1
|
Siwan D, Nandave M, Gilhotra R, Almalki WH, Gupta G, Gautam RK. Unlocking β-cell restoration: The crucial role of PDX1 in diabetes therapy. Pathol Res Pract 2024; 254:155131. [PMID: 38309018 DOI: 10.1016/j.prp.2024.155131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Diabetes has been a significant healthcare problem worldwide for a considerable period. The primary objective of diabetic treatment plans is to control the symptoms associated with the pathology. To effectively combat diabetes, it is crucial to comprehend the disease's etiology, essential factors, and the relevant processes involving β-cells. The development of the pancreas, maturation, and maintenance of β-cells, and their role in regular insulin function are all regulated by PDX1. Therefore, understanding the regulation of PDX1 and its interactions with signaling pathways involved in β-cell differentiation and proliferation are crucial elements of alternative diabetes treatment strategies. The present review aims to explore the protective role of PDX1 in β-cell proliferation through signaling pathways. The main keywords chosen for this review include "PDX1 for β-cell mass," "β-cell proliferation," "β-cell restoration via PDX1," and "mechanism of PDX1 in β-cells." A comprehensive literature search was conducted using various internet search engines, such as PubMed, Science Direct, and other publication databases. We summarize several approaches to generating β-cells from alternative cell sources, employing PDX1 under various modified growth conditions and different transcriptional factors. Our analysis highlights the unique potential of PDX1 as a promising target in molecular and cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India.
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Rau-Pithampur Road, Indore 453331, Madhya Pradesh, India
| |
Collapse
|
2
|
Nemati M, Ebrahimi Z, Karbalaei N, Dastghaib S, Khakshournia S, Sargazi M. In Vitro and In Vivo Improvement of Islet Quality and Transplantation Successes following Islet Treatment with Biomaterials in Diabetic Rats. J Diabetes Res 2023; 2023:1399917. [PMID: 37265573 PMCID: PMC10232112 DOI: 10.1155/2023/1399917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023] Open
Abstract
Background Loss of islet survival and function, caused by native niche disruption and oxidative stress induction during mechanical and enzymatic isolation, limits the effectiveness of islet transplantation. Reconstitution of islet microenvironment, vascularization, and decreased oxidative stress with biomaterials may improve islet quality and graft outcomes. We investigated effects of two biomaterials, platelet-rich plasma and pancreatic islets homogenate combination on islet recovery and quality by evaluating in vitro islet survival, secretory function, and oxidative stress parameters and assessing in vivo transplantation outcomes. Methods In vitro, islet viability and secretory function of isolated islets were assessed after 24 h and 72 h incubation with biomaterials. Also, oxidative stress markers were measured once after isolation and 24 h after incubation with biomaterials. For evaluating in vivo effects, cultured islets for 24 h were transplanted into subscapular space of diabetic rat kidney, and outcomes were analyzed by measuring serum glucose and insulin concentrations, glucose tolerance test, level of oxidative parameters, and pancreatic gene expression. Results Treating islets with biomaterials significantly increased their viability and secretory function, reduced MDA level, and elevate SOD and CAT activity. Decreased level of glucose and MDA improved insulin level, increased SOD activity, and also enhanced pdx1 and insulin gene expression in diabetic rats after islet transplantation. Conclusions Biomaterials used in the present study should be consider as beneficial materials for increasing islet transplantation outcome. These materials may hamper transplantation limitation to some extent.
Collapse
Affiliation(s)
- Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ebrahimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Narges Karbalaei
- Department of physiology, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Authophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Khakshournia
- Department of Biochemistry, Shiraz University of Medical Science, Shiraz, Iran
| | - Mojtaba Sargazi
- Department of physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
PDX-1: A Promising Therapeutic Target to Reverse Diabetes. Biomolecules 2022; 12:biom12121785. [PMID: 36551213 PMCID: PMC9775243 DOI: 10.3390/biom12121785] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
The pancreatic duodenum homeobox-1 (PDX-1) is a transcription factor encoded by a Hox-like homeodomain gene that plays a crucial role in pancreatic development, β-cell differentiation, and the maintenance of mature β-cell functions. Research on the relationship between PDX-1 and diabetes has gained much attention because of the increasing prevalence of diabetes melitus (DM). Recent studies have shown that the overexpression of PDX-1 regulates pancreatic development and promotes β-cell differentiation and insulin secretion. It also plays a vital role in cell remodeling, gene editing, and drug development. Conversely, the absence of PDX-1 increases susceptibility to DM. Therefore, in this review, we summarized the role of PDX-1 in pancreatic development and the pathogenesis of DM. A better understanding of PDX-1 will deepen our knowledge of the pathophysiology of DM and provide a scientific basis for exploring PDX-1 as a potential target for treating diabetes.
Collapse
|
4
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Nakane T, Matsumoto S, Iida S, Ido A, Fukunaga K, Murao K, Sugiyama Y. Candidate plasticity gene 16 and jun dimerization protein 2 are involved in the suppression of insulin gene expression in rat pancreatic INS-1 β-cells. Mol Cell Endocrinol 2021; 527:111240. [PMID: 33676985 DOI: 10.1016/j.mce.2021.111240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
Chronic hyperglycemia causes pancreatic β-cell dysfunction, impaired insulin secretion and the suppression of insulin gene expression. This phenomenon is referred to as glucotoxicity, and is a critical component of the pathogenesis of type 2 diabetes. We previously reported that the expression of candidate plasticity gene 16 (CPG16) was higher in rat pancreatic INS-1 β-cells under glucotoxic conditions and CPG16 suppressed insulin promoter activity. However, the molecular mechanisms of the CPG16-mediated suppression of insulin gene expression are unclear. In this study, we found that CPG16 directly bound and phosphorylated jun dimerization protein 2 (JDP2), an AP-1 family transcription factor. CPG16 co-localized with JDP2 in the nucleus of INS-1 cells. JDP2 bound to the G1 element of the insulin promoter and up-regulated promoter activity. Finally, CPG16 suppressed the up-regulation of insulin promoter activity by JDP2 in a kinase activity-dependent manner. These results suggest that CPG16 suppresses insulin promoter activity by phosphorylating JDP2.
