1
|
Curtis L, Piggins HD. Diverse genetic alteration dysregulates neuropeptide and intracellular signalling in the suprachiasmatic nuclei. Eur J Neurosci 2024; 60:3921-3945. [PMID: 38924215 DOI: 10.1111/ejn.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.
Collapse
Affiliation(s)
- Lucy Curtis
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Hitrec T, Petit C, Cryer E, Muir C, Tal N, Fustin JM, Hughes AT, Piggins HD. Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock. iScience 2023; 26:106002. [PMID: 36866044 PMCID: PMC9971895 DOI: 10.1016/j.isci.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Timed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling (Vipr2 -/- mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to Vipr2 +/+ animals, the SCN transcriptome of Vipr2 -/- mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals. Furthermore, although SVE stabilized behavioral rhythms in these animals, the SCN transcriptome remained dysregulated. The molecular programs in the lung and liver of Vipr2 -/- mice were partially intact, although their response to SVE differed to that of these peripheral tissues in the Vipr2 +/+ mice. These findings highlight that SVE can correct behavioral abnormalities in circadian rhythms without causing large scale alterations to the SCN transcriptome.
Collapse
Affiliation(s)
- Timna Hitrec
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Cheryl Petit
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emily Cryer
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlotte Muir
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Natalie Tal
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Michel Fustin
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alun T.L. Hughes
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK,Corresponding author
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK,School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,Corresponding author
| |
Collapse
|
3
|
Sakamoto K, Chen L, Miyaoka T, Yamada M, Masutani T, Ishimoto K, Hino N, Nakagawa S, Asano S, Ago Y. Generation of KS-133 as a Novel Bicyclic Peptide with a Potent and Selective VIPR2 Antagonist Activity that Counteracts Cognitive Decline in a Mouse Model of Psychiatric Disorders. Front Pharmacol 2021; 12:751587. [PMID: 34819858 PMCID: PMC8607231 DOI: 10.3389/fphar.2021.751587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Worldwide, more than 20 million people suffer from schizophrenia, but effective and definitive new therapeutic drugs/treatments have not been established. Vasoactive intestinal peptide receptor 2 (VIPR2) might be an attractive drug target for the treatment of schizophrenia because both preclinical and clinical studies have demonstrated a strong link between high expression/overactivation of VIPR2 and schizophrenia. Nevertheless, VIPR2-targeting drugs are not yet available. VIPR2 is a class-B G protein-coupled receptor that possesses high structural homology to its subtypes, vasoactive intestinal peptide receptor 1 (VIPR1) and pituitary adenylate cyclase-activating polypeptide type-1 receptor (PAC1). These biological and structural properties have made it difficult to discover small molecule drugs against VIPR2. In 2018, cyclic peptide VIpep-3, a VIPR2-selective antagonist, was reported. The aim of this study was to generate a VIpep-3 derivative for in vivo experiments. After amino acid substitution and structure optimization, we successfully generated KS-133 with 1) a VIPR2-selective and potent antagonistic activity, 2) at least 24 h of stability in plasma, and 3) in vivo pharmacological efficacies in a mouse model of psychiatric disorders through early postnatal activation of VIPR2. To the best of our knowledge, this is the first report of a VIPR2-selective antagonistic peptide that counteracts cognitive decline, a central feature of schizophrenia. KS-133 may contribute to studies and development of novel schizophrenia therapeutic drugs that target VIPR2.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research and Development Department, Ichimaru Pharcos Company Limited, Gifu, Japan
| | - Lu Chen
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tatsunori Miyaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Mei Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Teruaki Masutani
- Research and Development Department, Ichimaru Pharcos Company Limited, Gifu, Japan
| | - Kenji Ishimoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Nobumasa Hino
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukio Ago
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Sueviriyapan N, Granados-Fuentes D, Simon T, Herzog ED, Henson MA. Modelling the functional roles of synaptic and extra-synaptic γ-aminobutyric acid receptor dynamics in circadian timekeeping. J R Soc Interface 2021; 18:20210454. [PMID: 34520693 PMCID: PMC8440032 DOI: 10.1098/rsif.2021.0454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
In the suprachiasmatic nucleus (SCN), γ-aminobutyric acid (GABA) is a primary neurotransmitter. GABA can signal through two types of GABAA receptor subunits, often referred to as synaptic GABAA (gamma subunit) and extra-synaptic GABAA (delta subunit). To test the functional roles of these distinct GABAA in regulating circadian rhythms, we developed a multicellular SCN model where we could separately compare the effects of manipulating GABA neurotransmitter or receptor dynamics. Our model predicted that blocking GABA signalling modestly increased synchrony among circadian cells, consistent with published SCN pharmacology. Conversely, the model predicted that lowering GABAA receptor density reduced firing rate, circadian cell fraction, amplitude and synchrony among individual neurons. When we tested these predictions, we found that the knockdown of delta GABAA reduced the amplitude and synchrony of clock gene expression among cells in SCN explants. The model further predicted that increasing gamma GABAA densities could enhance synchrony, as opposed to increasing delta GABAA densities. Overall, our model reveals how blocking GABAA receptors can modestly increase synchrony, while increasing the relative density of gamma over delta subunits can dramatically increase synchrony. We hypothesize that increased gamma GABAA density in the winter could underlie the tighter phase relationships among SCN cells.
Collapse
Affiliation(s)
- Natthapong Sueviriyapan
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Tatiana Simon
- Department of Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Erik D. Herzog
- Department of Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Michael A. Henson
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
5
|
Ago Y, Asano S, Hashimoto H, Waschek JA. Probing the VIPR2 Microduplication Linkage to Schizophrenia in Animal and Cellular Models. Front Neurosci 2021; 15:717490. [PMID: 34366784 PMCID: PMC8339898 DOI: 10.3389/fnins.2021.717490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 01/30/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP, gene name ADCYAP1) is a multifunctional neuropeptide involved in brain development and synaptic plasticity. With respect to PACAP function, most attention has been given to that mediated by its specific receptor PAC1 (ADCYAP1R1). However, PACAP also binds tightly to the high affinity receptors for vasoactive intestinal peptide (VIP, VIP), called VPAC1 and VPAC2 (VIPR1 and VIPR2, respectively). Depending on innervation patterns, PACAP can thus interact physiologically with any of these receptors. VPAC2 receptors, the focus of this review, are known to have a pivotal role in regulating circadian rhythms and to affect multiple other processes in the brain, including those involved in fear cognition. Accumulating evidence in human genetics indicates that microduplications at 7q36.3, containing VIPR2 gene, are linked to schizophrenia and possibly autism spectrum disorder. Although detailed molecular mechanisms have not been fully elucidated, recent studies in animal models suggest that overactivation of the VPAC2 receptor disrupts cortical circuit maturation. The VIPR2 linkage can thus be potentially explained by inappropriate control of receptor signaling at a time when neural circuits involved in cognition and social behavior are being established. Alternatively, or in addition, VPAC2 receptor overactivity may disrupt ongoing synaptic plasticity during processes of learning and memory. Finally, in vitro data indicate that PACAP and VIP have differential activities on the maturation of neurons via their distinct signaling pathways. Thus perturbations in the balance of VPAC2, VPAC1, and PAC1 receptors and their ligands may have important consequences in brain development and plasticity.
