1
|
Ye X, Li Y, González-Lamuño D, Pei Z, Moser AB, Smith KD, Watkins PA. Role of ACSBG1 in Brain Lipid Metabolism and X-Linked Adrenoleukodystrophy Pathogenesis: Insights from a Knockout Mouse Model. Cells 2024; 13:1687. [PMID: 39451204 PMCID: PMC11506745 DOI: 10.3390/cells13201687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
"Bubblegum" acyl-CoA synthetase (ACSBG1) is a pivotal player in lipid metabolism during mouse brain development, facilitating the activation of long-chain fatty acids (LCFA) and their incorporation into lipid species that are crucial for brain function. ACSBG1 converts LCFA into acyl-CoA derivatives, supporting vital metabolic processes. Fruit fly mutants lacking ACSBG1 exhibited neurodegeneration and had elevated levels of very long-chain fatty acids (VLCFA), characteristics of human X-linked adrenoleukodystrophy (XALD). To explore ACSBG1's function and potential as a therapeutic target in XALD, we created an ACSBG1 knockout (Acsbg1-/-) mouse and examined the effects on brain FA metabolism during development. Phenotypically, Acsbg1-/- mice resembled wild type (w.t.) mice. ACSBG1 expression was found mainly in tissue affected pathologically in XALD, namely the brain, adrenal gland and testis. ACSBG1 depletion did not significantly reduce the total ACS enzyme activity in these tissue types. In adult mouse brain, ACSBG1 expression was highest in the cerebellum; the low levels detected during the first week of life dramatically increased thereafter. Unexpectedly, lower, rather than higher, saturated VLCFA levels were found in cerebella from Acsbg1-/- vs. w.t. mice, especially after one week of age. Developmental changes in monounsaturated ω9 FA and polyunsaturated ω3 FA levels also differed between w.t. and Acsbg1-/- mice. ACSBG1 deficiency impacted the developmental expression of several cerebellar FA metabolism enzymes, including those required for the synthesis of ω3 polyunsaturated FA, precursors of bioactive signaling molecules like eicosanoids and docosanoids. These changes in membrane lipid FA composition likely affect membrane fluidity and may thus influence the body's response to inflammation. We conclude that, despite compelling circumstantial evidence, it is unlikely that ACSBG1 directly contributes to the pathology of XALD, decreasing its potential as a therapeutic target. Instead, the effects of ACSBG1 knockout on processes regulated by eicosanoids and/or docosanoids should be further investigated.
Collapse
Affiliation(s)
- Xiaoli Ye
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuanyuan Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
- Department of Genetic Medicine and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Domingo González-Lamuño
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhengtong Pei
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ann B. Moser
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kirby D. Smith
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
- Department of Genetic Medicine and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul A. Watkins
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Ye X, Li Y, González-Lamuño D, Pei Z, Moser AB, Smith KD, Watkins PA. Role of ACSBG1 in brain lipid metabolism and X-linked adrenoleukodystrophy pathogenesis: Insights from a knockout mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599741. [PMID: 38948805 PMCID: PMC11212999 DOI: 10.1101/2024.06.19.599741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The "bubblegum" acyl-CoA synthetase (ACSBG1) is a pivotal player in lipid metabolism during the development of the mouse brain, facilitating the activation of long-chain fatty acids (LCFAs) and their integration into essential lipid species crucial for brain function. Through its enzymatic activity, ACSBG1 converts LCFAs into acyl-CoA derivatives, supporting vital processes like membrane formation, myelination, and energy production. Its regulatory role significantly influences neuronal growth, synaptic plasticity, and overall brain development, highlighting its importance in maintaining lipid homeostasis and proper brain function. Originally discovered in the fruit fly brain, ACSBG1 attracted attention for its potential implication in X-linked adrenoleukodystrophy (XALD) pathogenesis. Studies using Drosophila melanogaster lacking the ACSBG1 homolog, bubblegum, revealed adult neurodegeneration with elevated levels of very long-chain fatty acids (VLCFA). To explore ACSBG1's role in fatty acid (FA) metabolism and its relevance to XALD, we created an ACSBG1 knockout (Acsbg1-/-) mouse model and examined its impact on lipid metabolism during mouse brain development. Phenotypically, Acsbg1-/- mice resembled wild type (w.t.) mice. Despite its primary expression in tissues affected by XALD, brain, adrenal gland and testis, ACSBG1 depletion did not significantly reduce total ACS enzyme activity in these tissues when using LCFA or VLCFA as substrates. However, analysis unveiled intriguing developmental and compositional changes in FA levels associated with ACSBG1 deficiency. In the adult mouse brain, ACSBG1 expression peaked in the cerebellum, with lower levels observed in other brain regions. Developmentally, ACSBG1 expression in the cerebellum was initially low during the first week of life but increased dramatically thereafter. Cerebellar FA levels were assessed in both w.t. and Acsbg1-/- mouse brains throughout development, revealing notable differences. While saturated VLCFA levels were typically high in XALD tissues and in fruit flies lacking ACSBG1, cerebella from Acsbg1-/- mice displayed lower saturated VLCFA levels, especially after about 8 days of age. Additionally, monounsaturated ω9 FA levels exhibited a similar trend as saturated VLCFA, while ω3 polyunsaturated FA levels were elevated in Acsbg1-/- mice. Further analysis of specific FA levels provided additional insights into potential roles for ACSBG1. Notably, the decreased VLCFA levels in Acsbg1-/- mice primarily stemmed from changes in C24:0 and C26:0, while reduced ω9 FA levels were mainly observed in C18:1 and C24:1. ACSBG1 depletion had minimal effects on saturated long-chain FA or ω6 polyunsaturated FA levels but led to significant increases in specific ω3 FA, such as C20:5 and C22:5. Moreover, the impact of ACSBG1 deficiency on the developmental expression of several cerebellar FA metabolism enzymes, including those required for synthesis of ω3 polyunsaturated FA, was assessed; these FA can potentially be converted into bioactive signaling molecules like eicosanoids and docosanoids. In conclusion, despite compelling circumstantial evidence, it is unlikely that ACSBG1 directly contributes to the pathology of XALD. Instead, the effects of ACSBG1 knockout on processes regulated by eicosanoids and/or docosanoids should be further investigated.
Collapse
Affiliation(s)
- Xiaoli Ye
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Present address: School of Life Sciences, Southwest University, Chongqing, China
| | - Yuanyuan Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205
- Department of Genetic Medicine and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Present address: Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467
| | - Domingo González-Lamuño
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Present address: Pediatra. Unidad de Nefrología y Metabolismo Infantil, Hospital U. Marqués de Valdecilla. Santander. España
| | - Zhengtong Pei
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ann B. Moser
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kirby D. Smith
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205
- Department of Genetic Medicine and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Paul A. Watkins
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
3
|
Yska HAF, Engelen M, Bugiani M. The pathology of X-linked adrenoleukodystrophy: tissue specific changes as a clue to pathophysiology. Orphanet J Rare Dis 2024; 19:138. [PMID: 38549180 PMCID: PMC10976706 DOI: 10.1186/s13023-024-03105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Although the pathology of X-linked adrenoleukodystrophy (ALD) is well described, it represents the end-stage of neurodegeneration. It is still unclear what cell types are initially involved and what their role is in the disease process. Revisiting the seminal post-mortem studies from the 1970s can generate new hypotheses on pathophysiology. This review describes (histo)pathological changes of the brain and spinal cord in ALD. It aims at integrating older works with current insights and at providing an overarching theory on the pathophysiology of ALD. The data point to an important role for axons and glia in the pathology of both the myelopathy and leukodystrophy of ALD. In-depth pathological analyses with new techniques could help further unravel the sequence of events behind the pathology of ALD.
Collapse
Affiliation(s)
- Hemmo A F Yska
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kawaguchi K, Imanaka T. Substrate Specificity and the Direction of Transport in the ABC Transporters ABCD1–3 and ABCD4. Chem Pharm Bull (Tokyo) 2022; 70:533-539. [DOI: 10.1248/cpb.c21-01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kosuke Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Tsuneo Imanaka
- Faculty of Pharmaceutical Sciences, Hiroshima International University
| |
Collapse
|
5
|
Mice with a deficiency in Peroxisomal Membrane Protein 4 (PXMP4) display mild changes in hepatic lipid metabolism. Sci Rep 2022; 12:2512. [PMID: 35169201 PMCID: PMC8847483 DOI: 10.1038/s41598-022-06479-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/31/2022] [Indexed: 11/08/2022] Open
Abstract
Peroxisomes play an important role in the metabolism of a variety of biomolecules, including lipids and bile acids. Peroxisomal Membrane Protein 4 (PXMP4) is a ubiquitously expressed peroxisomal membrane protein that is transcriptionally regulated by peroxisome proliferator-activated receptor α (PPARα), but its function is still unknown. To investigate the physiological function of PXMP4, we generated a Pxmp4 knockout (Pxmp4-/-) mouse model using CRISPR/Cas9-mediated gene editing. Peroxisome function was studied under standard chow-fed conditions and after stimulation of peroxisomal activity using the PPARα ligand fenofibrate or by using phytol, a metabolite of chlorophyll that undergoes peroxisomal oxidation. Pxmp4-/- mice were viable, fertile, and displayed no changes in peroxisome numbers or morphology under standard conditions. Also, no differences were observed in the plasma levels of products from major peroxisomal pathways, including very long-chain fatty acids (VLCFAs), bile acids (BAs), and BA intermediates di- and trihydroxycholestanoic acid. Although elevated levels of the phytol metabolites phytanic and pristanic acid in Pxmp4-/- mice pointed towards an impairment in peroxisomal α-oxidation capacity, treatment of Pxmp4-/- mice with a phytol-enriched diet did not further increase phytanic/pristanic acid levels. Finally, lipidomic analysis revealed that loss of Pxmp4 decreased hepatic levels of the alkyldiacylglycerol class of neutral ether lipids, particularly those containing polyunsaturated fatty acids. Together, our data show that while PXMP4 is not critical for overall peroxisome function under the conditions tested, it may have a role in the metabolism of (ether)lipids.
