1
|
Lee CA, Romanova EV, Southey BR, Gillette R, Sweedler JV. Comparative Analysis of Neuropeptides in Homologous Interneurons and Prohormone Annotation in Nudipleuran Sea Slugs. Front Physiol 2022; 12:809529. [PMID: 35002782 PMCID: PMC8735849 DOI: 10.3389/fphys.2021.809529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Despite substantial research on neuronal circuits in nudipleuran gastropods, few peptides have been implicated in nudipleuran behavior. In this study, we expanded the understanding of peptides in this clade, using three species with well-studied nervous systems, Hermissenda crassicornis, Melibe leonina, and Pleurobranchaea californica. For each species, we performed sequence homology analysis of de novo transcriptome predictions to identify homologs to 34 of 36 prohormones previously characterized in the gastropods Aplysia californica and Lymnaea stagnalis. We then used single-cell mass spectrometry to characterize peptide profiles in homologous feeding interneurons: the multifunctional ventral white cell (VWC) in P. californica and the small cardioactive peptide B large buccal (SLB) cells in H. crassicornis and M. leonina. The neurons produced overlapping, but not identical, peptide profiles. The H. crassicornis SLB cells expressed peptides from homologs to the FMRFamide (FMRFa), small cardioactive peptide (SCP), LFRFamide (LFRFa), and feeding circuit activating peptides prohormones. The M. leonina SLB cells expressed peptides from homologs to the FMRFa, SCP, LFRFa, and MIP-related peptides prohormones. The VWC, previously shown to express peptides from the FMRFa and QNFLa (a homolog of A. californica pedal peptide 4) prohormones, was shown to also contain SCP peptides. Thus, each neuron expressed peptides from the FMRFa and SCP families, the H. crassicornis and M. leonina SLB cells expressed peptides from the LFRFa family, and each neuron contained peptides from a prohormone not found in the others. These data suggest each neuron performs complex co-transmission, which potentially facilitates a multifunctional role in feeding. Additionally, the unique feeding characteristics of each species may relate, in part, to differences in the peptide profiles of these neurons. These data add chemical insight to enhance our understanding of the neuronal basis of behavior in nudipleurans and other gastropods.
Collapse
Affiliation(s)
- Colin A Lee
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Elena V Romanova
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States.,Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Rhanor Gillette
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States.,Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jonathan V Sweedler
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States.,Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
2
|
Wood EA, Stopka SA, Zhang L, Mattson S, Maasz G, Pirger Z, Vertes A. Neuropeptide Localization in Lymnaea stagnalis: From the Central Nervous System to Subcellular Compartments. Front Mol Neurosci 2021; 14:670303. [PMID: 34093125 PMCID: PMC8172996 DOI: 10.3389/fnmol.2021.670303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022] Open
Abstract
Due to the relatively small number of neurons (few tens of thousands), the well-established multipurpose model organism Lymnaea stagnalis, great pond snail, has been extensively used to study the functioning of the nervous system. Unlike the more complex brains of higher organisms, L. stagnalis has a relatively simple central nervous system (CNS) with well-defined circuits (e.g., feeding, locomotion, learning, and memory) and identified individual neurons (e.g., cerebral giant cell, CGC), which generate behavioral patterns. Accumulating information from electrophysiological experiments maps the network of neuronal connections and the neuronal circuits responsible for basic life functions. Chemical signaling between synaptic-coupled neurons is underpinned by neurotransmitters and neuropeptides. This review looks at the rapidly expanding contributions of mass spectrometry (MS) to neuropeptide discovery and identification at different granularity of CNS organization. Abundances and distributions of neuropeptides in the whole CNS, eleven interconnected ganglia, neuronal clusters, single neurons, and subcellular compartments are captured by MS imaging and single cell analysis techniques. Combining neuropeptide expression and electrophysiological data, and aided by genomic and transcriptomic information, the molecular basis of CNS-controlled biological functions is increasingly revealed.
