1
|
Brahma D, Gupta AN. Oxidative stress via UVC irradiation on the structural rearrangement of hen egg white lysozyme. Phys Chem Chem Phys 2025; 27:1119-1131. [PMID: 39688119 DOI: 10.1039/d4cp03653k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Oxidative stress is a physiological condition where oxygen radicals are responsible for the conformational restructuring and loss of functionality of important biomacromolecules. Among the various external agents, UV irradiation is one of the sources that can induce oxidative stress. Here, we report an in vitro study to gauge the effect of ROS on the structural rearrangement of hen egg white lysozyme, a hydrolytic enzyme, via UVC exposure studied via various biophysical techniques. The investigations revealed a rise in the β-sheet content of the protein at the expense of a decrease in α-helix within ten minutes of exposure, thereby showing rapid changes in the secondary structure. While the unexposed sample showed partial reversibility after being subjected to a heating and cooling cycle, the newly formed structures via irradiation, on the other hand, were found to be more thermally stable. The aging of the samples via UVC exposure was reflected in both the UV-vis and PL spectra of the samples, as well as the loss of spectral features in the aliphatic and aromatic regions in the magnetic resonance spectrum. Finally, the increase in the hydrodynamic diameter of the samples shows cross-linking taking place due to the generated oxygen radicals.
Collapse
Affiliation(s)
- Debdip Brahma
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India.
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
2
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Tonolli PN, Baptista MS. An important step towards the comprehensive sun protection: Blue-light exposure inhibits DNA repair in reconstituted human skin and a broadband sunscreen avoids this inhibition. Photochem Photobiol 2024; 100:1527-1530. [PMID: 38828502 DOI: 10.1111/php.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
The field of sun protection is quickly changing and the research article by Douki et al., published in the current issue of Photochemistry and Photobiology, reported key experimental data that will certainly help the development of better sun care products. Mutagenic photoproducts (CPDs, cyclobutane pyrimidine dimers and 6-4PPs, pyrimidine-6-4-pyrimidone photoproducts) were formed in the reconstructed human epidermis (RHE) by UVB (312 nm) irradiation, and their concentrations were detected by HPLC-MS/MS as a function of time after the UVB treatment. RHE had been previously exposed or not (control) to blue light (427 nm). Both CPDs and 6-4PPs were shown to last longer in blue-light irradiated RHE, proving the inhibition of the DNA repair by blue light exposure. This is a highly relevant information because sunscreens allow people to enjoy longer periods under the sun and consequently, to endure very high doses of blue light. The work also reported results obtained with RHEs previously treated with a sunscreen formulation containing a broadband filter that offers blue-light protection. Interestingly, authors observed that the DNA repair was not significantly inhibited in RHE previously treated with the sunscreen offering broadband protection. Readers will find a scientifically sound proof of the importance of blue-light protection in sun care products.
Collapse
Affiliation(s)
- Paulo Newton Tonolli
- Department of Microbiologia, Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquimica, Universidade de São Paulo, Instituto de Quimica, São Paulo, Brazil
| |
Collapse
|
4
|
Li X, Cheng J, Guo K, Wan J, Wang C, Chen L, Xu N, Chen M. KGF-2 ameliorates UVB-triggered skin photodamage in mice by attenuating DNA damage and inflammatory response and mitochondrial dysfunction. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12993. [PMID: 39187972 DOI: 10.1111/phpp.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Long-term exposure to UVB induces DNA damage, inflammatory response, mitochondrial dysfunction, and apoptosis in skin cells, thus causing skin photodamage. Research has demonstrated the noteworthy antioxidant, anti-inflammatory, DNA repair, and mitochondrial protective properties of keratinocyte growth factor-2 (KGF-2). METHODS To examine the impact of KGF-2 on UVB-triggered skin photodamage in mice, hair-removed mice were initially exposed under UVB radiation and subsequently treated with KGF-2 hydrogel and repeated for 6 days. On day 7, the assessment of histopathological alterations, inflammation, DNA damage, mitochondrial function, and apoptosis in mouse skin was assessed. RESULTS It was found that KGF-2 could effectively relieve cutaneous photodamage symptoms and inhibit epidermal proliferation in mice. Meanwhile, KGF-2 was found to significantly reduce DNA damage, attenuate the inflammatory response, and inhibit the mitochondria-mediated intrinsic apoptotic pathway in the UVB-exposed mouse skin photodamage model. CONCLUSION To summarize, our results indicated that KGF-2 reduces the severity of mouse skin photodamage caused by UVB rays by attenuating DNA damage and the inflammatory response, besides inhibiting the mitochondria-mediated intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Xuenan Li
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jinli Cheng
- Department of Pharmacy, Nanjing Yuhua hospital, Nanjing, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
5
|
Aggarwal A, Nasreen A, Sharma B, Sahoo S, Aswin K, Faruq M, Pandey R, Jolly MK, Singh A, Gokhale RS, Natarajan VT. Distinct melanocyte subpopulations defined by stochastic expression of proliferation or maturation programs enable a rapid and sustainable pigmentation response. PLoS Biol 2024; 22:e3002776. [PMID: 39163475 PMCID: PMC11364419 DOI: 10.1371/journal.pbio.3002776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 08/30/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
The ultraviolet (UV) radiation triggers a pigmentation response in human skin, wherein, melanocytes rapidly activate divergent maturation and proliferation programs. Using single-cell sequencing, we demonstrate that these 2 programs are segregated in distinct subpopulations in melanocytes of human and zebrafish skin. The coexistence of these 2 cell states in cultured melanocytes suggests possible cell autonomy. Luria-Delbrück fluctuation test reveals that the initial establishment of these states is stochastic. Tracking of pigmenting cells ascertains that the stochastically acquired state is faithfully propagated in the progeny. A systemic approach combining single-cell multi-omics (RNA+ATAC) coupled to enhancer mapping with H3K27 acetylation successfully identified state-specific transcriptional networks. This comprehensive analysis led to the construction of a gene regulatory network (GRN) that under the influence of noise, establishes a bistable system of pigmentation and proliferation at the population level. This GRN recapitulates melanocyte behaviour in response to external cues that reinforce either of the states. Our work highlights that inherent stochasticity within melanocytes establishes dedicated states, and the mature state is sustained by selective enhancers mark through histone acetylation. While the initial cue triggers a proliferation response, the continued signal activates and maintains the pigmenting subpopulation via epigenetic imprinting. Thereby our study provides the basis of coexistence of distinct populations which ensures effective pigmentation response while preserving the self-renewal capacity.
Collapse
Affiliation(s)
- Ayush Aggarwal
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ayesha Nasreen
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Babita Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Keerthic Aswin
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohit K. Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Abhyudai Singh
- Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
- Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Rajesh S. Gokhale
- National Institute of Immunology, New Delhi, India
- Indian Institute of Science Education and Research Pune, Pune, India
| | - Vivek T. Natarajan
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Guo J, Chen S, Onishi Y, Shi Q, Song Y, Mei H, Chen L, Kool ET, Zhu RY. RNA Control via Redox-Responsive Acylation. Angew Chem Int Ed Engl 2024; 63:e202402178. [PMID: 38480851 DOI: 10.1002/anie.202402178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Incorporating stimuli-responsive components into RNA constructs provides precise spatiotemporal control over RNA structures and functions. Despite considerable advancements, the utilization of redox-responsive stimuli for the activation of caged RNAs remains scarce. In this context, we present a novel strategy that leverages post-synthetic acylation coupled with redox-responsive chemistry to exert control over RNA. To achieve this, we design and synthesize a series of acylating reagents specifically tailored for introducing disulfide-containing acyl adducts into the 2'-OH groups of RNA ("cloaking"). Our data reveal that these acyl moieties can be readily appended, effectively blocking RNA catalytic activity and folding. We also demonstrate the traceless release and reactivation of caged RNAs ("uncloaking") through reducing stimuli. By employing this strategy, RNA exhibits rapid cellular uptake, effective distribution and activation in the cytosol without lysosomal entrapment. We anticipate that our methodology will be accessible to laboratories engaged in RNA biology and holds promise as a versatile platform for RNA-based applications.
Collapse
Affiliation(s)
- Junsong Guo
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Siqin Chen
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Yoshiyuki Onishi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Qi Shi
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Hui Mei
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Ru-Yi Zhu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
7
|
Isak V, Azizi S, Zhou XK, Mehta D, Ding W, Bulmer Z, Aivazi DS, Dellinger RW, Granstein RD. Inhibition of UVB radiation-induced tissue swelling and immune suppression by nicotinamide riboside and pterostilbene. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12961. [PMID: 38676310 DOI: 10.1111/phpp.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Environmental ultraviolet radiation has deleterious effects on humans, including sunburn and immune perturbations. These immune changes are involved in skin carcinogenesis. OBJECTIVES To determine whether nicotinamide riboside and/or pterostilbene administered systemically inhibits inflammatory and immune effects of exposure to mid-range ultraviolet radiation. METHODS To examine UVB radiation-induced inflammatory effects, mice were fed standard chow/water, 0.04% pterostilbene in chow and 0.2% nicotinamide riboside in drinking water, diet with nicotinamide riboside alone, or diet with pterostilbene alone. After 4 weeks, mice were exposed to UVB radiation (3500 J/m2), and 24-/48-h ear swelling was assessed. We also asked if each agent or the combination inhibits UVB radiation suppression of contact hypersensitivity in two models. Mice were fed standard diet/water or chow containing 0.08% pterostilbene, water with 0.4% nicotinamide riboside, or both for 4 weeks. Low-dose: Half the mice in each group were exposed on the depilated dorsum to UVB radiation (1700 J/m2) daily for 4 days, whereas half were mock-irradiated. Mice were immunized on the exposed dorsum to dinitrofluorobenzene 4 h after the last irradiation, challenged 7 days later on the ears with dinitrofluorobenzene, and 24-h ear swelling assessed. High dose: Mice were treated similarly except that a single dose of 10,000 J/m2 of radiation was administered and immunization was performed on the unirradiated shaved abdomen 3 days later. RESULTS Nicotinamide riboside and pterostilbene together inhibited UVB-induced skin swelling more than either alone. Pterostilbene alone and both given together could inhibit UVB-induced immune suppression in both the low-dose and high-dose models while nicotinamide riboside alone was more effective in the low-dose model than the high-dose model. CONCLUSION Nicotinamide riboside and pterostilbene have protective effects against UVB radiation-induced tissue swelling and immune suppression.