Collapse
Affiliation(s)
- Tatsuto Nakane
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Suzuka Matsumoto
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Satoshi Iida
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Ayae Ido
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan.
| |
Collapse
|
6
|
Abstract
AbstractPituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread occurrence and diverse functions. PACAP binds to specific PAC1 and non-specific VPAC1/2 receptors. PACAP is considered as a growth factor, as it plays important roles during development and participates in reparative processes. Highest concentrations are found in the nervous system and endocrine glands, where several functions are known, including actions in tissue growth, differentiation and tumour development. Therefore, we have investigated expression of PACAP and its receptors in different tumours, including those of endocrine glands. We showed earlier that PACAP and PAC1 receptor staining intensity decreased in pancreatic ductal adenocarcinoma. In the present study we aimed to investigate alterations of PACAP and PAC1 receptor in human insulinoma and compared the immunostaining pattern with samples from chronic pancreatitis patients. We collected perioperative and histological data of patients who underwent operation because of insulinoma or chronic pancreatitis over a five-year-long period. Histology showed chronic pancreatitis with severe scar formation in pancreatitis patients, while tumour samples evidenced Grade 1 or 2 insulinoma. PACAP and PAC1 receptor expression was studied using immunohistochemistry. Staining intensity was very strong in the Langerhans islets of normal tissue and discernible staining was also observed in the exocrine pancreas. Immunostaining intensity for both PACAP and PAC1 receptor was markedly weaker in insulinoma samples, and disappeared from chronic pancreatitis samples except for intact islets. These findings show that PAC1 receptor/PACAP signalling is altered in insulinoma and this suggests a possible involvement of this system in tumour growth or differentiation.
Collapse
|
7
|
Chriett S, Lindqvist A, Shcherbina L, Edlund A, Abels M, Asplund O, Martínez López JA, Ottosson-Laakso E, Hatem G, Prasad RB, Groop L, Eliasson L, Hansson O, Wierup N. SCRT1 is a novel beta cell transcription factor with insulin regulatory properties. Mol Cell Endocrinol 2021; 521:111107. [PMID: 33309639 DOI: 10.1016/j.mce.2020.111107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Here we show that scratch family transcriptional repressor 1 (SCRT1), a zinc finger transcriptional regulator, is a novel regulator of beta cell function. SCRT1 was found to be expressed in beta cells in rodent and human islets. In human islets, expression of SCRT1 correlated with insulin secretion capacity and the expression of the insulin (INS) gene. Furthermore, SCRT1 mRNA expression was lower in beta cells from T2D patients. siRNA-mediated Scrt1 silencing in INS-1832/13 cells, mouse- and human islets resulted in impaired glucose-stimulated insulin secretion and decreased expression of the insulin gene. This is most likely due to binding of SCRT1 to E-boxes of the Ins1 gene as shown with ChIP. Scrt1 silencing also reduced the expression of several key beta cell transcription factors. Moreover, Scrt1 mRNA expression was reduced by glucose and SCRT1 protein was found to translocate between the nucleus and the cytosol in a glucose-dependent fashion in INS-1832/13 cells as well as in a rodent model of T2D. SCRT1 was also regulated by a GSK3β-dependent SCRT1-serine phosphorylation. Taken together, SCRT1 is a novel beta cell transcription factor that regulates insulin secretion and is affected in T2D.
Collapse
Affiliation(s)
- S Chriett
- Lund University Diabetes Centre, Malmö, Sweden
| | - A Lindqvist
- Lund University Diabetes Centre, Malmö, Sweden
| | | | - A Edlund
- Lund University Diabetes Centre, Malmö, Sweden
| | - M Abels
- Lund University Diabetes Centre, Malmö, Sweden
| | - O Asplund
- Lund University Diabetes Centre, Malmö, Sweden
| | - J A Martínez López
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - G Hatem
- Lund University Diabetes Centre, Malmö, Sweden
| | - R B Prasad
- Lund University Diabetes Centre, Malmö, Sweden
| | - L Groop
- Lund University Diabetes Centre, Malmö, Sweden; Finnish Institute of Molecular Medicine, Helsinki, Finland
| | - L Eliasson
- Lund University Diabetes Centre, Malmö, Sweden
| | - O Hansson
- Lund University Diabetes Centre, Malmö, Sweden; Finnish Institute of Molecular Medicine, Helsinki, Finland
| | - N Wierup
- Lund University Diabetes Centre, Malmö, Sweden.
| |
Collapse
|
8
|
Nemati M, Karbalaei N, Mokarram P, Dehghani F. Effects of platelet-rich plasma on the pancreatic islet survival and function, islet transplantation outcome and pancreatic pdx 1 and insulin gene expression in streptozotocin-induced diabetic rats. Growth Factors 2020; 38:137-151. [PMID: 33569978 DOI: 10.1080/08977194.2021.1881502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Platelet-rich plasma (PRP) is a therapeutic option in different fields based on its growth factors. We investigated influence of PRP on islet survival, function, transplantation outcomes, and pancreatic genes expression in diabetic rats. In vitro: pancreatic isolated islets were incubated with/without PRP then viability, insulin secretion, and content were assessed. In vivo: Series 1 were designed to determine whether islet treatment with PRP improves transplantation outcome in diabetic rats by evaluating plasma glucose and insulin concentrations and oxidative parameters. Series 2, effects of PRP subcutaneous injection were evaluated on pancreatic genes expression and glucose tolerance test in diabetic rats. PRP enhanced viability and secretary function of islet. Reduced glucose and malondialdehyde levels as well as increased insulin levels, superoxide dismutase activity, and expressions of pdx1 and insulin were observed in diabetic rats. PRP treatment has positive effects on islet viability, function, transplantation outcome, and pancreatic genes expression in diabetic rats.