Collapse
|
6
|
Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. [PMID: 33505966 PMCID: PMC7829553 DOI: 10.3389/fcell.2020.613892] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general.
Collapse
Affiliation(s)
- Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Quantitative proteomics and phosphoproteomic analyses of mouse livers after tick-borne Babesia microti infection. Int J Parasitol 2020; 51:167-182. [PMID: 33242464 DOI: 10.1016/j.ijpara.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Babesia microti is a tick-borne protozoan parasite that infects the red blood cells of mice, humans, and other mammals. The liver tissues of BALB/c mice infected with B. microti exhibit severe injury. To further investigate the molecular mechanisms underlying liver injury and liver self-repair after B. microti infection, data-independent acquisition (DIA) quantitative proteomics was used to analyse changes in the expression and phosphorylation of proteins in liver tissues of BALB/c mice during a B. microti infection period and a recovery period. The expression of FABP1 and ACBP, which are related to fatty acid transport in the liver, was downregulated after infection with B. microti, as was the expression of Acox1, Ehhadh and Acaa1a, which are crucial rate-limiting enzymes in the process of fatty acid β oxidation. The phosphorylation levels of AMP-activated protein kinase (AMPK) and Hormone-sensitive lipase (HSL) were also downregulated. In addition, the expression of PSMB9, CTSC, and other immune-related proteins was increased, reflecting an active immune regulation mechanism in the mice. The weights of mice infected with B. microti were significantly reduced, and the phosphorylation levels of IRS-1, c-Raf, mTOR, and other proteins related to growth and development were downregulated.
Collapse
|
8
|
Exposure of human neurons to silver nanoparticles induces similar pattern of ABC transporters gene expression as differentiation: Study on proliferating and post-mitotic LUHMES cells. Mech Ageing Dev 2018; 171:7-14. [DOI: 10.1016/j.mad.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
|
9
|
Colasante C, Chen J, Ahlemeyer B, Bonilla-Martinez R, Karnati S, Baumgart-Vogt E. New insights into the distribution, protein abundance and subcellular localisation of the endogenous peroxisomal biogenesis proteins PEX3 and PEX19 in different organs and cell types of the adult mouse. PLoS One 2017; 12:e0183150. [PMID: 28817674 PMCID: PMC5560687 DOI: 10.1371/journal.pone.0183150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/31/2017] [Indexed: 11/19/2022] Open
Abstract
Peroxisomes are ubiquitous organelles mainly involved in ROS and lipid metabolism. Their abundance, protein composition and metabolic function vary depending on the cell type and adjust to different intracellular and environmental factors such as oxidative stress or nutrition. The biogenesis and proliferation of these important organelles are regulated by proteins belonging to the peroxin (PEX) family. PEX3, an integral peroxisomal membrane protein, and the cytosolic shuttling receptor PEX19 are thought to be responsible for the early steps of peroxisome biogenesis and assembly of their matrix protein import machinery. Recently, both peroxins were suggested to be also involved in the autophagy of peroxisomes (pexophagy). Despite the fact that distribution and intracellular abundance of these proteins might regulate the turnover of the peroxisomal compartment in a cell type-specific manner, a comprehensive analysis of the endogenous PEX3 and PEX19 distribution in different organs is still missing. In this study, we have therefore generated antibodies against endogenous mouse PEX3 and PEX19 and analysed their abundance and subcellular localisation in various mouse organs, tissues and cell types and compared it to the one of three commonly used peroxisomal markers (PEX14, ABCD3 and catalase). Our results revealed that the abundance of PEX3, PEX19, PEX14, ABCD3 and catalase strongly varies in the analysed organs and cell types, suggesting that peroxisome abundance, biogenesis and matrix protein import are independently regulated. We further found that in some organs, such as heart and skeletal muscle, the majority of the shuttling receptor PEX19 is bound to the peroxisomal membrane and that a strong variability exists in the cell type-specific ratio of cytosol- and peroxisome-associated PEX19. In conclusion, our results indicate that peroxisomes in various cell types are heterogeneous with regards to their matrix, membrane and biogenesis proteins.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University of Giessen, Giessen, Germany
| | - Jiangping Chen
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University of Giessen, Giessen, Germany
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University of Giessen, Giessen, Germany
| | - Rocio Bonilla-Martinez
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University of Giessen, Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University of Giessen, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
10
|
Morvay PL, Baes M, Van Veldhoven PP. Differential activities of peroxisomes along the mouse intestinal epithelium. Cell Biochem Funct 2017; 35:144-155. [PMID: 28370438 DOI: 10.1002/cbf.3255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 02/01/2023]
Abstract
The presence of peroxisomes in mammalian intestine has been revealed formerly by catalase staining combined with electron microscopy. Despite the central role of intestine in lipid uptake and the established importance of peroxisomes in different lipid-related pathways, few data are available on the physiological role of peroxisomes in intestinal metabolism, more specifically, α-, β-oxidation, and etherlipid synthesis. Hence, the peroxisomal compartment was analyzed in more detail in mouse intestine. On the basis of immunohistochemistry, the organelles are mainly confined to the epithelial cells. The expression of the classical peroxisome marker catalase was highest in the proximal part of jejunum and decreased along the tract. PEX14 showed a similar profile, but was still substantial expressed in large intestinal epithelium. Immunoblotting of epithelial cells, isolated from the different segments, showed also such gradient for some enzymes, ie, catalase, ACOX1, and D-specific multifunctional protein 2, and for the ABCD1 transporter, being high in small and low or absent in large intestine. Other peroxisomal enzymes (PHYH, HACL1, and ACAA1), the ABCD2 and ABCD3 transporters, and peroxins PEX13 and PEX14, however, did not follow this pattern, displaying rather constant signals throughout the intestinal epithelium. The small intestine displayed the highest peroxisomal β-oxidation activity and is particularly active on dicarboxylic acids. Etherlipid synthesis was high in the large intestine, and colonic cells had the highest content of plasmalogens. Overall, these data suggest that peroxisomes exert different functions according to the intestinal segment.
Collapse
Affiliation(s)
- Petruta L Morvay
- Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
11
|
Geillon F, Gondcaille C, Raas Q, Dias AMM, Pecqueur D, Truntzer C, Lucchi G, Ducoroy P, Falson P, Savary S, Trompier D. Peroxisomal ATP-binding cassette transporters form mainly tetramers. J Biol Chem 2017; 292:6965-6977. [PMID: 28258215 DOI: 10.1074/jbc.m116.772806] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
ABCD1 and its homolog ABCD2 are peroxisomal ATP-binding cassette (ABC) half-transporters of fatty acyl-CoAs with both distinct and overlapping substrate specificities. Although it is established that ABC half-transporters have at least to dimerize to generate a functional unit, functional equivalents of tetramers (i.e. dimers of full-length transporters) have also been reported. However, oligomerization of peroxisomal ABCD transporters is incompletely understood but is of potential significance because more complex oligomerization might lead to differences in substrate specificity. In this work, we have characterized the quaternary structure of the ABCD1 and ABCD2 proteins in the peroxisomal membrane. Using various biochemical approaches, we clearly demonstrate that both transporters exist as both homo- and heterotetramers, with a predominance of homotetramers. In addition to tetramers, some larger molecular ABCD assemblies were also found but represented only a minor fraction. By using quantitative co-immunoprecipitation assays coupled with tandem mass spectrometry, we identified potential binding partners of ABCD2 involved in polyunsaturated fatty-acid metabolism. Interestingly, we identified calcium ATPases as ABCD2-binding partners, suggesting a role of ABCD2 in calcium signaling. In conclusion, we have shown here that ABCD1 and its homolog ABCD2 exist mainly as homotetramers in the peroxisomal membrane.
Collapse
Affiliation(s)
| | | | | | | | - Delphine Pecqueur
- CLIPP-ICMUB, Université Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France and
| | - Caroline Truntzer
- CLIPP-ICMUB, Université Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France and
| | - Géraldine Lucchi
- CLIPP-ICMUB, Université Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France and
| | - Patrick Ducoroy
- CLIPP-ICMUB, Université Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France and
| | - Pierre Falson
- the Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, Institut de Biologie et Chimie des Protéines (IBCP), UMR5086 CNRS/Université Lyon 1, 7 Passage du Vercors, 69367 Lyon, France
| | | | | |
Collapse
|
12
|
ABC Transporter Subfamily D: Distinct Differences in Behavior between ABCD1-3 and ABCD4 in Subcellular Localization, Function, and Human Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6786245. [PMID: 27766264 PMCID: PMC5059523 DOI: 10.1155/2016/6786245] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest families of membrane-bound proteins and transport a wide variety of substrates across both extra- and intracellular membranes. They play a critical role in maintaining cellular homeostasis. To date, four ABC transporters belonging to subfamily D have been identified. ABCD1-3 and ABCD4 are localized to peroxisomes and lysosomes, respectively. ABCD1 and ABCD2 are involved in the transport of long and very long chain fatty acids (VLCFA) or their CoA-derivatives into peroxisomes with different substrate specificities, while ABCD3 is involved in the transport of branched chain acyl-CoA into peroxisomes. On the other hand, ABCD4 is deduced to take part in the transport of vitamin B12 from lysosomes into the cytosol. It is well known that the dysfunction of ABCD1 results in X-linked adrenoleukodystrophy, a severe neurodegenerative disease. Recently, it is reported that ABCD3 and ABCD4 are responsible for hepatosplenomegaly and vitamin B12 deficiency, respectively. In this review, the targeting mechanism and physiological functions of the ABCD transporters are summarized along with the related disease.