Collapse
Affiliation(s)
- Ellen A. Wood
- Department of Chemistry, The George Washington University, Washington, DC, United States
| | - Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Linwen Zhang
- Department of Chemistry, The George Washington University, Washington, DC, United States
| | - Sara Mattson
- Department of Chemistry, The George Washington University, Washington, DC, United States
| | - Gabor Maasz
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
- Soós Ernő Research and Development Center, University of Pannonia, Nagykanizsa, Hungary
| | - Zsolt Pirger
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, United States
| |
Collapse
|
3
|
Fodor I, Hussein AAA, Benjamin PR, Koene JM, Pirger Z. The unlimited potential of the great pond snail, Lymnaea stagnalis. eLife 2020; 9:e56962. [PMID: 32539932 PMCID: PMC7297532 DOI: 10.7554/elife.56962] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Only a limited number of animal species lend themselves to becoming model organisms in multiple biological disciplines: one of these is the great pond snail, Lymnaea stagnalis. Extensively used since the 1970s to study fundamental mechanisms in neurobiology, the value of this freshwater snail has been also recognised in fields as diverse as host-parasite interactions, ecotoxicology, evolution, genome editing and 'omics', and human disease modelling. While there is knowledge about the natural history of this species, what is currently lacking is an integration of findings from the laboratory and the field. With this in mind, this article aims to summarise the applicability of L. stagnalis and points out that this multipurpose model organism is an excellent, contemporary choice for addressing a large range of different biological questions, problems and phenomena.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
| | - Ahmed AA Hussein
- Department of Ecological Sciences, Faculty of Sciences, Vrije UniversiteitAmsterdamNetherlands
| | - Paul R Benjamin
- Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Joris M Koene
- Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
| |
Collapse
|
4
|
Neumann EK, Do TD, Comi TJ, Sweedler JV. Exploring the Fundamental Structures of Life: Non-Targeted, Chemical Analysis of Single Cells and Subcellular Structures. Angew Chem Int Ed Engl 2019; 58:9348-9364. [PMID: 30500998 PMCID: PMC6542728 DOI: 10.1002/anie.201811951] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 01/14/2023]
Abstract
Cells are a basic functional and structural unit of living organisms. Both unicellular communities and multicellular species produce an astonishing chemical diversity, enabling a wide range of divergent functions, yet each cell shares numerous aspects that are common to all living organisms. While there are many approaches for studying this chemical diversity, only a few are non-targeted and capable of analyzing hundreds of different chemicals at cellular resolution. Here, we review the non-targeted approaches used to perform comprehensive chemical analyses, provide chemical imaging information, or obtain high-throughput single-cell profiling data. Single-cell measurement capabilities are rapidly increasing in terms of throughput, limits of detection, and completeness of the chemical analyses; these improvements enable their application to understand ever more complex physiological phenomena, such as learning, memory, and behavior.
Collapse
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thanh D. Do
- Department of Chemistry, 1420 Circle Drive, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Neumann EK, Do TD, Comi TJ, Sweedler JV. Erforschung der fundamentalen Strukturen des Lebens: Nicht zielgerichtete chemische Analyse von Einzelzellen und subzellulären Strukturen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| | - Thanh D. Do
- Department of ChemistryUniversity of Tennessee 1420 Circle Drive Knoxville TN 37996 USA
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| |
Collapse
|
6
|
Adamson KJ, Wang T, Rotgans BA, Kuballa AV, Storey KB, Cummins SF. Differential peptide expression in the central nervous system of the land snail Theba pisana, between active and aestivated. Peptides 2016; 80:61-71. [PMID: 26303007 DOI: 10.1016/j.peptides.2015.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022]
Abstract
Hypometabolism is a physiological state of dormancy entered by many animals in times of environmental stress. There are gaps in our understanding of the molecular components used by animals to achieve this metabolic state. The availability of genomic and transcriptome data can be useful to study the process of hypometabolism at the molecular level. In this study, we use the land snail Theba pisana to identify peptides that may be involved in the hypometabolic state known as aestivation. We found a total of 22 neuropeptides in the central nervous system (CNS) that were differentially produced during activity and aestivation based on mass spectral-based neuropeptidome analysis. Of these, 4 were upregulated in active animals and 18 were upregulated in aestivation. A neuropeptide known to regulate muscle contractions in a variety of molluscs, the small cardioactive peptide A (sCAPA), and a peptide of yet unknown function (termed Aestivation Associated Peptide 12) were chosen for further investigation using temporal and spatial expression analysis of the precursor gene and peptide. Both peptides share expression within regions of the CNS cerebral ganglia and suboesophageal ganglia. Relative transcript abundance suggests that regulation of peptide synthesis and secretion is post-transcriptional. In summary, we provide new insights into the molecular basis of the regulation of aestivation in land snails through CNS peptide control.