Collapse
Affiliation(s)
- Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Japan.,Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Hughes ATL, Samuels RE, Baño-Otálora B, Belle MDC, Wegner S, Guilding C, Northeast RC, Loudon ASI, Gigg J, Piggins HD. Timed daily exercise remodels circadian rhythms in mice. Commun Biol 2021; 4:761. [PMID: 34145388 PMCID: PMC8213798 DOI: 10.1038/s42003-021-02239-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/18/2021] [Indexed: 01/26/2023] Open
Abstract
Regular exercise is important for physical and mental health. An underexplored and intriguing property of exercise is its actions on the body’s 24 h or circadian rhythms. Molecular clock cells in the brain’s suprachiasmatic nuclei (SCN) use electrical and chemical signals to orchestrate their activity and convey time of day information to the rest of the brain and body. To date, the long-lasting effects of regular physical exercise on SCN clock cell coordination and communication remain unresolved. Utilizing mouse models in which SCN intercellular neuropeptide signaling is impaired as well as those with intact SCN neurochemical signaling, we examined how daily scheduled voluntary exercise (SVE) influenced behavioral rhythms and SCN molecular and neuronal activities. We show that in mice with disrupted neuropeptide signaling, SVE promotes SCN clock cell synchrony and robust 24 h rhythms in behavior. Interestingly, in both intact and neuropeptide signaling deficient animals, SVE reduces SCN neural activity and alters GABAergic signaling. These findings illustrate the potential utility of regular exercise as a long-lasting and effective non-invasive intervention in the elderly or mentally ill where circadian rhythms can be blunted and poorly aligned to the external world. Using mice with disrupted neuropeptide signaling, Hughes et al. show that daily scheduled voluntary exercise (SVE) promotes suprachiasmatic nuclei (SCN) clock cell synchrony and robust 24 h rhythms in behavior. This study suggests the potential utility of regular exercise as a non-invasive intervention for the elderly or mentally ill, where circadian rhythms can be poorly aligned to the external world.
Collapse
Affiliation(s)
- Alun Thomas Lloyd Hughes
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rayna Eve Samuels
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beatriz Baño-Otálora
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Mino David Charles Belle
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,University of Exeter Medical School, Exeter, UK
| | - Sven Wegner
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clare Guilding
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,School of Medical Education, Newcastle University, Newcastle, UK
| | | | | | - John Gigg
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hugh David Piggins
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. .,School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK.
| |
Collapse
|
7
|
Cheng AH, Cheng HYM. Genesis of the Master Circadian Pacemaker in Mice. Front Neurosci 2021; 15:659974. [PMID: 33833665 PMCID: PMC8021851 DOI: 10.3389/fnins.2021.659974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the central circadian clock of mammals. It is responsible for communicating temporal information to peripheral oscillators via humoral and endocrine signaling, ultimately controlling overt rhythms such as sleep-wake cycles, body temperature, and locomotor activity. Given the heterogeneity and complexity of the SCN, its genesis is tightly regulated by countless intrinsic and extrinsic factors. Here, we provide a brief overview of the development of the SCN, with special emphasis on the murine system.
Collapse
Affiliation(s)
- Arthur H. Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Mazuski C, Chen SP, Herzog ED. Different Roles for VIP Neurons in the Neonatal and Adult Suprachiasmatic Nucleus. J Biol Rhythms 2020; 35:465-475. [PMID: 32536240 DOI: 10.1177/0748730420932073] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The suprachiasmatic nucleus (SCN) drives circadian rhythms in locomotion through coupled, single-cell oscillations. Global genetic deletion of the neuropeptide Vip or its receptor Vipr2 results in profound deficits in daily synchrony among SCN cells and daily rhythms in locomotor behavior and glucocorticoid secretion. To test whether this phenotype depends on vasoactive intestinal polypeptide (VIP) neurons in the SCN, we ablated VIP SCN neurons in vivo in adult male mice through Caspase3-mediated induction of the apoptotic pathway in cre-expressing VIP neurons. We found that ablation of VIP SCN neurons in adult mice caused a phenotype distinct from Vip- and Vipr2-null mice. Mice lacking VIP neurons retained rhythmic locomotor activity with a shortened circadian period, more variable onsets, and decreased duration of daily activity. Circadian hormonal outputs, specifically corticosterone rhythms, were severely dampened. In contrast, deletion of neonatal SCN VIP neurons dramatically reduced circadian gene expression in the cultured SCN, mimicking the effects of global deletion of Vip or Vipr2. These results suggest that SCN VIP neurons play a role in lengthening circadian period and stimulating the daily surge in glucocorticoids in adults and in synchronizing and sustaining daily rhythms among cells in the developing SCN.
Collapse
Affiliation(s)
- Cristina Mazuski
- Department of Biology, Washington University, St. Louis, Missouri
| | - Samantha P Chen
- Department of Biology, Washington University, St. Louis, Missouri
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, Missouri
| |
Collapse
|
9
|
Joye DAM, Rohr KE, Keller D, Inda T, Telega A, Pancholi H, Carmona-Alcocer V, Evans JA. Reduced VIP Expression Affects Circadian Clock Function in VIP-IRES-CRE Mice (JAX 010908). J Biol Rhythms 2020; 35:340-352. [PMID: 32460660 DOI: 10.1177/0748730420925573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circadian rhythms are programmed by the suprachiasmatic nucleus (SCN), which relies on neuropeptide signaling to maintain daily timekeeping. Vasoactive intestinal polypeptide (VIP) is critical for SCN function, but the precise role of VIP neurons in SCN circuits is not fully established. To interrogate their contribution to SCN circuits, VIP neurons can be manipulated specifically using the DNA-editing enzyme Cre recombinase. Although the Cre transgene is assumed to be inert by itself, we find that VIP expression is reduced in both heterozygous and homozygous adult VIP-IRES-Cre mice (JAX 010908). Compared with wild-type mice, homozygous VIP-Cre mice display faster reentrainment and shorter free-running period but do not become arrhythmic in constant darkness. Consistent with this phenotype, homozygous VIP-Cre mice display intact SCN PER2::LUC rhythms, albeit with altered period and network organization. We present evidence that the ability to sustain molecular rhythms in the VIP-Cre SCN is not due to residual VIP signaling; rather, arginine vasopressin signaling helps to sustain SCN function at both intracellular and intercellular levels in this model. This work establishes that the VIP-IRES-Cre transgene interferes with VIP expression but that loss of VIP can be mitigated by other neuropeptide signals to help sustain SCN function. Our findings have implications for studies employing this transgenic model and provide novel insight into neuropeptide signals that sustain daily timekeeping in the master clock.