Collapse
Affiliation(s)
- Marzieh Nemati
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Dehghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Nakane T, Ido A, Higuchi T, Todaka H, Morisawa K, Nagamine T, Fukunaga K, Sakamoto S, Murao K, Sugiyama Y. Candidate plasticity gene 16 mediates suppression of insulin gene expression in rat insulinoma INS-1 cells under glucotoxic conditions. Biochem Biophys Res Commun 2019; 512:189-195. [DOI: 10.1016/j.bbrc.2019.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
|
10
|
Choi B, Kim SH. Regulatory T Cells Promote Pancreatic Islet Function and Viability via TGF-β1 in vitro and in vivo. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2018. [DOI: 10.15324/kjcls.2018.50.3.304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Bongkum Choi
- Transplantation Research Center, Clinical Research Institute, Samsung Biomedical Research Institute, Seoul, Korea
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| |
Collapse
|
11
|
Sabek OM, Fraga DW, Henry J, Gaber LW, Kotb M, Gaber AO. Expression of Transforming Growth Factor-β by Human Islets: Impact on Islet Viability and Function. Cell Transplant 2017; 16:775-85. [DOI: 10.3727/000000007783465217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a pleotropic cytokine that promotes angiogenesis and extracellular matrix protein synthesis in addition to its immunosuppressive effects. The purpose of this study is to identify optimal conditions for in vivo expression of TGF-β1 by human islets to exploit the possible beneficial effects and minimize undesirable side effects. We transduced human islets with adenoviral vectors encoding the active form of Ad-TGF-β1 or Ad-LacZ to test the effects of TGF-β1 gene expression on islet in vivo function following their transplantation into a NOD-SCID mouse model. Islets were transduced with multiplicity of infection (MOI) of 20, 10, 5, and 2.5 per islet cell. At a MOI ranging from 2.5 to 20, expression of TGF-β1 in islet supernatant persisted for 1–2 months and ranged from 153 ± 5 to 2574 ± 1299 pg/ml, respectively. Transduction with the lowest MOI (2.5) did not compromise the in vivo production of human C-peptide. We conclude that TGF-β1 expression in transplanted islets does not compromise viability and that adenoviral transduction with the TGF-β1 gene has a dose-dependent effect, with larger MOIs being deleterious. The data also indicate that in vitro culture system and the in vivo NOD-SCID model could be used successfully to evaluate the nonimmune effects of gene transduction.
Collapse
Affiliation(s)
- Omaima M. Sabek
- Department of Surgery, Methodist Hospital/Cornell University, Physicians Organization, Houston, TX, USA
| | - Daniel W. Fraga
- Department of Surgery, Methodist Hospital/Cornell University, Physicians Organization, Houston, TX, USA
| | - James Henry
- Environmental Health and Safety, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lillian W. Gaber
- Department of Surgery, Methodist Hospital/Cornell University, Physicians Organization, Houston, TX, USA
| | - Malak Kotb
- Department of Surgery, Division of Transplantation, University of Tennessee, Memphis, TN, USA
| | - A. Osama Gaber
- Department of Surgery, Methodist Hospital/Cornell University, Physicians Organization, Houston, TX, USA
| |
Collapse
|
12
|
Singh V, Saluja N. Phylogenetic and promoter analysis of islet amyloid polypeptide gene causing type 2 diabetes in mammalian species. Int J Diabetes Dev Ctries 2016. [DOI: 10.1007/s13410-016-0508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Yi Y, Sun X, Gibson-Corley K, Xie W, Liang B, He N, Tyler SR, Uc A, Philipson LH, Wang K, Hara M, Ode KL, Norris AW, Engelhardt JF. A Transient Metabolic Recovery from Early Life Glucose Intolerance in Cystic Fibrosis Ferrets Occurs During Pancreatic Remodeling. Endocrinology 2016; 157:1852-65. [PMID: 26862997 PMCID: PMC4870869 DOI: 10.1210/en.2015-1935] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cystic fibrosis (CF)-related diabetes in humans is intimately related to exocrine pancreatic insufficiency, yet little is known about how these 2 disease processes simultaneously evolve in CF. In this context, we examined CF ferrets during the evolution of exocrine pancreatic disease. At 1 month of age, CF ferrets experienced a glycemic crisis with spontaneous diabetic-level hyperglycemia. This occurred during a spike in pancreatic inflammation that was preceded by pancreatic fibrosis and loss of β-cell mass. Surprisingly, there was spontaneous normalization of glucose levels at 2-3 months, with intermediate hyperglycemia thereafter. Mixed meal tolerance was impaired at all ages, but glucose intolerance was not detected until 4 months. Insulin secretion in response to hyperglycemic clamp and to arginine was impaired. Insulin sensitivity, measured by euglycemic hyperinsulinemic clamp, was normal. Pancreatic inflammation rapidly diminished after 2 months of age during a period where β-cell mass rose and gene expression of islet hormones, peroxisome proliferator-activated receptor-γ, and adiponectin increased. We conclude that active CF exocrine pancreatic inflammation adversely affects β-cells but is followed by islet resurgence. We predict that very young humans with CF may experience a transient glycemic crisis and postulate that pancreatic inflammatory to adipogenic remodeling may facilitate islet adaptation in CF.
Collapse
Affiliation(s)
- Yaling Yi
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Xingshen Sun
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Katherine Gibson-Corley
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Weiliang Xie
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Bo Liang
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Nan He
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Scott R Tyler
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Aliye Uc
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Louis H Philipson
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Kai Wang
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Manami Hara
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Katie Larson Ode
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Andrew W Norris
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - John F Engelhardt
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
14
|
Semache M, Ghislain J, Zarrouki B, Tremblay C, Poitout V. Pancreatic and duodenal homeobox-1 nuclear localization is regulated by glucose in dispersed rat islets but not in insulin-secreting cell lines. Islets 2014; 6:e982376. [PMID: 25437380 PMCID: PMC4588559 DOI: 10.4161/19382014.2014.982376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transcription factor Pancreatic and Duodenal Homeobox-1 (PDX-1) plays a major role in the development and function of pancreatic β-cells and its mutation results in diabetes. In adult β-cells, glucose stimulates transcription of the insulin gene in part by regulating PDX-1 expression, stability and activity. Glucose is also thought to modulate PDX-1 nuclear translocation but in vitro studies examining nucleo-cytoplasmic shuttling of endogenous or ectopically expressed PDX-1 in insulin-secreting cell lines have led to conflicting results. Here we show that endogenous PDX-1 undergoes translocation from the cytoplasm to the nucleus in response to glucose in dispersed rat islets but not in insulin-secreting MIN6, HIT-T15, or INS832/13 cells. Interestingly, however, we found that a PDX-1-GFP fusion protein can shuttle from the cytoplasm to the nucleus in response to glucose stimulation in HIT-T15 cells. Our results suggest that the regulation of endogenous PDX-1 sub-cellular localization by glucose is observed in primary islets and that care should be taken when interpreting data from insulin-secreting cell lines.
