, Sang S, Shen X, Zhang W, Yan J, Chen P, Jiang C, Yuan Y, Zhu W, Yao M. In vitro anti-Helicobacter pylori activity of Syzygium aromaticum and the preliminary mechanism of action. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114995. [PMID: 35032584 DOI: 10.1016/j.jep.2022.114995] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried flower bud of Syzygium aromaticum (L.) Merr. & L.M Perry (S. aromaticum) (Myrtaceae), also known as clove, was used in Traditional Chinese Medicine (TCM) to aid gastrointestinal function and treat stomach disorders including vomiting, flatulence and nausea. And it is a food homology medicine which is a promising candidate for H. pylori treatment. H. pylori is a Gram-negative bacterium that infects approximately 50% of the human population worldwide, which is closely related to multiple gastric diseases, including gastric cancer. However, there are still no sufficient studies on the anti-H. pylori activity of S. aromaticum, especially for the mechanism of action. AIM OF STUDY This study aimed to study the antibacterial activities of S. aromaticum extracts on both antibiotic-sensitive and -resistant H. pylori strains, and to explore the underlying mechanisms of action. MATERIALS AND METHODS The S. aromaticum extracts were obtained by heat reflux extraction and lyophilized to powder form. The phytochemical analyses were performed by High-performance liquid chromatography (HPLC) and UPLC-electrospray ionization mass spectrometry (ESI-MS). In vitro anti-H. pylori activity was evaluated by broth microdilution method. Mechanism of action studies included morphological observation using electron microscopy, determination of expression of virulence genes by reverse transcription quantitative polymerase chain reaction (RT-qPCR), genes expression profile identification by transcriptomic analysis, and exploration of anti-H. pylori infection mechanisms by network pharmacology analysis and western blotting validation. RESULTS The S. aromaticum extracts, aqueous extract (AE) and 75% hydroalcoholic extract (HE), exerted significant antibacterial activities against both antibiotic-sensitive and -resistant H. pylori strains with MICs of 160∼320 μg/ml, without developing drug resistance. Among them, AE was bactericide to all the tested strains with MBCs of less than 4MIC, while HE was merely bacteriostatic to most of the tested strains with MBCs of 2MIC∼16MIC. Besides, they showed no antagonistic effects in combination with clarithromycin, metronidazole, levofloxacin, and amoxicillin. Additionally, these extracts altered the morphology and ultrastructure and down-regulated the virulence genes expression of H. pylori. And transcriptomic analysis showed that they regulated genes expression of multiple H. pylori biological processes, including tricarboxylic acid cycle (TAC) and pyruvate metabolic pathways. Furthermore, these extracts combated the abnormal activation of PI3K-Akt and MAPK signaling pathways caused by H. pylori infection. CONCLUSIONS Overall, the present study firstly analyzed the chemical compositions of S. aromaticum extracts, and then confirmed their activities on both antibiotic-sensitive and -resistant H. pylori strains. In addition, the mechanisms of action of S. aromaticum extracts against H. pylori were found to be destroying the bacterial structure, down-regulating the expression of virulence genes, and interfering TAC and pyruvate metabolic pathways. Finally, S. aromaticum extracts were found to combated the abnormal activation of PI3K-Akt and MAPK signaling pathways to treat H. pylori infection. This study should accelerate further research and application of S. aromaticum against H. pylori infection.
Collapse
Affiliation(s)
- Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Shuyi Sang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xue Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Jiahui Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Pengting Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Cheng Jiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuemei Yuan
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Steiner TM, Lettl C, Schindele F, Goebel W, Haas R, Fischer W, Eisenreich W. Substrate usage determines carbon flux via the citrate cycle in Helicobacter pylori. Mol Microbiol 2021; 116:841-860. [PMID: 34164854 DOI: 10.1111/mmi.14775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori displays a worldwide infection rate of about 50%. The Gram-negative bacterium is the main reason for gastric cancer and other severe diseases. Despite considerable knowledge about the metabolic inventory of H. pylori, carbon fluxes through the citrate cycle (TCA cycle) remained enigmatic. In this study, different 13 C-labeled substrates were supplied as carbon sources to H. pylori during microaerophilic growth in a complex medium. After growth, 13 C-excess and 13 C-distribution were determined in multiple metabolites using GC-MS analysis. [U-13 C6 ]Glucose was efficiently converted into glyceraldehyde but only less into TCA cycle-related metabolites. In contrast, [U-13 C5 ]glutamate, [U-13 C4 ]succinate, and [U-13 C4 ]aspartate were incorporated at high levels into intermediates of the TCA cycle. The comparative analysis of the 13 C-distributions indicated an adaptive TCA cycle fully operating in the closed oxidative direction with rapid equilibrium fluxes between oxaloacetate-succinate and α-ketoglutarate-citrate. 13 C-Profiles of the four-carbon intermediates in the TCA cycle, especially of malate, together with the observation of an isocitrate lyase activity by in vitro assays, suggested carbon fluxes via a glyoxylate bypass. In conjunction with the lack of enzymes for anaplerotic CO2 fixation, the glyoxylate bypass could be relevant to fill up the TCA cycle with carbon atoms derived from acetyl-CoA.
Collapse
Affiliation(s)
- Thomas M Steiner
- Bavarian NMR Center-Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Clara Lettl
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Franziska Schindele
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany
| | - Werner Goebel
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Wolfgang Fischer
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center-Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
7
|
Eady M, Park B, Hinton A. Rapid Identification of Campylobacter Strains Cultured Under Aerobic Incubation Using Hyperspectral Microscope Imaging. J Food Prot 2020; 83:405-411. [PMID: 32050032 DOI: 10.4315/0362-028x.jfp-19-311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/12/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Campylobacter is an organism of concern for food safety and is one of the leading causes of foodborne bacterial gastroenteritis. This pathogen can be found in broiler chickens, and the level of allowable contamination of processed poultry is regulated by federal agency guidelines. Traditional methods for detecting and isolating this pathogen from broiler chicken carcasses require time, expensive reagents, and artificially generated microaerophilic atmospheres. An aerobic medium that simplifies the procedure and reduces the expense of culturing Campylobacter has been recently described, and Campylobacter can be grown in this medium in containers that are incubated aerobically. Hyperspectral microscopic imaging (HMI) has been proposed for early and rapid detection of pathogens at the cellular level. The objective of the present study was to utilize HMI to compare differences between Campylobacter cultures grown under artificially produced microaerobic atmospheres and cultures grown in aerobic medium. Hyperspectral microscopic images of three Campylobacter strains were collected cultures grown for 48 h microaerophilically and for 24 and 48 h aerobically, and a quadratic discriminant analysis was used to characterize the bacterial variability. Microaerobically cultured bacteria were detected with 98.7% accuracy, whereas detection accuracy of cultures grown in the novel medium was slightly reduced (-4.8 and -3.2% for 24 and 48 h, respectfully). The Mahalanobis distance multivariate metric was applied to quantify strain variability under all three treatment conditions. Across all strains and treatments, little cluster variation was present (4.22 to 4.42), indicating the consistency of the images collected from the three strains. The classification and spectral consistency was similar for cultures incubated in the aerobic medium for 24 h and cultures grown for 48 h under microaerobic conditions. HIGHLIGHTS
Collapse
Affiliation(s)
- Matthew Eady
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Quality and Safety Assessment Research Unit.,(ORCID: https://orcid.org/0000-0002-3617-6636 [M.E.])
| | - Bosoon Park
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Quality and Safety Assessment Research Unit
| | - Arthur Hinton
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, 950 College Station Road, Athens, Georgia 30606, USA
| |
Collapse
|
8
|
Choi JY, Kim SC, Lee PC. Comparative Genome Analysis of Psychrobacillus Strain PB01, Isolated from an Iceberg. J Microbiol Biotechnol 2020; 30:237-243. [PMID: 31838800 PMCID: PMC9728334 DOI: 10.4014/jmb.1909.09008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel psychrotolerant Psychrobacillus strain PB01, isolated from an Antarctic iceberg, was comparatively analyzed with five related strains. The complete genome of strain PB01 consists of a single circular chromosome (4.3 Mb) and a plasmid (19 Kb). As potential low-temperature adaptation strategies, strain PB01 has four genes encoding cold-shock proteins, two genes encoding DEAD-box RNA helicases, and eight genes encoding transporters for glycine betaine, which can serve as a cryoprotectant, on the genome. The pan-genome structure of the six Psychrobacillus strains suggests that strain PB01 might have evolved to adapt to extreme environments by changing its genome content to gain higher capacity for DNA repair, translation, and membrane transport. Notably, strain PB01 possesses a complete TCA cycle consisting of eight enzymes as well as three additional Helicobacter pylori-type enzymes: ferredoxin-dependent 2-oxoglutarate synthase, succinyl-CoA/acetoacetyl-CoA transferase, and malate/quinone oxidoreductase. The co-existence of the genes for TCA cycle enzymes has also been identified in the other five Psychrobacillus strains.