Collapse
Affiliation(s)
- Verena Isak
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Shayan Azizi
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Xi K Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Devina Mehta
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Wanhong Ding
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Zakir Bulmer
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Daniella S Aivazi
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
8
|
Cook CE, Keter D, Cade WT, Winkelstein BA, Reed WR. Manual therapy and exercise effects on inflammatory cytokines: a narrative overview. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1305925. [PMID: 38745971 PMCID: PMC11091266 DOI: 10.3389/fresc.2024.1305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Background Matching disease and treatment mechanisms is a goal of the Precision Medicine Initiative. Pro- and anti-inflammatory cytokines (e.g., Tumor Necrosis Factor-alpha, Transforming Growth Factor-beta, and Interleukin-2, 10, and 12) have gained a significant amount of interest in their potential role in persistent pain for musculoskeletal (MSK) conditions. Manual therapy (MT) and exercise are two guideline-recommended approaches for treating MSK conditions. The objective of this narrative overview was to investigate of the effects of MT and exercise on pro- and anti-inflammatory cytokines and determine the factors that lead to variability in results. Methods Two reviewers evaluated the direction and variabilities of MT and exercise literature. A red, yellow, and green light scoring system was used to define consistencies. Results Consistencies in responses were seen with acute and chronic exercise and both pro- and anti-inflammatory cytokines. Chronic exercise is associated with a consistent shift towards a more anti-inflammatory cytokine profile (Transforming Growth Factor-beta, and Interleukin-2 and 13, whereas acute bouts of intense exercise can transiently increase pro-inflammatory cytokine levels. The influence of MT on cytokines was less commonly studied and yielded more variable results. Conclusion Variability in findings is likely related to the subject and their baseline condition or disease, when measurement occurs, and the exercise intensity, duration, and an individual's overall health and fitness.
Collapse
Affiliation(s)
- Chad E. Cook
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
- Department of Population Health Sciences, Duke University, Durham, NC, United States
- Duke Clinical Research Institute, Duke University, Durham, NC, United States
| | - Damian Keter
- Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - William Todd Cade
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
| | - Beth A. Winkelstein
- Departments of Bioengineering & Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - William R. Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Yang LT, Wang WJ, Huang WT, Wang LC, Hsu MC, Kan CD, Huang CY, Wong TW, Li WP. Photo-Responsive Ascorbic Acid-Modified Ag 2S-ZnS Heteronanostructure Dropping pH to Trigger Synergistic Antibacterial and Bohr Effects for Accelerating Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12018-12032. [PMID: 38394675 PMCID: PMC10921379 DOI: 10.1021/acsami.3c17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Nonantibiotic approaches must be developed to kill pathogenic bacteria and ensure that clinicians have a means to treat wounds that are infected by multidrug-resistant bacteria. This study prepared matchstick-like Ag2S-ZnS heteronanostructures (HNSs). Their hydrophobic surfactants were then replaced with hydrophilic poly(ethylene glycol) (PEG) and thioglycolic acid (TGA) through the ligand exchange method, and this was followed by ascorbic acid (AA) conjugation with TGA through esterification, yielding well-dispersed PEGylated Ag2S-ZnS@TGA-AA HNSs. The ZnS component of the HNSs has innate semiconductivity, enabling the generation of electron-hole pairs upon irradiation with a light of wavelength 320 nm. These separate charges can react with oxygen and water around the HNSs to produce reactive oxygen species. Moreover, some holes can oxidize the surface-grafted AA to produce protons, decreasing the local pH and resulting in the corrosion of Ag2S, which releases silver ions. In evaluation tests, the PEGylated Ag2S-ZnS@TGA-AA had synergistic antibacterial ability and inhibited Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA). Additionally, MRSA-infected wounds treated with a single dose of PEGylated Ag2S-ZnS@TGA-AA HNSs under light exposure healed significantly more quickly than those not treated, a result attributable to the HNSs' excellent antibacterial and Bohr effects.
Collapse
Affiliation(s)
- Li-Ting Yang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Wen-Jyun Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Wan-Ting Huang
- Department
of Dermatology, National Cheng Kung University Hospital, College of
Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Liu-Chun Wang
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ming-Chien Hsu
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Chung-Dann Kan
- Division
of Cardiovascular Surgery, Department of Surgery, National Cheng Kung
University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chun-Yung Huang
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, Kaohsiung 807, Taiwan
| | - Tak-Wah Wong
- Department
of Dermatology, National Cheng Kung University Hospital, College of
Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department
of Biochemistry & Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701, Taiwan
| | - Wei-Peng Li
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, Kaohsiung 807, Taiwan
- Drug
Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Dickinson SE, Vaishampayan P, Jandova J, Ai Y(E, Kirschnerova V, Zhang T, Calvert V, Petricoin E, Chow HHS, Hu C, Roe D, Bode A, Curiel-Lewandrowski C, Wondrak GT. Inhibition of UV-Induced Stress Signaling and Inflammatory Responses in SKH-1 Mouse Skin by Topical Small-Molecule PD-L1 Blockade. JID INNOVATIONS 2024; 4:100255. [PMID: 38328594 PMCID: PMC10847774 DOI: 10.1016/j.xjidi.2023.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 02/09/2024] Open
Abstract
The immune checkpoint ligand PD-L1 has emerged as a molecular target for skin cancer therapy and might also hold promise for preventive intervention targeting solar UV light-induced skin damage. In this study, we have explored the role of PD-L1 in acute keratinocytic photodamage testing the effects of small-molecule pharmacological inhibition. Epidermal PD-L1 upregulation in response to chronic photodamage was established using immunohistochemical and proteomic analyses of a human skin cohort, consistent with earlier observations that PD-L1 is upregulated in cutaneous squamous cell carcinoma. Topical application of the small-molecule PD-L1 inhibitor BMS-202 significantly attenuated UV-induced activator protein-1 transcriptional activity in SKH-1 bioluminescent reporter mouse skin, also confirmed in human HaCaT reporter keratinocytes. RT-qPCR analysis revealed that BMS-202 antagonized UV induction of inflammatory gene expression. Likewise, UV-induced cleavage of procaspase-3, a hallmark of acute skin photodamage, was attenuated by topical BMS-202. NanoString nCounter transcriptomic analysis confirmed downregulation of cutaneous innate immunity- and inflammation-related responses, together with upregulation of immune response pathway gene expression. Further mechanistic analysis confirmed that BMS-202 antagonizes UV-induced PD-L1 expression both at the mRNA and protein levels in SKH-1 epidermis. These data suggest that topical pharmacological PD-L1 antagonism using BMS-202 shows promise for skin protection against photodamage.
Collapse
Affiliation(s)
- Sally E. Dickinson
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, The University of Arizona, Tucson, Arizona, USA
- Skin Cancer Institute, University of Arizona, Tucson, Arizona, USA
| | - Prajakta Vaishampayan
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Jana Jandova
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| | - Yuchen (Ella) Ai
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Viktoria Kirschnerova
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, College of Medicine, George Mason University, Fairfax, Virginia, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, College of Medicine, George Mason University, Fairfax, Virginia, USA
| | - H-H. Sherry Chow
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Department of Molecular & Cellular Biology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Chengcheng Hu
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Department of Epidemiology and Biostatistics, Mel and Enid Zukerman College of Public Health, The University of Arizona, Tucson, Arizona, USA
| | - Denise Roe
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Department of Epidemiology and Biostatistics, Mel and Enid Zukerman College of Public Health, The University of Arizona, Tucson, Arizona, USA
| | - Ann Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Clara Curiel-Lewandrowski
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Skin Cancer Institute, University of Arizona, Tucson, Arizona, USA
- Division of Dermatology, Department of Medicine, College of Medicine Tucson, The University of Arizona, Tucson, Arizona, USA
| | - Georg T. Wondrak
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Skin Cancer Institute, University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Liu Y, Wang Y, Yang M, Luo J, Zha J, Geng S, Zeng W. Exosomes from hypoxic pretreated ADSCs attenuate ultraviolet light-induced skin injury via GLRX5 delivery and ferroptosis inhibition. Photochem Photobiol Sci 2024; 23:55-63. [PMID: 38100056 DOI: 10.1007/s43630-023-00498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 02/02/2024]
Abstract
Accumulation studies have found that adipose-derived stem cell (ADSC) exosomes have anti-oxidant and anti-inflammatory characteristics. The current study verified their therapeutic potential to elucidate mechanisms of ADSC exosome actions in ultraviolet B (UVB) light-induced skin injury. Exosomes were isolated from ADSCs and hypoxic pretreated ADSCs. Next-generation sequencing (NGS) was applied to characterize differential mRNA expression. A UV-induced mice skin injury model was generated to investigate therapeutic effects regarding the exosomes via immunofluorescence and ELISA analysis. Regulatory mechanisms were illustrated using luciferase report analysis and in vitro experiments. The results demonstrated that exosomes from hypoxic pretreated ADSCs (HExos) inhibited UVB light-induced vascular injury by reversing reactive oxygen species, inflammatory factor expression and excessive collagen degradation. NGS showed that HExos inhibits UV-induced skin damage via GLRX5 delivery, while GLRX5 downregulation inhibited the therapeutic effect of HExos on UV-induced skin damage. GLRX5 upregulation increased the protective Exo effect on UV-induced skin and EPC damage by inhibiting ferroptosis, inflammatory cytokine expression and excessive collagen degradation. Therefore, the data indicate that HExos attenuate UV light-induced skin injury via GLRX5 delivery and ferroptosis inhibition.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Yawen Wang
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Mengyao Yang
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Jie Luo
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Jindong Zha
- Department of Cosmetic Dermatology, Mylike Cosmetology Hospital of Yunnan, Kunming, China
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China.
| | - Weihui Zeng
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
12
|
Cui X, Mi T, Zhang H, Gao P, Xiao X, Lee J, Guelakis M, Gu X. Glutathione amino acid precursors protect skin from UVB-induced damage and improve skin tone. J Eur Acad Dermatol Venereol 2024; 38 Suppl 3:12-20. [PMID: 38189671 DOI: 10.1111/jdv.19718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND UV radiation exposure causes skin irritation, erythema, darkening and barrier disruption by inducing oxidative stress and inflammation. Glutathione, a master antioxidant, plays an important role in the antioxidant defence network of the skin. OBJECTIVE This study aimed to assess the in vitro protective effects of the glutathione amino acid precursors blend (GAP) on transcriptomic and phenotypic endpoints against UVB-induced challenges. METHODS Normal human epidermal melanocytes (NHEMs) were exposed to GAP, ascorbic acid (AA) and its derivatives. Viability was assessed using the CCK8 method. Melakutis®, a pigmented living skin equivalent (pLSE) model, underwent repeated 50 mJ/cm2 UVB irradiation with or without GAP treatment. Images of the model were captured with consistent camera parameters, and the model's light intensity was measured using a spectrophotometer. Melanin content was determined by measuring absorbance at 405 nm. Confirmation of melanin deposition and distribution was achieved through Fontana-Masson staining. Transcriptomic analysis was conducted using RNA sequencing (RNA-Seq), and a machine learning approach was employed for transcriptomic aging clock analysis. RESULTS In NHEMs, all tested compounds exhibited over 85% viability compared to the vehicle control, indicating no heightened risk of cytotoxicity. Notably, GAP demonstrated greater efficacy in inhibiting melanin production than AA derivatives at equivalent concentrations. In pLSE models, GAP notably enhanced model lightness, and reduced melanin content and deposition following the UVB challenge, whereas AA showed minimal impact. GAP effectively counteracted UVB-induced alterations in gene expression linked to pigmentation, inflammation and aging. Moreover, recurrent UVB exposure substantially elevated the biological age of pLSE models, a phenomenon mitigated by GAP treatment. CONCLUSIONS In NHEMs, GAP exhibited enhanced effectiveness in inhibiting melanin production at identical tested doses in comparison to AA derivatives. Noteworthy protective effects of GAP against UVB irradiation were observed in the pLSE models, as evidenced by skin pigmentation measurements and transcriptomic changes.