Collapse
|
13
|
Abstract
ATP-binding cassette (ABC) transporters, belonging to the family D, are expressed in peroxisomes, endoplasmic reticulum or lysosomes. ABCD transporters play a role in transport of lipids, bile acids and vitamin B12 and associate with peroxisomal disorders. ABCD1 performs transport of coenzyme A esters of very-long-chain fatty acids (VLCFA) in peroxisomes and a number of mutations in ABCD1 gene were linked to an X-linked adrenoleucodystrophy (X-ALD). The role of ABCD transporters in tumour growth has not been studied in detail, but there is some evidence that ABCDs levels differ between undifferentiated stem or tumour cells and differentiated cells suggesting a possible link to tumorigenesis. In this mini-review, we discuss the available information about the role of ABCD transporters in cancer.
Collapse
|
14
|
Berger J, Dorninger F, Forss-Petter S, Kunze M. Peroxisomes in brain development and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:934-55. [PMID: 26686055 PMCID: PMC4880039 DOI: 10.1016/j.bbamcr.2015.12.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022]
Abstract
Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann.
Collapse
Affiliation(s)
- Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Wiesinger C, Eichler FS, Berger J. The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. APPLICATION OF CLINICAL GENETICS 2015; 8:109-21. [PMID: 25999754 PMCID: PMC4427263 DOI: 10.2147/tacg.s49590] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding a peroxisomal ABC transporter. In this review, we compare estimates of incidence derived from different populations in order to provide an overview of the worldwide incidence of X-ALD. X-ALD presents with heterogeneous phenotypes ranging from adrenomyeloneuropathy (AMN) to inflammatory demyelinating cerebral ALD (CALD). A large number of different mutations has been described, providing a unique opportunity for analysis of functional domains within ABC transporters. Yet the molecular basis for the heterogeneity of clinical symptoms is still largely unresolved, as no correlation between genotype and phenotype exists in X-ALD. Beyond ABCD1, environmental triggers and other genetic factors have been suggested as modifiers of the disease course. Here, we summarize the findings of numerous reports that aimed at identifying modifier genes in X-ALD and discuss potential problems and future approaches to address this issue. Different options for prenatal diagnosis are summarized, and potential pitfalls when applying next-generation sequencing approaches are discussed. Recently, the measurement of very long-chain fatty acids in lysophosphatidylcholine for the identification of peroxisomal disorders was included in newborn screening programs.
Collapse
Affiliation(s)
- Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Florian S Eichler
- Department for Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Abcd2 is a strong modifier of the metabolic impairments in peritoneal macrophages of ABCD1-deficient mice. PLoS One 2014; 9:e108655. [PMID: 25255441 PMCID: PMC4177892 DOI: 10.1371/journal.pone.0108655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/25/2014] [Indexed: 02/08/2023] Open
Abstract
The inherited peroxisomal disorder X-linked adrenoleukodystrophy (X-ALD), associated with neurodegeneration and inflammatory cerebral demyelination, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (ALDP). ABCD1 transports CoA-esters of very long-chain fatty acids (VLCFA) into peroxisomes for degradation by β-oxidation; thus, ABCD1 deficiency results in VLCFA accumulation. The closest homologue, ABCD2 (ALDRP), when overexpressed, compensates for ABCD1 deficiency in X-ALD fibroblasts and in Abcd1-deficient mice. Microglia/macrophages have emerged as important players in the progression of neuroinflammation. Human monocytes, lacking significant expression of ABCD2, display severely impaired VLCFA metabolism in X-ALD. Here, we used thioglycollate-elicited primary mouse peritoneal macrophages (MPMΦ) from Abcd1 and Abcd2 single- and double-deficient mice to establish how these mutations affect VLCFA metabolism. By quantitative RT-PCR, Abcd2 mRNA was about half as abundant as Abcd1 mRNA in wild-type and similarly abundant in Abcd1-deficient MPMΦ. VLCFA (C26∶0) accumulated about twofold in Abcd1-deficient MPMΦ compared with wild-type controls, as measured by gas chromatography-mass spectrometry. In Abcd2-deficient macrophages VLCFA levels were normal. However, upon Abcd1/Abcd2 double-deficiency, VLCFA accumulation was markedly increased (sixfold) compared with Abcd1-deficient MPMΦ. Elovl1 mRNA, encoding the rate-limiting enzyme for elongation of VLCFA, was equally abundant across all genotypes. Peroxisomal β-oxidation of C26∶0 amounted to 62% of wild-type activity in Abcd1-deficient MPMΦ and was significantly more impaired (29% residual activity) upon Abcd1/Abcd2 double-deficiency. Single Abcd2 deficiency did not significantly compromise β-oxidation of C26∶0. Thus, the striking accumulation of VLCFA in double-deficient MPMΦ compared with single Abcd1 deficiency was due to the loss of ABCD2-mediated, compensatory transport of VLCFA into peroxisomes. We propose that moderate endogenous expression of Abcd2 in Abcd1-deficient murine macrophages prevents the severe metabolic phenotype observed in human X-ALD monocytes, which lack appreciable expression of ABCD2. This supports upregulation of ABCD2 as a therapeutic concept in X-ALD.
Collapse
|
17
|
Ferdinandusse S, Jimenez-Sanchez G, Koster J, Denis S, Van Roermund CW, Silva-Zolezzi I, Moser AB, Visser WF, Gulluoglu M, Durmaz O, Demirkol M, Waterham HR, Gökcay G, Wanders RJ, Valle D. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 2014; 24:361-70. [DOI: 10.1093/hmg/ddu448] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
18
|
Liu X, Liu J, Liang S, Schlüter A, Fourcade S, Aslibekyan S, Pujol A, Graf GA. ABCD2 alters peroxisome proliferator-activated receptor α signaling in vitro, but does not impair responses to fenofibrate therapy in a mouse model of diet-induced obesity. Mol Pharmacol 2014; 86:505-13. [PMID: 25123288 DOI: 10.1124/mol.114.092742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fenofibrate is a peroxisome proliferator-activated receptor (PPAR) α ligand that has been widely used as a lipid-lowering agent in the treatment of hypertriglyceridemia. ABCD2 (D2) is a peroxisomal long-chain acyl-CoA transporter that is highly induced by fenofibrate in the livers of mice. To determine whether D2 is a modifier of fibrate responses, wild-type and D2-deficient mice were treated with fenofibrate for 14 days. The absence of D2 altered expression of gene clusters associated with lipid metabolism, including PPARα signaling. Using 3T3-L1 adipocytes, which express high levels of D2, we confirmed that knockdown of D2 modified genomic responses to fibrate treatment. We next evaluated the impact of D2 on effects of fibrates in a mouse model of diet-induced obesity. Fenofibrate treatment opposed the development of obesity, hypertriglyceridemia, and insulin resistance. However, these effects were unaffected by D2 genotype. We concluded that D2 can modulate genomic responses to fibrates, but that these effects are not sufficiently robust to alter the effects of fibrates on diet-induced obesity phenotypes.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Jingjing Liu
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Shuang Liang
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Agatha Schlüter
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Stephane Fourcade
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Stella Aslibekyan
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Aurora Pujol
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| | - Gregory A Graf
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky (X.L., J.L., S.L., G.A.G.); Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain (A.S., S.F., A.P.); Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), Valencia, Spain (A.S., S.F., A.P.); Catalan Institution of Research and Advanced Studies, Barcelona, Spain (A.P.); and Department of Epidemiology, University of Alabama, Birmingham, Alabama (S.A.)
| |
Collapse
|
19
|
Chuang CY, Chen LY, Fu RH, Chen SM, Ho MH, Huang JM, Hsu CC, Wang CC, Chen MS, Tsai RT. Involvement of the carboxyl-terminal region of the yeast peroxisomal half ABC transporter Pxa2p in its interaction with Pxa1p and in transporter function. PLoS One 2014; 9:e104892. [PMID: 25118695 PMCID: PMC4132065 DOI: 10.1371/journal.pone.0104892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The peroxisome is a single membrane-bound organelle in eukaryotic cells involved in lipid metabolism, including β-oxidation of fatty acids. The human genetic disorder X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene (encoding ALDP, a peroxisomal half ATP-binding cassette [ABC] transporter). This disease is characterized by defective peroxisomal β-oxidation and a large accumulation of very long-chain fatty acids in brain white matter, adrenal cortex, and testis. ALDP forms a homodimer proposed to be the functional transporter, whereas the peroxisomal transporter in yeast is a heterodimer comprising two half ABC transporters, Pxa1p and Pxa2p, both orthologs of human ALDP. While the carboxyl-terminal domain of ALDP is engaged in dimerization, it remains unknown whether the same region is involved in the interaction between Pxa1p and Pxa2p. METHODS/PRINCIPAL FINDINGS Using a yeast two-hybrid assay, we found that the carboxyl-terminal region (CT) of Pxa2p, but not of Pxa1p, is required for their interaction. Further analysis indicated that the central part of the CT (designated CT2) of Pxa2p was indispensable for its interaction with the carboxyl terminally truncated Pxa1_NBD. An interaction between the CT of Pxa2p and Pxa1_NBD was not detected, but could be identified in the presence of Pxa2_NBD-CT1. A single mutation of two conserved residues (aligned with X-ALD-associated mutations at the same positions in ALDP) in the CT2 of the Pxa2_NBD-CT protein impaired its interaction with Pxa1_NBD or Pxa1_NBD-CT, resulting in a mutant protein that exhibited a proteinase K digestion profile different from that of the wild-type protein. Functional analysis of these mutant proteins on oleate plates indicated that they were defective in transporter function. CONCLUSIONS/SIGNIFICANCE The CT of Pxa2p is involved in its interaction with Pxa1p and in transporter function. This concept may be applied to human ALDP studies, helping to establish the pathological mechanism for CT-related X-ALD disease.