Collapse
Affiliation(s)
- Jun Young Choi
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 6499, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 6499, Republic of Korea,Corresponding author Phone: +82-31-219-2461 Fax: +82-31-219-1610 E-mail:
| |
Collapse
|
9
|
Han B, Zhang Z, Xie Y, Hu X, Wang H, Xia W, Wang Y, Li H, Wang Y, Sun H. Multi-omics and temporal dynamics profiling reveal disruption of central metabolism in Helicobacter pylori on bismuth treatment. Chem Sci 2018; 9:7488-7497. [PMID: 30510674 PMCID: PMC6223348 DOI: 10.1039/c8sc01668b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Integration of multi-omics enables uncovering cellular responses to stimuli or the mechanism of action of a drug at a system level. Bismuth drugs have long been used for the treatment of Helicobacter pylori infection and their antimicrobial activity was attributed to dysfunction of multiple proteins based on previous proteome-wide studies. Herein, we investigated the response of H. pylori to a bismuth drug at transcriptome and metabolome levels. Our multi-omics data together with bioassays comprehensively reveal the impact of bismuth on a diverse array of intracellular pathways, in particular, disruption of central carbon metabolism is systematically evaluated as a primary bismuth-targeting system in H. pylori. Through temporal dynamics profiling, we demonstrate that bismuth initially perturbs the TCA cycle and then urease activity, followed by the induction of oxidative stress and inhibition of energy production, and in the meantime, induces extensive down-regulation in H. pylori metabolome. The present study thus expands our knowledge on the inhibitory actions of bismuth and provides a novel systematic perspective of H. pylori in response to a clinical drug that sheds light on enhanced therapeutic methodologies.
Collapse
Affiliation(s)
- Bingjie Han
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
| | - Zhen Zhang
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
| | - Yanxuan Xie
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
| | - Xuqiao Hu
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Haibo Wang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Wei Xia
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan , 430071 , P. R. China
| | - Hongyan Li
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Yuchuan Wang
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
| | - Hongzhe Sun
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China .
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| |
Collapse
|
10
|
Takeya M, Ito S, Sukigara H, Osanai T. Purification and Characterisation of Malate Dehydrogenase From Synechocystis sp. PCC 6803: Biochemical Barrier of the Oxidative Tricarboxylic Acid Cycle. FRONTIERS IN PLANT SCIENCE 2018; 9:947. [PMID: 30057585 PMCID: PMC6053527 DOI: 10.3389/fpls.2018.00947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria possess an atypical tricarboxylic acid (TCA) cycle with various bypasses. Previous studies have suggested that a cyclic flow through the TCA cycle is not essential for cyanobacteria under normal growth conditions. The cyanobacterial TCA cycle is, thus, different from that in other bacteria, and the biochemical properties of enzymes in this TCA cycle are less understood. In this study, we reveal the biochemical characteristics of malate dehydrogenase (MDH) from Synechocystis sp. PCC 6803 MDH (SyMDH). The optimal temperature of SyMDH activity was 45-50°C and SyMDH was more thermostable than MDHs from other mesophilic microorganisms. The optimal pH of SyMDH varied with the direction of the reaction: pH 8.0 for the oxidative reaction and pH 6.5 for the reductive reaction. The reductive reaction catalysed by SyMDH was activated by magnesium ions and fumarate, indicating that SyMDH is regulated by a positive feedback mechanism. The Km-value of SyMDH for malate was approximately 210-fold higher than that for oxaloacetate and the Km-value for NAD+ was approximately 19-fold higher than that for NADH. The catalytic efficiency of SyMDH for the reductive reaction, deduced from kcat-values, was also higher than that for the oxidative reaction. These results indicate that SyMDH is more efficient in the reductive reaction in the TCA cycle, and it plays key roles in determining the direction of the TCA cycle in this cyanobacterium.
Collapse
|
11
|
Benoit SL, Holland AA, Johnson MK, Maier RJ. Iron-sulfur protein maturation in Helicobacter pylori: identifying a Nfu-type cluster carrier protein and its iron-sulfur protein targets. Mol Microbiol 2018; 108:379-396. [PMID: 29498770 DOI: 10.1111/mmi.13942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 01/03/2023]
Abstract
Helicobacter pylori is anomalous among non nitrogen-fixing bacteria in containing an incomplete NIF system for Fe-S cluster assembly comprising two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein). Although nifU deletion strains cannot be obtained via the conventional gene replacement, a NifU-depleted strain was constructed and shown to be more sensitive to oxidative stress compared to wild-type (WT) strains. The hp1492 gene, encoding a putative Nfu-type Fe-S cluster carrier protein, was disrupted in three different H. pylori strains, indicating that it is not essential. However, Δnfu strains have growth deficiency, are more sensitive to oxidative stress and are unable to colonize mouse stomachs. Moreover, Δnfu strains have lower aconitase activity but higher hydrogenase activity than the WT. Recombinant Nfu was found to bind either one [2Fe-2S] or [4Fe-4S] cluster/dimer, based on analytical, UV-visible absorption/CD and resonance Raman studies. A bacterial two-hybrid system was used to ascertain interactions between Nfu, NifS, NifU and each of 36 putative Fe-S-containing target proteins. Nfu, NifS and NifU were found to interact with 15, 6 and 29 putative Fe-S proteins respectively. The results indicate that Nfu, NifS and NifU play a major role in the biosynthesis and/or delivery of Fe-S clusters in H. pylori.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Ashley A Holland
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Robert J Maier
- Department of Microbiology and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Liu S, Guo C, Lin W, Wu F, Lu G, Lu J, Dang Z. Comparative transcriptomic evidence for Tween80-enhanced biodegradation of phenanthrene by Sphingomonas sp. GY2B. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1161-1171. [PMID: 28787790 DOI: 10.1016/j.scitotenv.2017.07.245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Previous study of the effects of surfactants on the biodegradation of phenanthrene focused on investigating alterations of the cell characteristics of Sphingomonas sp. GY2B. However, genes regulation associated with biodegradation and biological processes in response to the presence of surfactants, remains unclear. In this study, comparative transcriptome analysis was conducted to observe the gene expression of GY2B during phenanthrene biodegradation in the presence and absence of Tween80. A diverse set of genes was regulated by Tween80, leading to increased biodegradation of phenanthrene by GY2B: (i) Tween80 increased expression of genes related to H+ transport in the plasma membrane to provide a driving force (i.e., ATP) for accelerating transmembrane transport of phenanthrene with increasing Tween80 concentrations, thereby enhancing the uptake and degradation of phenanthrene by GY2B; (ii) Tween80 (1 and 8 CMC) promoted intracellular biodegradation of phenanthrene by stimulating expression of genes encoding dioxygenases and monooxygenase, increasing expression of genes involved in intracellular metabolic processes (e.g., TCA cycle); and (iii) Tween80 likely increased GY2B vitality and growth by inducing expression of genes associated with ABC transporters and protein transport, regulating genes involved in other biological processes (e.g., transcription, translation).
Collapse
Affiliation(s)
- Shasha Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Weijia Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fengji Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Jing Lu
- School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
13
|
Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, Sievert SM, Simon J, Campbell BJ, Hanson TE, Woyke T, Klotz MG, Hugenholtz P. Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol 2017; 8:682. [PMID: 28484436 PMCID: PMC5401914 DOI: 10.3389/fmicb.2017.00682] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022] Open
Abstract
The Epsilonproteobacteria is the fifth validly described class of the phylum Proteobacteria, known primarily for clinical relevance and for chemolithotrophy in various terrestrial and marine environments, including deep-sea hydrothermal vents. As 16S rRNA gene repositories have expanded and protein marker analysis become more common, the phylogenetic placement of this class has become less certain. A number of recent analyses of the bacterial tree of life using both 16S rRNA and concatenated marker gene analyses have failed to recover the Epsilonproteobacteria as monophyletic with all other classes of Proteobacteria. In order to address this issue, we investigated the phylogenetic placement of this class in the bacterial domain using 16S and 23S rRNA genes, as well as 120 single-copy marker proteins. Single- and concatenated-marker trees were created using a data set of 4,170 bacterial representatives, including 98 Epsilonproteobacteria. Phylogenies were inferred under a variety of tree building methods, with sequential jackknifing of outgroup phyla to ensure robustness of phylogenetic affiliations under differing combinations of bacterial genomes. Based on the assessment of nearly 300 phylogenetic tree topologies, we conclude that the continued inclusion of Epsilonproteobacteria within the Proteobacteria is not warranted, and that this group should be reassigned to a novel phylum for which we propose the name Epsilonbacteraeota (phyl. nov.). We further recommend the reclassification of the order Desulfurellales (Deltaproteobacteria) to a novel class within this phylum and a number of subordinate changes to ensure consistency with the genome-based phylogeny. Phylogenomic analysis of 658 genomes belonging to the newly proposed Epsilonbacteraeota suggests that the ancestor of this phylum was an autotrophic, motile, thermophilic chemolithotroph that likely assimilated nitrogen from ammonium taken up from the environment or generated from environmental nitrate and nitrite by employing a variety of functional redox modules. The emergence of chemoorganoheterotrophic lifestyles in several Epsilonbacteraeota families is the result of multiple independent losses of various ancestral chemolithoautotrophic pathways. Our proposed reclassification of this group resolves an important anomaly in bacterial systematics and ensures that the taxonomy of Proteobacteria remains robust, specifically as genome-based taxonomies become more common.