Collapse
Affiliation(s)
- Xiao Cui
- Unilever R&D Shanghai, Shanghai, China
| | | | | | - Ping Gao
- Unilever R&D Shanghai, Shanghai, China
| | - Xue Xiao
- Unilever R&D Shanghai, Shanghai, China
| | - Jianming Lee
- Unilever R&D Trumbull, Trumbull, Connecticut, USA
| | | | - Xuelan Gu
- Unilever R&D Shanghai, Shanghai, China
| |
Collapse
|
13
|
Boada MD, Gutierrez S, Eisenach JC. Effects of systemic oxytocin administration on ultraviolet B-induced nociceptive hypersensitivity and tactile hyposensitivity in mice. Mol Pain 2024; 20:17448069241226553. [PMID: 38172079 PMCID: PMC10846038 DOI: 10.1177/17448069241226553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Ultraviolet B (UVB) radiation induces cutaneous inflammation, leading to thermal and mechanical hypersensitivity. Here, we examine the mechanical properties and profile of tactile and nociceptive peripheral afferents functionally disrupted by this injury and the role of oxytocin (OXT) as a modulator of this disruption. We recorded intracellularly from L4 afferents innervating the irradiated area (5.1 J/cm2) in 4-6 old week male mice (C57BL/6J) after administering OXT intraperitoneally, 6 mg/Kg. The distribution of recorded neurons was shifted by UVB radiation to a pattern observed after acute and chronic injuries and reduced mechanical thresholds of A and C- high threshold mechanoreceptors while reducing tactile sensitivity. UVB radiation did not change somatic membrane electrical properties or fiber conduction velocity. OXT systemic administration rapidly reversed these peripheral changes toward normal in both low and high-threshold mechanoreceptors and shifted recorded neuron distribution toward normal. OXT and V1aR receptors were present on the terminals of myelinated and unmyelinated afferents innervating the skin. We conclude that UVB radiation, similar to local tissue surgical injury, cancer metastasis, and peripheral nerve injury, alters the distribution of low and high threshold mechanoreceptors afferents and sensitizes nociceptors while desensitizing tactile units. Acute systemic OXT administration partially returns all of those effects to normal.
Collapse
Affiliation(s)
- M Danilo Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Silvia Gutierrez
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James C Eisenach
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
14
|
Patel P, Wang JY, Mineroff J, Jagdeo J. The potential cutaneous benefits of Carthamus tinctorius oleosomes. Arch Dermatol Res 2023; 316:26. [PMID: 38060028 DOI: 10.1007/s00403-023-02750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 12/08/2023]
Abstract
Safflower (Carthamus tinctorius) oleosomes are unique organelles that house triglycerides and fatty acids and demonstrate a natural resilience to environmental stresses. There is recent growing interest in safflower oleosomes due to their potential applications in dermatology, especially as a carrier technology to improve drug penetration through the skin. This paper explores various aspects of safflower oleosomes, including their production, safety, absorption, and applications in photoprotection and epidermal remodeling. Oleosomes have shown encouraging results in targeted drug delivery in in vitro and in vivo animal models; however, human clinical research is required to determine their efficacy and safety in dermatology. Oleosomes are comprise a novel biotechnology that has the potential to transform sustainable and natural treatments in dermatology by utilizing their unique structure. Safflower oleosomes are stable lipid molecules that can deliver small and large molecules with high efficacy. This review will examine the current research findings and prospective future applications of oleosomes.
Collapse
Affiliation(s)
- Paras Patel
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Jennifer Y Wang
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA
| | - Jessica Mineroff
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA
| | - Jared Jagdeo
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA.
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA.
| |
Collapse
|
15
|
Elkoshi N, Parikh S, Malcov-Brog H, Parikh R, Manich P, Netti F, Maliah A, Elkoshi H, Haj M, Rippin I, Frand J, Perluk T, Haiat-Factor R, Golan T, Regev-Rudzki N, Kiper E, Brenner R, Gonen P, Dror I, Levi H, Hameiri O, Cohen-Gulkar M, Eldar-Finkelman H, Ast G, Nizri E, Ziv Y, Elkon R, Khaled M, Ebenstein Y, Shiloh Y, Levy C. Ataxia Telangiectasia Mutated Signaling Delays Skin Pigmentation upon UV Exposure by Mediating MITF Function toward DNA Repair Mode. J Invest Dermatol 2023; 143:2494-2506.e4. [PMID: 37236596 DOI: 10.1016/j.jid.2023.03.1686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 05/28/2023]
Abstract
Skin pigmentation is paused after sun exposure; however, the mechanism behind this pausing is unknown. In this study, we found that the UVB-induced DNA repair system, led by the ataxia telangiectasia mutated (ATM) protein kinase, represses MITF transcriptional activity of pigmentation genes while placing MITF in DNA repair mode, thus directly inhibiting pigment production. Phosphoproteomics analysis revealed ATM to be the most significantly enriched pathway among all UVB-induced DNA repair systems. ATM inhibition in mouse or human skin, either genetically or chemically, induces pigmentation. Upon UVB exposure, MITF transcriptional activation is blocked owing to ATM-dependent phosphorylation of MITF on S414, which modifies MITF activity and interactome toward DNA repair, including binding to TRIM28 and RBBP4. Accordingly, MITF genome occupancy is enriched in sites of high DNA damage that are likely repaired. This suggests that ATM harnesses the pigmentation key activator for the necessary rapid, efficient DNA repair, thus optimizing the chances of the cell surviving. Data are available from ProteomeXchange with the identifier PXD041121.
Collapse
Affiliation(s)
- Nadav Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shivang Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Malcov-Brog
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paulee Manich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesca Netti
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hana Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Majd Haj
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Rippin
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Frand
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tomer Perluk
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Rivi Haiat-Factor
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tamar Golan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Edo Kiper
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Brenner
- Institute of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Pinchas Gonen
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dror
- Department of Biological Chemistry, University of California Loss Angeles School of Medicine, Los Angeles, California, USA
| | - Hagai Levi
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky Medical Center Ichilov, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rani Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
16
|
Qu Y, Sun X, Wei N, Wang K. Inhibition of cutaneous heat-sensitive Ca 2+ -permeable transient receptor potential vanilloid 3 channels alleviates UVB-induced skin lesions in mice. FASEB J 2023; 37:e23309. [PMID: 37983944 DOI: 10.1096/fj.202301591rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Ultraviolet B (UVB) radiation causes skin injury by trigging excessive calcium influx and signaling cascades in the skin keratinocytes. The heat-sensitive Ca2+ -permeable transient receptor potential vanilloid 3 (TRPV3) channels robustly expressed in the keratinocytes play an important role in skin barrier formation and wound healing. Here, we report that inhibition of cutaneous TRPV3 alleviates UVB radiation-induced skin lesions. In mouse models of ear swelling and dorsal skin injury induced by a single exposure of weak UVB radiation, TRPV3 genes and proteins were upregulated in quantitative real-time PCR and Western blot assays. In accompany with TRPV3 upregulations, the expressions of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were also increased. Knockout of the TRPV3 gene alleviates UVB-induced ear swelling and dorsal skin inflammation. Furthermore, topical applications of two selective TRPV3 inhibitors, osthole and verbascoside, resulted in a dose-dependent attenuation of skin inflammation and lesions. Taken together, our findings demonstrate the causative role of overactive TRPV3 channel function in the development of UVB-induced skin injury. Therefore, topical inhibition of TRPV3 may hold potential therapy or prevention of UVB radiation-induced skin injury.
Collapse
Affiliation(s)
- Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiaoying Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Lv J, Qi P, Yan X, Bai L, Zhang L. Structure and Metabolic Characteristics of Intestinal Microbiota in Tibetan and Han Populations of Qinghai-Tibet Plateau and Associated Influencing Factors. Microorganisms 2023; 11:2655. [PMID: 38004668 PMCID: PMC10672793 DOI: 10.3390/microorganisms11112655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Residents of the Qinghai-Tibet Plateau might experience shifts in their gut microbiota composition as a result of the plateau environment. For example, high altitudes can increase the abundance of obligate anaerobic bacteria, decrease the number of aerobic bacteria and facultative anaerobic bacteria, increase probiotics, and decrease pathogenic bacteria. This study aimed to determine the structure and metabolic differences in intestinal microbial communities among the Tibetan and Han populations on the Qinghai-Xizang Plateau and shed light on the factors that influence the abundance of the microbial communities in the gut. The structural characteristics of intestinal microorganisms were detected from blood and fecal samples using 16S rRNA sequencing. Metabolic characteristics were detected using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). The influencing factors were analyzed using Spearman's correlation analysis. Bacteroides and Bifidobacterium were dominant in the intestinal tract of the Han population, while Bacteroides and Prevotella were dominant in that of the Tibetan population, with marked differences in Pseudomonas, Prevotella, and other genera. Ferulic acid and 4-methylcatechol were the main differential metabolites between the Tibetan and Han ethnic groups. This may be the reason for the different adaptability of Tibetan and Han nationalities to the plateau. Alanine aminotransferase and uric acid also have a high correlation with different bacteria and metabolites, which may play a role. These results reveal notable disparities in the compositions and metabolic characteristics of gut microbial communities in the Tibetan and Han people residing on the Qinghai-Tibet Plateau and may provide insights regarding the mechanism of plateau adaptability.
Collapse
Affiliation(s)
- Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
19
|
Zhang Z, He B, Han Q, He R, Ding Y, Han B, Ma ZC. Femtosecond Laser Direct Writing of Gecko-Inspired Switchable Adhesion Interfaces on a Flexible Substrate. MICROMACHINES 2023; 14:1742. [PMID: 37763905 PMCID: PMC10534918 DOI: 10.3390/mi14091742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Biomimetic switchable adhesion interfaces (BSAIs) with dynamic adhesion states have demonstrated significant advantages in micro-manipulation and bio-detection. Among them, gecko-inspired adhesives have garnered considerable attention due to their exceptional adaptability to extreme environments. However, their high adhesion strength poses challenges in achieving flexible control. Herein, we propose an elegant and efficient approach by fabricating three-dimensional mushroom-shaped polydimethylsiloxane (PDMS) micropillars on a flexible PDMS substrate to mimic the bending and stretching of gecko footpads. The fabrication process that employs two-photon polymerization ensures high spatial resolution, resulting in micropillars with exquisite structures and ultra-smooth surfaces, even for tip/stem ratios exceeding 2 (a critical factor for maintaining adhesion strength). Furthermore, these adhesive structures display outstanding resilience, enduring 175% deformation and severe bending without collapse, ascribing to the excellent compatibility of the micropillar's composition and physical properties with the substrate. Our BSAIs can achieve highly controllable adhesion force and rapid manipulation of liquid droplets through mechanical bending and stretching of the PDMS substrate. By adjusting the spacing between the micropillars, precise control of adhesion strength is achieved. These intriguing properties make them promising candidates for various applications in the fields of microfluidics, micro-assembly, flexible electronics, and beyond.