Collapse
Key Words
- ANOVA, analysis of variance
- BSA, bovine serum albumin
- DAPI, 4′, 6-diamidino-2-phenylindole
- DMEM, dulbecco's modified eagle medium
- EDTA, ethylenediaminetetraacetic acid
- GFP, green fluorescent protein
- HDAC, histone deacetylase
- HIT-T15
- INS832/13
- KRBH, krebs ringer bicarbonate hepes
- MIN6
- MODY, maturity-onset diabetes of the young
- PDX-1
- PDX-1, pancreatic and duodenal homeobox-1
- SEM, standard error of the mean
- SUMO, small ubiquitin-like modifier
- T2D, type 2 diabetes
- ZDF, zucker diabetic fatty
- glucose
- glucose-stimulated insulin secretion
- nucleo-cytoplasmic shuttling
- pancreatic β cells
Collapse
Affiliation(s)
- Meriem Semache
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
| | - Bader Zarrouki
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
| | | | - Vincent Poitout
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
- Correspondence to: Vincent Poitout;
| |
Collapse
|
15
|
Abstract
Although effective in treating an array of neurological disorders, antipsychotics are associated with deleterious metabolic side effects. Through high-throughput screening, we previously identified phenothiazine antipsychotics as modulators of the human insulin promoter. Here, we extended our initial finding to structurally diverse typical and atypical antipsychotics. We then identified the transforming growth factor beta (TGFβ) pathway as being involved in the effect of antipsychotics on the insulin promoter, finding that antipsychotics activated SMAD3, a downstream effector of the TGFβ pathway, through a receptor distinct from the TGFβ receptor family and known neurotransmitter receptor targets of antipsychotics. Of note, antipsychotics that do not cause metabolic side effects did not activate SMAD3. In vivo relevance was demonstrated by reanalysis of gene expression data from human brains treated with antipsychotics, which showed altered expression of SMAD3 responsive genes. This work raises the possibility that antipsychotics could be designed that retain beneficial CNS activity while lacking deleterious metabolic side effects.
Collapse
Affiliation(s)
- T. Cohen
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | | | - F. Levine
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA,Address correspondence to: Dr. Fred Levine, Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Endothelial cells in co-culture enhance embryonic stem cell differentiation to pancreatic progenitors and insulin-producing cells through BMP signaling. Stem Cell Rev Rep 2011; 7:532-43. [PMID: 21298405 PMCID: PMC3137775 DOI: 10.1007/s12015-011-9232-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endothelial cells (ECs) represent the major component of the embryonic pancreatic niche and play a key role in the differentiation of insulin-producing β cells in vivo. However, it is unknown if ECs promote such differentiation in vitro. We investigated whether interaction of ECs with mouse embryoid bodies (EBs) in culture promotes differentiation of pancreatic progenitors and insulin-producing cells and the mechanisms involved. We developed a co-culture system of mouse EBs and human microvascular ECs (HMECs). An increase in the expression of the pancreatic markers PDX-1, Ngn3, Nkx6.1, proinsulin, GLUT-2, and Ptf1a was observed at the interface between EBs and ECs (EB-EC). No expression of these markers was found at the periphery of EBs cultured without ECs or those co-cultured with mouse embryonic fibroblasts (MEFs). At EB-EC interface, proinsulin and Nkx6.1 positive cells co-expressed phospho-Smad1/5/8 (pSmad1/5/8). Therefore, EBs were treated with HMEC conditioned media (HMEC-CM) suspecting soluble factors involved in bone morphogenetic protein (BMP) pathway activation. Upregulation of PDX-1, Ngn3, Nkx6.1, insulin-1, insulin-2, amylin, SUR1, GKS, and amylase as well as down-regulation of SST were detected in treated EBs. In addition, higher expression of BMP-2/-4 and their receptor (BMPR1A) were also found in these EBs. Recombinant human BMP-2 (rhBMP-2) mimicked the effects of the HMEC-CM on EBs. Noggin (NOG), a BMP antagonist, partially inhibited these effects. These results indicate that the differentiation of EBs to pancreatic progenitors and insulin-producing cells can be enhanced by ECs in vitro and that BMP pathway activation is central to this process.
Collapse
|
17
|
Chen K, Yu X, Murao K, Imachi H, Li J, Muraoka T, Masugata H, Zhang GX, Kobayashi R, Ishida T, Tokumitsu H. Exendin-4 regulates GLUT2 expression via the CaMKK/CaMKIV pathway in a pancreatic β-cell line. Metabolism 2011; 60:579-85. [PMID: 20598720 DOI: 10.1016/j.metabol.2010.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/19/2010] [Accepted: 06/01/2010] [Indexed: 11/17/2022]
Abstract
The GLUT2 glucose transporter plays an important role in glucose-induced insulin secretion in pancreatic β-cells by catalyzing the uptake of glucose into the cell. In this study, we investigated whether exendin-4, a long-acting agonist of glucagon-like peptide-1, mediates stimulatory effects on GLUT2 gene expression through the Ca²+/calmodulin (CaM)-dependent protein kinase IV (CaMKIV) cascade. GLUT2 expression was examined by real-time polymerase chain reaction, Western blot analysis, and a reporter gene assay in rat insulin-secreting INS-1 cells incubated with exendin-4. An increased expression level of GLUT2 protein was noted in response to increasing concentrations of exendin-4, with maximal induction at 10 nmol/L. Real-time polymerase chain reaction analysis similarly revealed a significant increase in the amount of GLUT2 messenger RNA by 10 nmol/L exendin-4. Exendin-4 also stimulated GLUT2 promoter activity in response to increasing exendin-4 concentrations, but failed to do so in the presence of STO-609, a CaMKK inhibitor. We also investigated the effect of the constitutively active form of CaMKK (CaMKKc) on GLUT2 promoter activity. The result is consistent with the observations that CaMKKc/CaMKIV enhanced or up-regulated GLUT2 promoter activity in INS-1 cells. Furthermore, exendin-4 induction of GLUT2 protein expression was significantly suppressed in the cells knocking down the CaMKIV. In summary, activation of the CaMKK/CaMKIV cascade might be required for exendin-4-induced GLUT2 gene transcription, indicating that exendin-4 plays an important role in insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Ke Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Miki-CHO, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sugiyama Y, Murao K, Imachi H, Sueyoshi N, Ishida T, Kameshita I. Calcium/calmodulin-dependent protein kinase IV involvement in the pathophysiology of glucotoxicity in rat pancreatic β-cells. Metabolism 2011; 60:145-53. [PMID: 20423744 DOI: 10.1016/j.metabol.2010.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/08/2010] [Accepted: 03/22/2010] [Indexed: 01/24/2023]