Collapse
Affiliation(s)
- Deborah A M Joye
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Kayla E Rohr
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Danielle Keller
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Thomas Inda
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Adam Telega
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Harshida Pancholi
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | | | - Jennifer A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Chrobok L, Northeast RC, Myung J, Cunningham PS, Petit C, Piggins HD. Timekeeping in the hindbrain: a multi-oscillatory circadian centre in the mouse dorsal vagal complex. Commun Biol 2020; 3:225. [PMID: 32385329 PMCID: PMC7210107 DOI: 10.1038/s42003-020-0960-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic and cardiovascular processes controlled by the hindbrain exhibit 24 h rhythms, but the extent to which the hindbrain possesses endogenous circadian timekeeping is unresolved. Here we provide compelling evidence that genetic, neuronal, and vascular activities of the brainstem’s dorsal vagal complex are subject to intrinsic circadian control with a crucial role for the connection between its components in regulating their rhythmic properties. Robust 24 h variation in clock gene expression in vivo and neuronal firing ex vivo were observed in the area postrema (AP) and nucleus of the solitary tract (NTS), together with enhanced nocturnal responsiveness to metabolic cues. Unexpectedly, we also find functional and molecular evidence for increased penetration of blood borne molecules into the NTS at night. Our findings reveal that the hindbrain houses a local network complex of neuronal and non-neuronal autonomous circadian oscillators, with clear implications for understanding local temporal control of physiology in the brainstem. Lukasz Chrobok, Rebecca Northeast et al. show circadian variation in clock gene expression and neuronal firing within the area postrema and the nucleus of the solitary tract in mice. These regions also exhibit variation in metabolic processes and blood-brain barrier permeability across the 24 hour cycle suggesting the presence of circadian oscillators within the dorsal vagal complex.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387, Krakow, Poland
| | - Rebecca C Northeast
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jihwan Myung
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, No.172-1 Sec. 2 Keelung Road, Da'an District, Taipei, 106, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 110, Taiwan.,Brain and Consciousness Research Centre, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, No. 291 Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan
| | - Peter S Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Cheryl Petit
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Hugh D Piggins
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK. .,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
11
|
Paul S, Hanna L, Harding C, Hayter EA, Walmsley L, Bechtold DA, Brown TM. Output from VIP cells of the mammalian central clock regulates daily physiological rhythms. Nat Commun 2020; 11:1453. [PMID: 32193397 PMCID: PMC7081308 DOI: 10.1038/s41467-020-15277-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/29/2020] [Indexed: 12/27/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) circadian clock is critical for optimising daily cycles in mammalian physiology and behaviour. The roles of the various SCN cell types in communicating timing information to downstream physiological systems remain incompletely understood, however. In particular, while vasoactive intestinal polypeptide (VIP) signalling is essential for SCN function and whole animal circadian rhythmicity, the specific contributions of VIP cell output to physiological control remains uncertain. Here we reveal a key role for SCN VIP cells in central clock output. Using multielectrode recording and optogenetic manipulations, we show that VIP neurons provide coordinated daily waves of GABAergic input to target cells across the paraventricular hypothalamus and ventral thalamus, supressing their activity during the mid to late day. Using chemogenetic manipulation, we further demonstrate specific roles for this circuitry in the daily control of heart rate and corticosterone secretion, collectively establishing SCN VIP cells as influential regulators of physiological timing. VIP-expressing neurons play a central role in circadian timekeeping within the mammalian central clock. Here the authors use opto- and chemogenetic approaches to show that VIP neuronal activity regulates rhythmic activity in downstream hypothalamic target neurons and their physiological functions.
Collapse
Affiliation(s)
- Sarika Paul
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Lydia Hanna
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK.,School of Pharmacy, University of Reading, Reading, UK
| | - Court Harding
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Edward A Hayter
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Lauren Walmsley
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - David A Bechtold
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK.
| |
Collapse
|
12
|
Lindberg PT, Mitchell JW, Burgoon PW, Beaulé C, Weihe E, Schäfer MKH, Eiden LE, Jiang SZ, Gillette MU. Pituitary Adenylate Cyclase-Activating Peptide (PACAP)-Glutamate Co-transmission Drives Circadian Phase-Advancing Responses to Intrinsically Photosensitive Retinal Ganglion Cell Projections by Suprachiasmatic Nucleus. Front Neurosci 2019; 13:1281. [PMID: 31866806 PMCID: PMC6909886 DOI: 10.3389/fnins.2019.01281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022] Open
Abstract
Results from a variety of sources indicate a role for pituitary adenylate cyclase-activating polypeptide (PACAP) in light/glutamate-induced phase resetting of the circadian clock mediated by the retinohypothalamic tract (RHT). Attempts to block or remove PACAP’s contribution to clock-resetting have generated phenotypes that differ in their responses to light or glutamate. For example, previous studies of circadian behaviors found that period-maintenance and early-night phase delays are intact in PACAP-null mice, yet there is a consistent deficit in behavioral phase-resetting to light stimulation in the late night. Here we report rodent stimulus–response characteristics of PACAP release from the RHT, and map these to responses of the suprachiasmatic nucleus (SCN) in intact and PACAP-deficient mouse hypothalamus with regard to phase-resetting. SCN of PACAP-null mice exhibit normal circadian rhythms in neuronal activity, but are “blind” to glutamate stimulating phase-advance responses in late night, although not in early night, consistent with previously reported selective lack of late-night light behavioral responsiveness of these mice. Induction of CREB phosphorylation, a hallmark of the light/glutamate response of the SCN, also is absent in SCN-containing ex vivo slices from PACAP-deficient mouse hypothalamus. PACAP replacement to the SCN of PACAP-null mice restored wild-type phase-shifting of firing-rate patterns in response to glutamate applied to the SCN in late night. Likewise, ex vivo SCN of wild-type mice post-orbital enucleation are unresponsive to glutamate unless PACAP also is restored. Furthermore, we demonstrate that the period of efficacy of PACAP at SCN nerve terminals corresponds to waxing of PACAP mRNA expression in ipRGCs during the night, and waning during the day. These results validate the use of PACAP-deficient mice in defining the role and specificity of PACAP as a co-transmitter with glutamate in ipRGC-RHT projections to SCN in phase advancing the SCN circadian rhythm in late night.
Collapse
Affiliation(s)
- Peder T Lindberg
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jennifer W Mitchell
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Penny W Burgoon
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christian Beaulé
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Eberhard Weihe
- Institute of Anatomy and Cell Biology and Center of Mind, Brain and Behaviour, University of Marburg, Marburg, Germany
| | - Martin K-H Schäfer
- Institute of Anatomy and Cell Biology and Center of Mind, Brain and Behaviour, University of Marburg, Marburg, Germany
| | - Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, United States
| | - Sunny Z Jiang
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, United States
| | - Martha U Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
13
|
Abstract
Circadian rhythms are driven by a transcription-translation feedback loop that separates anabolic and catabolic processes across the Earth's 24-h light-dark cycle. Central pacemaker neurons that perceive light entrain a distributed clock network and are closely juxtaposed with hypothalamic neurons involved in regulation of sleep/wake and fast/feeding states. Gaps remain in identifying how pacemaker and extrapacemaker neurons communicate with energy-sensing neurons and the distinct role of circuit interactions versus transcriptionally driven cell-autonomous clocks in the timing of organismal bioenergetics. In this review, we discuss the reciprocal relationship through which the central clock drives appetitive behavior and metabolic homeostasis and the pathways through which nutrient state and sleep/wake behavior affect central clock function.