Collapse
Affiliation(s)
- Zhiang Zhang
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingze He
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingqing Han
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruokun He
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxuan Ding
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Han
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo-Chen Ma
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Guo H, Zeng H, Hu Y, Jiang L, Lei L, Hung J, Fu C, Li H, Long Y, Chen J, Zeng Q. UVB promotes melanogenesis by regulating METTL3. J Cell Physiol 2023; 238:2161-2171. [PMID: 37417881 DOI: 10.1002/jcp.31077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Ultraviolet (UV) radiation is the primary exogenous inducer of skin pigmentation, although the mechanism has not been fully elucidated. N6-methyladenosine (m6 A) modification is one of the key epigenetic form of gene regulation that affects multiple biological processes. The aim of this study was to explore the role and underlying mechanisms of m6 A modification in UVB-induced melanogenesis. Low-dose UVB increased global m6 A modification in melanocytes (MCs) and MNT1 melanoma cell line. The GEPIA database predicted that methyltransferase METTL3 is positively correlated with the melanogenic transcription factor MITF in the sun-exposed skin tissues. After METTL3 respectively overexpressed and knocked down in the MNT1, the melanin content and melanogenesis-related genes were significantly upregulated after overexpression of METTL3, especially with UVB irradiation, and downregulated after METTL3 knockdown. METTL3 levels were also higher in melanocytic nevi with high melanin content. METTL3 overexpression and knockdown also altered the protein level of YAP1. SRAMP analysis predicted four high-potential m6 A modification sites on YAP1 mRNA, of which three were confirmed by methylated RNA immunoprecipitation. Inhibition of YAP1 expression can partially reverse melanogenesis induced by overexpression of METTL3. In conclusion, UVB irradiation promotes global m6 A modification in MCs and upregulates METTL3, which increases the expression level of YAP1 through m6 A modification, thereby activating the co-transcription factor TEAD1 and promoting melanogenesis.
Collapse
Affiliation(s)
- Haoran Guo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Hung
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Long
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Adams Z, Bechlivanidis C, Osman M, O'Hagan J, Naldzhiev D. Self-reported Side-effects of Ultraviolet-C Disinfection Devices. Photochem Photobiol 2023; 99:1299-1309. [PMID: 36533869 DOI: 10.1111/php.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic increased sales of portable UV-C devices as a means of inactivating the SARS-CoV-2 virus. Research suggests that excessive UV-C exposure to the eyes and skin can lead to side-effects, primarily photokeratitis and erythema, but these findings are limited to case studies. This study explores self-reported side-effects of UV-C devices by collating five waves of UK consumer survey data from April 2020-December 2021 (N = 26 864). 30%-46% of owners report a side-effect after using a device claiming to emit UV-C. However, detailed analysis of Wave 4 data (N = 309) highlights inconsistencies between reported and plausible side-effect(s) associated with skin or eye exposure from UV-C devices. Alternative explanations are considered, namely that the reported side-effect(s) were psychosomatic or misattributed to direct exposure of UV-C radiation. Data regarding awareness of warnings about device side-effect(s) supports the misattribution explanation. For risk assessment purposes, limited reliable information about specific irritation or injury to the eye and skin was found from self-reporting surveys. To optimize future data collection, we recommend addressing recall errors by: reducing the period under investigation, supplementing responses with empirical measures, and incentivizing respondents to provide accurate information about the make and model of the UV-C device.
Collapse
Affiliation(s)
- Zoë Adams
- Queen Mary University of London, London, UK
| | | | | | | | - Dzhordzhio Naldzhiev
- Department for Business, Energy and Industrial Strategy, Office for Product Safety and Standards, London, UK
| |
Collapse
|
22
|
Kumar A, Singh VK, Tiwari R, Madhukar P, Rajneesh, Kumar S, Gautam V, Engwerda C, Sundar S, Kumar R. Post kala-azar dermal leishmaniasis in the Indian sub-continent: challenges and strategies for elimination. Front Immunol 2023; 14:1236952. [PMID: 37638047 PMCID: PMC10451093 DOI: 10.3389/fimmu.2023.1236952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Visceral leishmaniasis (VL) is a severe and often fatal form of leishmaniasis caused by Leishmania donovani in the Indian sub-continent. Post Kala-azar Dermal Leishmaniasis (PKDL) is a late cutaneous manifestation of VL, typically occurring after apparent cure of VL, but sometimes even without a prior history of VL in India. PKDL serves as a significant yet neglected reservoir of infection and plays a crucial role in the transmission of the disease, posing a serious threat to the VL elimination program in the Indian sub-continent. Therefore, the eradication of PKDL should be a priority within the current VL elimination program aimed at achieving a goal of less than 1 case per 10,000 in the population at the district or sub-district levels of VL endemic areas. To accomplish this, a comprehensive understanding of the pathogenesis of PKDL is essential, as well as developing strategies for disease management. This review provides an overview of the current status of diagnosis and treatment options for PKDL, highlighting our current knowledge of the immune responses underlying disease development and progression. Additionally, the review discusses the impact of PKDL on elimination programs and propose strategies to overcome this challenge and achieve the goal of elimination. By addressing the diagnostic and therapeutic gaps, optimizing surveillance and control measures, and implementing effective intervention strategies, it is possible to mitigate the burden of PKDL and facilitate the successful elimination of VL in the Indian sub-continent.
Collapse
Affiliation(s)
- Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Prasoon Madhukar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajneesh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Christian Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
23
|
Azzouz D, Palaniyar N. Mitochondrial ROS and base excision repair steps leading to DNA nick formation drive ultraviolet induced-NETosis. Front Immunol 2023; 14:1198716. [PMID: 37350954 PMCID: PMC10282603 DOI: 10.3389/fimmu.2023.1198716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Reactive oxygen species (ROS) is essential for neutrophil extracellular trap formation (NETosis), and generated either by NADPH oxidases (e.g., during infections) or mitochondria (e.g., sterile injury) in neutrophils. We recently showed that ultraviolet (UV) radiation, a sterile injury-inducing agent, dose-dependently induced mitochondrial ROS generation, and increasing levels of ROS shifted the neutrophil death from apoptosis to NETosis. Nevertheless, how ROS executes UV-induced NETosis is unknown. In this study, we first confirmed that UV doses used in our experiments generated mitochondrial ROS, and the inhibition of mitochondrial ROS suppressed NETosis (Mitosox, SYTOX, immunocytochemistry, imaging). Next, we showed that UV irradiation extensively oxidized DNA, by confocal imaging of 8-oxyguanine (8-oxoG) in NETs. Immunofluorescence microscopy further showed that a DNA repair protein, proliferating cell nuclear antigen, was widely distributed throughout the DNA, indicating that the DNA repair machinery was active throughout the genome during UV-induced NETosis. Inhibition of specific steps of base excision repair (BER) pathway showed that steps leading up to DNA nick formation, but not the later steps, suppressed UV-induced NETosis. In summary, this study shows that (i) high levels of mitochondrial ROS produced following UV irradiation induces extensive oxidative DNA damage, and (ii) early steps of the BER pathway leading to DNA nicking results in chromatin decondensation and NETosis. Collectively, these findings reveal how ROS induces NOX-independent NETosis, and also a novel biological mechanism for UV irradiation- and -mitochondrial ROS-mediated NETosis.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Melo CPB, Saito P, Martinez RM, Staurengo-Ferrari L, Pinto IC, Rodrigues CCA, Badaro-Garcia S, Vignoli JA, Baracat MM, Bussmann AJC, Georgetti SR, Verri WA, Casagrande R. Aspirin-Triggered Resolvin D1 (AT-RvD1) Protects Mouse Skin against UVB-Induced Inflammation and Oxidative Stress. Molecules 2023; 28:molecules28052417. [PMID: 36903662 PMCID: PMC10005614 DOI: 10.3390/molecules28052417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.
Collapse
Affiliation(s)
- Cristina P. B. Melo
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Priscila Saito
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Renata M. Martinez
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Immunology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ingrid C. Pinto
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Camilla C. A. Rodrigues
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Stephanie Badaro-Garcia
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marcela M. Baracat
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Allan J. C. Bussmann
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| |
Collapse
|
25
|
Molecular basis of skin photoaging and therapeutic interventions by plant-derived natural product ingredients: A comprehensive review. Heliyon 2023; 9:e13580. [PMID: 36895391 PMCID: PMC9988502 DOI: 10.1016/j.heliyon.2023.e13580] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Skin areas exposed to ultraviolet radiation (UV) from sunlight are more prone to photoaging than unexposed areas evidenced by several signs which include skin dryness, irregular pigmentation, lentigines, hyperpigmentation, wrinkling, and decreased elasticity. Plant-based natural product ingredients with therapeutic potential against skin photoaging are gaining more attention. This article aims the reviewing the research work done in exploring the cellular and molecular mechanisms involved in UV-induced skin photoaging, followed by summarizing the mechanistic insights involved in its therapeutics by natural product-based ingredients. In the mechanistic section of the convoluted procedure of photoaging, we described the effect of UV radiation (UVR) on different cellular macromolecules (direct damage) and subsequently, the deleterious consequences of UVR-generated reactive oxygen species (indirect damage) and signaling pathways activated or inhibited by UV induced ROS generation in various cellular pathologies of skin photoaging like inflammation, extracellular matrix degradation, apoptosis, mitochondrial dysfunction, and immune suppression. We also discussed the effect of UV radiation on the adipose tissue, and transient receptor potential cation channel V of photoaging skin. In the past few decades, mechanistic studies performed in this area have deciphered various therapeutic targets, opening avenues for different available therapeutic options against this pathological condition. So the remaining portion of the review deals with various natural product-based therapeutic agents available against skin photodamage.
Collapse
|
26
|
Deng S, Zhang Y, Qiao Z, Wang K, Ye L, Xu Y, Hu T, Bai H, Fu Q. Hierarchically Designed Biodegradable Polylactide Particles with Unprecedented Piezocatalytic Activity and Biosafety for Tooth Whitening. Biomacromolecules 2023; 24:797-806. [PMID: 36642871 DOI: 10.1021/acs.biomac.2c01252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
At-home tooth whitening solutions with good efficacy and biosafety are highly desirable to meet the ever-growing demand for aesthetic dentistry. As a promising alternative to the classic peroxide bleaching that may damage tooth enamel and gums, piezocatalysis has been recently proposed to realize non-destructive whitening by toothbrushing with piezoelectrical particles. However, traditional particles either pose potential threats to human health or exhibit low piezoresponse to weak mechanical stimuli in the toothbrushing. Here, biocompatible and biodegradable polylactide particles constructed from interlocking crystalline lamellae have been hierarchically designed as next-generation whitening materials with ultra-high piezocatalytic activity and biosafety. By simultaneously controlling the chain conformation within lamellae and the porosity of such unique lamellae network at the nano- and microscales, the particles possessing unprecedented piezoelectricity have been successfully prepared due to the markedly increased dipole alignment, mechanical deformability, and specific surface area. The piezoelectric output can reach as high as 18.8 V, nearly 50 times higher than that of common solid polylactide particles. Consequently, their piezocatalytic effect can be readily activated by a toothbrush to rapidly clean the teeth stained with black tea and coffee, without causing detectable enamel damage. Furthermore, these particles have no cytotoxicity. This work presents a paradigm for achieving high piezoelectric activity in polylactide, which enables its practical application in tooth whitening.