Abstract
Glucotoxicity is a critical component of the pathophysiology of type 2 diabetes mellitus; however, the molecular mechanisms of glucotoxicity are still not fully understood. We have attempted to determine the protein kinases involved in glucotoxicity in pancreatic β-cells by the use of a new technique. Using Multi-PK antibodies, which are capable of detecting a wide variety of protein kinases, we analyzed the protein kinase that correlated with insulin synthesis in INS-1 cells under glucotoxic conditions. When expression patterns of protein kinases in INS-1 cells were analyzed by Western blotting with Multi-PK antibodies, a kinase of 63 kd was significantly reduced concomitant with the decrease of insulin secretion under glucotoxic conditions. To identify the 63-kd kinase, we used a unique 2-dimensional gel electrophoretic technique and MicroRotofor (Bio-Rad Laboratories, Tokyo, Japan) electrophoresis. From the molecular size of a native kinase/cyanogen bromide fragment and pI value, the 63-kd protein kinase was deduced to be CaMKIV. This was confirmed by Western blotting analysis using anti-CaMKIV antibodies. The decreased CaMKIV levels under glucotoxic conditions recovered to original levels after changing the medium to a normal glucose concentration. Recombinant CaMKIV was degraded in a Ca²+-dependent manner by incubation with cell lysates from INS-1 cells under glucotoxic conditions, and degradation was protected by calpain inhibitor. Furthermore, CaMKIV was reduced in the pancreatic islets of diabetic Otsuka Long-Evans Tokushima fatty rats, whereas that of nondiabetic Long-Evans Tokushima Otsuka rats was not. This study suggests that the abnormal regulation of CaMKIV is a component of β-cell dysfunction caused by high glucose.
Collapse
Affiliation(s)
- Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Brown ML, Schneyer AL. Emerging roles for the TGFbeta family in pancreatic beta-cell homeostasis. Trends Endocrinol Metab 2010; 21:441-8. [PMID: 20382030 PMCID: PMC2897975 DOI: 10.1016/j.tem.2010.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
Loss of functional beta-cells is the primary cause of type 2 diabetes, so that there is an acute need to understand how beta-cell number and function are regulated in the adult under normal physiological conditions. Recent studies suggest that members of the transforming growth factor (TGF)-beta family regulate beta-cell function and glucose homeostasis. These factors are also likely to influence beta-cell proliferation and/or the incorporation of new beta-cells from progenitors in adults. Soluble TGFbeta antagonists also appear to have important roles in maintaining homeostasis, and the coordinated activity of TGFbeta family members is likely to regulate the differentiation and function of adult beta-cells, raising the possibility of developing new diabetes therapies based on TGFbeta agonists or antagonists.
Collapse
Affiliation(s)
- Melissa L Brown
- Pioneer Valley Life Science Institute, University of Massachusetts Amherst, Springfield, MA 01107, USA
| | | |
Collapse
|
20
|
Murao K, Li J, Imachi H, Muraoka T, Masugata H, Zhang GX, Kobayashi R, Ishida T, Tokumitsu H. Exendin-4 regulates glucokinase expression by CaMKK/CaMKIV pathway in pancreatic beta-cell line. Diabetes Obes Metab 2009; 11:939-46. [PMID: 19486109 DOI: 10.1111/j.1463-1326.2009.01067.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM Glucokinase (GK) in pancreatic beta cells is thought to be involved in insulin secretion and glucose homeostasis. This study investigates whether the long-acting agonist of the glucagon-like peptide 1, namely exendin-4, mediates stimulatory effects on GK gene expression through the Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaMK) cascade. METHODS GK expression was examined by real-time PCR, western blot analysis and reporter gene assay in rat insulin-secreting INS-1 cells incubated with exendin-4. CaMKIV activity was assessed by detection of activation loop phosphorylation (Thr(196)) of CaMKIV. We investigated the effect of the constitutively active form (CaMKIVc) of CaMKIV on GK promoter activity. RESULTS Increased expression level of GK protein was noted in response to rising concentrations of exendin-4 with maximum induction at 10 nM. Real-time PCR analysis showed a significant increase in the amount of GK mRNA in response to rising concentrations of exendin-4. Exendin-4 also stimulated GK promoter activity but failed to do so in the presence of STO-609, a CaMKK inhibitor. This result is consistent with the observations that the upregulation of CaMKIV phosphorylation (at Thr(196)) peaked after 15 min of exposure to exendin-4 and that CaMKIVc enhanced or upregulated GK promoter activity in INS-1 cells. Furthermore, STO-609 significantly suppressed the exendin-4 - upregulated the expression of the GK protein. CONCLUSION Activation of the CaMKK/CaMKIV cascade might be required for exendin-4-induced GK gene transcription, indicating that exendin-4 plays an important role in insulin secretion in pancreatic beta cells.
Collapse
Affiliation(s)
- K Murao
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Scott GJ, Ray MK, Ward T, McCann K, Peddada S, Jiang FX, Mishina Y. Abnormal glucose metabolism in heterozygous mutant mice for a type I receptor required for BMP signaling. Genesis 2009; 47:385-91. [PMID: 19358156 DOI: 10.1002/dvg.20513] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BMPRIA and its high-affinity ligand BMP4 have recently been shown to be expressed in the beta-cells of the pancreas. Here, we report the abnormalities of heterozygous mice for Bmpr1a in glucose metabolism during the course of intraperitoneal glucose tolerance test. The heterozygous mice had increased blood glucose levels throughout the first 2.5 h after the administration of glucose. Analysis of glucose-stimulated insulin secretion (GSIS) indicates that insulin secretion in the heterozygous mice is compromised, and induction of secreted insulin by stimulation is substantially lower compared with the wild-type controls. No apparent abnormalities in pancreas, thyroid, and liver were seen upon histological examination. Real-time PCR results of selected genes showed an increase in the mRNA level of Ins1 and Ins2 in the heterozygous group. These results indicate that the glucose-sensing pathway in these heterozygous mice is altered because of the heterozygosity in Bmpr1a. Together, our data suggest that BMP signaling through BMPRIA plays an important role in glucose metabolism and possibly working through the GSIS pathway.