Collapse
Affiliation(s)
- David W. Waite
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St LuciaQLD, Australia
| | - Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St LuciaQLD, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St LuciaQLD, Australia
| | - Donovan H. Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St LuciaQLD, Australia
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, KingstonRI, USA
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and TechnologyYokosuka, Japan
| | - Stefan M. Sievert
- Department of Biology, Woods Hole Oceanographic Institution, Woods HoleMA, USA
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität DarmstadtDarmstadt, Germany
| | - Barbara J. Campbell
- Department of Biological Sciences, Life Science Facility, Clemson University, ClemsonSC, USA
| | - Thomas E. Hanson
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, Delaware Biotechnology Institute, University of Delaware, NewarkDE, USA
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut CreekCA, USA
| | - Martin G. Klotz
- Department of Biology and School of Earth and Environmental Sciences, Queens College of the City University of New York, New YorkNY, USA
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St LuciaQLD, Australia
| |
Collapse
|
14
|
Flint A, Stintzi A, Saraiva LM. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity. FEMS Microbiol Rev 2016; 40:938-960. [PMID: 28201757 PMCID: PMC5091033 DOI: 10.1093/femsre/fuw025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022] Open
Abstract
Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans.
Collapse
Affiliation(s)
- Annika Flint
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica, NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
15
|
Growth of Campylobacter incubated aerobically in fumarate-pyruvate media or media supplemented with dairy, meat, or soy extracts and peptones. Food Microbiol 2016; 58:23-8. [DOI: 10.1016/j.fm.2016.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022]
|
16
|
Behrens W, Schweinitzer T, McMurry JL, Loewen PC, Buettner FFR, Menz S, Josenhans C. Localisation and protein-protein interactions of the Helicobacter pylori taxis sensor TlpD and their connection to metabolic functions. Sci Rep 2016; 6:23582. [PMID: 27045738 PMCID: PMC4820699 DOI: 10.1038/srep23582] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 12/24/2022] Open
Abstract
The Helicobacter pylori energy sensor TlpD determines tactic behaviour under low energy conditions and is important in vivo. We explored protein-protein interactions of TlpD and their impact on TlpD localisation and function. Pull-down of tagged TlpD identified protein interaction partners of TlpD, which included the chemotaxis histidine kinase CheAY2, the central metabolic enzyme aconitase (AcnB) and the detoxifying enzyme catalase (KatA). We confirmed that KatA and AcnB physically interact with TlpD. While the TlpD-dependent behavioural response appeared not influenced in the interactor mutants katA and acnB in steady-state behavioural assays, acetone carboxylase subunit (acxC) mutant behaviour was altered. TlpD was localised in a bipolar subcellular pattern in media of high energy. We observed a significant change in TlpD localisation towards the cell body in cheAY2-, catalase- or aconitase-deficient bacteria or in bacteria incubated under low energy conditions, including oxidative stress or respiratory inhibition. Inactivation of tlpD resulted in an increased sensitivity to iron limitation and oxidative stress and influenced the H. pylori transcriptome. Oxidative stress, iron limitation and overexpressing the iron-sulfur repair system nifSU altered TlpD-dependent behaviour. We propose that TlpD localisation is instructed by metabolic activity and protein interactions, and its sensory activity is linked to iron-sulfur cluster integrity.
Collapse
Affiliation(s)
- Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Tobias Schweinitzer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Jonathan L McMurry
- Department of Molecular &Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Peter C Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Falk F R Buettner
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Sarah Menz
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,German Center of Infection Research, partner site Hannover-Braunschweig, Germany
| |
Collapse
|
17
|
Takahashi-Íñiguez T, Aburto-Rodríguez N, Vilchis-González AL, Flores ME. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase *. J Zhejiang Univ Sci B 2016; 17:247-261. [PMCID: PMC4829630 DOI: 10.1631/jzus.b1500219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/14/2015] [Indexed: 09/12/2023]
Abstract
Malate dehydrogenase (MDH) is an enzyme widely distributed among living organisms and is a key protein in the central oxidative pathway. It catalyzes the interconversion between malate and oxaloacetate using NAD+ or NADP+ as a cofactor. Surprisingly, this enzyme has been extensively studied in eukaryotes but there are few reports about this enzyme in prokaryotes. It is necessary to review the relevant information to gain a better understanding of the function of this enzyme. Our review of the data generated from studies in bacteria shows much diversity in their molecular properties, including weight, oligomeric states, cofactor and substrate binding affinities, as well as differences in the direction of the enzymatic reaction. Furthermore, due to the importance of its function, the transcription and activity of this enzyme are rigorously regulated. Crystal structures of MDH from different bacterial sources led to the identification of the regions involved in substrate and cofactor binding and the residues important for the dimer-dimer interface. This structural information allows one to make direct modifications to improve the enzyme catalysis by increasing its activity, cofactor binding capacity, substrate specificity, and thermostability. A comparative analysis of the phylogenetic reconstruction of MDH reveals interesting facts about its evolutionary history, dividing this superfamily of proteins into two principle clades and establishing relationships between MDHs from different cellular compartments from archaea, bacteria, and eukaryotes.
Collapse
|
18
|
De Bruyne E, Ducatelle R, Foss D, Sanchez M, Joosten M, Zhang G, Smet A, Pasmans F, Haesebrouck F, Flahou B. Oral glutathione supplementation drastically reduces Helicobacter-induced gastric pathologies. Sci Rep 2016; 6:20169. [PMID: 26833404 PMCID: PMC4735851 DOI: 10.1038/srep20169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022] Open
Abstract
Helicobacter (H.) suis causes gastric pathologies in both pigs and humans. Very little is known on the metabolism of this bacterium and its impact on the host. In this study, we have revealed the importance of the glutamate-generating metabolism, as shown by a complete depletion of glutamine (Gln) in the medium during H. suis culture. Besides Gln, H. suis can also convert glutathione (GSH) to glutamate, and both reactions are catalyzed by the H. suis γ-glutamyltranspeptidase (GGT). Both for H. pylori and H. suis, it has been hypothesized that the degradation of Gln and GSH may lead to a deficiency for the host, possibly initiating or promoting several pathologies. Therefore the in vivo effect of oral supplementation with Gln and GSH was assessed. Oral supplementation with Gln was shown to temper H. suis induced gastritis and epithelial (hyper)proliferation in Mongolian gerbils. Astonishingly, supplementation of the feed with GSH, another GGT substrate, resulted in inflammation and epithelial proliferation levels returning to baseline levels of uninfected controls. This indicates that Gln and GSH supplementation may help reducing tissue damage caused by Helicobacter infection in both humans and pigs, highlighting their potential as a supportive therapy during and after Helicobacter eradication therapy.
Collapse
Affiliation(s)
- Ellen De Bruyne
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | - Myrthe Joosten
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Guangzhi Zhang
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
19
|
Metabolic plasticity of central carbon metabolism protects mycobacteria. Proc Natl Acad Sci U S A 2015; 112:13135-6. [PMID: 26483480 DOI: 10.1073/pnas.1518171112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Mechanisms linking metabolism of Helicobacter pylori to (18)O and (13)C-isotopes of human breath CO2. Sci Rep 2015; 5:10936. [PMID: 26039789 PMCID: PMC4454186 DOI: 10.1038/srep10936] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/07/2015] [Indexed: 02/07/2023] Open
Abstract
The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 (18O) and carbon-13 (13C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of 18O/16O and 13C/12C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of 18O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of 18O in breath CO2 were manifested in individuals without the infections. In contrast, the 13C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to 13C-enriched glucose uptake, whereas a distinguishable change of breath 13C/12C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the 18O and 13C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath 12C18O16O and 13C16O16O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen’s physiology along with isotope-specific non-invasive diagnosis of the infection.