Collapse
Affiliation(s)
- Cheng-Yi Chuang
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ling-Yun Chen
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Shih-Ming Chen
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Hua Ho
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jie-Mau Huang
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Chi Hsu
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Cheng Wang
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Meng-Shian Chen
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Rong-Tzong Tsai
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
20
|
Geillon F, Gondcaille C, Charbonnier S, Van Roermund CW, Lopez TE, Dias AMM, Pais de Barros JP, Arnould C, Wanders RJ, Trompier D, Savary S. Structure-function analysis of peroxisomal ATP-binding cassette transporters using chimeric dimers. J Biol Chem 2014; 289:24511-20. [PMID: 25043761 DOI: 10.1074/jbc.m114.575506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABCD1 and ABCD2 are two closely related ATP-binding cassette half-transporters predicted to homodimerize and form peroxisomal importers for fatty acyl-CoAs. Available evidence has shown that ABCD1 and ABCD2 display a distinct but overlapping substrate specificity, although much remains to be learned in this respect as well as in their capability to form functional heterodimers. Using a cell model expressing an ABCD2-EGFP fusion protein, we first demonstrated by proximity ligation assay and co-immunoprecipitation assay that ABCD1 interacts with ABCD2. Next, we tested in the pxa1/pxa2Δ yeast mutant the functionality of ABCD1/ABCD2 dimers by expressing chimeric proteins mimicking homo- or heterodimers. For further structure-function analysis of ABCD1/ABCD2 dimers, we expressed chimeric dimers fused to enhanced GFP in human skin fibroblasts of X-linked adrenoleukodystrophy patients. These cells are devoid of ABCD1 and accumulate very long-chain fatty acids (C26:0 and C26:1). We checked that the chimeric proteins were correctly expressed and targeted to the peroxisomes. Very long-chain fatty acid levels were partially restored in transfected X-linked adrenoleukodystrophy fibroblasts regardless of the chimeric construct used, thus demonstrating functionality of both homo- and heterodimers. Interestingly, the level of C24:6 n-3, the immediate precursor of docosahexaenoic acid, was decreased in cells expressing chimeric proteins containing at least one ABCD2 moiety. Our data demonstrate for the first time that both homo- and heterodimers of ABCD1 and ABCD2 are functionally active. Interestingly, the role of ABCD2 (in homo- and heterodimeric forms) in the metabolism of polyunsaturated fatty acids is clearly evidenced, and the chimeric dimers provide a novel tool to study substrate specificity of peroxisomal ATP-binding cassette transporters.
Collapse
Affiliation(s)
- Flore Geillon
- From the Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd. Gabriel, 21000 Dijon, France
| | - Catherine Gondcaille
- From the Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd. Gabriel, 21000 Dijon, France
| | - Soëli Charbonnier
- From the Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd. Gabriel, 21000 Dijon, France
| | - Carlo W Van Roermund
- the Laboratory of Genetic Metabolic Diseases, Room F0-226, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Tatiana E Lopez
- From the Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd. Gabriel, 21000 Dijon, France
| | - Alexandre M M Dias
- From the Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd. Gabriel, 21000 Dijon, France
| | | | - Christine Arnould
- INRA, UMR1347 Agroécologie, ERL CNRS6300, Plateforme DImaCell, Centre de Microscopie INRA/Université de Bourgogne, BP86510, F-21000 Dijon, France
| | - Ronald J Wanders
- the Laboratory of Genetic Metabolic Diseases, Room F0-226, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Doriane Trompier
- From the Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd. Gabriel, 21000 Dijon, France
| | - Stéphane Savary
- From the Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd. Gabriel, 21000 Dijon, France,
| |
Collapse
|
21
|
van Roermund CW, IJlst L, Wagemans T, Wanders RJ, Waterham HR. A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:563-8. [DOI: 10.1016/j.bbalip.2013.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/21/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
22
|
Weber FD, Wiesinger C, Forss-Petter S, Regelsberger G, Einwich A, Weber WHA, Köhler W, Stockinger H, Berger J. X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism is severely impaired in monocytes but not in lymphocytes. Hum Mol Genet 2013; 23:2542-50. [PMID: 24363066 PMCID: PMC3990157 DOI: 10.1093/hmg/ddt645] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a fatal neurodegenerative disease caused by mutations in the ABCD1 gene, encoding a member of the peroxisomal ABC transporter family. The ABCD1 protein transports CoA-activated very long-chain fatty acids (VLCFAs) into peroxisomes for degradation via β-oxidation. In the severest form, X-ALD patients suffer from inflammatory demyelination of the brain. As the extent of the metabolic defect in the main immune cells is unknown, we explored their phenotypes concerning mRNA expression pattern of the three peroxisomal ABC transporters, VLCFA accumulation and peroxisomal β-oxidation. In controls, ABCD1 expression was high in monocytes, intermediate in B cells and low in T cells; ABCD2 expression was extremely low in monocytes, intermediate in B cells and highest in T cells; ABCD3 mRNA was equally distributed. In X-ALD patients, the expression patterns remained unaltered; accordingly, monocytes, which lack compensatory VLCFA transport by ABCD2, displayed the severest biochemical phenotype with a 6-fold accumulation of C26:0 and a striking 70% reduction in peroxisomal β-oxidation activity. In contrast, VLCFA metabolism was close to control values in B cells and T cells, supporting the hypothesis that sufficient ABCD2 is present to compensate for ABCD1 deficiency. Thus, the vulnerability of the main immune cell types is highly variable in X-ALD. Based on these results, we propose that in X-ALD the halt of inflammation after allogeneic hematopoietic stem cell transplantation relies particularly on the replacement of the monocyte lineage. Additionally, these findings support the concept that ABCD2 is a target for pharmacological induction as an alternative therapeutic strategy.
Collapse
Affiliation(s)
- Franziska D Weber
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna A-1090, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Berger J, Forss-Petter S, Eichler FS. Pathophysiology of X-linked adrenoleukodystrophy. Biochimie 2013; 98:135-42. [PMID: 24316281 PMCID: PMC3988840 DOI: 10.1016/j.biochi.2013.11.023] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/22/2013] [Indexed: 12/26/2022]
Abstract
Currently the molecular basis for the clinical heterogeneity of X-linked adrenoleukodystrophy (X-ALD) is poorly understood. The genetic bases for all different phenotypic variants of X-ALD are mutations in the gene encoding the peroxisomal ATP-binding cassette (ABC) transporter, ABCD1 (formerly adrenoleukodystrophy protein, ALDP). ABCD1 transports CoA-activated very long-chain fatty acids from the cytosol into the peroxisome for degradation. The phenotypic variability is remarkable ranging from cerebral inflammatory demyelination of childhood onset, leading to death within a few years, to adults remaining pre-symptomatic through more than five decades. There is no general genotype–phenotype correlation in X-ALD. The default manifestation of mutations in ABCD1 is adrenomyeloneuropathy, a slowly progressive dying-back axonopathy affecting both ascending and descending spinal cord tracts as well as in some cases, a peripheral neuropathy. In about 60% of male X-ALD patients, either in childhood (35–40%) or in adulthood (20%), an initial, clinically silent, myelin destabilization results in conversion to a devastating, rapidly progressive form of cerebral inflammatory demyelination. Here, ABCD1 remains a susceptibility gene, necessary but not sufficient for inflammatory demyelination to occur. Although the accumulation of very long-chain fatty acids appears to be essential for the pathomechanism of all phenotypes, the molecular mechanisms underlying these phenotypes are fundamentally different. Cell autonomous processes such as oxidative stress and energy shortage in axons as well as non-cell autonomous processes involving axon–glial interactions seem pertinent to the dying-back axonopathy. Various dynamic mechanisms may underlie the initiation of inflammation, the altered immune reactivity, the propagation of inflammation, as well as the mechanisms leading to the arrest of inflammation after hematopoietic stem cell transplantation. An improved understanding of the molecular mechanisms involved in these events is required for the development of urgently needed therapeutics. Adrenomyeloneuropathy (AMN) is proposed to be the core syndrome of X-ALD. The cerebral inflammatory demyelinating form of X-ALD is independent of AMN. The same genetic basis but fundamentally different pathomechanisms lead to AMN and cerebral ALD. Genetic, epigenetic and environmental factors modulate onset and severity of AMN and cerebral ALD.
Collapse
Affiliation(s)
- J Berger
- Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria.
| | - S Forss-Petter
- Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - F S Eichler
- Department for Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street ACC 708, Boston, MA 02114, USA
| |
Collapse
|
24
|
The biogenesis protein PEX14 is an optimal marker for the identification and localization of peroxisomes in different cell types, tissues, and species in morphological studies. Histochem Cell Biol 2013; 140:423-42. [DOI: 10.1007/s00418-013-1133-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 01/09/2023]
|
25
|
Singh J, Khan M, Pujol A, Baarine M, Singh I. Histone deacetylase inhibitor upregulates peroxisomal fatty acid oxidation and inhibits apoptotic cell death in abcd1-deficient glial cells. PLoS One 2013; 8:e70712. [PMID: 23923017 PMCID: PMC3724778 DOI: 10.1371/journal.pone.0070712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 06/26/2013] [Indexed: 11/22/2022] Open
Abstract
In X-ALD, mutation/deletion of ALD gene (ABCD1) and the resultant very long chain fatty acid (VLCFA) derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD). The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal β-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs) (1 and 3) in both cell types. However, higher induction of ELOVL's in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of anti-apoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL) and cell survival (phospho-Erk1/2) proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid) leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mushfiquddin Khan
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, Bellvitge Institute for Biomedical Research (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Mauhamad Baarine
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Inderjit Singh
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Wiesinger C, Kunze M, Regelsberger G, Forss-Petter S, Berger J. Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem 2013; 288:19269-79. [PMID: 23671276 DOI: 10.1074/jbc.m112.445445] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.