Collapse
Affiliation(s)
- Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Nathan Waldeck
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
14
|
Ago Y, Hayata A, Hashimoto H. [Pathophysiological implication of the VPAC2 receptor in psychiatric disorders]. Nihon Yakurigaku Zasshi 2019; 151:249-253. [PMID: 29887574 DOI: 10.1254/fpj.151.249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The advent of the genomic era has led to the discovery of linkages of several genes and pathways to schizophrenia and autism spectrum disorder (ASD) that may serve as new biomarkers or therapeutic targets for these diseases. Two large-scale genetic studies published early in 2011 provided evidence that functional microduplications at 7q36.3, containing VIPR2, are a risk factor for schizophrenia. 7q36.3 microduplications were also reported to be significantly increased in ASD. VIPR2 encodes VPAC2, a seven transmembrane heterotrimeric G protein-coupled receptor that binds two homologous neuropeptides with high affinity, PACAP and VIP. These clinical studies demonstrate a VIPR2 genetic linkage to schizophrenia and ASD and should lead to novel insights into the etiology of these mental health disorders. However, the mechanism by which overactive VPAC2 signaling may lead to schizophrenia and ASD is unknown. In the present review, we will describe recent advances in the genetics of schizophrenia and attempt to discuss the pathophysiological role of altered VPAC2 signaling in psychiatric disorders.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Atsuko Hayata
- Center for Child Mental Development, United Graduate School of Child Development, Osaka University
| | - Hitoshi Hashimoto
- Center for Child Mental Development, United Graduate School of Child Development, Osaka University.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University.,Division of Bioscience, Institute for Datability Science, Osaka University
| |
Collapse
|
15
|
Duncan MJ. Interacting influences of aging and Alzheimer's disease on circadian rhythms. Eur J Neurosci 2019; 51:310-325. [DOI: 10.1111/ejn.14358] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Marilyn J. Duncan
- Department of NeuroscienceUniversity of Kentucky Medical School Lexington Kentucky
| |
Collapse
|
16
|
McCarthy R, Jungheim ES, Fay JC, Bates K, Herzog ED, England SK. Riding the Rhythm of Melatonin Through Pregnancy to Deliver on Time. Front Endocrinol (Lausanne) 2019; 10:616. [PMID: 31572299 PMCID: PMC6753220 DOI: 10.3389/fendo.2019.00616] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Pregnancy is influenced by the circadian ("circa" or approximately; diēm or day) system, which coordinates physiology and behavior with predictable daily changes in the environment such as light/dark cycles. For example, most species deliver around a particular time of day. In mammals, circadian rhythms are controlled by the master circadian pacemaker, the suprachiasmatic nucleus. One key way that the suprachiasmatic nucleus coordinates circadian rhythms throughout the body is by regulating production of the sleep-promoting hormone melatonin. Serum melatonin concentration, which peaks at night and is suppressed during the day, is one of the best biological indicators of circadian timing. Circadian misalignment causes maternal disturbances in the temporal organization of many physiological processes including melatonin synthesis, and these disturbances of the circadian system have been linked to an increased risk for pregnancy complications. Here, we review evidence that melatonin helps regulate the maternal and fetal circadian systems and the timing of birth. Finally, we discuss the potential for melatonin-based therapeutic strategies to alleviate poor pregnancy outcomes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
- Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Emily S. Jungheim
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Justin C. Fay
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Keenan Bates
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Erik D. Herzog
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Sarah K. England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Sarah K. England
| |
Collapse
|
17
|
Cao R. mTOR Signaling, Translational Control, and the Circadian Clock. Front Genet 2018; 9:367. [PMID: 30250482 PMCID: PMC6139299 DOI: 10.3389/fgene.2018.00367] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
Almost all cellular processes are regulated by the approximately 24 h rhythms that are endogenously driven by the circadian clock. mRNA translation, as the most energy consuming step in gene expression, is temporally controlled by circadian rhythms. Recent research has uncovered key mechanisms of translational control that are orchestrated by circadian rhythmicity and in turn feed back to the clock machinery to maintain robustness and accuracy of circadian timekeeping. Here I review recent progress in our understanding of translation control mechanisms in the circadian clock, focusing on a role for the mammalian/mechanistic target of rapamycin (mTOR) signaling pathway in modulating entrainment, synchronization and autonomous oscillation of circadian clocks. I also discuss the relevance of circadian mTOR functions in disease.
Collapse
Affiliation(s)
- Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
18
|
McBride D, Petzold L. Model-based Inference of a Directed Network of Circadian Neurons. J Biol Rhythms 2018; 33:515-522. [DOI: 10.1177/0748730418790402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the master clock of the brain. It is a network of neurons that behave like biological oscillators, capable of synchronizing and maintaining daily rhythms. The detailed structure of this network is still unknown, and the role that the connectivity pattern plays in the network’s ability to generate robust oscillations has yet to be fully elucidated. In recent work, we used an information theory–based technique to infer the structure of the functional network for synchronization, from bioluminescence reporter data. Here, we propose a computational method to determine the directionality of the connections between the neurons. We find that most SCN neurons have a similar number of incoming connections, but the number of outgoing connections per neuron varies widely, with the most highly connected neurons residing preferentially in the core.
Collapse
Affiliation(s)
- David McBride
- University of California, Santa Barbara, California
- Institute for Collaborative Biotechnologies, Santa Barbara, California
| | - Linda Petzold
- University of California, Santa Barbara, California
- Institute for Collaborative Biotechnologies, Santa Barbara, California
| |
Collapse
|
19
|
Lai B, Zou J, Lin Z, Qu Z, Song A, Xu Y, Gao X. Haploinsufficiency of hnRNP U Changes Activity Pattern and Metabolic Rhythms. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:173-183. [PMID: 29128567 DOI: 10.1016/j.ajpath.2017.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022]
Abstract
The neuropeptides arginine vasopressin (Avp) and vasoactive intestinal polypeptide (Vip) are critical for the communication and coupling of suprachiasmatic nucleus neurons, which organize daily rhythms of physiology and behavior in mammals. However, how these peptides are regulated remains uncharacterized. We found that heterogeneous nuclear ribonucleoprotein U (hnRNP U) is essential for the expression of Avp and Vip. Loss of one copy of the Hnrnpu gene resulted in fragmented locomotor activities and disrupted metabolic rhythms. Hnrnpu+/- mice were more active than wild-type mice in the daytime but more inactive at night. These phenotypes were partially rescued by microinfusion of Avp and Vip into free-moving animals. In addition, hnRNP U modulated Avp and Vip via directly binding to their promoters together with brain and muscle Arnt-like protein-1/circadian locomotor output cycles kaput heterodimers. Our work identifies hnRNP U as a novel regulator of the circadian pacemaker and provides new insights into the mechanism of rhythm output.
Collapse
Affiliation(s)
- Beibei Lai
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Jianghuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Zhipeng Qu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Ying Xu
- Medical College of Soochou University, Suzhou, China.
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus. J Neurosci 2017; 38:1326-1334. [PMID: 29054877 DOI: 10.1523/jneurosci.2006-17.2017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus coordinates daily rhythms including sleep-wake, hormone release, and gene expression. The cells of the SCN must synchronize to each other to drive these circadian rhythms in the rest of the body. The ontogeny of circadian cycling and intercellular coupling in the SCN remains poorly understood. Recent in vitro studies have recorded circadian rhythms from the whole embryonic SCN. Here, we tracked the onset and precision of rhythms in PERIOD2 (PER2), a clock protein, within the SCN isolated from embryonic and postnatal mice of undetermined sex. We found that a few SCN cells developed circadian periodicity in PER2 by 14.5 d after mating (E14.5) with no evidence for daily cycling on E13.5. On E15.5, the fraction of competent oscillators increased dramatically corresponding with stabilization of their circadian periods. The cells of the SCN harvested at E15.5 expressed sustained, synchronous daily rhythms. By postnatal day 2 (P2), SCN oscillators displayed the daily, dorsal-ventral phase wave in clock gene expression typical of the adult SCN. Strikingly, vasoactive intestinal polypeptide (VIP), a neuropeptide critical for synchrony in the adult SCN, and its receptor, VPAC2R, reached detectable levels after birth and after the onset of circadian synchrony. Antagonists of GABA or VIP signaling or action potentials did not disrupt circadian synchrony in the E15.5 SCN. We conclude that endogenous daily rhythms in the fetal SCN begin with few noisy oscillators on E14.5, followed by widespread oscillations that rapidly synchronize on E15.5 by an unknown mechanism.SIGNIFICANCE STATEMENT We recorded the onset of PER2 circadian oscillations during embryonic development in the mouse SCN. When isolated at E13.5, the anlagen of the SCN expresses high, arrhythmic PER2. In contrast, a few cells show noisy circadian rhythms in the isolated E14.5 SCN and most show reliable, self-sustained, synchronized rhythms in the E15.5 SCN. Strikingly, this synchrony at E15.5 appears before expression of VIP or its receptor and persists in the presence of blockers of VIP, GABA or neuronal firing. Finally, the dorsal-ventral phase wave of PER2 typical of the adult SCN appears ∼P2, indicating that multiple signals may mediate circadian synchrony during the ontogeny of the SCN.
Collapse
|
21
|
Abstract
Over the past 20years, substantive research has firmly implicated the lateral habenula in myriad neural processes including addiction, depression, and sleep. More recently, evidence has emerged suggesting that the lateral habenula is a component of the brain's intrinsic daily or circadian timekeeping system. This system centers on the master circadian pacemaker in the suprachiasmatic nuclei of the hypothalamus that is synchronized to the external world through environmental light information received directly from the eye. Rhythmic clock gene expression in suprachiasmatic neurons drives variation in their electrical activity enabling communication of temporal information, and the organization of circadian rhythms in downstream targets. Here, we review the evidence implicating the lateral habenula as part of an extended neural circadian system. We consider findings suggesting that the lateral habenula is a recipient of circadian signals from the suprachiasmatic nuclei as well as light information from the eye. Further we examine the proposition that the lateral habenula itself expresses intrinsic clock gene and neuronal rhythms. We then speculate on how circadian information communicated from the lateral habenula could influence activity and function in downstream targets such as the ventral tegmental area and raphe nuclei.