Collapse
Affiliation(s)
- Shihao Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Yue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Zeshuang Qiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Ke Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Hongwei Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| |
Collapse
|
27
|
Elsheikh MA, Gaafar PM, Khattab MA, A. Helwah MK, Noureldin MH, Abbas H. Dual-effects of caffeinated hyalurosomes as a nano-cosmeceutical gel counteracting UV-induced skin ageing. Int J Pharm X 2023; 5:100170. [PMID: 36844895 PMCID: PMC9950955 DOI: 10.1016/j.ijpx.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Caffeine (CAF) is a challenging natural bioactive compound with proven antiaging efficacy. However, being hydrophilic hampers its permeation through the skin. Our aim is to develop a novel CAF-loaded nano-cosmeceutical tool counteracting skin photoaging via improving CAF skin permeation using a bioactive nanocarrier. Caffeinated hyalurosomes are novel biocompatible antiaging nanoplatforms designed by immobilization of phospholipid vesicles with a hyaluronan polymer. Physicochemical properties of the selected hyalurosomes formulation showed nano-sized vesicles (210.10 ± 1.87 nm), with high zeta potential (-31.30 ± 1.19 mv), and high encapsulation efficiency (84.60 ± 1.05%). In vitro release results showed outstanding sustained release profile from caffeinated hyalurosomes compared to the CAF-loaded in conventional gel over 24 h. The in-vivo study revealed a photoprotective effect of caffeinated hyalurosomes, reflected from the intact and wrinkling-free skin. Results of biochemical analyses of oxidative stress, pro-inflammatory mediators, and anti-wrinkling markers further confirmed the efficacy of the prepared hyalurosomes compared to the CAF conventional gel. Finally, histopathological examination demonstrated normal histological structures of epidermal layers with minimal inflammatory cell infiltrates in the caffeinated hyalurosomes group compared to the positive control group. Conclusively, caffeinated hyalurosomes successfully achieved enhanced CAF loading and penetration into the skin besides the hydration effect of hyaluronan. Consequently, the developed delivery system presents a promising skin protection nano-platforms via the double effects of both hyaluronan and CAF, hence it guards against skin photodamage.
Collapse
Affiliation(s)
- Manal A Elsheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M.E. Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, P.O. Box 1029, Egypt
| | - Mohamed A. Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | | | - Mohamed H. Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, P.O. Box 1029, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt,Corresponding author at: Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, El-Bahira, Egypt Post Office, P.O. Box 22511, Damanhour, Egypt.
| |
Collapse
|
28
|
Seck S, Hamad J, Schalka S, Lim HW. Photoprotection in skin of color. Photochem Photobiol Sci 2023; 22:441-456. [PMID: 36227521 DOI: 10.1007/s43630-022-00314-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/25/2022] [Indexed: 10/17/2022]
Abstract
As populations in many parts of the world are projected to become more racially diverse over the coming decades, we must better understand the unique characteristics of the skin of populations with skin of color (SOC). This review aims to highlight important physiologic and clinical considerations of photoprotection in SOC. Ultraviolet radiation and visible light affect dark and light skin differently. SOC populations have historically not been informed on photoprotection to the same degree as their light skinned counterparts. This has exacerbated dermatologic conditions in which SOC populations are disproportionately affected, such as hyperpigmentary disorders. Patients should be encouraged to utilize multiple methods of photoprotection, ranging from avoidance of sunlight during peak intensity hours, seeking shade, wearing sun-protective clothing and wide-brimmed hat, and applying sunscreen. Ideal sunscreens for SOC populations include those with UVA-PF/SPF ratios ≥ 2/3 and tinted sunscreens to protect against VL. Although there have been increased efforts recently, more research into photoprotection for SOC and targeted public education are required to disseminate photoprotection resources that are patient-centered and evidence-based.
Collapse
Affiliation(s)
- Sokhna Seck
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Judy Hamad
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health, Henry Ford Medical Center - New Center One, 3031 West Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | | | - Henry W Lim
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health, Henry Ford Medical Center - New Center One, 3031 West Grand Blvd, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
29
|
Zewail M, Gaafar PME, Youssef NAHA, Ali ME, Ragab MF, Kamal MF, Noureldin MH, Abbas H. Novel Siprulina platensis Bilosomes for Combating UVB Induced Skin Damage. Pharmaceuticals (Basel) 2022; 16:36. [PMID: 36678533 PMCID: PMC9865528 DOI: 10.3390/ph16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The recent interest in bioactive compounds from natural sources has led to the evolution of the skin care industry. Efforts to develop biologically active ingredients from natural sources have resulted in the emergence of enhanced skin care products. Spirulina (SPR), a nutritionally enriched cyanobacteria-type microalga, is rich in nutrients and phytochemicals. SPR possesses antioxidant, immunomodulatory, and anti-inflammatory activities. Spirulina-loaded bilosomes (SPR-BS), a novel antiaging drug delivery system, were designed for the first time by incorporation in a lecithin−bile salt-integrated system for bypassing skin delivery obstacles. The optimized BS had good entrapment efficiency, small particle size, optimal zeta potential, and sustained drug release pattern. Blank and SPR-loaded BS formulations were safe, with a primary irritancy index of <2 based on the Draize test. In vivo tests were conducted, and photoprotective antiaging effects were evaluated visually and biochemically by analyzing antioxidant, anti-inflammatory, and anti-wrinkling markers following ultraviolet (UV) B irradiation. Results of biochemical marker analysis and histopathological examination confirmed the superior antiaging effect of SPR-BS compared with SPR. Thus, SPR-loaded BS is a promising nanoplatform for SPR delivery, can be used for treating UV-induced skin damage, and offers maximum therapeutic outcomes.
Collapse
Affiliation(s)
- Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| | - Passent M. E. Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Nancy Abdel Hamid Abou Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria (PUA), Alexandria P.O. Box 21500, Egypt
| | - Merhan E. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
| | - Mai F. Ragab
- Pharmacology Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo P.O. Box 11835, Egypt
| | - Miranda F. Kamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| | - Mohamed H. Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| |
Collapse
|
30
|
Kim JY, Lee EJ, Bae YJ, Park S, Kim SH, Lee J, Kwon IJ, Seong SH, Lee J, Kim TG, Oh SH. The involvement of gremlin-1 in external stress-induced melanogenesis. J Dermatol Sci 2022; 109:47-50. [PMID: 36642580 DOI: 10.1016/j.jdermsci.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital,Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital,Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jeong Bae
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital,Yonsei University College of Medicine, Seoul, Korea
| | - Sujin Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital,Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hee Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital,Yonsei University College of Medicine, Seoul, Korea
| | - Joohee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital,Yonsei University College of Medicine, Seoul, Korea
| | - Il Joo Kwon
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital,Yonsei University College of Medicine, Seoul, Korea
| | - Seol Hwa Seong
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital,Yonsei University College of Medicine, Seoul, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Tae-Gyun Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital,Yonsei University College of Medicine, Seoul, Korea.
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital,Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
31
|
Validation of a novel method of ultraviolet-induced cutaneous inflammation and its associations with anhedonia. Sci Rep 2022; 12:20237. [PMID: 36424456 PMCID: PMC9691739 DOI: 10.1038/s41598-022-24598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Affective immunology of the skin is a growing area; however, established protocols for measuring individual differences in cutaneous inflammation are lacking. To address this, we present a preliminary validation of Precision Implementation of Minimal Erythema Dose (PI-MED) testing as a method for measuring cutaneous inflammation. PI-MED is a recently adapted protocol, optimized for reproducibility and individual differences research, that uses ultraviolet (UV) light to evoke cutaneous erythema, or inflammatory skin reddening. PI-MED's novel UV dosage schedule produces standardized erythema responses across different skin pigmentation types and shows strong internal consistency within person and good test-retest reliability across 8-10 weeks. In line with predictions, increased PI-MED erythema was associated with heightened anhedonia, across several measures, beyond influences of non-affective covariates. While future work should further refine the dosage schedule for the lightest and darkest skin types, overall, evidence supports PI-MED as a protocol for inducing and measuring individual differences in cutaneous inflammation. Further, PI-MED-induced erythema can expand psychoneuroimmunology research by offering a complementary assessment for general inflammatory tone. This work adds to a growing body of evidence demonstrating a distinct relationship between inflammation and anhedonia.
Collapse
|
32
|
Jung W, Seok SH, Shin S, Ryu SH, Kim KB, Shin BS, Kim TH. Toxicokinetics, Percutaneous Absorption and Tissue Distribution of Benzophenone-3, an UV Filtering Agent, in Rats. TOXICS 2022; 10:672. [PMID: 36355963 PMCID: PMC9697188 DOI: 10.3390/toxics10110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate in vitro skin permeation and deposition, in vivo toxicokinetics, percutaneous absorption and tissue distribution of benzophenone-3 (BP-3) in rats. Four transdermal formulations containing BP-3 were prepared and evaluated for in vitro skin permeation and deposition of BP-3 using Franz diffusion cells. A gel formulation was used in subsequent in vivo percutaneous absorption due to its high in vitro skin permeation and deposition. Compared to intravenous (i.v.) injection, the prolonged terminal t1/2 (3.1 ± 1.6 h for i.v. injection and 18.3 ± 5.8 h for topical application) was observed indicating occurrence of flip-flop kinetics after topical application. The bioavailability of BP-3 after topical application was 6.9 ± 1.8%. The tissue-to-plasma partition coefficient (kp) for testis, considered a toxic target for BP-3, was less than 1.. Overall, findings of this study may be useful for risk assessment of BP-3.