Collapse
Affiliation(s)
- K J Adamson
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - T Wang
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - B A Rotgans
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - A V Kuballa
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - K B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - S F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| |
Collapse
|
7
|
Zatylny-Gaudin C, Cornet V, Leduc A, Zanuttini B, Corre E, Le Corguillé G, Bernay B, Garderes J, Kraut A, Couté Y, Henry J. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying. J Proteome Res 2015; 15:48-67. [PMID: 26632866 DOI: 10.1021/acs.jproteome.5b00463] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.
Collapse
Affiliation(s)
- Céline Zatylny-Gaudin
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Valérie Cornet
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Alexandre Leduc
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Bruno Zanuttini
- Normandy University , GREYC, UMR CNRS 6072, F-14032 Caen, France
| | - Erwan Corre
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | | | - Benoît Bernay
- Normandy University , F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| | - Johan Garderes
- Center for Marine Research, "Ruder Boskovic" Institute , HR-52210 Rovinj, Croatia
| | - Alexandra Kraut
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Yohan Couté
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Joël Henry
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| |
Collapse
|
8
|
A homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide is both necessary and instructive for the rapid formation of associative memory in an invertebrate. J Neurosci 2010; 30:13766-73. [PMID: 20943917 DOI: 10.1523/jneurosci.2577-10.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Similar to other invertebrate and vertebrate animals, cAMP-dependent signaling cascades are key components of long-term memory (LTM) formation in the snail Lymnaea stagnalis, an established experimental model for studying evolutionarily conserved molecular mechanisms of long-term associative memory. Although a great deal is already known about the signaling cascades activated by cAMP, the molecules involved in the learning-induced activation of adenylate cyclase (AC) in Lymnaea remained unknown. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy in combination with biochemical and immunohistochemical methods, recently we have obtained evidence for the existence of a Lymnaea homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) and for the AC-activating effect of PACAP in the Lymnaea nervous system. Here we first tested the hypothesis that PACAP plays an important role in the formation of robust LTM after single-trial classical food-reward conditioning. Application of the PACAP receptor antagonist PACAP6-38 around the time of single-trial training with amyl acetate and sucrose blocked associative LTM, suggesting that in this "strong" food-reward conditioning paradigm the activation of AC by PACAP was necessary for LTM to form. We found that in a "weak" multitrial food-reward conditioning paradigm, lip touch paired with sucrose, memory formation was also dependent on PACAP. Significantly, systemic application of PACAP at the beginning of multitrial tactile conditioning accelerated the formation of transcription-dependent memory. Our findings provide the first evidence to show that in the same nervous system PACAP is both necessary and instructive for fast and robust memory formation after reward classical conditioning.