Collapse
Affiliation(s)
| | - Hugh D Piggins
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK.
| |
Collapse
|
22
|
Hanna L, Walmsley L, Pienaar A, Howarth M, Brown TM. Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input. J Physiol 2017; 595:3621-3649. [PMID: 28217893 DOI: 10.1113/jp273850] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. ABSTRACT Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day.
Collapse
Affiliation(s)
- Lydia Hanna
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Lauren Walmsley
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Abigail Pienaar
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Michael Howarth
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Taylor SR, Wang TJ, Granados-Fuentes D, Herzog ED. Resynchronization Dynamics Reveal that the Ventral Entrains the Dorsal Suprachiasmatic Nucleus. J Biol Rhythms 2017; 32:35-47. [PMID: 28326909 PMCID: PMC5483321 DOI: 10.1177/0748730416680904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the suprachiasmatic nucleus (SCN) has long been considered the master circadian clock in mammals, the topology of the connections that synchronize daily rhythms among SCN cells is not well understood. We combined experimental and computational methods to infer the directed interactions that mediate circadian synchrony between regions of the SCN. We analyzed PERIOD2 (PER2) expression from SCN slices during and after treatment with tetrodotoxin, allowing us to map connections as cells resynchronized their daily cycling following blockade and restoration of cell-cell communication. Using automated analyses, we found that cells in the dorsal SCN stabilized their periods slower than those in the ventral SCN. A phase-amplitude computational model of the SCN revealed that, to reproduce the experimental results: (1) the ventral SCN had to be more densely connected than the dorsal SCN and (2) the ventral SCN needed strong connections to the dorsal SCN. Taken together, these results provide direct evidence that the ventral SCN entrains the dorsal SCN in constant conditions.
Collapse
Affiliation(s)
| | - Thomas J. Wang
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Erik D. Herzog
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Jones JR, McMahon DG. The core clock gene Per1 phases molecular and electrical circadian rhythms in SCN neurons. PeerJ 2016; 4:e2297. [PMID: 27602274 PMCID: PMC4991845 DOI: 10.7717/peerj.2297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022] Open
Abstract
The brain’s biological clock, the suprachiasmatic nucleus (SCN), exhibits endogenous 24-hour rhythms in gene expression and spontaneous firing rate; however, the functional relationship between these neuronal rhythms is not fully understood. Here, we used a Per1::GFP transgenic mouse line that allows for the simultaneous quantification of molecular clock state and firing rate in SCN neurons to examine the relationship between these key components of the circadian clock. We find that there is a stable, phased relationship between E-box-driven clock gene expression and spontaneous firing rate in SCN neurons and that these relationships are independent of light input onto the system or of GABAA receptor-mediated synaptic activity. Importantly, the concordant phasing of gene and neural rhythms is disrupted in the absence of the homologous clock gene Per1, but persists in the absence of the core clock gene Per2. These results suggest that Per1 plays a unique, non-redundant role in phasing gene expression and firing rate rhythms in SCN neurons to increase the robustness of cellular timekeeping.
Collapse
Affiliation(s)
- Jeff R Jones
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, United States; Current affiliation: Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Douglas G McMahon
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, United States; Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
25
|
Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016; 230:R27-49. [PMID: 27154335 PMCID: PMC4938744 DOI: 10.1530/joe-16-0054] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustained circadian rhythms in cellular function that are regulated at the molecular level by a 24h transcriptional-translational feedback loop. Remarkably, SCN cells are able to harmonize with one another to sustain coherent rhythms at the tissue level. Mechanisms of cellular communication in the SCN network are not completely understood, but recent progress has provided insight into the functional roles of several SCN signaling factors. This review discusses SCN organization, how intercellular communication is critical for maintaining network function, and the signaling mechanisms that play a role in this process. Despite recent progress, our understanding of SCN circuitry and coupling is far from complete. Further work is needed to map SCN circuitry fully and define the signaling mechanisms that allow for collective timekeeping in the SCN network.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical SciencesMarquette University, Milwaukee, WI, USA
| |
Collapse
|
26
|
Hastings MH, Herzog ED. Clock Genes, Oscillators, and Cellular Networks in the Suprachiasmatic Nuclei. J Biol Rhythms 2016; 19:400-13. [PMID: 15534320 DOI: 10.1177/0748730404268786] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian SCN contains a biological clock that drives remarkably precise circadian rhythms in vivo and in vitro. Recent advances have revealed molecular and cellular mechanisms required for the generation of these daily rhythms and their synchronization between SCN neurons and to the environmental light cycle. This review of the evidence for a cell-autonomous circadian pacemaker within specialized neurons of the SCN focuses on 6 genes implicated within the pace making mechanism, an additional 4 genes implicated in pathways from the pacemaker, and the intercellular and intracellular mechanisms that synchronize SCN neurons to each other and to solar time.
Collapse
Affiliation(s)
- Michael H Hastings
- MRC Laboratory of Molecular Biology, Division of Neurobiology, Cambridge, UK.
| | | |
Collapse
|
27
|
Abstract
The SCN has long had organizational schemas imposed on it. In most, the SCN is dichotomized, with one region typically associated with the presence of vasopressin cells and the other associated with cells containing vasoactive intestinal polypeptide and certain afferent terminal fields. If assumed to be accurate, the schemas that have been intended to simplify and conceptually organize the known anatomy may actually interfere with the understanding of how various cell types and input pathways contribute to circadian rhythm regulation. This review describes inadequacies of existing schemas and notes several practical difficulties that undermine their usefulness. These include “static” versus “dynamic” anatomy, generalizations about SCN organization in relation to the plane or level of section, and the concept of differential density, all of which contribute to a view in which the SCN is substantially more complex than typically depicted in oversimplified line drawings. The need for accurate topographical description is emphasized.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY 11794-8101, USA.
| |
Collapse
|
28
|
Abstract
The SCN of the mammalian hypothalamus comprises a self-sustained, biological clock that generates endogenous ca. 24-h (circadian) rhythms. Circadian rhythmicity in the SCN originates from the interaction of a defined set of “clock genes” that participate in transcription/translation feedback loops. In order for the SCN to serve as an internal clock that times an internal day corresponding to the external solar day, the intracellular molecular oscillations must be output as physiological signals and be reset by appropriate environmental inputs. Here, the authors consider the mechanisms by which the SCN circadian pacemaker encodes rhythmic output and light input. In particular, they focus on the ionic mechanisms by which SCN neurons encode clock gene output as circa-dian rhythms in spike frequency, as well as cellular and molecular mechanisms by which SCN neurons encode circadian light input through phase heterogeneity in the SCN network. The authors propose that there are 2 distinct classes of ionic mechanisms supporting spike frequency rhythms output—modulation of basal membrane potential and conductance versus modulation of spike production—whereas light input is transformed by cellular communication within the SCN network and encoded by the relative phase relationships among SCN neurons.