Collapse
Affiliation(s)
- Gregory J Scott
- Knock Out Core, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Pillich RT, Scarsella G, Risuleo G. Overexpression of the Pdx-1 homeodomain transcription factor impairs glucose metabolism in cultured rat hepatocytes. Molecules 2008; 13:2659-73. [PMID: 18971862 PMCID: PMC6245418 DOI: 10.3390/molecules13102659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 10/20/2008] [Accepted: 10/24/2008] [Indexed: 11/16/2022] Open
Abstract
The Pdx-1 transcription factor plays crucial functions both during pancreas development and in the adult β cells. Previous studies have indicated that ectopic Pdx-1 expression in liver or intestinal primary and immortalized cells is sufficient to promote activation of insulin gene expression. This work is focused on the molecular and physiological consequences of Pdx-1 overexpression in liver cells. We present evidence that Pdx-1 affects the level of expression of one of the four mammalian hexokinase isozymes. These are glucose phosphorylating enzymes involved in essential cellular functions such as glucose sensing, metabolic energy production and apoptosis. Specifically, our data show that over-expression of Pdx-1 in cultured hepatocytes is able to repress the expression of hexokinase 2 (Hxk 2) and the phenomenon is mediated via binding of Pdx-1 to a specific sequence on the Hxk 2 gene promoter. As a consequence, liver cells over-expressing Pdx-1 present interesting alterations concerning glucose metabolism.
Collapse
Affiliation(s)
- Rudolf Tito Pillich
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza Università di Roma, P.le Aldo Moro, 5 – 00185 Roma, Italy; E-mail: (R-T. P.), (G. S.)
| | - Gianfranco Scarsella
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza Università di Roma, P.le Aldo Moro, 5 – 00185 Roma, Italy; E-mail: (R-T. P.), (G. S.)
| | - Gianfranco Risuleo
- Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, P.le Aldo Moro, 5 – 00185 Roma, Italy
- Author to whom correspondence should be addressed; E-mails: or ; Tel.: +39 0649912234; Fax: +39 064440812
| |
Collapse
|
23
|
Suppression of MafA-dependent transcription by transforming growth factor-beta signaling. Biochem Biophys Res Commun 2007; 364:151-6. [PMID: 17927952 DOI: 10.1016/j.bbrc.2007.09.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 09/25/2007] [Indexed: 11/24/2022]
Abstract
MafA is a basic leucine zipper (b-Zip) type transcription factor that binds to the insulin promoter and regulates insulin transcription synergistically with Pdx-1 and NeuroD. Transforming growth factor-beta (TGF-beta) signaling has been reported to regulate activity of b-Zip transcription factor such as ATF-2 and acts as an important regulator of insulin gene transcription and pancreatic beta cell maintenance. To investigate the relationship between MafA-dependent transcriptional activation and TGF-beta signaling, we examined the effects of TGF-beta signal on MafA-dependent transactivation of the rat insulin II gene promoter (RIPII-251) and a synthetic MafA-dependent promoter. MafA-dependent activation of the reporters was inhibited in the presence of Smad2/Smad4 or Smad3/Smad4 and a constitutively active TGF-beta type I receptor and this inhibition was dependent upon the presence of MafA. Co-immunoprecipitation analyses revealed that MafA physically interacts with Smad2 or Smad3. These results suggest that MafA-dependent transcriptional activation is negatively regulated by TGF-beta signaling.
Collapse
|
24
|
Mamin A, Philippe J. Activin A decreases glucagon and arx gene expression in alpha-cell lines. Mol Endocrinol 2006; 21:259-73. [PMID: 16988001 DOI: 10.1210/me.2005-0530] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activin A is a potent growth and differentiation factor involved in development, differentiation, and physiological functions of the endocrine pancreas; it increases insulin and pax4 gene expression in beta-cells and can induce transdifferentiation of the exocrine acinar cell line AR42J into insulin-producing cells. We show here that Activin A decreases glucagon gene expression in the alpha-cell lines InR1G9 and alphaTC1 in a dose- and time-dependent manner and that the effect is blocked by Follistatin. This effect is also observed in adult human islets. Glucagon gene expression is inhibited at the transcriptional level by the Smad signaling pathway through the G3 DNA control element. Furthermore, Activin A decreases cell proliferation of InR1G9 and alphaTC1 cells as well as cyclin D2 and arx gene expression, whose protein product Arx has been shown to be critical for alpha-cell differentiation. Overexpression of Arx in Activin A-treated InR1G9 cells does not prevent the decrease in glucagon gene expression but corrects the inhibition of cell proliferation, indicating that Arx mediates the Activin A effects on the cell cycle. We conclude that Activin A has opposite effects on alpha-cells compared with beta-cells, a finding that may have relevance during pancreatic endocrine lineage specification and physiological function of the adult islets.
Collapse
Affiliation(s)
- Aline Mamin
- Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital Geneva, 24, rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland.
| | | |
Collapse
|
25
|
BINETTE TANYAM, DUFOUR JANNETTEM, KORBUTT GREGORYS. In Vitro Maturation of Neonatal Porcine Islets. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2001.tb03822.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Boucher MJ, Selander L, Carlsson L, Edlund H. Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem 2006; 281:6395-403. [PMID: 16407209 DOI: 10.1074/jbc.m511597200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor IPF1/PDX1 plays a crucial role in both pancreas development and maintenance of beta-cell function. Targeted disruption of this transcription factor in beta-cells leads to diabetes, whereas reduced expression levels affect insulin expression and secretion. Therefore, it is essential to determine molecular mechanisms underlying the regulation of this key transcription factor on mRNA levels and, most importantly, on protein levels. Here we show that a minor portion of IPF1/PDX1 is phosphorylated on serine 61 and/or serine 66 in pancreatic beta-cells. This phosphorylated form of IPF1/PDX1 preferentially accumulates following proteasome inhibition, an effect that is prevented by inhibition of glycogen synthase kinase 3 (GSK3) activity. Oxidative stress, which is associated with the diabetic state, (i) increases IPF1/PDX1 Ser61 and/or Ser66 phosphorylation and (ii) increases the degradation rate and decreases the half-life of IPF-1/PDX-1 protein. In addition, we provide evidence that GSK3 activity participates in oxidative stress-induced effects on beta-cells. Thus, this current study uncovers a new mechanism that might contribute to diminished levels of IPF1/PDX1 protein and beta-cell dysfunction during the progression of diabetes.