Collapse
|
9
|
Veenstra JA. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol 2010; 167:86-103. [PMID: 20171220 DOI: 10.1016/j.ygcen.2010.02.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 12/23/2022]
Abstract
The Lottia gigantea genome was prospected for the presence of genes coding neuropeptides and neurohormones. Four genes code insulin-related peptides: two genes code molluscan insulin-like growth hormones, one gene an insulin very similar to vertebrate insulin, and the fourth a peptide related to drosophila insulin-like peptide 7. Four other genes encode the cysteine-knot proteins GPA2/GPB5 and bursicon/parabursicon. Another 37 genes code for precursors of the following neuropeptides: achatin, APGWamide, allatostatin C, allatotropin, buccalin (perhaps an allatostatin A homolog), cerebrin, CCAP, conopressin, elevenin (the predicted neuropeptide made by abdominal neuron 11 in Aplysia), egg laying hormone (two genes), enterin, feeding circuit activating neuropeptide (FCAP), FFamide, FMRFamide, GGNG, a GnRH-like peptide, the newly discovered LASGLVamide, LFRFamide, LFRYamide, LRNFVamide, luqin, lymnokinin, myomodulin (two genes), the newly discovered NKY, NPY, pedal peptide (three genes), PKYMDT, pleurin, PXFVamide, small cardioactive peptides, tachykinins (two genes) and WWamide (an allatostatin B homolog). One gene was found to encode FWISamide, while about 20 closely related genes were found to encode WWFamide. These small neuropeptides appear homologous to the NdWFamide, which contains d-Trp; these genes are similar to the Aplysia gene encoding NWFamide. Some of these peptides had not been previously identified from mollusks, such as the predicted hormones similar to Drosophila and vertebrate insulins, bursicon, the putative proctolin homolog PKYMDT and allatostatin C. Together with neuropeptides which are likely homologs of other insect neuropeptides, such as cerebrin and WWamide, this shows that despite significant differences the molluscan and arthropod neuropeptidomes are more similar than generally recognized.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNRS, CNIC UMR 5228, 33400 Talence, France.
| |
Collapse
|
10
|
Herbert Z, Pollák E, Zougman A, Boros A, Kapan N, Molnár L. Identification of novel neuropeptides in the ventral nerve cord ganglia and their targets in an annelid worm, Eisenia fetida. J Comp Neurol 2009; 514:415-32. [PMID: 19350635 DOI: 10.1002/cne.22043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Periviscerokinins (PVKs) and pyrokinins (PKs) are neuropeptides known in several arthropod species. Sequence homology of these peptides with the molluscan small cardioactive peptides reveals that the occurrence of PVKs and PKs is not restricted to arthropods. Our study focuses on the biochemical and immunocytochemical identification of neuropeptides with sequence homology to PVKs and PKs in the central and peripheral nervous system of the earthworm Eisenia fetida. By means of affinity chromatography, nanoflow liquid chromatography, and high accuracy mass spectrometry, six peptides, SPFPR(L/I)amide, APFPR(L/I)amide, SPLPR(L/I)amide, SFVR(L/I)amide, AFVR(L/I)amide, and SPAFVR(L/I)amide, were identified in the central nervous system with the common -XR(L/I)amide C-terminal sequence. The exact anatomical position of 13 labeled XR(I/L)amide expressing neuron groups and numerous peptide-containing fibers were determined by means of immunocytochemistry and confocal laser scanning microscopy in whole-mount preparations of ventral nerve cord ganglia. The majority of the stained neurons were interneurons with processes joining the distinct fine-fibered polysegmental tracts in the central neuropil. Some stained fibers were seen running in each segmental nerve that innervated metanephridia and body wall. Distinct groups of neurosecretory cells characterized by small round soma and short processes were also identified. Based on immunoelectron microscopy six different types of labeled cells were described showing morphological heterogeneity of earthworm peptides containing elements. Our findings confirm that the sequence of the identified earthworm neuropeptides homologous to the insect PVKs and PKs suggesting that these peptides are phylogenetically conservative molecules and are expressed in sister-groups of animals such as annelids, mollusks, and insects.