Collapse
Affiliation(s)
- Sandra J Kuhlman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
29
|
Chan RK, Sterniczuk R, Enkhbold Y, Jeffers RT, Basu P, Duong B, Chow SL, Smith VM, Antle MC. Phase shifts to light are altered by antagonists to neuropeptide receptors. Neuroscience 2016; 327:115-24. [PMID: 27090819 DOI: 10.1016/j.neuroscience.2016.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 11/16/2022]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is a heterogeneous structure. Two key populations of cells that receive retinal input and are believed to participate in circadian responses to light are cells that contain vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP). VIP acts primarily through the VPAC2 receptor, while GRP works primarily through the BB2 receptor. Both VIP and GRP phase shift the circadian clock in a manner similar to light when applied to the SCN, both in vivo and in vitro, indicating that they are sufficient to elicit photic-like phase shifts. However, it is not known if they are necessary signals for light to elicit phase shifts. Here we test the hypothesis that GRP and VIP are necessary signaling components for the photic phase shifting of the hamster circadian clock by examining two antagonists for each of these neuropeptides. The BB2 antagonist PD176252 had no effect on light-induced delays on its own, while the BB2 antagonist RC-3095 had the unexpected effect of significantly potentiating both phase delays and advances. Neither of the VIP antagonists ([d-p-Cl-Phe6, Leu17]-VIP, or PG99-465) altered phase shifting responses to light on their own. When the BB2 antagonist PD176252 and the VPAC2 antagonist PG99-465 were delivered together to the SCN, phase delays were significantly attenuated. These results indicate that photic phase shifting requires participation of either VIP or GRP; phase shifts to light are only impaired when signalling in both pathways are inhibited. Additionally, the unexpected potentiation of light-induced phase shifts by RC-3095 should be investigated further for potential chronobiotic applications.
Collapse
Affiliation(s)
- Ryan K Chan
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roxanne Sterniczuk
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychology, Dalhousie University, Halifax, NS, Canada
| | - Yaruuna Enkhbold
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ryan T Jeffers
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Priyoneel Basu
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bryan Duong
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sue-Len Chow
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Victoria M Smith
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Michael C Antle
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
30
|
Hermanstyne TO, Simms CL, Carrasquillo Y, Herzog ED, Nerbonne JM. Distinct Firing Properties of Vasoactive Intestinal Peptide-Expressing Neurons in the Suprachiasmatic Nucleus. J Biol Rhythms 2015; 31:57-67. [PMID: 26712166 DOI: 10.1177/0748730415619745] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suprachiasmatic nucleus (SCN) regulates daily rhythms in physiology and behavior. Previous studies suggest a critical role for neurons expressing vasoactive intestinal peptide (VIP) in coordinating rhythmicity and synchronization in the SCN. Here we examined the firing properties of VIP-expressing SCN neurons in acute brain slices. Active and passive membrane properties were measured in VIP and in non-VIP neurons during the day and at night. Current-clamp recordings revealed that both VIP and non-VIP neurons were spontaneously active, with higher firing rates during the day than at night. Average firing frequencies, however, were higher in VIP neurons (3.1 ± 0.2 Hz, day and 2.4 ± 0.2 Hz, night) than in non-VIP neurons (1.8 ± 0.2 Hz, day and 0.9 ± 0.2 Hz, night), both day and night. The waveforms of individual action potentials in VIP and non-VIP neurons were also distinct. Action potential durations (APD50) were shorter in VIP neurons (3.6 ± 0.1 ms, day and 2.9 ± 0.1 ms, night) than in non-VIP neurons (4.4 ± 0.3 ms, day and 3.5 ± 0.2 ms, night) throughout the light-dark cycle. In addition, afterhyperpolarization (AHP) amplitudes were larger in VIP neurons (21 ± 0.8 mV, day and 24.9 ± 0.9 mV, night) than in non-VIP neurons (17.2 ± 1.1 mV, day and 20.5 ± 1.2 mV, night) during the day and at night. Furthermore, significant day/night differences were observed in APD50 and AHP amplitudes in both VIP and non-VIP SCN neurons, consistent with rhythmic changes in ionic conductances that contribute to shaping the firing properties of both cell types. The higher day and night firing rates of VIP neurons likely contribute to synchronizing electrical activity in the SCN.
Collapse
Affiliation(s)
- Tracey O Hermanstyne
- Departments of Developmental Biology and Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Carrie L Simms
- Department of Biology, Washington University, St. Louis, MO
| | - Yarimar Carrasquillo
- Departments of Developmental Biology and Medicine, Washington University School of Medicine, Saint Louis, MO National Center for Complementary and Alternative Medicine, NIH 35 Convent Drive Building 35A, Room 1E-410, Bethesda, MD 20892, USA
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, MO
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Medicine, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
31
|
Hughes ATL, Croft CL, Samuels RE, Myung J, Takumi T, Piggins HD. Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC2-signaling deficient mice. Sci Rep 2015; 5:14044. [PMID: 26370467 PMCID: PMC4642707 DOI: 10.1038/srep14044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
Individual neurons in the suprachiasmatic nuclei (SCN) contain an intracellular molecular clock and use intercellular signaling to synchronize their timekeeping activities so that the SCN can coordinate brain physiology and behavior. The neuropeptide vasoactive intestinal polypeptide (VIP) and its VPAC2 receptor form a key component of intercellular signaling systems in the SCN and critically control cellular coupling. Targeted mutations in either the intracellular clock or intercellular neuropeptide signaling mechanisms, such as VIP-VPAC2 signaling, can lead to desynchronization of SCN neuronal clocks and loss of behavioral rhythms. An important goal in chronobiology is to develop interventions to correct deficiencies in circadian timekeeping. Here we show that extended exposure to constant light promotes synchrony among SCN clock cells and the expression of ~24 h rhythms in behavior in mice in which intercellular signaling is disrupted through loss of VIP-VPAC2 signaling. This study highlights the importance of SCN synchrony for the expression of rhythms in behavior and reveals how non-invasive manipulations in the external environment can be used to overcome neurochemical communication deficits in this important brain system.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Cara L Croft
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rayna E Samuels
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Jihwan Myung
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
32
|
Vasoactive intestinal polypeptide (VIP)-expressing neurons in the suprachiasmatic nucleus provide sparse GABAergic outputs to local neurons with circadian regulation occurring distal to the opening of postsynaptic GABAA ionotropic receptors. J Neurosci 2015; 35:1905-20. [PMID: 25653351 DOI: 10.1523/jneurosci.2661-14.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABAergic synaptic transmission plays an important role in resetting and synchronizing circadian rhythms in the suprachiasmatic nucleus (SCN). Although the circadian modulation of intrinsic membrane currents and biochemical signaling have been examined in the SCN, the modulation of specific synaptic pathways within the SCN is unexplored. In addition, little is known about the functional properties of these pathways, including which ones involve GABAA receptors (GABAA-Rs). In brain slices obtained from mice, we examined synaptic responses originating from the SCN neurons expressing vasoactive intestinal peptide (VIP+ neurons). Focusing on the local projection within the ventromedial SCN, we found that VIP+ afferents provided input onto 49% of neurons with a preference for VIP-negative (VIP-) neurons. Responses were mediated by GABAA-Rs. The projection was sparsely connected and preferentially targeted a subset of SCN neurons unrelated to postsynaptic VIP expression. For most aspects of VIP+ network output, there was no circadian regulation. Excitability and spontaneous firing of the presynaptic VIP+ neurons were unchanged between day and night, and their network connectivity and synaptic function up through the evoked synaptic conductance were also unchanged. On the other hand, VIP+ input onto VIP- neurons became less inhibitory at night suggesting a postsynaptic alteration in the coupling of GABAA-R conductances to action potential firing. These data suggest that components of the VIP network and its synaptic output up through GABAA-R opening are invariant during the circadian cycle, but the effect on action potential firing is modulated by postsynaptic processes occurring after GABAA-R channel opening.