Collapse
|
21
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
22
|
Takahashi-Iñiguez T, Cruz-Rabadán S, Burciaga-Cifuentes LM, Flores ME. Molecular cloning, purification, and biochemical characterization of recombinant isocitrate dehydrogenase from Streptomyces coelicolor M-145. Biosci Biotechnol Biochem 2014; 78:1490-4. [PMID: 25209496 DOI: 10.1080/09168451.2014.923290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Isocitrate dehydrogenase is a key enzyme in carbon metabolism. In this study we demonstrated that SCO7000 of Streptomyces coelicolor M-145 codes for the isocitrate dehydrogenase. Recombinant enzyme expressed in Escherichia coli had a specific activity of 25.3 μmoles/mg/min using NADP(+) and Mn(2+) as a cofactor, 40-times higher than that obtained in cell-free extract. Pure IDH showed a single band with an apparent Mr of 84 KDa in SDS-PAGE, which was also recognized as His-tag protein in the Western blot. Unexpectedly, in ND-PAGE conditions showed a predominant band of ~168 KDa that corresponded to the dimeric form of ScIDH. Also, zymogram assay and analytical gel filtration reveal that dimer was the active form. Kinetic parameters were 1.38, 0.11, and 0.109 mM for isocitrate, NADP, and Mn(2+), respectively. ATP, ADP, AMP, and their mixtures were the main ScIDH activity inhibitors. Zn(2+), Mg(2+), Ca(2+), and Cu(+) had inhibitory effect on enzyme activity.
Collapse
Affiliation(s)
- Tóshiko Takahashi-Iñiguez
- a Departamento de Biología Molecular y Biotecnología , Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , México, D.F., México
| | | | | | | |
Collapse
|
23
|
Aconitase-mediated posttranscriptional regulation of Helicobacter pylori peptidoglycan deacetylase. J Bacteriol 2013; 195:5316-22. [PMID: 24056106 DOI: 10.1128/jb.00720-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Some bacterial aconitases are bifunctional proteins that function in the citric acid cycle and act as posttranscriptional regulators in response to iron levels and oxidative stress. We explore the role of aconitase (AcnB) in Helicobacter pylori as a posttranscriptional regulator of the cell wall-modifying enzyme peptidoglycan deacetylase, PgdA. Under oxidative stress, PgdA is highly expressed and confers resistance to lysozyme in wild-type cells. PgdA protein expression as well as transcript abundance is significantly decreased in an acnB mutant. In the wild type, pgdA mRNA half-life was 13 min, whereas the half-life for the acnB strain was 7 min. Based on electrophoretic mobility shift assays and RNA footprinting, the H. pylori apo-AcnB binds to the 3'-untranslated region of the pgdA RNA transcript. Some of the protected bases (from footprinting) were localized in proposed stem-loop structures. AcnB-pgdA transcript binding was abolished by the addition of iron. The acnB strain is more susceptible to lysozyme-mediated killing and was attenuated in its ability to colonize mice. The results support a model whereby apo-AcnB directly interacts with the pgdA transcript to enhance stability and increase deacetylase enzyme expression, which impacts in vivo survival.
Collapse
|
24
|
L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea. Antonie Van Leeuwenhoek 2013; 104:645-55. [PMID: 23881243 DOI: 10.1007/s10482-013-9973-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.
Collapse
|
25
|
Cai W, Wannemuehler Y, Dell'Anna G, Nicholson B, Barbieri NL, Kariyawasam S, Feng Y, Logue CM, Nolan LK, Li G. A novel two-component signaling system facilitates uropathogenic Escherichia coli's ability to exploit abundant host metabolites. PLoS Pathog 2013; 9:e1003428. [PMID: 23825943 PMCID: PMC3694859 DOI: 10.1371/journal.ppat.1003428] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/25/2013] [Indexed: 12/20/2022] Open
Abstract
Two-component signaling systems (TCSs) are major mechanisms by which bacteria adapt to environmental conditions. It follows then that TCSs would play important roles in the adaptation of pathogenic bacteria to host environments. However, no pathogen-associated TCS has been identified in uropathogenic Escherichia coli (UPEC). Here, we identified a novel TCS, which we termed KguS/KguR (KguS: α-ketoglutarate utilization sensor; KguR: α-ketoglutarate utilization regulator) in UPEC CFT073, a strain isolated from human pyelonephritis. kguS/kguR was strongly associated with UPEC but was found only rarely among other E. coli including commensal and intestinal pathogenic strains. An in vivo competition assay in a mouse UTI model showed that deletion of kguS/kguR in UPEC CFT073 resulted in a significant reduction in its colonization of the bladders and kidneys of mice, suggesting that KguS/KguR contributed to UPEC fitness in vivo. Comparative proteomics identified the target gene products of KguS/KguR, and sequence analysis showed that TCS KguS/KguR and its targeted-genes, c5032 to c5039, are encoded on a genomic island, which is not present in intestinal pathogenic E. coli. Expression of the target genes was induced by α-ketoglutarate (α-KG). These genes were further shown to be involved in utilization of α-KG as a sole carbon source under anaerobic conditions. KguS/KguR contributed to the regulation of the target genes with the direct regulation by KguR verified using an electrophoretic mobility shift assay. In addition, oxygen deficiency positively modulated expression of kguS/kguR and its target genes. Taken altogether, this study describes the first UPEC-associated TCS that functions in controlling the utilization of α-ketoglutarate in vivo thereby facilitating UPEC adaptation to life inside the urinary tract.
Collapse
Affiliation(s)
- Wentong Cai
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yvonne Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Giuseppe Dell'Anna
- Laboratory Animal Resources, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Bryon Nicholson
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Nicolle L. Barbieri
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Subhashinie Kariyawasam
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yaping Feng
- Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Catherine M. Logue
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Lisa K. Nolan
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Ganwu Li
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
26
|
Hinton A. Aerobic growth of campylobacter in media supplemented with C3-monocarboxylates and C4-dicarboxylates. J Food Prot 2013; 76:685-90. [PMID: 23575134 DOI: 10.4315/0362-028x.jfp-12-430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Experiments were conducted to examine aerobic growth of Campylobacter spp. in basal media supplemented with C4-dicarboxylates (fumarate, succinate, or malate) and C3-monocarboxylates (pyruvate or lactate). Basal medium was supplemented with 30 mM fumarate, succinate, or malate and 0 to 100 mM lactate or pyruvate; inoculated with 10(6) CFU/ml of Campylobacter coli, Campylobacter fetus, or Campylobacter jejuni; then incubated aerobically at 37 °C for 72 h. Optical density (OD) of cultures was measured at 600 nm during incubation. The effect of adding 0 to 0.20% agar and 0 to 0.10% sodium bicarbonate (NaHCO3) to media supplemented with 30 mM fumarate and 100 mM pyruvate on Campylobacter growth was also determined. Finally, CFU per milliliter of Campylobacter spp. recovered from media containing 30 mM fumarate, 100 mM pyruvate, 0.15% agar, and 0.05% NaHCO3 was determined after inoculated media were incubated aerobically or microaerophilically. Results indicated that the OD600 of Campylobacter cultures incubated in media supplemented with C4-dicarboxylates and C3-monocarboxylates was generally significantly (P ≤ 0.05) greater than growth of cultures incubated in media supplemented with a C4-dicarboxylate only. The OD600 of cultures of Campylobacter spp. grown in media supplemented with fumarate and pyruvate was higher (P ≤ 0.05) when agar was added, and the addition of NaHCO3 produced an additional increase (P ≤ 0.05) in the OD600 of most of the isolates. There was also a 5- to 6-log increase in Campylobacter spp. recovered from media supplemented with 30 mM fumarate, 100 mM pyruvate, 0.15% agar, and 0.05% NaHCO3 that was inoculated 10(3) CFU/ml and incubated aerobically or microaerophilically. Findings indicate that this medium might provide an alternative to incubating Campylobacter spp. microaerophilically, thus eliminating costs and training required for producing special atmospheres for culturing the pathogen.
Collapse
Affiliation(s)
- Arthur Hinton
- Poultry Processing and Swine Physiology Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Russell Research Center, Athens, Georgia 30605, USA.
| |
Collapse
|
27
|
Prasad UV, Vasu D, Kumar YN, Kumar PS, Yeswanth S, Swarupa V, Phaneendra BV, Chaudhary A, Sarma PVGK. Cloning, expression and characterization of NADP-dependent isocitrate dehydrogenase from Staphylococcus aureus. Appl Biochem Biotechnol 2013; 169:862-9. [PMID: 23288593 DOI: 10.1007/s12010-012-0027-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/10/2012] [Indexed: 12/01/2022]
Abstract
The Krebs cycle dictates oxidative and reductive conditions in Staphylococcus aureus and is mainly regulated by isocitrate dehydrogenase (IDH) which plays pivotal role in the growth and pathogenesis of the bacteria. In the present study, IDH gene from S. aureus ATCC12600 was cloned in the Sma I site of pQE 30 vector; the resultant clone was named as UVIDH1. The insert in the clone was sequenced (accession number HM067707), and the sequence showed complete homology with IDH sequence of other S. aureus strains reported in the database indicating presence of single enzyme in S. aureus, and considerable sequence homology with other bacteria was observed; however, only 24% homology was found with NADP-dependent human IDH. Phylogenetically, the S. aureus IDH showed close identity with Bacillus subtilis and high degree of variability with other bacteria and human IDH. The expression of IDH in the clone UVIDH1 was induced with 1 mM IPTG, and the recombinant IDH was purified by passing through nickel metal chelate column; the purified recombinant IDH showed a single band in SDS-PAGE with a molecular weight of 40 kDa; K(m) and V(max) for isocitrate are 8.2 ± 0.28 and 525 ± 25 μM NADPH/mg/min, respectively, and for cofactor NADP 67.5 ± 2.82 μM and V(max) 50.5 ± 2.12 μM NADPH/mg/min.