Collapse
Affiliation(s)
- Zsófia Herbert
- Division of Neurobiology Department of Biology II and Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universitat Munich, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Aguilar MB, Luna-Ramírez KS, Echeverría D, Falcón A, Olivera BM, Heimer de la Cotera EP, Maillo M. Conorfamide-Sr2, a gamma-carboxyglutamate-containing FMRFamide-related peptide from the venom of Conus spurius with activity in mice and mollusks. Peptides 2008; 29:186-95. [PMID: 18201803 PMCID: PMC2290853 DOI: 10.1016/j.peptides.2007.09.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 09/05/2007] [Indexed: 11/26/2022]
Abstract
A novel peptide, conorfamide-Sr2 (CNF-Sr2), was purified from the venom extract of Conus spurius, collected in the Caribbean Sea off the Yucatan Peninsula. Its primary structure was determined by automated Edman degradation and amino acid analysis, and confirmed by electrospray ionization mass spectrometry. Conorfamide-Sr2 contains 12 amino acids and no Cys residues, and it is only the second FMRFamide-related peptide isolated from a venom. Its primary structure GPM gammaDPLgammaIIRI-nh2, (gamma, gamma-carboxyglutamate; -nh2, amidated C-terminus; calculated monoisotopic mass, 1468.72Da; experimental monoisotopic mass, 1468.70Da) shows two features that are unusual among FMRFamide-related peptides (FaRPs, also known as RFamide peptides), namely the novel presence of gamma-carboxyglutamate, and a rather uncommon C-terminal residue, Ile. CNF-Sr2 exhibits paralytic activity in the limpet Patella opea and causes hyperactivity in the freshwater snail Pomacea paludosa and in the mouse. The sequence similarities of CNF-Sr2 with FaRPs from marine and freshwater mollusks and mice might explain its biological effects in these organisms. It also resembles FaRPs from polychaetes (the prey of C. spurius), which suggests a natural biological role. Based on these similarities, CNF-Sr2 might interact with receptors of these three distinct types of FaRPs, G-protein-coupled receptors, Na+ channels activated by FMRFamide (FaNaCs), and acid-sensing ion channels (ASICs). The biological activities of CNF-Sr2 in mollusks and mice make it a potential tool to study molecular targets in these and other organisms.
Collapse
Affiliation(s)
- Manuel B Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico.
| | | | | | | | | | | | | |
Collapse
|
12
|
Li L, Sweedler JV. Peptides in the brain: mass spectrometry-based measurement approaches and challenges. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:451-483. [PMID: 20636086 DOI: 10.1146/annurev.anchem.1.031207.113053] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The function and activity of almost every circuit in the human brain are modified by the signaling peptides (SPs) surrounding the neurons. As the complement of peptides can vary even in adjacent neurons and their physiological actions can occur over a broad range of concentrations, the required figures of merit for techniques to characterize SPs are surprisingly stringent. In this review, we describe the formation and catabolism of SPs and highlight a range of mass spectrometric techniques used to characterize SPs. Approaches that supply high chemical information content, direct tissue profiling, spatially resolved data, and temporal information on peptide release are also described. Because of advances in measurement technologies, our knowledge of SPs has greatly increased over the last decade, and SP discoveries will continue as the capabilities of modern measurement approaches improve.
Collapse
Affiliation(s)
- Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, 53705-2222, USA.
| | | |
Collapse
|
13
|
Rubakhin SS, Churchill JD, Greenough WT, Sweedler JV. Profiling signaling peptides in single mammalian cells using mass spectrometry. Anal Chem 2007; 78:7267-72. [PMID: 17037931 PMCID: PMC2530951 DOI: 10.1021/ac0607010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peptide content of individual mammalian cells is profiled using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. Both enzymatic and nonenzymatic procedures, including a glycerol cell stabilization method, are reported for the isolation of individual mammalian cells in a manner compatible with MALDI MS measurements. Guided microdeposition of MALDI matrix allows samples to be created with suitable analyte-to-matrix ratios. More than 15 peptides are observed in individual rat intermediate pituitary cells. The combination of accurate mass data, expected cleavages by proteolytic enzymes, and postsource decay sequencing allows identification of 14 of these peptides as pro-opiomelanocortin prohormone-derived molecules. These protocols permit the classification of individual mammalian cells by peptide profile, the elucidation of cell-specific prohormone processing, and the discovery of new signaling peptides on a cell-to-cell basis in a wide variety of mammalian cell types.