Collapse
|
33
|
Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J Neurosci 2015; 34:15192-9. [PMID: 25392488 DOI: 10.1523/jneurosci.3233-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcriptional architecture of intracellular circadian clocks is similar across phyla, but in mammals interneuronal mechanisms confer a higher level of circadian integration. The suprachiasmatic nucleus (SCN) is a unique model to study these mechanisms, as it operates as a ∼24 h clock not only in the living animal, but also when isolated in culture. This "clock in a dish" can be used to address fundamental questions, such as how intraneuronal mechanisms are translated by SCN neurons into circuit-level emergent properties and how the circuit decodes, and responds to, light input. This review addresses recent developments in understanding the relationship between electrical activity, [Ca(2+)]i, and intracellular clocks. Furthermore, optogenetic and chemogenetic approaches to investigate the distinct roles of neurons and glial cells in circuit encoding of circadian time will be discussed, as well as the epigenetic and circuit-level mechanisms that enable the SCN to translate light input into coherent daily rhythms.
Collapse
|
34
|
Abstract
Schizophrenia patients often show irregularities in sleep and circadian rhythms and deficits in recognition memory. Similar phenotypes are seen in schizophrenia-relevant genetic mouse models, such as synaptosomal associated protein of 25 kDa (Snap-25) point mutant mice, vasoactive intestinal peptide receptor 2 (Vipr2) knockout mice, and neuregulin 1 (Nrg1)-deficient mice. Sleep and circadian abnormalities and impaired recognition memory may be causally related in both schizophrenia patients and schizophrenia-relevant mouse models, since sleep deprivation, abnormal photic input, and the manipulation of core clock genes (cryptochrome 1/2) can all disrupt object recognition memory in rodent models. The recognition deficits observed in patients and mouse models (both schizophrenia-related and -unrelated) are discussed here in terms of the dual-process theory of recognition, which postulates that there are two recognition mechanisms-recollection versus familiarity-that can be selectively impaired by brain lesions, neuropsychiatric conditions, and putatively, sleep and circadian rhythm disruption. However, based on this view, the findings from patient studies and studies using genetic mouse models (Nrg1 deficiency) seem to be inconsistent with each other. Schizophrenia patients are impaired at recollection (and to a lesser extent, familiarity judgments), but Nrg1-deficient mice are impaired at familiarity-based object recognition, raising concerns regarding the validity of using these genetically modified mice to model recognition phenotypes observed in patients. This issue can be resolved in future animal studies by examining performance in different variants of the spontaneous recognition task-the standard, perirhinal cortex-dependent, object recognition task versus the hippocampus-dependent object-place recognition task-in order to see which of the two recognition mechanisms is more disrupted.
Collapse
|
35
|
Sakhi K, Wegner S, Belle MDC, Howarth M, Delagrange P, Brown TM, Piggins HD. Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity. J Physiol 2014; 592:5025-45. [PMID: 25194046 DOI: 10.1113/jphysiol.2014.280065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The epithalamic lateral habenula (LHb) is implicated as part of the mammalian brain's circadian system. Anatomical evidence suggests that the LHb receives extrinsic circadian timing cues from retinal ganglion cells and the master clock in the suprachiasmatic nuclei (SCN). Intriguingly, some LHb neurones contain the molecular circadian clock, but it is unclear if and how intrinsic and extrinsic circadian processes influence neuronal activity in the mouse LHb. Here, using an in vitro brain slice preparation isolating the LHb from the SCN, we show through whole-cell patch-clamp recordings that LHb neurones exhibit heterogeneity in their resting state, but the majority spontaneously fire action potentials (APs). Discharge rate of APs varied from low firing in the early day to higher firing later in the day and was absent in LHb brain slices prepared from Cry1(-/-)Cry2(-/-) mice that lack a functional molecular clock. Low amplitude circadian oscillations in the molecular circadian clock were also monitored in LHb brain slices, but were absent in Cry1(-/-)Cry2(-/-) LHb brain tissue. A putative neurochemical output signal of the SCN, prokineticin 2 (PK2), inhibited some LHb neurones by elevating the frequency of GABA release in the LHb. Using multi-electrode recordings in vivo, we found that LHb neurones sluggishly respond to retinal illumination, suggesting that they receive such information through polysynaptic processes. In summary, our results show for the first time that intrinsic circadian signals are important for regulating LHb neuronal state, while the SCN-derived signal PK2 is less influential. Moreover, we demonstrate that mouse LHb neurones have access to and can respond to visual input, but such signals are unlikely to be directly communicated to the LHb. Broadly, these findings raise the possibility that intrinsic circadian signals are likely to be influential in shaping LHb contributions to cognition and emotionality.
Collapse
Affiliation(s)
- Kanwal Sakhi
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Sven Wegner
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Mino D C Belle
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Michael Howarth
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Philippe Delagrange
- Unité de Recherches et Découvertes en Neurosciences, Institut de Recherches Servier, 78290, Croissy-sur-Seine, France
| | - Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Uchida Y, Tokizawa K, Nagashima K. Characteristics of activated neurons in the suprachiasmatic nucleus when mice become hypothermic during fasting and cold exposure. Neurosci Lett 2014; 579:177-82. [DOI: 10.1016/j.neulet.2014.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/11/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
|
37
|
Cao R, Robinson B, Xu H, Gkogkas C, Khoutorsky A, Alain T, Yanagiya A, Nevarko T, Liu AC, Amir S, Sonenberg N. Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron 2013; 79:712-24. [PMID: 23972597 DOI: 10.1016/j.neuron.2013.06.026] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 11/28/2022]
Abstract
Protein synthesis is critical for circadian clock function, but little is known of how translational regulation controls the master pacemaker in mammals, the suprachiasmatic nucleus (SCN). Here we demonstrate that the pivotal translational repressor, the eukaryotic translational initiation factor 4E binding protein 1 (4E-BP1), is rhythmically regulated via the mechanistic target of rapamycin (mTOR) signaling in the SCN and preferentially represses vasoactive intestinal peptide (Vip) mRNA translation. Knockout (KO) of Eif4ebp1 (gene encoding 4E-BP1) leads to upregulation of VIP and higher amplitude of molecular rhythms in the SCN. Consequently, the 4E-BP1 null mice exhibit accelerated re-entrainment to a shifted light/dark cycle and are more resistant to the rhythm-disruptive effects of constant light. Conversely, in Mtor(+/-) mice VIP expression is decreased and susceptibility to the effects of constant light is increased. These results reveal a key role for mTOR/4E-BP1-mediated translational control in regulating entrainment and synchrony of the master clock.
Collapse
Affiliation(s)
- Ruifeng Cao
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Soetedjo L, Glover DA, Jin H. Targeting of vasoactive intestinal peptide receptor 2, VPAC2, a secretin family G-protein coupled receptor, to primary cilia. Biol Open 2013; 2:686-94. [PMID: 23862016 PMCID: PMC3711036 DOI: 10.1242/bio.20134747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
Primary cilia protrude from the cell surface of many cell types in the human body and function as cellular antennae via ciliary membrane localized receptors. Neurons and glial cells in the brain possess primary cilia, and the malfunction of primary cilia may contribute to neurological deficits present in many cilia-associated disorders. Several rhodopsin family G-protein coupled receptors (GPCRs) are specifically localized to a subset of neuronal primary cilia. However, whether other family GPCRs target to neuronal cilia and whether glial primary cilia harbor any GPCRs are not known. We conducted a screening of GPCRs to determine their ability to target to primary cilia, and identified a secretin family member, Vasoactive Intestinal Receptor 2 (VPAC2), as a novel ciliary GPCR. Here, we show that endogenous VPAC2 targets to primary cilia in various brain regions, including the suprachiasmatic nuclei and the thalamus. Surprisingly, VPAC2 not only localizes to neuronal cilia but also to glial cilia. In addition, we show that VPAC2's C-terminus is both necessary and sufficient for its ciliary targeting and we define a novel ciliary targeting signal: the tetrapeptide RDYR motif in the C-terminus of VPAC2. Furthermore, we demonstrate that VPAC2 ciliary targeting is dependent on Tubby, the BBSome (a complex of Bardet-Biedl syndrome proteins) and the BBSome targeting factor, Arl6.