Collapse
Affiliation(s)
- Woohyung Jung
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Gyeongbuk, Korea
| | - Su Hyun Seok
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi, Korea
| | - Soyoung Shin
- College of Pharmacy, Wonkwang University, Iksan 54538, Jeonbuk, Korea
| | - Sung Ha Ryu
- College of Pharmacy, Dankook University, Cheonan 31116, Chungnam, Korea
- R&D Center, GL Pharm Tech Corp., Seongnam-si 13202, Gyeonggi, Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan 31116, Chungnam, Korea
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Korea
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi, Korea
| | - Tae Hwan Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Gyeongbuk, Korea
| |
Collapse
|
33
|
Khorsandi K, Hosseinzadeh R, Esfahani H, Zandsalimi K, Shahidi FK, Abrahamse H. Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflamm Regen 2022; 42:40. [PMID: 36192814 PMCID: PMC9529607 DOI: 10.1186/s41232-022-00226-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolisms produce reactive oxygen species (ROS) which are essential for cellular signaling pathways and physiological functions. Nevertheless, ROS act as “double-edged swords” that have an unstable redox balance between ROS production and removal. A little raise of ROS results in cell proliferation enhancement, survival, and soft immune responses, while a high level of ROS could lead to cellular damage consequently protein, nucleic acid, and lipid damages and finally cell death. ROS play an important role in various pathological circumstances. On the contrary, ROS can show selective toxicity which is used against cancer cells and pathogens. Photodynamic therapy (PDT) is based on three important components including a photosensitizer (PS), oxygen, and light. Upon excitation of the PS at a specific wavelength, the PDT process begins which leads to ROS generation. ROS produced during PDT could induce two different pathways. If PDT produces control and low ROS, it can lead to cell proliferation and differentiation. However, excess production of ROS by PDT causes cellular photo damage which is the main mechanism used in cancer treatment. This review summarizes the functions of ROS in living systems and describes role of PDT in production of controllable ROS and finally a special focus on current ROS-generating therapeutic protocols for regeneration and wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Reza Hosseinzadeh
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Academic center for education, culture and research, Urmia, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
34
|
Chang LC. Clinical Applications of Photofunctionalization on Dental Implant Surfaces: A Narrative Review. J Clin Med 2022; 11:jcm11195823. [PMID: 36233693 PMCID: PMC9571244 DOI: 10.3390/jcm11195823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Dental implant therapy is a common clinical procedure for the restoration of missing teeth. Many methods have been used to promote osseointegration for successful implant therapy, including photofunctionalization (PhF), which is defined as the modification of titanium surfaces after ultraviolet treatment. It includes the alteration of the physicochemical properties and the enhancement of biological capabilities, which can alter the surface wettability and eliminate hydrocarbons from the implant surface by a biological aging process. PhF can also enhance cellular migration, attachment, and proliferation, thereby promoting osseointegration and coronal soft tissue seal. However, PhF did not overcome the dental implant challenge of oral cancer cases. It is necessary to have more clinical trials focused on complex implant cases and non-dental fields in the future.
Collapse
Affiliation(s)
- Li-Ching Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| |
Collapse
|
35
|
Klein B, Kunz M. Current concepts of photosensitivity in cutaneous lupus erythematosus. Front Med (Lausanne) 2022; 9:939594. [PMID: 36091671 PMCID: PMC9452788 DOI: 10.3389/fmed.2022.939594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) represents a complex autoimmune disease with a broad phenotypic spectrum ranging from acute to chronic destructive cutaneous lesions. Patients with CLE exhibit high photosensitivity and ultraviolet (UV) irradiation can lead to systemic flares in systemic lupus erythematosus. However, the exact mechanisms how UV irradiation enhances cutaneous inflammation in lupus are not fully understood. Recently, new molecular mechanisms of UV-driven immune responses in CLE were identified, offering potential therapeutic approaches. Especially the induction of type I interferons, central cytokines in lupus pathogenesis which are released by various skin cells, have become the focus of current research. In this review, we describe current pathogenic concepts of photosensitivity in lupus erythematosus, including UV-driven activation of intracellular nucleic acid sensors, cellular cytokine production and immune cell activation. Furthermore, we discuss activated pathways contributing to enhanced apoptosis as well as intracellular translocation of autoantigens thereby promoting CLE upon UV light exposure.
Collapse
Affiliation(s)
- Benjamin Klein
- Department of Dermatology, Venereology, and Allergology, University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
36
|
Chikhaoui A, Jones M, Režen T, Ben Ahmed M, Naouali C, Komel R, Zghal M, Boubaker S, Abdelhak S, Yacoub-Youssef H. Inflammatory landscape in Xeroderma pigmentosum patients with cutaneous melanoma. Sci Rep 2022; 12:13854. [PMID: 35974070 PMCID: PMC9381529 DOI: 10.1038/s41598-022-17928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
Xeroderma pigmentosum (XP) is a DNA repair disease that predisposes to early skin cancers as cutaneous melanoma. Melanoma microenvironment contains inflammatory mediators, which would be interesting biomarkers for the prognosis or for the identification of novel therapeutic targets. We used a PCR array to evaluate the transcriptional pattern of 84 inflammatory genes in melanoma tumors obtained from XP patients (XP-Mel) and in sporadic melanoma (SP-Mel) compared to healthy skin. Commonly expressed inflammatory genes were further explored via GTEx and GEPIA databases. The differentially expressed inflammatory genes in XP were compared to their expression in skin exposed to UVs, and evaluated on the basis of the overall survival outcomes of patients with melanoma. Monocyte subsets of patients with SP-Mel, XP and healthy donors were also assessed. PCR array data revealed that 34 inflammatory genes were under-expressed in XP-Mel compared to SP-Mel. Differentially expressed genes that were common in XP-Mel and SP-Mel were correlated with the transcriptomic datasets from GEPIA and GTEx and highlighted the implication of KLK1 and IL8 in the tumorigenesis. We showed also that in XP-Mel tumors, there was an overexpression of KLK6 and KLK10 genes, which seems to be associated with a bad survival rate. As for the innate immunity, we observed a decrease of intermediate monocytes in patients with SP-Mel and in XP. We highlight an alteration in the immune response in XP patients. We identified candidate biomarkers involved in the tumorigenesis, and in the survival of patients with melanoma. Intermediate monocyte's in patients at risk could be a prognostic biomarker for melanoma outcome.
Collapse
Affiliation(s)
- Asma Chikhaoui
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Meriem Jones
- Département de Dermatologie, Hôpital Charles Nicolle de Tunis, Tunis, Tunisia
| | - Tadeja Režen
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips and Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Melika Ben Ahmed
- Laboratoire de Transmission, Contrôle Et Immunobiologie de L'infection, LR16IPT02, Institut Pasteur de Tunis Université de Tunis El Manar I, 2092, Tunis, Tunisia
| | - Chokri Naouali
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Radovan Komel
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips and Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Mohamed Zghal
- Département de Dermatologie, Hôpital Charles Nicolle de Tunis, Tunis, Tunisia
| | - Samir Boubaker
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia. .,Université Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
37
|
Kim DH, Bae J, Heo JH, Park CH, Kim EB, Lee JH. Nanoparticles as Next-Generation Tooth-Whitening Agents: Progress and Perspectives. ACS NANO 2022; 16:10042-10065. [PMID: 35704786 DOI: 10.1021/acsnano.2c01412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Whitening agents, such as hydrogen peroxide and carbamide peroxide, are currently used in clinical applications for dental esthetic and dental care. However, the free radicals generated by whitening agents cause pathological damage; therefore, their safety issues remain controversial. Furthermore, whitening agents are known to be unstable and short-lived. Since 2001, nanoparticles (NPs) have been researched for use in tooth whitening. Importantly, nanoparticles not only function as abrasives but also release reactive oxygen species and help remineralization. This review outlines the historical development of several NPs based on their whitening effects and side effects. NPs can be categorized into metals or metal oxides, ceramic particles, graphene oxide, and piezoelectric particles. Moreover, the status quo and future prospects are discussed, and recent progress in the development of NPs and their applications in various fields requiring tooth whitening is examined. This review promotes the research and development of next-generation NPs for use in tooth whitening.
Collapse
Affiliation(s)
- Dai-Hwan Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jina Bae
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Cheol Hyun Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Eun Bi Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
38
|
Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022; 71:817-831. [PMID: 35748903 PMCID: PMC9307547 DOI: 10.1007/s00011-022-01598-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
Background Excessive exposure of the skin to UV radiation (UVR) triggers a remodeling of the immune system and leads to the photoaging state which is reminiscent of chronological aging. Over 30 years ago, it was observed that UVR induced an immunosuppressive state which inhibited skin contact hypersensitivity. Methods Original and review articles encompassing inflammation and immunosuppression in the photoaging and chronological aging processes were examined from major databases including PubMed, Scopus, and Google Scholar. Results Currently it is known that UVR treatment can trigger a cellular senescence and inflammatory state in the skin. Chronic low-grade inflammation stimulates a counteracting immunosuppression involving an expansion of immunosuppressive cells, e.g., regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and regulatory dendritic cells (DCreg). This increased immunosuppressive activity not only suppresses the function of effector immune cells, a state called immunosenescence, but it also induces bystander degeneration of neighboring cells. Interestingly, the chronological aging process also involves an accumulation of pro-inflammatory senescent cells and signs of chronic low-grade inflammation, called inflammaging. There is also clear evidence that inflammaging is associated with an increase in anti-inflammatory and immunosuppressive activities which promote immunosenescence. Conclusion It seems that photoaging and normal aging evoke similar processes driven by the remodeling of the immune system. However, it is likely that there are different molecular mechanisms inducing inflammation and immunosuppression in the accelerated photoaging and the chronological aging processes.
Collapse
|
39
|
El-Aziz FEZAA, Ismail MS, Askary AE, El-Kott AF, Tantawy AA. The assessment of the protective impact of spidroin extract against UV-A radiation damage by using earthworms (Aporrectodea caliginosa) as a robust human skin model via macroscopic and histological observations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44906-44916. [PMID: 35141825 PMCID: PMC9200702 DOI: 10.1007/s11356-022-18861-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Numerous studies have confirmed the damage caused by excessive exposure to ultraviolet-A rays. Malignant melanoma and skin cancer are two of the most serious health consequences. Thus, the UV-A protectant is intended to protect the skin, especially the two primary layers of skin (epidermis that represents the interface between the body and its surroundings and dermis). Spider silk is the most powerful natural fibre due to its regeneration, biocompatibility, antimicrobial, wound healing, antiseptic, and blood clotting properties. This work targeted to determine the protective effect of spidroin extract against UV-A radiation damage. Earthworms Aporrectodea caliginosa were collected from Assiut University's farm. Each set of ten earthworms was separated into six groups and placed in a plastic container. Webs of spiders collected from trees and old houses. Spidroin was extracted and utilised in this work to determine the potential effects of topical application on UV-A protection. The experiment is divided into two sections: (1) UV-A exposure and (2) the use of spidroin extract to protect the earthworms from ultraviolet radiation. Two control groups (1،2) of worms were not received UV-A exposure, and four groups (3,4,5,6) were exposed to UVR-A. In contrast, groups (5,6) were received spidroin extract before exposure to UV-A. Each group from the groups (3,4,5,6) was exposed for three consecutive days (¼ hour/day, ½ hour/day, and 1 h/day), using a UV-Lamp with a wavelength of 366 nm. The histopathological changes revealed that after 1⁄4 h of UV exposure, the cuticle was swollen with a slightly detached epithelium. The cuticle was down after 1⁄2 h of exposure, and the epidermis was totally damaged and necrosed. After 1 h, the exposure showed destruction of the epidermis in the circular muscle with a loss of muscle filament integrity, varying size, and altered nucleus form, along with mild disintegration of longitudinal muscle. Spidroin extract is critical for earthworm protection against UV-A radiation damage and able to regeneration. For the first time, morphological and histological analysis was established to detect the Spidroin extract evaluated for topical application on earthworms. Earthworms can be considered as a robust human skin model prior to UV-A exposure. It induces a complete protective effect against UV-A radiation damage in earthworms.