Collapse
Affiliation(s)
| | - James D. Churchill
- Department of Psychology, and the Beckman Institute, University of Illinois, Urbana, IL, 61801
| | - William T. Greenough
- Department of Psychology, and the Beckman Institute, University of Illinois, Urbana, IL, 61801
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois, Urbana, IL, 61801
- CORRESPONDING AUTHOR: Jonathan V. Sweedler, Department of Chemistry, 600 S. Mathews, 64-5, Urbana, IL 61801,
| |
Collapse
|
14
|
Serfözö Z, Szentmiklósi AJ, Elekes K. Characterization of nitric oxidergic neurons in the alimentary tract of the snailHelix pomatia L.: Histochemical and physiological study. J Comp Neurol 2007; 506:801-21. [DOI: 10.1002/cne.21585] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Hummon AB, Amare A, Sweedler JV. Discovering new invertebrate neuropeptides using mass spectrometry. MASS SPECTROMETRY REVIEWS 2006; 25:77-98. [PMID: 15937922 DOI: 10.1002/mas.20055] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neuropeptides are a complex set of messenger molecules controlling a wide array of regulatory functions and behaviors within an organism. These neuromodulators are cleaved from longer protein molecules and often experience numerous post-translational modifications to achieve their bioactive form. As a result of this complexity, sensitive and versatile analysis schemes are needed to characterize neuropeptides. Mass spectrometry (MS) through a variety of approaches has fueled the discovery of hundreds of neuropeptides in invertebrate species in the last decade. Particularly successful are direct tissue and single neuron analyses by matrix-assisted laser desorption/ionization (MALDI) MS, which has been used to elucidate approximately 440 neuropeptides, and examination of neuronal homogenates by electrospray ionization techniques (ESI), also leading to the characterization of over 450 peptides. Additional MS methods with great promise for the discovery of neuropeptides are MS imaging and large-scale peptidomics studies in combination with a sequenced genome.
Collapse
Affiliation(s)
- Amanda B Hummon
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
16
|
Moroz LL, Dahlgren RL, Boudko D, Sweedler JV, Lovell P. Direct single cell determination of nitric oxide synthase related metabolites in identified nitrergic neurons. J Inorg Biochem 2005; 99:929-39. [PMID: 15811510 DOI: 10.1016/j.jinorgbio.2005.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/03/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
The biochemical characterization of individual nitrergic (NO releasing) neurons is a non-trivial task both in vertebrate and invertebrate preparations. In spite of numerous efforts, there are limited data related to intracellular concentrations of essential metabolites involved in NO synthesis and degradation. This situation creates controversies in both identification of nitrergic neurons and the selection of reliable reporters of NOS activity in heterogeneous cell populations. We take advantage of identified neurons from the pulmonate mollusc Lymnaea stagnalis to perform direct single cell microanalysis of intracellular concentrations of the major nitric oxide synthase (NOS) related metabolites such as arginine, citrulline, argininosuccinate, NO(2)(-),and NO(3)(-). Capillary electrophoresis protocols have been developed to quantitate levels of these metabolites in single identified neurons from the buccal, cerebral, and pedal ganglia using laser-induced fluorescence and conductivity detection. The limits of detection (LODs) for arginine (Arg) and citrulline (Cit) are 84 amol (11nM) and 110 amol (15 nM), respectively, and LODs for NO(2)(-)and NO(3)(-) are <200 amol (<10nM) each. We report that intracellular concentrations of NOS related metabolites are in the millimolar range and less than 1% of a single cell is required for microchemical analysis. From four cell types tested, only the esophageal motoneuron B2 contains active NOS, and they also contain surprisingly high nitrite levels (up to 5mM) compared to other neurons tested (peptidergic B4, dopaminergic RPeD1, and serotonergic CGC). These B2 neurons also exhibit an Arg/Cit ratio susceptible to the selective NOS inhibitor l-iminoethyl-N-ornithine whereas others neurons do not even though they all may contain NOS transcripts. On the contrary, we found that absolute concentrations of other NOS related metabolites including nitrates are not reliable markers of NOS activity and demonstrate the need for multiple assays for NOS activity.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA.