Collapse
Affiliation(s)
- U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, India
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ge R, Chen Z, Zhou Q. The actions of bismuth in the treatment of Helicobacter pylori infections: an update. Metallomics 2012; 4:239-43. [PMID: 22358069 DOI: 10.1039/c2mt00180b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Helicobacter pylori causes various gastric diseases, such as gastritis, peptic ulcerations and gastric cancer. Bismuth-based triple or quadruple therapies have been commonly recommended for the treatment of H. pylori infections. Up to now, the molecular mechanisms by which bismuth inhibits the growth of H. pylori are far from clear. The present concise review intends to cover the most recent reports and discoveries in the field of the inhibitory mechanism of bismuth against H. pylori as well as the bacterial protective response to drug treatment, which will help us to further understand the molecular mechanisms underlying the actions of metal-based drugs and stimulate further development of effective anti-bacterial drugs.
Collapse
Affiliation(s)
- Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | | | | |
Collapse
|
29
|
Wagner T, Bellinzoni M, Wehenkel A, O'Hare HM, Alzari PM. Functional plasticity and allosteric regulation of α-ketoglutarate decarboxylase in central mycobacterial metabolism. ACTA ACUST UNITED AC 2011; 18:1011-20. [PMID: 21867916 DOI: 10.1016/j.chembiol.2011.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/24/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022]
Abstract
The α-ketoglutarate dehydrogenase (KDH) complex is a major regulatory point of aerobic energy metabolism. Mycobacterium tuberculosis was reported to lack KDH activity, and the putative KDH E1o component, α-ketoglutarate decarboxylase (KGD), was instead assigned as a decarboxylase or carboligase. Here, we show that this protein does in fact sustain KDH activity, as well as the additional two reactions, and these multifunctional properties are shared by the Escherichia coli homolog, SucA. We also show that the mycobacterial enzyme is finely regulated by an additional acyltransferase-like domain and by the action of acetyl-CoA, a powerful allosteric activator able to enhance the concerted protein motions observed during catalysis. Our results uncover the functional plasticity of a crucial node in bacterial metabolism, which may be important for M. tuberculosis during host infection.
Collapse
Affiliation(s)
- Tristan Wagner
- Institut Pasteur, Unité de Biochimie Structurale (CNRS URA 2185), 25 rue du Dr. Roux, 75724 Paris, France
| | | | | | | | | |
Collapse
|
30
|
Metris A, Reuter M, Gaskin DJH, Baranyi J, van Vliet AHM. In vivo and in silico determination of essential genes of Campylobacter jejuni. BMC Genomics 2011; 12:535. [PMID: 22044676 PMCID: PMC3229698 DOI: 10.1186/1471-2164-12-535] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/01/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In the United Kingdom, the thermophilic Campylobacter species C. jejuni and C. coli are the most frequent causes of food-borne gastroenteritis in humans. While campylobacteriosis is usually a relatively mild infection, it has a significant public health and economic impact, and possible complications include reactive arthritis and the autoimmune diseases Guillain-Barré syndrome. The rapid developments in "omics" technologies have resulted in the availability of diverse datasets allowing predictions of metabolism and physiology of pathogenic micro-organisms. When combined, these datasets may allow for the identification of potential weaknesses that can be used for development of new antimicrobials to reduce or eliminate C. jejuni and C. coli from the food chain. RESULTS A metabolic model of C. jejuni was constructed using the annotation of the NCTC 11168 genome sequence, a published model of the related bacterium Helicobacter pylori, and extensive literature mining. Using this model, we have used in silico Flux Balance Analysis (FBA) to determine key metabolic routes that are essential for generating energy and biomass, thus creating a list of genes potentially essential for growth under laboratory conditions. To complement this in silico approach, candidate essential genes have been determined using a whole genome transposon mutagenesis method. FBA and transposon mutagenesis (both this study and a published study) predict a similar number of essential genes (around 200). The analysis of the intersection between the three approaches highlights the shikimate pathway where genes are predicted to be essential by one or more method, and tend to be network hubs, based on a previously published Campylobacter protein-protein interaction network, and could therefore be targets for novel antimicrobial therapy. CONCLUSIONS We have constructed the first curated metabolic model for the food-borne pathogen Campylobacter jejuni and have presented the resulting metabolic insights. We have shown that the combination of in silico and in vivo approaches could point to non-redundant, indispensable genes associated with the well characterised shikimate pathway, and also genes of unknown function specific to C. jejuni, which are all potential novel Campylobacter intervention targets.
Collapse
Affiliation(s)
- Aline Metris
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK.
| | | | | | | | | |
Collapse
|
31
|
Shibayama K, Takeuchi H, Wachino JI, Mori S, Arakawa Y. Biochemical and pathophysiological characterization of Helicobacter pylori asparaginase. Microbiol Immunol 2011; 55:408-17. [PMID: 21395663 DOI: 10.1111/j.1348-0421.2011.00333.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Asparaginase was purified from Helicobacter pylori 26695 and its pathophysiological role explored. The K(m) value of asparagine was 9.75 ± 1.81 μM at pH 7.0, and the optimum pH range was broad and around a neutral pH. H. pylori asparaginase converted extracellular asparagine to aspartate. H. pylori cells were unable to take up extracellular asparagine directly. Instead, aspartate produced by the action of the asparaginase was transported into H. pylori cells, where it was partially converted to β-alanine. Asparaginase exhibited striking cytotoxic activity against histiocytic lymphoma cell line U937 cells via asparagine deprivation. The cytotoxic activity of live H. pylori cells against U937 cells was significantly diminished by deletion of the asparaginase gene, indicating that asparaginase functions as a cytotoxic agent of the bacterium. The cytotoxic effect was negligible for gastric epithelial cell line AGS cells, suggesting that the effect differs across host cell types. An asparaginase-deficient mutant strain was significantly less capable of colonizing Mongolian gerbils. Since asparagine depletion by exogenous asparaginase has been shown to suppress lymphocyte proliferation in vivo, the present results suggest that H. pylori asparaginase may be involved in inhibition of normal lymphocyte function at the gastric niche, allowing H. pylori to evade the host immune system.
Collapse
Affiliation(s)
- Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
32
|
Chen Z, Zhou Q, Ge R. Inhibition of fumarase by bismuth(III): implications for the tricarboxylic acid cycle as a potential target of bismuth drugs in Helicobacter pylori. Biometals 2011; 25:95-102. [PMID: 21818585 DOI: 10.1007/s10534-011-9485-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 07/27/2011] [Indexed: 12/21/2022]
Abstract
Helicobacter pylori causes various gastric diseases, such as gastritis, peptic ulcerations and gastric cancer. Triple therapy combining bismuth compounds with two antibiotics is the cornerstone of the treatment of H. pylori infections. Up to now, the molecular mechanisms by which bismuth inhibits the growth of H. pylori are far from clear. In the bacterial tricarboxylic acid (TCA) cycle, fumarase catalyses the reversible hydration of fumarate to malic acid. Our previous proteomic work indicated that fumarase was capable of bismuth-binding. The interactions as well as the inhibitory effects of bismuth to fumarase have been characterized in this study. The titration of bismuth showed that each fumarase monomer binds one mol equiv of Bi(3+), with negligible secondary structural change. Bismuth-binding results in a near stoichiometric inactivation of the enzyme, leading to an apparent non-competitive mechanism as reflected by the Lineweaver-Burk plots. Our collective data indicate that the TCA cycle is a potential molecular target of bismuth drugs in H. pylori.