Collapse
Affiliation(s)
- Marie-Josée Boucher
- Umeå Center for Molecular Medicine, University of Umeå, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
27
|
Yu X, Murao K, Sayo Y, Imachi H, Cao WM, Ohtsuka S, Niimi M, Tokumitsu H, Inuzuka H, Wong NCW, Kobayashi R, Ishida T. The role of calcium/calmodulin-dependent protein kinase cascade in glucose upregulation of insulin gene expression. Diabetes 2004; 53:1475-81. [PMID: 15161751 DOI: 10.2337/diabetes.53.6.1475] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A number of factors have been reported to affect insulin synthesis in beta-cells. Although glucose is the most important regulator of insulin gene expression in pancreatic beta-cells, the mechanisms whereby glucose stimulates insulin gene transcription in response to changes in glucose concentration have not been clarified yet. In this study, we examined the role of the Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaM-K) cascade in transcriptional activation of insulin. RT-PCR, Western blotting, and immunohistochemical staining analysis revealed that CaM-K kinase-alpha (CaM-KKalpha) and CaM-KIV were localized in rat pancreatic beta-cells and their cell line, INS-1. Exposure of INS-1 cells to 11.2 mmol/l glucose elicited an increase of insulin promoter activity as well as upregulation of CaM-KIV activity within 2 min after stimulation. We investigated the influence on insulin promoter activity of the constitutively active form (CaM-KIVc) or dominant-negative mutant (CaM-KIVdn) of CaM-KIV in transfected INS-1 cells. CaM-KIVc alone was sufficient, and the upstream kinase, CaM-KK, was enhanced to upregulate the insulin promoter activity in INS-1 cells. Furthermore, cotransfection of CaM-KIVdn suppressed to a significant degree the glucose-upregulated activity of the insulin promoter. Taken together, these results indicated that the CaM-KK/CaM-KIV cascade might play an important role in glucose-upregulated transcriptional activation of the insulin gene.
Collapse
Affiliation(s)
- Xiao Yu
- First Department of Internal Medicine, Kagawa Medical University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kutlu B, Cardozo AK, Darville MI, Kruhøffer M, Magnusson N, Ørntoft T, Eizirik DL. Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes 2003; 52:2701-19. [PMID: 14578289 DOI: 10.2337/diabetes.52.11.2701] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Locally released cytokines contribute to beta-cell dysfunction and apoptosis in type 1 diabetes. In vitro exposure of insulin-producing INS-1E cells to the cytokines interleukin (IL)-1beta + interferon (IFN)-gamma leads to a significant increase in apoptosis. To characterize the genetic networks implicated in beta-cell dysfunction and apoptosis and its dependence on nitric oxide (NO) production, we performed a time-course microarray analysis of cytokine-induced genes in insulin-producing INS-1E cells. INS-1E cells were exposed in duplicate to IL-1beta + IFN-gamma for six different time points (1, 2, 4, 8, 12, and 24 h) with or without the inducible NO synthase (iNOS) blocker N(G)-monomethyl-L-arginine (NMA). The microarray analysis identified 698 genes as cytokine modified (>or=2.5-fold change compared with control) in at least one time point. Based on their temporal pattern of variation, the cytokine-regulated genes were classified into 15 clusters by the k-means method. These genes were further classified into 14 different groups according to their putative function. Changes in the expression of genes related to metabolism, signal transduction, and transcription factors at all time points studied indicate beta-cell attempts to adapt to the effects of continuous cytokine exposure. Notably, several apoptosis-related genes were modified at early time points (2-4 h) preceding iNOS expression. On the other hand, 46% of the genes modified by cytokines after 8-24 h were NO dependent, indicating the important role of this radical for the late effects of cytokines. The present results increase by more than twofold the number of known cytokine-modified genes in insulin-producing cells and yield comprehensive information on the role of NO for these modifications in gene expression. These data provide novel and detailed insights into the gene networks activated in beta-cells facing a prolonged immune assault.
Collapse
Affiliation(s)
- Burak Kutlu
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Kishi A, Nakamura T, Nishio Y, Maegawa H, Kashiwagi A. Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation. Am J Physiol Endocrinol Metab 2003; 284:E830-40. [PMID: 12488243 DOI: 10.1152/ajpendo.00390.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreatic duodenal homeobox-1 (Pdx1) is a transcription factor, and its phosphorylation is thought to be essential for activation of insulin gene expression. This phosphorylation is related to a concomitant shift in molecular mass from 31 to 46 kDa. However, we found that Pdx1 was modified by SUMO-1 (small ubiquitin-related modifier 1) in beta-TC-6 and COS-7 cells, which were transfected with Pdx1 cDNA. This modification contributed to the increase in molecular mass of Pdx1 from 31 to 46 kDa. Additionally, sumoylated Pdx1 localized in the nucleus. The reduction of SUMO-1 protein by use of RNA interference (SUMO-iRNAs) resulted in a significant decrease in Pdx1 protein in the nucleus. A 34-kDa form of Pdx1 was detected by the cells exposed to SUMO-iRNAs in the presence of lactacystin, a proteasome inhibitor. Furthermore, the reduced nuclear sumoylated Pdx1 content was associated with significant lower transcriptional activity of the insulin gene. These findings indicate that SUMO-1 modification is associated with both the localization and stability of Pdx1 as well as its effect on insulin gene activation.
Collapse
Affiliation(s)
- Akio Kishi
- Departments of Medicine and Anatomy, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192 Japan
| | | | | | | | | |
Collapse
|
30
|
Gannon M, Gamer LW, Wright CV. Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev Biol 2001; 238:185-201. [PMID: 11784003 DOI: 10.1006/dbio.2001.0359] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
pdx1 (pancreatic and duodenal homeobox gene-1), which is expressed broadly in the embryonic pancreas and, later, in a more restricted manner in the mature beta cells in the islets of Langerhans, is essential both for organ formation and beta cell gene expression and function. We carried out a transgenic reporter gene analysis to identify region- and cell type-specific regulatory regions in pdx1. A 14.5-kb pdx1 genomic fragment corrected the glucose intolerance of pdx1(+/-) animals but, moreover, fully rescued the severe gut and pancreas defects in pdx1(-/-) embryos. Sequences sufficient to direct reporter expression to the entire endogenous pdx1 expression domain lie within 4.3 kb of 5' flanking DNA. In this region, we identified two distinct fragments that drive reporter gene expression to different sets of islet neuroendocrine cells. One shows pan-endocrine cell specificity, the other is selectively activated in insulin-producing beta cells. The endocrine-specific regulatory regions overlap a localized region of 5' flanking DNA that is remarkably conserved in sequence between vertebrate pdx1 genes, and which has been associated with beta cell-selective expression in cultured cell lines. This region contains potential binding sites for several transcription factors implicated in endodermal development and the pathogenesis of some forms of type-2 diabetes. These results are consistent with our previous proposal that conserved upstream pdx1 sequences exert control over pdx1 during embryonic organogenesis and islet endocrine cell differentiation. We propose that mutations affecting the expression and/or activity of transcription factors operating via these sequences may predispose towards diabetes, at least in part by direct effects on endocrine pdx1 expression.