Collapse
Affiliation(s)
- Christoph Wiesinger
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
27
|
Singh J, Khan M, Singh I. Caffeic acid phenethyl ester induces adrenoleukodystrophy (Abcd2) gene in human X-ALD fibroblasts and inhibits the proinflammatory response in Abcd1/2 silenced mouse primary astrocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:747-58. [PMID: 23318275 DOI: 10.1016/j.bbalip.2013.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene. Accumulation of very long chain fatty acids (VLCFA) that have been attributed to reduced peroxisomal VLCFA β-oxidation activity are the hallmark of the disease. Overexpression of ABCD2 gene, the closest homolog of ABCD1, has been shown to compensate for ABCD1, thus correcting the VLCFA derangement. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of caffeic acid phenethyl ester (CAPE) in inducing the expression of ABCD2 (ALDRP), and normalizing the peroxisomal β-oxidation as well as the levels of saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1), was also reduced by CAPE treatment. Importantly, CAPE upregulated Abcd2 expression and peroxisomal β-oxidation and lowered the VLCFA levels in Abcd1-deficient U87 astrocytes and B12 oligodendrocytes. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes we examined the effects of CAPE in VLCFA-induced inflammatory response. CAPE treatment decreased the inflammatory response as the expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. The observations indicate that CAPE corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be a potential drug candidate to be tested for X-ALD therapy in humans.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
28
|
Geillon F, Trompier D, Gondcaille C, Lizard G, Savary S. Transporteurs ABC peroxysomaux et adrénoleucodystrophie liée au chromosome X. Med Sci (Paris) 2012; 28:1087-94. [DOI: 10.1051/medsci/20122812019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Engelen M, Schackmann MJA, Ofman R, Sanders RJ, Dijkstra IME, Houten SM, Fourcade S, Pujol A, Poll-The BT, Wanders RJA, Kemp S. Bezafibrate lowers very long-chain fatty acids in X-linked adrenoleukodystrophy fibroblasts by inhibiting fatty acid elongation. J Inherit Metab Dis 2012; 35:1137-45. [PMID: 22447153 PMCID: PMC3470694 DOI: 10.1007/s10545-012-9471-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/14/2012] [Accepted: 02/22/2012] [Indexed: 12/31/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding ALDP, an ATP-binding-cassette (ABC) transporter located in the peroxisomal membrane. ALDP deficiency results in impaired peroxisomal β-oxidation and the subsequent accumulation of very long-chain fatty acids (VLCFA; > C22:0) in plasma and tissues. VLCFA are primarily derived from endogenous synthesis by ELOVL1. Therefore inhibiting this enzyme might constitute a feasible therapeutic approach. In this paper we demonstrate that bezafibrate, a PPAR pan agonist used for the treatment of patients with hyperlipidaemia reduces VLCFA levels in X-ALD fibroblasts. Surprisingly, the VLCFA-lowering effect was independent of PPAR activation and not caused by the increase in either mitochondrial or peroxisomal fatty acid β-oxidation capacity. In fact, our results show that bezafibrate reduces VLCFA synthesis by decreasing the synthesis of C26:0 through a direct inhibition of fatty acid elongation activity. Taken together, our data indicate bezafibrate as a potential pharmacotherapeutic treatment for X-ALD. A clinical trial is currently ongoing to evaluate the effect in patients with X-ALD.
Collapse
Affiliation(s)
- Marc Engelen
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Neurology/ Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin J. A. Schackmann
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob Ofman
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Robert-Jan Sanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge M. E. Dijkstra
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander M. Houten
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, The Bellvitge Institute of Biomedical Research (IDIBELL), Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, The Bellvitge Institute of Biomedical Research (IDIBELL), Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | - Bwee Tien Poll-The
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Neurology/ Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J. A. Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Kemp
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Neurology/ Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Chemistry and Pediatric Neurology, Laboratory Genetic Metabolic Diseases, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
30
|
Nakajima T, Kamijo Y, Yuzhe H, Kimura T, Tanaka N, Sugiyama E, Nakamura K, Kyogashima M, Hara A, Aoyama T. Peroxisome proliferator-activated receptor α mediates enhancement of gene expression of cerebroside sulfotransferase in several murine organs. Glycoconj J 2012; 30:553-60. [PMID: 23065187 DOI: 10.1007/s10719-012-9454-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 12/28/2022]
Abstract
Sulfatides, 3-O-sulfogalactosylceramides, are known to have multifunctional properties. These molecules are distributed in various tissues of mammals, where they are synthesized from galactosylceramides by sulfation at C3 of the galactosyl residue. Although this reaction is specifically catalyzed by cerebroside sulfotransferase (CST), the mechanisms underlying the transcriptional regulation of this enzyme are not understood. With respect to this issue, we previously found potential sequences of peroxisome proliferator-activated receptor (PPAR) response element on upstream regions of the mouse CST gene and presumed the possible regulation by the nuclear receptor PPARα. To confirm this hypothesis, we treated wild-type and Ppara-null mice with the specific PPARα agonist fenofibrate and examined the amounts of sulfatides and CST gene expression in various tissues. Fenofibrate treatment increased sulfatides and CST mRNA levels in the kidney, heart, liver, and small intestine in a PPARα-dependent manner. However, these effects of fenofibrate were absent in the brain or colon. Fenofibrate treatment did not affect the mRNA level of arylsulfatase A, which is the key enzyme for catalyzing desulfation of sulfatides, in any of these six tissues. Analyses of the DNA-binding activity and conventional gene expression targets of PPARα has demonstrated that fenofibrate treatment activated PPARα in the kidney, heart, liver, and small intestine but did not affect the brain or colon. These findings suggest that PPARα activation induces CST gene expression and enhances sulfatide synthesis in mice, which suggests that PPARα is a possible transcriptional regulator for the mouse CST gene.
Collapse
Affiliation(s)
- Takero Nakajima
- Department of Metabolic Regulation, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu J, Liang S, Liu X, Brown JA, Newman KE, Sunkara M, Morris AJ, Bhatnagar S, Li X, Pujol A, Graf GA. The absence of ABCD2 sensitizes mice to disruptions in lipid metabolism by dietary erucic acid. J Lipid Res 2012; 53:1071-9. [PMID: 22493092 PMCID: PMC3351814 DOI: 10.1194/jlr.m022160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/12/2012] [Indexed: 01/10/2023] Open
Abstract
ABCD2 (D2) is a peroxisomal transporter that is highly abundant in adipose tissue and promotes the oxidation of long-chain MUFA. Erucic acid (EA, 22:1ω9) reduces very long chain saturated fatty acids in patients with X-linked adrenoleukodystrophy but promotes dyslipidemia and dilated cardiomyopathy in rats. To determine the role of D2 in the metabolism of EA, we challenged wild-type and D2 deficient mice (D2 KO) with an enriched EA diet. In D2 KO mice, dietary EA resulted in the rapid expansion of adipose tissue, adipocyte hypertrophy, hepatic steatosis, and the loss of glycemic control. However, D2 had no impact on the development of obesity phenotypes in two models of diet-induced obesity. Although there was a significant increase in EA in liver of D2 KO mice, it constituted less than 2% of all fatty acids. Metabolites of EA (20:1, 18:1, and 16:1) were elevated, particularly 18:1, which accounted for 50% of all fatty acids. These data indicate that the failure to metabolize EA in adipose results in hepatic metabolism of EA, disruption of the fatty acid profile, and the development of obesity and reveal an essential role for D2 in the protection from dietary EA.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Shuang Liang
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Xiaoxi Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - J. Andrew Brown
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Kylie E. Newman
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Manjula Sunkara
- Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Andrew J. Morris
- Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Saloni Bhatnagar
- Kentucky Pediatric Research Institute, University of Kentucky, Lexington, KY
| | - Xiangan Li
- Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Kentucky Pediatric Research Institute, University of Kentucky, Lexington, KY
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory and Institut de Neuropatologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain, and Center for Biomedical Research on Rare Diseases (CIBERER), Spain
| | - Gregory A. Graf
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
- Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
32
|
Kemp S, Theodoulou FL, Wanders RJA. Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J Pharmacol 2012; 164:1753-66. [PMID: 21488864 DOI: 10.1111/j.1476-5381.2011.01435.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peroxisomes are indispensable organelles in higher eukaryotes. They are essential for a number of important metabolic pathways, including fatty acid α- and β-oxidation, and biosynthesis of etherphospholipids and bile acids. However, the peroxisomal membrane forms an impermeable barrier to these metabolites. Therefore, peroxisomes need specific transporter proteins to transfer these metabolites across their membranes. The mammalian peroxisomal membrane harbours three ATP-binding cassette (ABC) transporters. In recent years, significant progress has been made in unravelling the functions of these ABC transporters. There is ample evidence that they are involved in the transport of very long-chain fatty acids, pristanic acid, di- and trihydroxycholestanoic acid, dicarboxylic acids and tetracosahexaenoic acid (C24:6ω3). Surprisingly, only one disease is associated with a deficiency of a peroxisomal ABC transporter. Mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein are the cause for X-linked adrenoleukodystrophy, an inherited metabolic storage disorder. This review describes the current state of knowledge on the mammalian peroxisomal ABC transporters with a particular focus on their function in metabolite transport.