Collapse
Affiliation(s)
- Zhuo Chen
- The Laboratory of Integrative Biosciences, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | | | | |
Collapse
|
33
|
Park SA, Ko A, Lee NG. Stimulation of growth of the human gastric pathogen Helicobacter pylori by atmospheric level of oxygen under high carbon dioxide tension. BMC Microbiol 2011; 11:96. [PMID: 21569333 PMCID: PMC3110553 DOI: 10.1186/1471-2180-11-96] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/11/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Helicobacter pylori (Hp), a human pathogen that is associated with gastritis, peptic ulcer, and gastric cancer, has been considered a microaerophile, but there is no general consensus about its specific O2 requirements. A clear understanding of Hp physiology is needed to elucidate the pathogenic mechanism(s) of Hp infection. RESULTS We cultured Hp under a range of O2 levels with or without 10% CO2 and evaluated growth profiles, morphology, intracellular pH, and energy metabolism. We found that, in the presence of 10% CO2, the normal atmospheric level of O2 inhibited Hp growth at low density but stimulated growth at a higher density. Field emission scanning electron microscopy and fluorescence microscopy of Hp cells cultured under 20% O2 tension revealed live spiral-shaped bacteria with outer membrane vesicles on a rugged cell surface, which became smooth during the stationary phase. Fermentation products including acetate, lactate, and succinate were detected in cell culture media grown under microaerobic conditions, but not under the aerobic condition. CO2 deprivation for less than 24 h did not markedly change cytoplasmic or periplasmic pH, suggesting that cellular pH homeostasis alone cannot account for the capnophilic nature of Hp. Further, CO2 deprivation significantly increased intracellular levels of ppGpp and ATP but significantly decreased cellular mRNA levels, suggesting induction of the stringent response. CONCLUSIONS We conclude, unlike previous reports, that H. pylori may be a capnophilic aerobe whose growth is promoted by atmospheric oxygen levels in the presence of 10% CO2. Our data also suggest that buffering of intracellular pH alone cannot account for the CO2 requirement of H. pylori and that CO2 deprivation initiates the stringent response in H. pylori. Our findings may provide new insight into the physiology of this fastidious human pathogen.
Collapse
Affiliation(s)
- Shin Ae Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - Ara Ko
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - Na Gyong Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| |
Collapse
|
34
|
Hoshino H, Tsuchida A, Kametani K, Mori M, Nishizawa T, Suzuki T, Nakamura H, Lee H, Ito Y, Kobayashi M, Masumoto J, Fujita M, Fukuda M, Nakayama J. Membrane-associated activation of cholesterol α-glucosyltransferase, an enzyme responsible for biosynthesis of cholesteryl-α-D-glucopyranoside in Helicobacter pylori critical for its survival. J Histochem Cytochem 2011; 59:98-105. [PMID: 20876522 DOI: 10.1369/jhc.2010.957092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Helicobacter pylori (H. pylori) is the causative pathogen underlying gastric diseases such as chronic gastritis and gastric cancer. Previously, the authors revealed that α1,4-linked N-acetylglucosamine-capped O-glycan (αGlcNAc) found in gland mucin suppresses H. pylori growth and motility by inhibiting catalytic activity of cholesterol α-glucosyltransferase (CHLαGcT), the enzyme responsible for biosynthesis of the major cell wall component cholesteryl-α-D-glucopyranoside (CGL). Here, the authors developed a polyclonal antibody specific for CHLαGcT and then undertook quantitative ultrastructural analysis of the enzyme's localization in H. pylori. They show that 66.3% of CHLαGcT is detected in the cytoplasm beneath the H. pylori inner membrane, whereas 24.7% is present on the inner membrane. In addition, 2.6%, 5.0%, and 1.4% of the protein were detected in the periplasm, on the outer membrane, and outside microbes, respectively. By using an in vitro CHLαGcT assay with fractionated H. pylori proteins, which were used as an enzyme source for CHLαGcT, the authors demonstrated that the membrane fraction formed CGL, whereas other fractions did not. These data combined together indicate that CHLαGcT is originally synthesized in the cytoplasm of H. pylori as an inactive form and then activated when it is associated with the cell membrane. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Hitomi Hoshino
- Department of Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Scotti C, Sommi P, Pasquetto MV, Cappelletti D, Stivala S, Mignosi P, Savio M, Chiarelli LR, Valentini G, Bolanos-Garcia VM, Merrell DS, Franchini S, Verona ML, Bolis C, Solcia E, Manca R, Franciotta D, Casasco A, Filipazzi P, Zardini E, Vannini V. Cell-cycle inhibition by Helicobacter pylori L-asparaginase. PLoS One 2010; 5:e13892. [PMID: 21085483 PMCID: PMC2976697 DOI: 10.1371/journal.pone.0013892] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/15/2010] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.
Collapse
Affiliation(s)
- Claudia Scotti
- Department of Experimental Medicine, Section of General Pathology, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cloning, expression, and enzymatic characterization of isocitrate dehydrogenase from Helicobacter pylori. Protein J 2010; 28:443-7. [PMID: 19921412 DOI: 10.1007/s10930-009-9212-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to alpha-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k (cat) of 87 s(-1), K (m) of 124 microM and k (cat)/K (m) of 7 x 10(5) M(-1)s(-1) toward isocitrate, k (cat) of 80 s(-1), K (m) of 176 microM and k (cat)/K (m) of 4.5 x 10(5) M(-1)s(-1) toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 degrees C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.
Collapse
|
37
|
Ford JL, Kaakoush NO, Mendz GL. Phosphonate metabolism in Helicobacter pylori. Antonie van Leeuwenhoek 2009; 97:51-60. [PMID: 19842056 DOI: 10.1007/s10482-009-9387-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 10/07/2009] [Indexed: 01/16/2023]
Abstract
Helicobacter pylori has been shown to degrade two phosphonates, N-phosphonoacetyl-L: -aspartate and phosphonoacetate; however, the bacterium does not have any genes homologous to those of the known phosphonate metabolism pathways suggesting that H. pylori may have a novel phosphonate metabolism pathway. Growth of H. pylori on phosphonates was studied and the catabolism of these compounds was measured employing (1)H-nuclear magnetic resonance spectroscopy. The specificity of the catabolic enzymes was elucidated by assaying the degradation of several phosphonates and through substrate competition studies. H. pylori was able to utilise phenylphosphonate as a sole source of phosphate for growth. Three strains of H. pylori showed sigmoidal enzyme kinetics of phenylphosphonate catabolism. Allosteric kinetics were removed when lysates were fractionated into cytosolic and membrane fractions. Catabolic rates increased with the addition of DTT, Mg(2+) and phosphate and decreased with the addition of EDTA. The physiological properties of H. pylori phosphonate metabolism were characterised and the presence of at least two novel phosphonate catabolism pathways that do not require phosphate starvation growth conditions for activity has been established.
Collapse
Affiliation(s)
- Justin L Ford
- School of Medicine, Sydney, The University of Notre Dame Australia, 160 Oxford St, Darlinghurst, NSW 2010, Australia
| | | | | |
Collapse
|
38
|
Tsugawa H, Suzuki H, Nakagawa I, Nishizawa T, Saito Y, Suematsu M, Hibi T. Alpha-ketoglutarate oxidoreductase, an essential salvage enzyme of energy metabolism, in coccoid form of Helicobacter pylori. Biochem Biophys Res Commun 2008; 376:46-51. [DOI: 10.1016/j.bbrc.2008.08.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/17/2008] [Indexed: 10/21/2022]
|
39
|
Abstract
Cadmium ions are a potent carcinogen in animals, and cadmium is a toxic metal of significant environmental importance for humans. Response curves were used to investigate the effects of cadmium chloride on the growth of Camplyobacter jejuni. In vitro, the bacterium showed reduced growth in the presence of 0.1 mm cadmium chloride, and the metal ions were lethal at 1 mm concentration. Two-dimensional gel electrophoresis combined with tandem mass spectrometry analysis enabled identification of 67 proteins differentially expressed in cells grown without and with 0.1 mm cadmium chloride. Cellular processes and pathways regulated under cadmium stress included fatty acid biosynthesis, protein biosynthesis, chemotaxis and mobility, the tricarboxylic acid cycle, protein modification, redox processes and the heat-shock response. Disulfide reductases and their substrates play many roles in cellular processes, including protection against reactive oxygen species and detoxification of xenobiotics, such as cadmium. The effects of cadmium on thioredoxin reductase and disulfide reductases using glutathione as a substrate were studied in bacterial lysates by spectrophotometry and nuclear magnetic resonance spectroscopy, respectively. The presence of 0.1 mm cadmium ions modulated the activities of both enzymes. The interactions of cadmium ions with oxidized glutathione and reduced glutathione were investigated using nuclear magnetic resonance spectroscopy. The data suggested that, unlike other organisms, C. jejuni downregulates thioredoxin reductase and upregulates other disulfide reductases involved in metal detoxification in the presence of cadmium.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
40
|
Buettner FFR, Bendallah IM, Bosse JT, Dreckmann K, Nash JHE, Langford PR, Gerlach GF. Analysis of the Actinobacillus pleuropneumoniae ArcA regulon identifies fumarate reductase as a determinant of virulence. Infect Immun 2008; 76:2284-95. [PMID: 18378638 PMCID: PMC2423083 DOI: 10.1128/iai.01540-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/10/2008] [Accepted: 03/23/2008] [Indexed: 11/20/2022] Open
Abstract
The ability of the bacterial pathogen Actinobacillus pleuropneumoniae to grow anaerobically allows the bacterium to persist in the lung. The ArcAB two-component system is crucial for metabolic adaptation in response to anaerobic conditions, and we recently showed that an A. pleuropneumoniae arcA mutant had reduced virulence compared to the wild type (F. F. Buettner, A. Maas, and G.-F. Gerlach, Vet. Microbiol. 127:106-115, 2008). In order to understand the attenuated phenotype, we investigated the ArcA regulon of A. pleuropneumoniae by using a combination of transcriptome (microarray) and proteome (two-dimensional difference gel electrophoresis and subsequent mass spectrometry) analyses. We show that ArcA negatively regulates the expression of many genes, including those encoding enzymes which consume intermediates during fumarate synthesis. Simultaneously, the expression of glycerol-3-phosphate dehydrogenase, a component of the respiratory chain serving as a direct reduction equivalent for fumarate reductase, was upregulated. This result, together with the in silico analysis finding that A. pleuropneumoniae has no oxidative branch of the citric acid cycle, led to the hypothesis that fumarate reductase might be crucial for virulence by providing (i) energy via fumarate respiration and (ii) succinate and other essential metabolic intermediates via the reductive branch of the citric acid cycle. To test this hypothesis, an isogenic A. pleuropneumoniae fumarate reductase deletion mutant was constructed and studied by using a pig aerosol infection model. The mutant was shown to be significantly attenuated, thereby strongly supporting a crucial role for fumarate reductase in the pathogenesis of A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Falk F R Buettner
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol 2008; 190:4933-40. [PMID: 18502856 DOI: 10.1128/jb.00405-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.