| | | | | | | | | |
Collapse
|
17
|
Settembrini BP, Villar MJ. FMRFamide-like immunocytochemistry in the brain and subesophageal ganglion of Triatoma infestans (Insecta: Heteroptera). Coexpression with β-pigment-dispersing hormone and small cardioactive peptide B. Cell Tissue Res 2005; 321:299-310. [PMID: 15947966 DOI: 10.1007/s00441-005-1147-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 04/13/2005] [Indexed: 10/25/2022]
Abstract
The distribution of FMRFamide (FMRFa)-like immunoreactivity (LI) was studied in the brain and subesophageal ganglion of Triatoma infestans, the insect vector of Chagas' disease. The neuropeptide displayed a widespread distribution with immunostained somata in the optic lobe, in the anterior, lateral, and posterior soma rinds of the protocerebrum, and around the antennal sensory and mechanosensory and motor neuropils of the deutocerebrum. FMRFa-immunoreactive profiles of the subesophageal ganglion were seen in the mandibular, maxillary, and labial neuromeres. Immunostained neurites were detected in the medulla and lobula of the optic lobe, the lateral protocerebral neuropil, the median bundle, the calyces and the stalk of the mushroom bodies, and the central body. In the deutocerebrum, the sensory glomeruli showed a higher density of immunoreactive processes than the mechanosensory and motor neuropil, whereas the neuropils of each neuromere of the subesophageal ganglion displayed a moderate density of immunoreactive neurites. Colocalization of FMRFa-LI and crustacean pigment-dispersing hormone-LI was found in perikarya of the proximal optic lobe, the lobula, the sensory deutocerebrum, and the labial neuromere of the subesophageal ganglion. The distribution pattern of small cardioactive peptide B (SCP(B))-LI was also widespread, with immunolabeled somata surrounding every neuropil region of the brain and subesophageal ganglion, except for the optic lobe. FMRFa- and SCP(B)-LIs showed extensive colocalization in the brain of this triatomine species. The presence of immunolabeled perikarya displaying either FMRFa- or SCP(B)-LI confirmed that each antisera identified different peptide molecules. The distribution of FMRFa immunostaining in T. infestans raises the possibility that FMRFa plays a role in the regulation of circadian rhythmicity. The finding of immunolabeling in neurosecretory somata of the protocerebrum suggests that this neuropeptide may also act as a neurohormone.
Collapse
Affiliation(s)
- Beatriz P Settembrini
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Pcia de Buenos Aires, Argentina.
| | | |
Collapse
|
18
|
Sheeley SA, Rubakhin SS, Sweedler JV. The detection of nitrated tyrosine in neuropeptides: a MALDI matrix-dependent response. Anal Bioanal Chem 2005; 382:22-7. [PMID: 15900447 DOI: 10.1007/s00216-005-3145-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 01/28/2005] [Accepted: 02/02/2005] [Indexed: 11/29/2022]
Abstract
Neuropeptides are a diverse class of signaling molecules that typically have one or more posttranslational modifications. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an effective tool for identification and characterization of neuropeptides from samples as small as individual neurons. However, the detection of one particular posttranslational modification-nitrotyrosine-has been problematic because of the lability of the nitro group of nitrotyrosine under MALDI-MS conditions. The detection of nitrated tyrosine in peptide standards was dependent on the MALDI matrix used for the analysis. Specifically, sinapinic acid was the optimum matrix tested to observe this modification while it was not consistently detected with matrices such as 2,5-dihydroxybenzoic acid. Using the optimized procedures, several identified nitric-oxide-synthase positive neurons from Lymnaea stagnalis were tested to determine if the neuropeptides present were nitrated. In all cases, the nitrated form of the neuropeptide was not observed. The dependence on the sample-preparation procedures of observing this particular chemical modification demonstrates the need for careful selection of sample-preparation methods with MALDI or the use of other ionization methods.