Collapse
Affiliation(s)
- Stephan Kemp
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | |
Collapse
|
33
|
Wanders RJA, Komen J, Ferdinandusse S. Phytanic acid metabolism in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:498-507. [PMID: 21683154 DOI: 10.1016/j.bbalip.2011.06.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which cannot be beta-oxidized due to the presence of the first methyl group at the 3-position. Instead, phytanic acid undergoes alpha-oxidation to produce pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) plus CO(2). Pristanic acid is a 2-methyl branched-chain fatty acid which can undergo beta-oxidation via sequential cycles of beta-oxidation in peroxisomes and mitochondria. The mechanism of alpha-oxidation has been resolved in recent years as reviewed in this paper, although some of the individual enzymatic steps remain to be identified. Furthermore, much has been learned in recent years about the permeability properties of the peroxisomal membrane with important consequences for the alpha-oxidation process. Finally, we present new data on the omega-oxidation of phytanic acid making use of a recently generated mouse model for Refsum disease in which the gene encoding phytanoyl-CoA 2-hydroxylase has been disrupted.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
34
|
Genin EC, Geillon F, Gondcaille C, Athias A, Gambert P, Trompier D, Savary S. Substrate specificity overlap and interaction between adrenoleukodystrophy protein (ALDP/ABCD1) and adrenoleukodystrophy-related protein (ALDRP/ABCD2). J Biol Chem 2011; 286:8075-8084. [PMID: 21209459 DOI: 10.1074/jbc.m110.211912] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder caused by mutations in the ABCD1 gene, which encodes a peroxisomal member of the ATP-binding cassette (ABC) transporter subfamily D called ALDP. ALDP is supposed to function as a homodimer allowing the entry of CoA-esters of very-long chain fatty acids (VLCFA) into the peroxisome, the unique site of their β-oxidation. ALDP deficiency can be corrected by overexpression of ALDRP, its closest homolog. However, the exact nature of the substrates transported by ALDRP and its relationships with ALDP still remain unclear. To gain insight into the function of ALDRP, we used cell models allowing the induction in a dose-dependent manner of a wild type or a mutated non-functional ALDRP-EGFP fusion protein. We explored the consequences of the changes of ALDRP expression levels on the fatty acid content (saturated, monounsaturated, and polyunsaturated fatty acids) in phospholipids as well as on the levels of β-oxidation of 3 suspected substrates: C26:0, C24:0, and C22:6n-3 (DHA). We found an inverse correlation between the fatty acid content of saturated (C26:0, C24:0) and monounsaturated (C26:1, C24:1) VLCFA and the expression level of ALDRP. Interestingly, we obtained a transdominant-negative effect of the inactive ALDRP-EGFP on ALDP function. This effect is due to a physical interaction between ALDRP and ALDP that we evidenced by proximity ligation assays and coimmunoprecipitation. Finally, the β-oxidation assays demonstrate a role of ALDRP in the metabolism of saturated VLCFA (redundant with that of ALDP) but also a specific involvement of ALDRP in the metabolism of DHA.
Collapse
Affiliation(s)
- Emmanuelle C Genin
- From the INSERM, UMR866, Centre de Recherche Lipides, Nutrition, Cancer, Dijon F-21000,; the Université de Bourgogne, Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), GDRCNRS 2583, 6 Bd Gabriel, Dijon F-21000, and
| | - Flore Geillon
- From the INSERM, UMR866, Centre de Recherche Lipides, Nutrition, Cancer, Dijon F-21000,; the Université de Bourgogne, Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), GDRCNRS 2583, 6 Bd Gabriel, Dijon F-21000, and
| | - Catherine Gondcaille
- From the INSERM, UMR866, Centre de Recherche Lipides, Nutrition, Cancer, Dijon F-21000,; the Université de Bourgogne, Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), GDRCNRS 2583, 6 Bd Gabriel, Dijon F-21000, and
| | - Anne Athias
- Plateforme de Lipidomique-IFR100, Hôpital du Bocage, Dijon F-21000, France
| | - Philippe Gambert
- Plateforme de Lipidomique-IFR100, Hôpital du Bocage, Dijon F-21000, France
| | - Doriane Trompier
- From the INSERM, UMR866, Centre de Recherche Lipides, Nutrition, Cancer, Dijon F-21000,; the Université de Bourgogne, Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), GDRCNRS 2583, 6 Bd Gabriel, Dijon F-21000, and
| | - Stéphane Savary
- From the INSERM, UMR866, Centre de Recherche Lipides, Nutrition, Cancer, Dijon F-21000,; the Université de Bourgogne, Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), GDRCNRS 2583, 6 Bd Gabriel, Dijon F-21000, and.
| |
Collapse
|
35
|
Rembacz KP, Woudenberg J, Hoekstra M, Jonkers EZ, van den Heuvel FAJ, Buist-Homan M, Woudenberg-Vrenken TE, Rohacova J, Marin ML, Miranda MA, Moshage H, Stellaard F, Faber KN. Unconjugated bile salts shuttle through hepatocyte peroxisomes for taurine conjugation. Hepatology 2010; 52:2167-76. [PMID: 21049545 DOI: 10.1002/hep.23954] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 08/23/2010] [Indexed: 12/12/2022]
Abstract
UNLABELLED Bile acid-CoA:amino acid N-acyltransferase (BAAT) conjugates bile salts to glycine or taurine, which is the final step in bile salt biosynthesis. In addition, BAAT is required for reconjugation of bile salts in the enterohepatic circulation. Recently, we showed that BAAT is a peroxisomal protein, implying shuttling of bile salts through peroxisomes for reconjugation. However, the subcellular location of BAAT remains a topic of debate. The aim of this study was to obtain direct proof for reconjugation of bile salts in peroxisomes. Primary rat hepatocytes were incubated with deuterium-labeled cholic acid (D(4)CA). Over time, media and cells were collected and the levels of D(4)CA, D(4)-tauro-CA (D(4)TCA), and D(4)-glyco-CA (D(4)GCA) were quantified by liquid chromatography-tandem mass spectrometry (LC/MS/MS). Subcellular accumulation of D(4)-labeled bile salts was analyzed by digitonin permeabilization assays and subcellular fractionation experiments. Within 24 hours, cultured rat hepatocytes efficiently (>90%) converted and secreted 100 μM D(4)CA to D(4)TCA and D(4)GCA. The relative amounts of D(4)TCA and D(4)GCA produced were dependent on the presence of glycine or taurine in the medium. Treatment of D(4)CA-exposed hepatocytes with 30-150 μg/mL digitonin led to the complete release of D(4)CA, D(4)GCA, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (cytosolic marker). Full release of D(4)TCA, catalase, and BAAT was only observed at 500 μg/mL digitonin, indicating the presence of D(4)TCA in membrane-enclosed organelles. D(4)TCA was detected in fractions of purified peroxisomes, which did not contain D(4)CA and D(4)GCA. CONCLUSION We established a novel assay to study conjugation and intra- and transcellular transport of bile salts. Using this assay, we show that cholic acid shuttles through peroxisomes for taurine-conjugation.
Collapse
Affiliation(s)
- Krzysztof P Rembacz
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Berger J, Pujol A, Aubourg P, Forss-Petter S. Current and future pharmacological treatment strategies in X-linked adrenoleukodystrophy. Brain Pathol 2010; 20:845-56. [PMID: 20626746 DOI: 10.1111/j.1750-3639.2010.00393.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the ABCD1 gene cause the clinical spectrum of the neurometabolic disorder X-linked adrenoleukodystrophy/adrenomyeloneuropathy (X-ALD/AMN). Currently, the most efficient therapeutic opportunity for patients with the cerebral form of X-ALD is hematopoietic stem cell transplantation and possibly gene therapy of autologous hematopoietic stem cells. Both treatments, however, are only accessible to a subset of X-ALD patients, mainly because of the lack of markers that can predict the onset of cerebral demyelination. Moreover, for female or male X-ALD patients with AMN, currently only unsatisfying therapeutic opportunities are available. Thus, this review focuses on current and urgently needed future pharmacological therapies. The treatment of adrenal and gonadal insufficiency is well established, whereas applications of immunomodulatory and immunosuppressive drugs have failed to prevent progression of cerebral neuroinflammation. The use of Lorenzo's oil and the inefficacy of lovastatin to normalize very-long-chain fatty acids in clinical trials as well as currently experimental and therefore possible future therapeutic strategies are reviewed. The latter include pharmacological gene therapy mediated by targeted upregulation of ABCD2, the closest homolog of ABCD1, antioxidative drug treatment, small molecule histone deacetylase inhibitors such as butyrates and valproic acid, and other neuroprotective attempts.