Collapse
|
42
|
Hussain MA, Naveed SA, Sechi LA, Ranjan S, Alvi A, Ahmed I, Ranjan A, Mukhopadhyay S, Ahmed N. Isocitrate dehydrogenase of Helicobacter pylori potentially induces humoral immune response in subjects with peptic ulcer disease and gastritis. PLoS One 2008; 3:e1481. [PMID: 18213389 PMCID: PMC2195454 DOI: 10.1371/journal.pone.0001481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 12/24/2007] [Indexed: 01/11/2023] Open
Abstract
Background H. pylori causes gastritis and peptic ulcers and is a risk factor for the development of gastric carcinoma. Many of the proteins such as urease, porins, flagellins and toxins such as lipo-polysaccharides have been identified as potential virulence factors which induce proinflammatory reaction. We report immunogenic potentials of isocitrate dehydrogenase (ICD), an important house keeping protein of H. pylori. Methodology/Principal Findings Amino acid sequences of H. pylori ICD were subjected to in silico analysis for regions with predictably high antigenic indexes. Also, computational modelling of the H. pylori ICD as juxtaposed to the E. coli ICD was carried out to determine levels of structure similarity and the availability of surface exposed motifs, if any. The icd gene was cloned, expressed and purified to a very high homogeneity. Humoral response directed against H. pylori ICD was detected through an enzyme linked immunosorbent assay (ELISA) in 82 human subjects comprising of 58 patients with H. pylori associated gastritis or ulcer disease and 24 asymptomatic healthy controls. The H. pylori ICD elicited potentially high humoral immune response and revealed high antibody titers in sera corresponding to endoscopically-confirmed gastritis and ulcer disease subjects. However, urea-breath-test negative healthy control samples and asymptomatic control samples did not reveal any detectable immune responses. The ELISA for proinflammatory cytokine IL-8 did not exhibit any significant proinflammatory activity of ICD. Conclusions/Significance ICD of H. pylori is an immunogen which interacts with the host immune system subsequent to a possible autolytic-release and thereby significantly elicits humoral responses in individuals with invasive H. pylori infection. However, ICD could not significantly stimulate IL8 induction in a cultured macrophage cell line (THP1) and therefore, may not be a notable proinflammatory agent.
Collapse
Affiliation(s)
- M. Abid Hussain
- Pathogen Evolution Laboratory, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Shaik A. Naveed
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences and Allied Hospitals, Hyderabad, India
| | - Leonardo A. Sechi
- Dipartimento di Scienze Biomediche, Sezione Microbiologia sperimentale e clinica, Facoltà di Medicina, Universiti degli studi de Sassari, Sassari, Italy
| | - Sarita Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Ayesha Alvi
- Pathogen Evolution Laboratory, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Irshad Ahmed
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences and Allied Hospitals, Hyderabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular and Cellular Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Niyaz Ahmed
- Pathogen Evolution Laboratory, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Alyamani EJ, Brandt P, Pena JA, Major AM, Fox JG, Suerbaum S, Versalovic J. Helicobacter hepaticus catalase shares surface-predicted epitopes with mammalian catalases. MICROBIOLOGY-SGM 2007; 153:1006-1016. [PMID: 17379710 DOI: 10.1099/mic.0.29184-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter hepaticus colonizes the murine intestine and has been associated with hepatic inflammation and neoplasia in susceptible mouse strains. In this study, the catalase of an enterohepatic Helicobacter was characterized for the first time. H. hepaticus catalase is a highly conserved enzyme that may be important for bacterial survival in the mammalian intestine. Recombinant H. hepaticus catalase was expressed in Escherichia coli in order to verify its enzymic activity in vitro. H. hepaticus catalase comprises 478 amino acids with a highly conserved haem-ligand domain. Three conserved motifs (R-F-Y-D, RERIPER and VVHAKG) in the haem-ligand domain and three surface-predicted motifs were identified in H. hepaticus catalase and are shared among bacterial and mammalian catalases. H. hepaticus catalase is present in the cytoplasmic and periplasmic compartments. Mice infected with H. hepaticus demonstrated immune responses to murine and H. hepaticus catalase, suggesting that Helicobacter catalase contains conserved structural motifs and may contribute to autoimmune responses. Antibodies to H. hepaticus catalase recognized murine hepatocyte catalase in hepatic tissue from infected mice. Antibodies from sera of H. hepaticus-infected mice reacted with peptides comprising two conserved surface-predicted motifs in H. hepaticus catalase. Catalases are highly conserved enzymes in bacteria and mammals that may contribute to autoimmune responses in animals infected with catalase-producing pathogens.
Collapse
Affiliation(s)
- Essam J Alyamani
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 01225, USA
| | | | - Jeremy A Pena
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angela M Major
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - James G Fox
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - James Versalovic
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
- Departments of Pathology, Molecular Virology & Microbiology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
44
|
Kodde IF, van der Stok J, Smolenski RT, de Jong JW. Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol 2006; 146:26-39. [PMID: 17081788 DOI: 10.1016/j.cbpa.2006.09.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/19/2006] [Accepted: 09/23/2006] [Indexed: 01/13/2023]
Abstract
Proper heart function relies on high efficiency of energy conversion. Mitochondrial oxygen-dependent processes transfer most of the chemical energy from metabolic substrates into ATP. Healthy myocardium uses mainly fatty acids as its major energy source, with little contribution of glucose. However, lactate, ketone bodies, amino acids or even acetate can be oxidized under certain circumstances. A complex interplay exists between various substrates responding to energy needs and substrate availability. The relative substrate concentration is the prime factor defining preference and utilization rate. Allosteric enzyme regulation and protein phosphorylation cascades, partially controlled by hormones such as insulin, modulate the concentration effect; together they provide short-term adjustments of cardiac energy metabolism. The expression of metabolic machinery genes is also dynamically regulated in response to developmental and (patho)physiological conditions, leading to long-term adjustments. Specific nuclear receptor transcription factors and co-activators regulate the expression of these genes. These include peroxisome proliferator-activated receptors and their nuclear receptor co-activator, estrogen-related receptor and hypoxia-inducible transcription factor 1. Increasing glucose and reducing fatty acid oxidation by metabolic regulation is already a target for effective drugs used in ischemic heart disease and heart failure. Interaction with genetic factors that control energy metabolism could provide even more powerful pharmacological tools.
Collapse
|
45
|
Hommes NG, Kurth EG, Sayavedra-Soto LA, Arp DJ. Disruption of sucA, which encodes the E1 subunit of alpha-ketoglutarate dehydrogenase, affects the survival of Nitrosomonas europaea in stationary phase. J Bacteriol 2006; 188:343-7. [PMID: 16352852 PMCID: PMC1317585 DOI: 10.1128/jb.188.1.343-347.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Nitrosomonas europaea lacks measurable alpha-ketoglutarate dehydrogenase activity, the recent completion of the genome sequence revealed the presence of the genes encoding the enzyme. A knockout mutation was created in the sucA gene encoding the E1 subunit. Compared to wild-type cells, the mutant strain showed an accelerated loss of ammonia monooxygenase and hydroxylamine oxidoreductase activities upon entering stationary phase. In addition, unlike wild-type cells, the mutant strain showed a marked lag in the ability to resume growth in response to pH adjustments in late stationary phase.