Collapse
Affiliation(s)
- M Gannon
- Department of Cell Biology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
31
|
Copello JA, Qi Y, Jeyakumar LH, Ogunbunmi E, Fleischer S. Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors. Cell Calcium 2001; 30:269-84. [PMID: 11587551 DOI: 10.1054/ceca.2001.0235] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The calcium release channels/ryanodine receptors (RyRs) are potential/putative targets of cADPR (cyclic ADP-ribose) action in many tissue systems. In striated muscles, where RyRs predominate, cADPR action on these channels is controversial. Here cADPR modulation of cardiac and skeletal muscle RyR channels was tested. We considered factors reported as necessary for cADPR action, such as the presence of calmodulin and/or FK binding proteins (FKBPs). We found: 1) The RyR channel isoforms were insensitive to cADPR (or its metabolite NAADP [nicotinic acid adenine dinucleotide phosphate]) under all conditions examined, as studied by: 1a) single channel recordings in planar lipid bilayers; 1b) macroscopic behavior of the RyRs in sarcoplasmic reticulum (SR) microsomes (including crude microsome preparations likely to retain putative cADPR cofactors) at room temperature and at 37 degrees C (net energized Ca2+ uptake or passive Ca2+ leak); 2) [32P]cADPR did not bind significantly to SR microsomes; 3) cADPR did not affect FKBP association to SR membranes. We conclude that cADPR does not interact directly with RyRs or RyR-associated SR proteins. Our results under in vitro conditions suggest that c ADPR effects on Ca2+ signaling observed in vivo in mammalian striated muscle cells may reflect indirect modulation of RyRs or RyR-independent Ca2+ release systems.
Collapse
Affiliation(s)
- J A Copello
- Department of Molecular Biology, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
32
|
Das UN. Hypothesis: can glucose-insulin-potassium regimen in combination with polyunsaturated fatty acids suppress lupus and other inflammatory conditions? Prostaglandins Leukot Essent Fatty Acids 2001; 65:109-13. [PMID: 11545628 DOI: 10.1054/plef.2001.0297] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In systemic lupus erythematosus, plasma concentrations of tumor necrosis factor alpha (TNF alpha) and other pro-inflammatory cytokines are elevated and those of transforming growth factor beta (TGF beta) are decreased. TNF alpha prevents lupus nephropathy whereas increased concentration of TGF beta causes glomerulosclerosis. Insulin inhibits TNF alpha and enhances TGF beta production, augments nitric oxide synthesis and blocks superoxide anion generation. Polyunsaturated fatty acids (PUFAs) also have actions similar to insulin. Hence, it is suggested that a combination of insulin (in the form of glucose-insulin-potassium) and PUFAs may be of benefit in lupus and other inflammatory conditions.
Collapse
Affiliation(s)
- U N Das
- EFA Sciences LLC, 1420 Providence Highway, Suite # 266, Norwood, MA 02062, USA.
| |
Collapse
|
33
|
Abstract
Aberrant gene expression is a fundamental cause of many disease-associated pathophysiologies. The pharmacological modulation of transcription factor activity therefore represents an attractive therapeutic approach to such disorders. With the exception of nuclear receptors, which are the direct targets of pharmaceuticals, other known classes of transcription factors are largely regulated indirectly by drugs that impact upon those signal transduction cascades that alter transcription factor phosphorylation and dephosphorylation and/or nuclear import. However, recent advances in drug discovery technologies now enable high-throughput screens that can identify molecules that act directly at the level of transcription factor complexes.
Collapse
Affiliation(s)
- J G Emery
- Dept of Musculoskeletal Diseases, GlaxoSmithKline Pharmaceuticals, UW2109, King of Prussia, PA 19406-0939, USA
| | | | | |
Collapse
|
34
|
Abstract
The demonstration of the existence of tissue-specific adult stem cells has had a great impact on our understanding of stem cell biology and its application in clinical medicine. Their existence has revolutionized the implications for the treatment of many degenerative diseases characterized by either the loss or malfunction of discrete cell types. However, successful exploitation of this opportunity requires that we have sufficient know-how of stem cell manipulation. Because stem cells are the founders of virtually all tissues during embryonic development, we believe that understanding the cellular and molecular mechanisms of embryogenesis and organogenesis will ultimately serve as a platform to identify factors and conditions that regulate stem cell behavior. Discovery of stem cell regulatory factors will create potential pharmaceutical opportunities for treatment of degenerative diseases, as well as providing critical knowledge of the processes by which stem cells can be expanded in vitro, differentiated, and matured into desired functional cells for implantation into humans. A well-characterized example of this is the hematopoietic system where the discovery of erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF), which regulate hematopoietic progenitor cell behavior, have provided significant clinical success in disease treatment as well as providing important insights into hematopoiesis. In contrast, little is known about the identity of pancreatic stem cells, the focus of this review. Recent reports of the potential existence of pancreatic stem cells and their utility in rescuing the diabetic state now raise the same possibilities of generating insulin-producing beta cells as well as other cell types of the pancreatic islet from a stem cell. In this review, we will focus on the potential of these new developments and how our understanding of pancreas development can help design strategies and approaches by which a cell replacement therapy can be implemented for the treatment of insulin-dependent diabetes which is manifested by the loss of beta cells in the pancreas.
Collapse
Affiliation(s)
- M Peshavaria
- Ontogeny, Inc, Cambridge, Massachusetts 02138-1118, USA.
| | | |
Collapse
|