Collapse
Affiliation(s)
- Johannes Berger
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
37
|
Woudenberg J, Rembacz KP, Hoekstra M, Pellicoro A, van den Heuvel FAJ, Heegsma J, van Ijzendoorn SCD, Holzinger A, Imanaka T, Moshage H, Faber KN. Lipid rafts are essential for peroxisome biogenesis in HepG2 cells. Hepatology 2010; 52:623-33. [PMID: 20683960 DOI: 10.1002/hep.23684] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED Peroxisomes are particularly abundant in the liver and are involved in bile salt synthesis and fatty acid metabolism. Peroxisomal membrane proteins (PMPs) are required for peroxisome biogenesis [e.g., the interacting peroxisomal biogenesis factors Pex13p and Pex14p] and its metabolic function [e.g., the adenosine triphosphate-binding cassette transporters adrenoleukodystrophy protein (ALDP) and PMP70]. Impaired function of PMPs is the underlying cause of Zellweger syndrome and X-linked adrenoleukodystrophy. Here we studied for the first time the putative association of PMPs with cholesterol-enriched lipid rafts and their function in peroxisome biogenesis. Lipid rafts were isolated from Triton X-100-lysed or Lubrol WX-lysed HepG2 cells and analyzed for the presence of various PMPs by western blotting. Lovastatin and methyl-beta-cyclodextrin were used to deplete cholesterol and disrupt lipid rafts in HepG2 cells, and this was followed by immunofluorescence microscopy to determine the subcellular location of catalase and PMPs. Cycloheximide was used to inhibit protein synthesis. Green fluorescent protein-tagged fragments of PMP70 and ALDP were analyzed for their lipid raft association. PMP70 and Pex14p were associated with Triton X-100-resistant rafts, ALDP was associated with Lubrol WX-resistant rafts, and Pex13p was not lipid raft-associated in HepG2 cells. The minimal peroxisomal targeting signals in ALDP and PMP70 were not sufficient for lipid raft association. Cholesterol depletion led to dissociation of PMPs from lipid rafts and impaired sorting of newly synthesized catalase and ALDP but not Pex14p and PMP70. Repletion of cholesterol to these cells efficiently reestablished the peroxisomal sorting of catalase but not ALDP. CONCLUSION Human PMPs are differentially associated with lipid rafts independently of the protein homology and/or their functional interaction. Cholesterol is required for peroxisomal lipid raft assembly and peroxisome biogenesis.
Collapse
Affiliation(s)
- Jannes Woudenberg
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu J, Sabeva NS, Bhatnagar S, Li XA, Pujol A, Graf GA. ABCD2 is abundant in adipose tissue and opposes the accumulation of dietary erucic acid (C22:1) in fat. J Lipid Res 2010; 51:162-8. [PMID: 19556607 DOI: 10.1194/jlr.m900237-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATP binding cassette transporter, ABCD2 (D2), is a peroxisomal protein whose mRNA has been detected in the adrenal, brain, liver, and fat. Although the role of this transporter in neural tissues has been studied, its function in adipose tissue remains unexplored. The level of immunoreactive D2 in epididymal fat is >50-fold of that found in brain or adrenal. D2 is highly enriched in adipocytes and is upregulated during adipogenesis but is not essential for adipocyte differentiation or lipid accumulation in day 13.5 mouse embryonic fibroblasts isolated from D2-deficient (D2(-/-)) mice. Although no differences were appreciated in differentiation percentage, total lipid accumulation was greater in D2(-/-) adipocytes compared with the wild type. These results were consistent with in vivo observations in which no significant differences in adiposity or adipocyte diameter between wild-type and D2(-/-) mice were observed. D2(-/-) adipose tissue showed an increase in the abundance of 20:1 and 22:1 fatty acids. When mice were challenged with a diet enriched in erucic acid (22:1), this lipid accumulated in the adipose tissue in a gene-dosage-dependent manner. In conclusion, D2 is a sterol regulatory element binding protein target gene that is highly abundant in fat and opposes the accumulation of dietary lipids generally absent from the triglyceride storage pool within adipose tissue.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Pharmaceutical Sciences and Cardiovascular Research Center, Lexington, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
39
|
Singh I, Singh AK, Contreras MA. Peroxisomal dysfunction in inflammatory childhood white matter disorders: an unexpected contributor to neuropathology. J Child Neurol 2009; 24:1147-57. [PMID: 19605772 PMCID: PMC3077730 DOI: 10.1177/0883073809338327] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The peroxisome, an ubiquitous subcellular organelle, plays an important function in cellular metabolism, and its importance for human health is underscored by the identification of fatal disorders caused by genetic abnormalities. Recent findings indicate that peroxisomal dysfunction is not only restricted to inherited peroxisomal diseases but also to disease processes associated with generation of inflammatory mediators that downregulate cellular peroxisomal homeostasis. Evidence indicates that leukodystrophies (i.e. X-linked adrenoleukodystrophy, globoid cell leukodystrophy, and periventricular leukomalacia) may share common denominators in the development and progression of the inflammatory process and thus in the dysfunctions of peroxisomes. Dysfunctions of peroxisomes may therefore contribute in part to white matter disease and to the mental and physical disabilities that develop in patients affected by these diseases.
Collapse
Affiliation(s)
- Inderjit Singh
- Department of Pediatrics, Division of Developmental Neurogenetics, Charles Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
40
|
70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins. Exp Cell Res 2009; 315:190-205. [DOI: 10.1016/j.yexcr.2008.10.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/01/2008] [Accepted: 10/23/2008] [Indexed: 11/22/2022]
|
41
|
Semmler A, Köhler W, Jung HH, Weller M, Linnebank M. Therapy of X-linked adrenoleukodystrophy. Expert Rev Neurother 2008; 8:1367-79. [PMID: 18759549 DOI: 10.1586/14737175.8.9.1367] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD; OMIM #300100) is caused by defects of the ABCD1 gene on chromosome Xq28, resulting in an impairment of peroxisomal beta-oxidation and the accumulation of saturated very long chain fatty acids (VLCFAs). Primary manifestations occur in the CNS, the adrenal cortex and the testes' Leydig cells. The clinical presentation shows a marked variability which is not explained by the different X-ALD genotypes. Phenotypes range from rapidly progressive cerebral disease with childhood (childhood cerebral ALD [CCALD]) or adulthood (adult cerebral ALD [ACALD]) onset leading to death within a few years, over adult-onset adrenomyeloneuropathy (AMN) with or without focal CNS demyelination, AMN converting into a rapidly progressive, cerebral demyelinating phenotype resembling CCALD, to slow disease progression over decades, or adrenal insufficiency only. Approximately 50% of female heterozygotes develop moderate spastic paresis resembling the AMN phenotype. This review focuses on current experiences with different therapeutic approaches. Lorenzo's oil did not prove to be effective in cerebral inflammatory disease variants, but asymptomatic patients, and speculatively AMN variants without cerebral involvement, as well as female carriers may benefit from early intake of oleic and erucic acids in addition to VLCFA restriction. Hormone-replacement therapy is necessary in all patients with adrenal insufficiency. Hematopoietic stem cell transplantation has been reported to be effective in presymptomatic or early symptomatic CCALD, and may well also be a final therapeutic option in early ACALD patients. Early detection of mutation carriers and timely initiation of therapy is important for the effectiveness of all therapeutic efforts. Gene therapy of endogenous hematopoietic stem cells, pharmacological upregulation of other genes encoding proteins involved in peroxisomal beta-oxidation, reduction of oxidative stress, and possibly lovastatin are candidates for future X-ALD therapies.
Collapse
Affiliation(s)
- Alexander Semmler
- University Hospital Zürich, Department of Neurology, Frauenklinikstr. 26, CH-8091 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Weinhofer I, Kunze M, Rampler H, Forss-Petter S, Samarut J, Plateroti M, Berger J. Distinct modulatory roles for thyroid hormone receptors TRα and TRβ in SREBP1-activated ABCD2 expression. Eur J Cell Biol 2008; 87:933-45. [DOI: 10.1016/j.ejcb.2008.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/18/2008] [Accepted: 08/20/2008] [Indexed: 01/23/2023] Open
|
43
|
Maier EM, Mayerhofer PU, Asheuer M, Köhler W, Rothe M, Muntau AC, Roscher AA, Holzinger A, Aubourg P, Berger J. X-linked adrenoleukodystrophy phenotype is independent of ABCD2 genotype. Biochem Biophys Res Commun 2008; 377:176-80. [PMID: 18834860 DOI: 10.1016/j.bbrc.2008.09.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/22/2008] [Indexed: 01/31/2023]
Abstract
Strikingly variable clinical phenotypes can be found in X-linked adrenoleukodystrophy (X-ALD) even with the same ABCD1 mutation. ABCD2 is the closest homolog to ABCD1. Since ABCD2 overexpression complements the loss of ABCD1 in vivo and in vitro, we have investigated the possible role of the ABCD2 gene locus as determinant of X-ALD phenotypes. Sequence and segregation analysis of the ABCD2 gene, in a large X-ALD family with different phenotypes disclosed that the identical ABCD2 alleles were inherited in brothers affected by mild (noncerebral) versus severe (childhood cerebral) X-ALD phenotypes. Moreover, two independent association studies of ABCD2 polymorphisms and clinical phenotypes showed an even allele distribution in different X-ALD phenotypes and controls. Based on these findings ABCD2 can be excluded as a major modifier locus for clinical diversity in X-ALD. These findings are of particular importance for the attempt of pharmacological induction of ABCD2 as a possible therapeutic approach in X-ALD.
Collapse
Affiliation(s)
- Esther M Maier
- Department of Biochemical Genetics and Molecular Biology, Dr von Hauner Children's Hospital, Research Center, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Leclercq S, Skrzypski J, Courvoisier A, Gondcaille C, Bonnetain F, André A, Chardigny JM, Bellenger S, Bellenger J, Narce M, Savary S. Effect of dietary polyunsaturated fatty acids on the expression of peroxisomal ABC transporters. Biochimie 2008; 90:1602-7. [PMID: 18585430 DOI: 10.1016/j.biochi.2008.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 05/29/2008] [Indexed: 11/30/2022]
Abstract
Peroxisomal ABC transporters encoded by the ABCD genes are thought to participate in the import of specific fatty acids in the peroxisomal matrix. ABCD1 deficiency is associated with X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder which is characterized by the accumulation of saturated very-long-chain fatty acids (VLCFA). ABCD2 (the closest homolog of ABCD1) and ABCD3 have been shown to have partial functional redundancy with ABCD1; only when overexpressed, they can compensate for VLCFA accumulation. Other lipids, for instance polyunsaturated fatty acids (PUFA), should be possible candidate substrates for the ABCD2 and ABCD3 gene products, ALDRP and PMP70 respectively. Moreover, PUFA, which are known regulators of gene expression, could therefore represent potent inducers of the ABCD genes. To test this hypothesis, littermates of n-3-deficient rats were subjected to an n-3-deficient diet or equilibrated diets containing ALA (alpha-linolenic acid, 18:3n-3) as unique source of n-3 fatty acids or ALA plus DHA (docosahexaenoic acid, 22:6n-3) at two different doses. We analyzed the expression of peroxisomal ABC transporters and of the peroxisomal acyl-CoA oxidase gene 1 (Acox1) in adrenals, brain and liver. Whatever the diet, we did not observe any difference in gene expression in adrenals and brain. However, the hepatic expression level of Abcd2 and Abcd3 genes was found to be significantly higher in the n-3-deficient rats than in the rats fed the ALA diet or the DHA supplemented diets. This was accompanied by important changes in hepatic fatty acid composition. In summary, the hepatic expression of Abcd2 and Abcd3 but not of Abcd1 and Abcd4 appears to be highly sensitive towards dietary PUFA. This difference could be linked to the substrate specificity of the peroxisomal ABC transporters and a specific involvement of Abcd2 and Abcd3 in PUFA metabolism.