Collapse
Affiliation(s)
- Norman G Hommes
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley, Corvallis, OR 97331-2902, USA
| | | | | | | |
Collapse
|
46
|
Goh LL, Barkham T, Sim TS. Molecular cloning and functional characterization of fumarases C in Neisseria species. Antonie van Leeuwenhoek 2005; 87:205-13. [PMID: 15803386 DOI: 10.1007/s10482-004-3719-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 09/23/2004] [Indexed: 10/25/2022]
Abstract
Fumarase is one of the key enzymes in the TCA cycle and has been implicated in virulence and survival of some microorganisms under suboptimal environmental conditions. In this study, the fumC genes that encode fumarase C (FUMCs) from Neisseria meningitidis, N. gonorrhoeae and N. subflava were identified by homology-based analysis, cloned by polymerase chain reactions and fully sequenced. The inferred primary sequence of neisserial FUMCs showed a high degree of conservation with 97.8-98.7% amino acid identity. However, phylogenetic analysis revealed that these neisserial FUMCs are divergent from class II fumarases found in other microorganisms, rat and human. The putative fumC genes were subcloned into the expression vector, pGEX-6P-1 and efficiently expressed in Esherichia coli BL21. The purified recombinant fusion proteins obtained by affinity chromatography demonstrated high catalytic activities (120-180 U/mg), thus authenticating the identities and functionalities of the cloned genes. Whether FUMC has any physiological relevance to the pathogenesisity of Neisseriae must await future gene disruption or mutagenesis studies.
Collapse
Affiliation(s)
- Liuh Ling Goh
- Department of Microbiology, Faculty of Medicine, National University of Singapore, MD4A, 5 Science Drive 2, 117597, Singapore
| | | | | |
Collapse
|
47
|
Thiele I, Vo TD, Price ND, Palsson BØ. Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 2005; 187:5818-30. [PMID: 16077130 PMCID: PMC1196094 DOI: 10.1128/jb.187.16.5818-5830.2005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 04/19/2005] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori is a human gastric pathogen infecting almost half of the world population. Herein, we present an updated version of the metabolic reconstruction of H. pylori strain 26695 based on the revised genome annotation and new experimental data. This reconstruction, iIT341 GSM/GPR, represents a detailed review of the current literature about H. pylori as it integrates biochemical and genomic data in a comprehensive framework. In total, it accounts for 341 metabolic genes, 476 intracellular reactions, 78 exchange reactions, and 485 metabolites. Novel features of iIT341 GSM/GPR include (i) gene-protein-reaction associations, (ii) elementally and charge-balanced reactions, (iii) more accurate descriptions of isoprenoid and lipopolysaccharide metabolism, and (iv) quantitative assessments of the supporting data for each reaction. This metabolic reconstruction was used to carry out in silico deletion studies to identify essential and conditionally essential genes in H. pylori. A total of 128 essential and 75 conditionally essential metabolic genes were identified. Predicted growth phenotypes of single knockouts were validated using published experimental data. In addition, in silico double-deletion studies identified a total of 47 synthetic lethal mutants involving 67 different metabolic genes in rich medium.
Collapse
Affiliation(s)
- Ines Thiele
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Dr. 0412, La Jolla, CA 92093-0412, USA
| | | | | | | |
Collapse
|
48
|
Tian J, Bryk R, Itoh M, Suematsu M, Nathan C. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase. Proc Natl Acad Sci U S A 2005; 102:10670-5. [PMID: 16027371 PMCID: PMC1180764 DOI: 10.1073/pnas.0501605102] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has adapted its metabolism for persistence in the human macrophage. The adaptations are likely to involve Mtb's core intermediary metabolism, whose enzymes have been little studied. The tricarboxylic acid cycle is expected to yield precursors for energy, lipids, amino acids, and heme. The genome sequence of Mtb H37Rv predicts the presence of a complete tricarboxylic acid cycle, but we recently found that alpha-ketoglutarate dehydrogenase (KDH) activity is lacking in Mtb lysates. Here we showed that citrate synthase, aconitase, isocitrate dehydrogenase, fumarase, malate dehydrogenase, and succinate dehydrogenase, but not KDH, are present, raising the possibility of separate oxidative and reductive half-cycles. As a potential link between the half-cycles, we found that Rv1248c, annotated as encoding SucA, the putative E1 component of KDH, instead encodes alpha-ketoglutarate decarboxylase (Kgd) and produces succinic semialdehyde. Succinic semialdehyde dehydrogenase activity was detected in Mtb lysates and recapitulated with recombinant proteins GabD1 (encoded by Rv0234c) and GabD2 (encoded by Rv1731). Kgd and GabD1 or GabD2 form an alternative pathway from alpha-ketoglutarate to succinate. Rv1248c, which is essential or required for normal growth of Mtb [Sassetti, C., Boyd, D. H. & Rubin, E. J. (2003) Mol. Microbiol 48, 77-84] is the first gene shown to encode a Kgd. Kgd is lacking in humans and may represent a potential target for chemotherapy of tuberculosis.
Collapse
Affiliation(s)
- Jing Tian
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
49
|
Harris AG, Hazell SL. Localisation ofHelicobacter pyloricatalase in both the periplasm and cytoplasm, and its dependence on the twin-arginine target protein, KapA, for activity. FEMS Microbiol Lett 2003; 229:283-9. [PMID: 14680712 DOI: 10.1016/s0378-1097(03)00850-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Helicobacter pylori induces a severe inflammatory response in the gastric mucosa. It is able to withstand the inflammatory response by producing proteins such as KatA and KapA. The C-terminus of KatA possesses a unique tetra-lysine motif not found in other catalases or other known protein sequences. Mutants deficient in this motif were constructed by site-directed mutagenesis. Cytoplasmic and periplasmic catalase activities were measured for the parental strain, a truncated KatA mutant (deficient in the unique C-terminal tetra-lysine motif) and a previously constructed KapA-deficient mutant (confirming previous observations regarding the possible periplasmic localisation of KatA). No differences were observed in the cytoplasmic catalase activities, however, the KapA-deficient mutant had approximately 5.5 times less catalase activity in the periplasmic extract when compared to the periplasmic preparations of either parental strain or KatA truncated mutant. N-terminal sequencing of KatA revealed no cleaved N-terminal signal peptide, indicating Sec-independent transport. These findings support previous reports that there is some form of interaction between KatA and KapA of H. pylori, an interaction which still needs to be characterised.
Collapse
Affiliation(s)
- Andrew G Harris
- MRC Molecular Pathogenesis group, Centre for Infectious Diseases, Institute for Cell and Molecular Sciences, Queen Mary College, University of London, Whitechapel, London E1 2AA, UK.
| | | |
Collapse
|
50
|
Camarasa C, Grivet JP, Dequin S. Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2669-2678. [PMID: 12949191 DOI: 10.1099/mic.0.26007-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
NMR isotopic filiation of 13C-labelled aspartate and glutamate was used to explore the tricarboxylic acid (TCA) pathway in Saccharomyces cerevisiae during anaerobic glucose fermentation. The assimilation of [3-13C]aspartate led to the formation of [2,3-13C]malate and [2,3-13C]succinate, with equal levels of 13C incorporation, whereas site-specific enrichment on C-2 and C-3 of succinate was detected only with [3-13C]glutamate. The non-random distribution of 13C labelling in malate and succinate demonstrates that the TCA pathway operates during yeast fermentation as both an oxidative and a reductive branch. The observed 13C distribution suggests that the succinate dehydrogenase (SDH) complex is not active during glucose fermentation. This hypothesis was tested by deleting the SDH1 gene encoding the flavoprotein subunit of the SDH complex. The growth, fermentation rate and metabolite profile of the sdh1 mutant were similar to those of the parental strain, demonstrating that SDH was indeed not active. Filiation experiments indicated the reductive branch of the TCA pathway was the main pathway for succinate production if aspartate was used as the nitrogen source, and that a surplus of succinate was produced by oxidative decarboxylation of 2-oxoglutarate if glutamate was the sole nitrogen source. Consistent with this finding, a kgd1 mutant displayed lower levels of succinate production on glutamate than on other nitrogen sources, and higher levels of oxoglutarate dehydrogenase activity were observed on glutamate. Thus, the reductive branch generating succinate via fumarate reductase operates independently of the nitrogen source. This pathway is the main source of succinate during fermentation, unless glutamate is the sole nitrogen source, in which case the oxidative decarboxylation of 2-oxoglutarate generates additional succinate.
Collapse
Affiliation(s)
- Carole Camarasa
- UMR-Sciences pour l'Œnologie, Microbiologie et Technologie des Fermentations, Institut National de la Recherche Agronomique, 2 Place Viala, 34060 Montpellier, France
| | - Jean-Philippe Grivet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique et Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Sylvie Dequin
- UMR-Sciences pour l'Œnologie, Microbiologie et Technologie des Fermentations, Institut National de la Recherche Agronomique, 2 Place Viala, 34060 Montpellier, France
| |
Collapse
|