Collapse
Affiliation(s)
| | - May S Ismail
- Pharmaceutics Department, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Zoology Department, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Ahmed A Tantawy
- Biotechnology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
40
|
Nobile V, Burioli A, Yu S, Zhifeng S, Cestone E, Insolia V, Zaccaria V, Malfa GA. Photoprotective and Antiaging Effects of a Standardized Red Orange (Citrus sinensis (L.) Osbeck) Extract in Asian and Caucasian Subjects: A Randomized, Double-Blind, Controlled Study. Nutrients 2022; 14:nu14112241. [PMID: 35684041 PMCID: PMC9182634 DOI: 10.3390/nu14112241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
The increase in solar ultraviolet radiation (UVR) that reaches the Earth’s surface should make us reflect on the need to develop new approaches in protecting the skin from UVR exposure. The present study aims to evaluate the photoprotective and antiaging efficacy of a red orange extract (100 mg/day) in both Asian and Caucasian subjects. A randomized, double-blind, controlled study was carried out in 110 Asian and Caucasian subjects. Product efficacy was measured as follows: (1) the photoprotective effect was measured by the minimal erythema dose (MED) assessment; (2) the efficacy in decreasing the UVA+B-induced skin redness was measured by colorimetry; (3) the antioxidant efficacy was measured by the ferric-reducing antioxidant power (FRAP) and the malondialdehyde (MDA) assay; and (4) skin moisturization, skin elasticity, skin radiance, the intensity of melanin staining, transepidermal water loss (TEWL), and wrinkles were measured to assess the antiaging efficacy. The intake of the product for 56 days was effective in improving the skin reaction to UV exposure; in increasing the skin antioxidant capacity as well as in decreasing UVA-induced lipid peroxidation; in increasing the skin moisturization, skin elasticity, and skin radiance; and in decreasing TEWL, the intensity of melanin staining inside dark spots, and wrinkle depth. Our results suggest that the test product is effective in counteracting both the harmful effects of UVR exposure and aging signs.
Collapse
Affiliation(s)
- Vincenzo Nobile
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, PV, Italy; (A.B.); (E.C.)
- Correspondence: (V.N.); (V.Z.)
| | - Andrea Burioli
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, PV, Italy; (A.B.); (E.C.)
| | - Sara Yu
- Clinical Study Department, Complife (Beijing) Testing Technology Co., Ltd., Beizhan North Street N.17, Room 902—Xicheng District, Beijing 100089, China; (S.Y.); (S.Z.)
| | - Shi Zhifeng
- Clinical Study Department, Complife (Beijing) Testing Technology Co., Ltd., Beizhan North Street N.17, Room 902—Xicheng District, Beijing 100089, China; (S.Y.); (S.Z.)
| | - Enza Cestone
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, PV, Italy; (A.B.); (E.C.)
| | - Violetta Insolia
- Active S.r.l., R&D Department, Piano Tavola, 95032 Belpasso, CT, Italy;
- Alma Mater Europea, 6000 Koper, Slovenia
| | - Vincenzo Zaccaria
- Bionap S.r.l. R&D Department, Piano Tavola, 95032 Belpasso, CT, Italy
- Correspondence: (V.N.); (V.Z.)
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Science, University of Catania, Viale A. Doria, 95125 Catania, CT, Italy;
- CERNUT, Research Centre on Nutraceuticals and Health Products, University of Catania, Viale A. Doria, 95125 Catania, CT, Italy
| |
Collapse
|
41
|
Jelly Fig (Ficus awkeotsang Makino) Exhibits Antioxidative and Anti-Inflammatory Activities by Regulating Reactive Oxygen Species Production via NFκB Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11050981. [PMID: 35624846 PMCID: PMC9138086 DOI: 10.3390/antiox11050981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antioxidant and anti-inflammatory activities of Ficus awkeotsang Makino extract (FAE) on Hs68 fibroblasts and BALB/c nude-mouse models are evaluated in this study. FAE was found to be non-toxic and showed high levels of DPPH, H2O2, and hydroxyl radical scavenging abilities; a ferrous chelating capacity; as well as ferric-reducing antioxidant capability. The antioxidant activity of FAE was strongly associated with polyphenolic content (flavonoids at 10.3 mg QE g−1 and total phenol at 107.6 mg GAE g−1). The anti-inflammatory activity of FAE and the underlying molecular mechanisms were also investigated. The a* value of the mouse dorsal skin after treatment with FAE at 1.5 mg/mL in addition to chronic UVB exposure was found to decrease by 19.2% during a ten-week period. The anti-inflammatory effect of FAE was evidenced by the decreased accumulation of inflammatory cells and skin thickness. Expression levels of UVB-induced inflammatory proteins, including ROS, NF-κB, iNOS, COX-2, and IL-6, were significantly reduced upon FAE treatment in vitro and in vivo. Collectively, our results suggest that the inhibition of ROS and UVB-induced activation of the NF-κB downstream signaling pathway by FAE, indicating considerable potential as a versatile adjuvant against free radical damage in pharmaceutical applications.
Collapse
|
42
|
Salminen A. Clinical perspectives on the age-related increase of immunosuppressive activity. J Mol Med (Berl) 2022; 100:697-712. [PMID: 35384505 PMCID: PMC8985067 DOI: 10.1007/s00109-022-02193-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
The aging process is associated with a remodeling of the immune system involving chronic low-grade inflammation and a gradual decline in the function of the immune system. These processes are also called inflammaging and immunosenescence. The age-related immune remodeling is associated with many clinical changes, e.g., risk for cancers and chronic infections increases, whereas the efficiency of vaccination and immunotherapy declines with aging. On the other hand, there is convincing evidence that chronic inflammatory states promote the premature aging process. The inflammation associated with aging or chronic inflammatory conditions stimulates a counteracting immunosuppression which protects tissues from excessive inflammatory injuries but promotes immunosenescence. Immunosuppression is a driving force in tumors and chronic infections and it also induces the tolerance to vaccination and immunotherapies. Immunosuppressive cells, e.g., myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and type M2 macrophages, have a crucial role in tumorigenesis and chronic infections as well as in the tolerance to vaccination and immunotherapies. Interestingly, there is substantial evidence that inflammaging is also associated with an increased immunosuppressive activity, e.g., upregulation of immunosuppressive cells and anti-inflammatory cytokines. Given that both the aging and chronic inflammatory states involve the activation of immunosuppression and immunosenescence, this might explain why aging is a risk factor for tumorigenesis and chronic inflammatory states and conversely, chronic inflammatory insults promote the premature aging process in humans.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
43
|
Lee HS, Jeon EY, Nam JJ, Park JH, Choi IC, Kim SH, Chung JJ, Lee K, Park JW, Jung Y. Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing. Acta Biomater 2022; 141:219-232. [PMID: 35081432 DOI: 10.1016/j.actbio.2022.01.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury causes severe loss of motor and sensory functions, consequently increasing morbidity in affected patients. An autogenous nerve graft is considered the current gold standard for reconstructing nerve defects and recovering lost neurological functions; however, there are certain limitations to this method, such as limited donor nerve supply. With advances in regenerative medicine, recent research has focused on the fabrication of tissue-engineered nerve grafts as promising alternatives to the autogenous nerve grafts. In this study, we designed a nerve guidance conduit using an electrospun poly(lactide-co-ε-caprolactone) (PLCL) membrane with a visible light-crosslinked gelatin hydrogel. The PLCL nanoporous membrane with permeability served as a flexible and non-collapsible epineurium for the nerve conduit; the inner-aligned gelatin hydrogel paths were fabricated via 3D printing and a photocrosslinking system. The resultant gelatin hydrogel with microgrooved surface pattern was established as a conducting guidance path for the effective regeneration of axons and served as a reservoir that can incorporate and release bioactive molecules. From in vivo performance tests using a rat sciatic nerve defect model, our PLCL/gelatin conduit demonstrated successful axonal regeneration, remyelination capacities and facilitated functional recovery. Hence, the PLCL/gelatin conduit developed in this study is a promising substitute for autogenous nerve grafts. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits (NGCs) are developed as promising recovery techniques for bridging peripheral nerve defects. However, there are still technological limitations including differences in the structures and components between natural peripheral nerve and NGCs. In this study, we designed a NGC composed of an electrospun poly(lactide-co-ε-caprolactone) (PLCL) membrane and 3D printed inner gelatin hydrogel to serve as a flexible and non-collapsible epineurium and a conducting guidance path, respectively, to mimic the fascicular structure of the peripheral nerve. In particular, in vitro cell tests clearly showed that gelatin hydrogel could guide the cells and function as a reservoir that incorporate and release nerve growth factor. From in vivo performance tests, our regenerative conduit successfully led to axonal regeneration with effective functional recovery.
Collapse
Affiliation(s)
- Hyun Su Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Young Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae Jun Nam
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hun Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - In Cheul Choi
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
44
|
Improvement of Damage in Human Dermal Fibroblasts by 3,5,7-Trimethoxyflavone from Black Ginger ( Kaempferia parviflora). Antioxidants (Basel) 2022; 11:antiox11020425. [PMID: 35204307 PMCID: PMC8869600 DOI: 10.3390/antiox11020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species (ROS) are generated during intrinsic (chronological aging) and extrinsic (photoaging) skin aging. Therefore, antioxidants that inhibit ROS production may be involved in delaying skin aging. In this study, we investigated the potential effects of compounds isolated from black ginger, Kaempferia parviflora, a traditional medicinal plant, on normal human dermal fibroblasts in the context of inflammation and oxidative stress. The isolated compounds were structurally characterized as 5-hydroxy-7-methoxyflavone (1), 3,7-dimethoxy-5-hydroxyflavone (2), 5-hydroxy-3,7,3,4-tetramethoxyflavone (3), 7,4-dimethylapigenin (4), 3,7,4-trimethylkaempferol (5), and 3,5,7-trimethoxyflavone (6), using nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography–mass spectrometry (LC/MS) analyses. These flavonoids were first evaluated for their ability to suppress extracellular matrix degradation in normal human dermal fibroblasts. Of these, 3,5,7-trimethoxyflavone (6) significantly inhibited the tumor necrosis factor (TNF)-α-induced high expression and secretion of matrix metalloproteinase (MMP)-1 by cells. We further found that 3,5,7-trimethoxyflavone suppressed the excessive increase in ROS, mitogen-activated protein kinases (MAPKs), Akt, and cyclooxygenase-2 (COX-2)and increased heme oxygenase (HO)-1 expression. The expression of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and IL-8, was also suppressed by 3,5,7-trimethoxyflavone (6). Taken together, our results indicate that 3,5,7-trimethoxyflavone (6) isolated from K. parviflora is a potential candidate for ameliorating skin damage.