Collapse
|
45
|
RNAi-mediated silencing of ABCD3 gene expression in rat C6 glial cells: A model system to study PMP70 function. Neurochem Int 2008; 52:1106-13. [DOI: 10.1016/j.neuint.2007.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/20/2007] [Accepted: 11/22/2007] [Indexed: 11/19/2022]
|
46
|
Cooper CA, Walsh LA, Damjanovski S. Peroxisome biogenesis occurs in late dorsal-anterior structures in the development of Xenopus laevis. Dev Dyn 2008; 236:3554-61. [PMID: 17973332 DOI: 10.1002/dvdy.21370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Metabolism and development are two important processes not often examined in the same context. The focus of the present study is the expression of specific peroxisomal genes, the subsequent biogenesis of peroxisomes, and their potential role in the metabolism associated with the development of Xenopus laevis embryos. The temporal and expression patterns of six peroxisomal genes (PEX5, ACO, PEX19, PMP70, PEX16, and catalase) were elucidated using RT-PCR. Functionally related peroxisomal genes exhibited similar expression patterns with their RNA levels elevated relatively late during embryogenesis. Using immunohistochemistry PMP70 and catalase protein was localized largely to dorsal-anterior structures. Peroxisomal function was assayed with peroxisomal targeted-GFP, which when microinjected, revealed peroxisomes in dorsal-anterior structures at stage 45. A requirement for peroxisomal function appears to be present only late in development as organogenesis is finishing, yolk stores are depleted, and ingestion commences.
Collapse
Affiliation(s)
- Colin A Cooper
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
47
|
Engelen M, Ofman R, Mooijer PAW, Poll-The BT, Wanders RJA, Kemp S. Cholesterol-deprivation increases mono-unsaturated very long-chain fatty acids in skin fibroblasts from patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1781:105-11. [PMID: 18206987 DOI: 10.1016/j.bbalip.2007.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/23/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder and is characterized by a striking and unpredictable variation in phenotypic expression. It ranges from a rapidly progressive and fatal cerebral demyelinating disease in childhood (CCALD), to the milder slowly progressive form in adulthood (AMN). X-ALD is caused by mutations in the ABCD1 gene that encodes a peroxisomal membrane located ABC half-transporter named ALDP. Mutations in ALDP result in reduced beta-oxidation of very long-chain fatty acids (VLCFA, >22 carbon atoms) in peroxisomes and elevated levels of VLCFA in plasma and tissues. Previously, it has been shown that culturing skin fibroblasts from X-ALD patients in lipoprotein-deficient medium results in reduced VLCFA levels and increased expression of the functionally redundant ALD-related protein (ALDRP). The aim of this study was to further resolve the interaction between cholesterol and VLCFA metabolism in X-ALD. Our data show that the reduction in 26:0 in X-ALD fibroblasts grown in lipoprotein-deficient culture medium (free of cholesterol) is offset by a significant increase in both the level and synthesis of 26:1. We also demonstrate that cholesterol-deprivation results in increased expression of stearoyl-CoA-desaturase (SCD) and increased desaturation of 18:0 to 18:1. Finally, there was no increase in [1-(14)C]-26:0 beta-oxidation. Taken together, we conclude that cholesterol-deprivation reduces saturated VLCFA, but increases mono-unsaturated VLCFA. These data may have implications for treatment of X-ALD patients with lovastatin.
Collapse
Affiliation(s)
- M Engelen
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Gueugnon F, Gondcaille C, Leclercq S, Bellenger J, Bellenger S, Narce M, Pineau T, Bonnetain F, Savary S. Dehydroepiandrosterone up-regulates the Adrenoleukodystrophy-related gene (ABCD2) independently of PPARα in rodents. Biochimie 2007; 89:1312-21. [PMID: 17686565 DOI: 10.1016/j.biochi.2007.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Accepted: 06/29/2007] [Indexed: 11/22/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease caused by mutations in the ABCD1 gene, which encodes a peroxisomal ABC transporter, ALDP, supposed to participate in the transport of very long chain fatty acids (VLCFA). The adrenoleukodystrophy-related protein (ALDRP), which is encoded by the ABCD2 gene, is the closest homolog of ALDP and is considered as a potential therapeutic target since functional redundancy has been demonstrated between the two proteins. Pharmacological induction of Abcd2 by fibrates through the activation of PPARalpha has been demonstrated in rodent liver. DHEA, the most abundant steroid in human, is described as a PPARalpha activator and also as a prohormone able to mediate induction of several genes. Here, we explored the in vitro and in vivo effects of DHEA on the expression of peroxisomal ABC transporters. We show that Abcd2 and Abcd3 but not Abcd4 are induced in primary culture of rat hepatocytes by DHEA-S. We also demonstrate that Abcd2 and Abcd3 but not Abcd4 are inducible by an 11-day treatment with DHEA in the liver of male rodents but not in brain, testes and adrenals. Finally and contrary to Abcd3, we show that the mechanism of induction of Abcd2 is independent of PPARalpha.
Collapse
Affiliation(s)
- F Gueugnon
- INSERM, U866, Universite de Bourgogne, 6, Bd Gabriel, Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wiese S, Gronemeyer T, Ofman R, Kunze M, Grou CP, Almeida JA, Eisenacher M, Stephan C, Hayen H, Schollenberger L, Korosec T, Waterham HR, Schliebs W, Erdmann R, Berger J, Meyer HE, Just W, Azevedo JE, Wanders RJA, Warscheid B. Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol Cell Proteomics 2007; 6:2045-57. [PMID: 17768142 DOI: 10.1074/mcp.m700169-mcp200] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxisome represents a ubiquitous single membrane-bound key organelle that executes various metabolic pathways such as fatty acid degradation by alpha- and beta-oxidation, ether-phospholipid biosynthesis, metabolism of reactive oxygen species, and detoxification of glyoxylate in mammals. To fulfil this vast array of metabolic functions, peroxisomes accommodate approximately 50 different enzymes at least as identified until now. Interest in peroxisomes has been fueled by the discovery of a group of genetic diseases in humans, which are caused by either a defect in peroxisome biogenesis or the deficient activity of a distinct peroxisomal enzyme or transporter. Although this research has greatly improved our understanding of peroxisomes and their role in mammalian metabolism, deeper insight into biochemistry and functions of peroxisomes is required to expand our knowledge of this low abundance but vital organelle. In this work, we used classical subcellular fractionation in combination with MS-based proteomics methodologies to characterize the proteome of mouse kidney peroxisomes. We could identify virtually all known components involved in peroxisomal metabolism and biogenesis. Moreover through protein localization studies by using a quantitative MS screen combined with statistical analyses, we identified 15 new peroxisomal candidates. Of these, we further investigated five candidates by immunocytochemistry, which confirmed their localization in peroxisomes. As a result of this joint effort, we believe to have compiled the so far most comprehensive protein catalogue of mammalian peroxisomes.
Collapse
Affiliation(s)
- Sebastian Wiese
- Medizinisches Proteom-Center, Ruhr-Universitaet Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Höftberger R, Kunze M, Weinhofer I, Aboul-Enein F, Voigtländer T, Oezen I, Amann G, Bernheimer H, Budka H, Berger J. Distribution and cellular localization of adrenoleukodystrophy protein in human tissues: implications for X-linked adrenoleukodystrophy. Neurobiol Dis 2007; 28:165-74. [PMID: 17761426 DOI: 10.1016/j.nbd.2007.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/31/2007] [Accepted: 07/01/2007] [Indexed: 10/23/2022] Open
Abstract
Defects of adrenoleukodystrophy protein (ALDP) lead to X-linked adrenoleukodystrophy (X-ALD), a disorder mainly affecting the nervous system white matter and the adrenal cortex. In the present study, we examine the expression of ALDP in various human tissues and cell lines by multiple-tissue RNA expression array analysis, Western blot analysis, and immunohistochemistry. ALDP-encoding mRNA is most abundant in tissues with high energy requirements such as heart, muscle, liver, and the renal and endocrine systems. ALDP selectively occurs in specific cell types of brain (hypothalamus and basal nucleus of Meynert), kidney (distal tubules), skin (eccrine gland, hair follicles, and fibroblasts), colon (ganglion cells and epithelium), adrenal gland (zona reticularis and fasciculata), and testis (Sertoli and Leydig cells). In pituitary gland, ALDP is confined to adrenocorticotropin-producing cells and is significantly reduced in individuals receiving long term cortisol treatment. This might indicate a functional link between ALDP and proopiomelanocortin-derived peptide hormones.
Collapse
Affiliation(s)
- Romana Höftberger
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, POB 48, A-1097 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|