Collapse
Affiliation(s)
- Sarah A Sheeley
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave 63-5, Urbana, IL 61801, USA
| | | | | |
Collapse
|
19
|
Kean L, Cazenave W, Costes L, Broderick KE, Graham S, Pollock VP, Davies SA, Veenstra JA, Dow JAT. Two nitridergic peptides are encoded by the gene capability in Drosophila melanogaster. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1297-307. [PMID: 11959669 DOI: 10.1152/ajpregu.00584.2001] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A Drosophila gene (capability, capa) at 99D on chromosome 3R potentially encodes three neuropeptides: GANMGLYAFPRV-amide (capa-1), ASGLVAFPRV-amide (capa-2), and TGPSASSGLWGPRL-amide (capa-3). Capa-1 and capa-2 are related to the lepidopteran hormone cardioacceleratory peptide 2b, while capa-3 is a novel member of the pheromone biosynthesis-activating neuropeptide/diapause hormone/pyrokinin family. By immunocytochemistry, we identified four pairs of neuroendocrine cells likely to release the capa peptides into the hemolymph: one pair in the subesophageal ganglion and the other three in the abdominal neuromeres. In the Malpighian (renal) tubule, capa-1 and capa-2 increase fluid secretion rates, stimulate nitric oxide production, and elevate intracellular Ca(2+) and cGMP in principal cells. Capa-stimulated fluid secretion, but not intracellular Ca(2+) concentration rise, is inhibited by the guanylate cyclase inhibitor methylene blue. The actions of capa-1 and capa-2 are not synergistic, implying that both act on the same pathways in tubules. The capa gene is thus the first to be shown to encode neuropeptides that act on renal fluid production through nitric oxide.
Collapse
Affiliation(s)
- Laura Kean
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Saunders SE, Burke JF, Benjamin PR. Multimeric CREB-binding sites in the promoter regions of a family of G-protein-coupled receptors related to the vertebrate galanin and nociceptin/orphanin-FQ receptor families. Eur J Neurosci 2000; 12:2345-53. [PMID: 10947813 DOI: 10.1046/j.1460-9568.2000.00124.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four related genes encoding a family of G-protein-coupled receptors (GPCRs) have been isolated from the mollusc Lymnaea stagnalis. The coding regions of this family of receptors share 97-99% sequence similarity at both the protein and nucleotide level, and they also share high sequence identity with vertebrate galanin and orphanin-FQ/nociceptin GPCR families. Analysis of the promoter regions reveals shared domains, some of which encode highly conserved repeating units. One 27-bp repeating unit, which encodes a c-AMP response element (CRE) and binds CREB protein, is repeated 14 times in one promoter. In situ hybridization showed expression of these receptors in identified neurons of several behaviourly important networks including those involved in feeding and ion and water regulation. These Lymnaea receptors are likely to represent members of a novel family of invertebrate neuropeptide receptors extensively regulated in response to intracellular signalling cascades.
Collapse
Affiliation(s)
- S E Saunders
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | |
Collapse
|
22
|
Moroz LL. Giant identified NO-releasing neurons and comparative histochemistry of putative nitrergic systems in gastropod molluscs. Microsc Res Tech 2000; 49:557-69. [PMID: 10862112 DOI: 10.1002/1097-0029(20000615)49:6<557::aid-jemt6>3.0.co;2-s] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gastropod molluscs provide attractive model systems for behavioral and cellular analyses of the action of nitric oxide (NO), specifically due to the presence of many relatively giant identified nitrergic neurons in their CNS. This paper reviews the data relating to the presence and distribution of NO as well as its synthetic enzyme NO synthase (NOS) in the CNS and peripheral tissues in ecologically and systematically different genera representing main groups of gastropod molluscs. Several species (Lymnaea, Pleurobranchaea, and Aplysia) have been analyzed in greater detail with respect to immunohistochemical, biochemical, biophysical, and physiological studies to further clarify the functional role of NO in these animals.
Collapse
Affiliation(s)
- L L Moroz
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, Florida 32086, USA.
| |
Collapse
|
23
|
Abstract
Matrix-assisted laser desorption-ionization (MALDI) mass spectrometry (MS) is a rapid and sensitive analytical approach that is well suited for obtaining molecular weights of peptides and proteins from complex samples. MALDI-MS can profile the peptides and proteins from single-cell and small tissue samples without the need for extensive sample preparation, except for the cell isolation and matrix application. Strategies for peptide identification and characterization of post-translational modifications are presented. Furthermore, several recent enhancements in MALDI-MS technology, including in situ peptide sequencing as well as the direct spatial mapping of peptides in cells and tissues are discussed.
Collapse
Affiliation(s)
- L Li
- Department of Chemistry and Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
24
|
Dahlgren RL, Page JS, Sweedler JV. Assaying neurotransmitters in and around single neurons with information-rich detectors. Anal Chim Acta 1999. [DOI: 10.1016/s0003-2670(99)00606-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|