Collapse
|
45
|
Tong S, Cinelli MA, El-Sayed NS, Huang H, Patel A, Silverman RB, Yang S. Inhibition of interferon-gamma-stimulated melanoma progression by targeting neuronal nitric oxide synthase (nNOS). Sci Rep 2022; 12:1701. [PMID: 35105915 PMCID: PMC8807785 DOI: 10.1038/s41598-022-05394-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) is shown to stimulate melanoma development and progression. However, the underlying mechanism has not been completely defined. Our study aimed to determine the role of neuronal nitric oxide synthase (nNOS)-mediated signaling in IFN-γ-stimulated melanoma progression and the anti-melanoma effects of novel nNOS inhibitors. Our study shows that IFN-γ markedly induced the expression levels of nNOS in melanoma cells associated with increased intracellular nitric oxide (NO) levels. Co-treatment with novel nNOS inhibitors effectively alleviated IFN-γ-activated STAT1/3. Further, reverse phase protein array (RPPA) analysis demonstrated that IFN-γ induced the expression of HIF1α, c-Myc, and programmed death-ligand 1 (PD-L1), in contrast to IFN-α. Blocking the nNOS-mediated signaling pathway using nNOS-selective inhibitors was shown to effectively diminish IFN-γ-induced PD-L1 expression in melanoma cells. Using a human melanoma xenograft mouse model, the in vivo studies revealed that IFN-γ increased tumor growth compared to control, which was inhibited by the co-administration of nNOS inhibitor MAC-3-190. Another nNOS inhibitor, HH044, was shown to effectively inhibit in vivo tumor growth and was associated with reduced PD-L1 expression levels in melanoma xenografts. Our study demonstrates the important role of nNOS-mediated NO signaling in IFN-γ-stimulated melanoma progression. Targeting nNOS using highly selective small molecular inhibitors is a unique and effective strategy to improve melanoma treatment.
Collapse
Affiliation(s)
- Shirley Tong
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Maris A Cinelli
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA
| | - Naglaa Salem El-Sayed
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - He Huang
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA
| | - Anika Patel
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA.,Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sun Yang
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
46
|
Fen Y, Xinxin M, Yalan Y, Xu Z, Zhongsheng L, Shixiong S, Xinyan C, Zhenzhen W, Wei Z, Xiaolei W. The effect of a low-color-temperature-based yellow light source on the prevention of phlebitis induced by chemotherapy. Biomater Sci 2022; 10:909-914. [PMID: 35079753 DOI: 10.1039/d1bm01189h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, light therapy has been gradually applied to the treatment of inflammation. Different from conventional high-color-temperature light sources, low-color-temperature yellow light (1900 K) without a blue light spectrum was selected as the light source to research its preventive effects on chemotherapy-induced phlebitis in this study. Based on a series of inflammatory characterization experiments, the results manifested that the reasonable utilization of 1900 K yellow light had a good effect on the prevention of phlebitis. This study shows that this is a feasible and promising method for preventing phlebitis and relieving pain, while providing a theoretical basis for the further investigation of the anti-inflammatory effects on phlebitis.
Collapse
Affiliation(s)
- Yu Fen
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R.China.,Institute of Advanced Materials, East China Jiaotong University, Nanchang, Jiangxi, 330013, P.R.China
| | - Miao Xinxin
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330088, P.R.China
| | - Yang Yalan
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R.China
| | - Zhao Xu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R.China
| | - Lv Zhongsheng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R.China
| | - Shen Shixiong
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R.China
| | - Cheng Xinyan
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R.China
| | - Weng Zhenzhen
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R.China
| | - Zhang Wei
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R.China
| | - Wang Xiaolei
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P.R.China.,Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P.R.China
| |
Collapse
|
47
|
Tanabe S, O’Brien J, Tollefsen KE, Kim Y, Chauhan V, Yauk C, Huliganga E, Rudel RA, Kay JE, Helm JS, Beaton D, Filipovska J, Sovadinova I, Garcia-Reyero N, Mally A, Poulsen SS, Delrue N, Fritsche E, Luettich K, La Rocca C, Yepiskoposyan H, Klose J, Danielsen PH, Esterhuizen M, Jacobsen NR, Vogel U, Gant TW, Choi I, FitzGerald R. Reactive Oxygen Species in the Adverse Outcome Pathway Framework: Toward Creation of Harmonized Consensus Key Events. FRONTIERS IN TOXICOLOGY 2022; 4:887135. [PMID: 35875696 PMCID: PMC9298159 DOI: 10.3389/ftox.2022.887135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
- *Correspondence: Shihori Tanabe,
| | - Jason O’Brien
- Wildlife Toxicology Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Youngjun Kim
- Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Natalia Garcia-Reyero
- U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS, United States
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Nathalie Delrue
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Ellen Fritsche
- Group of Alternative Method Development for Environmental Toxicity Testing, IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, Switzerland
| | - Cinzia La Rocca
- Center for Gender-specific Medicine, Italian National Institute of Health, Rome, Italy
| | - Hasmik Yepiskoposyan
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, Switzerland
| | - Jördis Klose
- Group of Alternative Method Development for Environmental Toxicity Testing, IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Maranda Esterhuizen
- University of Helsinki, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Lahti, Finland, and Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Timothy W. Gant
- UK Health Security Agency, Public Health England, London, United Kingdom
| | - Ian Choi
- Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, Germany
| | | |
Collapse
|
48
|
Zhilova MB, Gorodnichev PV. Narrow-band phototherapy in the treatment of atopic dermatitis: mechanisms of action, methodology of implementation. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Phototherapy is widely used to treat various chronic skin diseases. One of the most effective methods of treatment is narrow-band medium-wave ultraviolet radiation with a wavelength of 311 nm (UVB-311). UVB-311 is used for such immune-mediated diseases as atopic dermatitis, psoriasis, vitiligo, mycosis fungoides and others. Despite the fact that the method was developed more than 30 years ago, the exact mechanism of its therapeutic action remains insufficiently studied. To date, most of the effects of UVB-311 are explained by its effect on the immune cells of the skin. This review examines data on the effects on the main molecular targets, including T-lymphocytes, keratinocytes, Langerhans cells, cytokine profile, epidermal barrier proteins. Data on the features of the pathogenetic effect of UVB-311 on the immune mechanisms of pathogenesis in atopic dermatitis were obtained. The issues of dosing by determining the minimum erythemic dose (MED) or skin phototype, methodology of procedures are discussed. Prospects for further study of photobiological aspects of UVB-311 action are determined.
Collapse
|
49
|
Savelyev AG, Sochilina AV, Akasov RA, Mironov AV, Kapitannikova AY, Borodina TN, Sholina NV, Khaydukov KV, Zvyagin AV, Generalova AN, Khaydukov EV. Facile Cell-Friendly Hollow-Core Fiber Diffusion-Limited Photofabrication. Front Bioeng Biotechnol 2021; 9:783834. [PMID: 34926429 PMCID: PMC8678487 DOI: 10.3389/fbioe.2021.783834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Bioprinting emerges as a powerful flexible approach for tissue engineering with prospective capability to produce tissue on demand, including biomimetic hollow-core fiber structures. In spite of significance for tissue engineering, hollow-core structures proved difficult to fabricate, with the existing methods limited to multistage, time-consuming, and cumbersome procedures. Here, we report a versatile cell-friendly photopolymerization approach that enables single-step prototyping of hollow-core as well as solid-core hydrogel fibers initially loaded with living cells. This approach was implemented by extruding cell-laden hyaluronic acid glycidyl methacrylate hydrogel directly into aqueous solution containing free radicals generated by continuous blue light photoexcitation of the flavin mononucleotide/triethanolamine photoinitiator. Diffusion of free radicals from the solution to the extruded structure initiated cross-linking of the hydrogel, progressing from the structure surface inwards. Thus, the cross-linked wall is formed and its thickness is limited by penetration of free radicals in the hydrogel volume. After developing in water, the hollow-core fiber is formed with centimeter range of lengths. Amazingly, HaCaT cells embedded in the hydrogel successfully go through the fabrication procedure. The broad size ranges have been demonstrated: from solid core to 6% wall thickness of the outer diameter, which was variable from sub-millimeter to 6 mm, and Young's modulus ∼1.6 ± 0.4 MPa. This new proof-of-concept fibers photofabrication approach opens lucrative opportunities for facile three-dimensional fabrication of hollow-core biostructures with controllable geometry.
Collapse
Affiliation(s)
- Alexander G Savelyev
- Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia.,Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| | - Anastasia V Sochilina
- Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Сhemistry RAS, Moscow, Russia
| | - Roman A Akasov
- Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia.,Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Сhemistry RAS, Moscow, Russia
| | - Anton V Mironov
- Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia
| | - Alina Yu Kapitannikova
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| | - Tatiana N Borodina
- Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia
| | - Natalya V Sholina
- Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia.,Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| | - Kirill V Khaydukov
- Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia
| | - Andrei V Zvyagin
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Сhemistry RAS, Moscow, Russia.,MQ Photonics Centre, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Alla N Generalova
- Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Сhemistry RAS, Moscow, Russia
| | - Evgeny V Khaydukov
- Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia.,Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Сhemistry RAS, Moscow, Russia
| |
Collapse
|
50
|
Zou DD, Xu D, Deng YY, Wu WJ, Zhang J, Huang L, He L. Identification of key genes in cutaneous squamous cell carcinoma: a transcriptome sequencing and bioinformatics profiling study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1497. [PMID: 34805359 PMCID: PMC8573448 DOI: 10.21037/atm-21-3915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Background Long-term exposure to ultraviolet (UV) radiation can cause cutaneous squamous cell carcinoma (cSCC), which is one of the most common malignant cancers worldwide. Actinic keratosis (AK) is generally considered a precancerous lesion of cSCC. However, the pathogenesis and oncogenic processes of AK and cSCC remain elusive, especially in the context of photodamage. Methods In this study, transcriptome sequencing was performed on AK, cSCC, normal sun-exposed skin (NES) tissues, and normal non-sun-exposed skin (NNS) from 24 individuals. Bioinformatics analysis to identify the differentially expressed genes (DEGs) of 4 groups, and potential key genes of cSCC were validated by real-time quantitative reverse transcription PCR (qRT-PCR). Results A total of 46,930 genes were differentially expressed in the 4 groups, including 127 genes that were differentially expressed between NES and NNS, 420 DEGs in AK compared to NES, 1,658 DEGs in cSCC compared to NES, and 1,389 DEGs in cSCC compared to AK. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the DEGs are involved in multiple pathways, including extracellular matrix (ECM)-receptor interaction, immune, inflammatory, microbial infection, and other related pathways. Finally, 5 new genes (HEPHL1, FBN2, SULF1, SULF2, and TCN1) were confirmed significantly upregulated in cSCC. Conclusions Using transcriptome sequencing and integrated bioinformatical analysis, we have identified key DEGs and pathways in cSCC, which could improve our understanding of the cause and underlying molecular events of AK and cSCC. HEPHL1, FBN2, SULF1, SULF2, and TCN1 may be novel potential biomarkers and therapeutic targets of cSCC.
Collapse
Affiliation(s)
- Dan-Dan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan-Yuan Deng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Juan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ling Huang
- Department of Dermatology, First Affiliated Hospital of Dali University, Dali, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|