Collapse
Affiliation(s)
- Livana Soetedjo
- Department of Biological Sciences, University of Illinois at Chicago , Chicago, IL 60607 , USA
| | | | | |
Collapse
|
39
|
Brancaccio M, Maywood ES, Chesham JE, Loudon ASI, Hastings MH. A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 2013; 78:714-28. [PMID: 23623697 PMCID: PMC3666084 DOI: 10.1016/j.neuron.2013.03.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2013] [Indexed: 11/30/2022]
Abstract
The role of intracellular transcriptional/post-translational feedback loops (TTFL) within the circadian pacemaker of the suprachiasmatic nucleus (SCN) is well established. In contrast, contributions from G-coupled pathways and cytosolic rhythms to the intercellular control of SCN pacemaking are poorly understood. We therefore combined viral transduction of SCN slices with fluorescence/bioluminescence imaging to visualize GCaMP3-reported circadian oscillations of intracellular calcium [Ca2+]i alongside activation of Ca2+/cAMP-responsive elements. We phase-mapped them to the TTFL, in time and SCN space, and demonstrated their dependence upon G-coupled vasoactive intestinal peptide (VIP) signaling. Pharmacogenetic manipulation revealed the individual contributions of Gq, Gs, and Gi to cytosolic and TTFL circadian rhythms. Importantly, activation of Gq-dependent (but not Gs or Gi) pathways in a minority of neurons reprogrammed [Ca2+]i and TTFL rhythms across the entire SCN. This reprogramming was mediated by intrinsic VIPergic signaling, thus revealing a Gq/[Ca2+]i-VIP leitmotif and unanticipated plasticity within network encoding of SCN circadian time. SCN [Ca2+]i and TTFL circadian landscape phase-mapped by real-time imaging SCN network reprogrammed by recruitment of Gq-[Ca2+]i axis in a minority of neurons Selective Gq-mediated reprogramming mediated by intrinsic VIPergic signaling Internal structure and unanticipated plasticity of the SCN circadian network unveiled
Collapse
Affiliation(s)
- Marco Brancaccio
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | | | |
Collapse
|
40
|
Granados-Fuentes D, Herzog ED. The clock shop: coupled circadian oscillators. Exp Neurol 2012; 243:21-7. [PMID: 23099412 DOI: 10.1016/j.expneurol.2012.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/04/2012] [Accepted: 10/16/2012] [Indexed: 01/10/2023]
Abstract
Daily rhythms in neural activity underlie circadian rhythms in sleep-wake and other daily behaviors. The cells within the mammalian suprachiasmatic nucleus (SCN) are intrinsically capable of 24-h timekeeping. These cells synchronize with each other and with local environmental cycles to drive coherent rhythms in daily behaviors. Recent studies have identified a small number of neuropeptides critical for this ability to synchronize and sustain coordinated daily rhythms. This review highlights the roles of specific intracellular and intercellular signals within the SCN that underlie circadian synchrony.
Collapse
|
41
|
Punia S, Rumery KK, Yu EA, Lambert CM, Notkins AL, Weaver DR. Disruption of gene expression rhythms in mice lacking secretory vesicle proteins IA-2 and IA-2β. Am J Physiol Endocrinol Metab 2012; 303:E762-76. [PMID: 22785238 PMCID: PMC3468428 DOI: 10.1152/ajpendo.00513.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulinoma-associated protein (IA)-2 and IA-2β are transmembrane proteins involved in neurotransmitter secretion. Mice with targeted disruption of both IA-2 and IA-2β (double-knockout, or DKO mice) have numerous endocrine and physiological disruptions, including disruption of circadian and diurnal rhythms. In the present study, we have assessed the impact of disruption of IA-2 and IA-2β on molecular rhythms in the brain and peripheral oscillators. We used in situ hybridization to assess molecular rhythms in the hypothalamic suprachiasmatic nuclei (SCN) of wild-type (WT) and DKO mice. The results indicate significant disruption of molecular rhythmicity in the SCN, which serves as the central pacemaker regulating circadian behavior. We also used quantitative PCR to assess gene expression rhythms in peripheral tissues of DKO, single-knockout, and WT mice. The results indicate significant attenuation of gene expression rhythms in several peripheral tissues of DKO mice but not in either single knockout. To distinguish whether this reduction in rhythmicity reflects defective oscillatory function in peripheral tissues or lack of entrainment of peripheral tissues, animals were injected with dexamethasone daily for 15 days, and then molecular rhythms were assessed throughout the day after discontinuation of injections. Dexamethasone injections improved gene expression rhythms in liver and heart of DKO mice. These results are consistent with the hypothesis that peripheral tissues of DKO mice have a functioning circadian clockwork, but rhythmicity is greatly reduced in the absence of robust, rhythmic physiological signals originating from the SCN. Thus, IA-2 and IA-2β play an important role in the regulation of circadian rhythms, likely through their participation in neurochemical communication among SCN neurons.
Collapse
Affiliation(s)
- Sohan Punia
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
42
|
Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 2012; 166:4-17. [PMID: 22289055 DOI: 10.1111/j.1476-5381.2012.01871.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, gastric inhibitory peptide (GIP) and growth hormone-releasing hormone (GHRH). VIP and PACAP exert their actions through three GPCRs - PAC(1) , VPAC(1) and VPAC(2) - belonging to class B (also referred to as class II, or secretin receptor-like GPCRs). This family comprises receptors for all peptides structurally related to VIP and PACAP, and also receptors for parathyroid hormone, corticotropin-releasing factor, calcitonin and related peptides. PAC(1) receptors are selective for PACAP, whereas VPAC(1) and VPAC(2) respond to both VIP and PACAP with high affinity. VIP and PACAP play diverse and important roles in the CNS, with functions in the control of circadian rhythms, learning and memory, anxiety and responses to stress and brain injury. Recent genetic studies also implicate the VPAC(2) receptor in susceptibility to schizophrenia and the PAC(1) receptor in post-traumatic stress disorder. In the periphery, VIP and PACAP play important roles in the control of immunity and inflammation, the control of pancreatic insulin secretion, the release of catecholamines from the adrenal medulla and as co-transmitters in autonomic and sensory neurons. This article, written by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) subcommittee on receptors for VIP and PACAP, confirms the existing nomenclature for these receptors and reviews our current understanding of their structure, pharmacology and functions and their likely physiological roles in health and disease. More detailed information has been incorporated into newly revised pages in the IUPHAR database (http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=67).
Collapse
|
43
|
Lall GS, Atkinson LA, Corlett SA, Broadbridge PJ, Bonsall DR. Circadian entrainment and its role in depression: a mechanistic review. J Neural Transm (Vienna) 2012; 119:1085-96. [PMID: 22798027 DOI: 10.1007/s00702-012-0858-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/27/2012] [Indexed: 12/24/2022]
Abstract
The natural rotation of the earth generates an environmental day-night cycle that repeats every 24 h. This daily transition from dawn to dusk provides one of the most important time cues to which the majority of organisms synchronise their activity. Under these conditions, natural light, a photic stimulus, provides the principal entraining cue. In mammals, an endogenous circadian pacemaker located within the suprachiasmatic nucleus (SCN) of the hypothalamus acts as a coordinating centre to align physiological activity with the environmental light-dark cycle. However, the SCN also receives regulatory input from a number of behavioural, non-photic, cues such as physical activity, social interactions and feeding routines. The unique ability of the SCN to integrate both photic and non-photic cues allows it to generate a rhythm that is tailored to the individual and entrained to the environment. Here, we review the key neurotransmitter systems involved in both photic and non-photic transmission to the SCN and their interactions that assist in generating an entrained output rhythm. We also consider the impact on health of a desynchronised circadian system with a focus on depressive affective disorders and current therapies aimed at manipulating the relationship between photic and non-photic SCN regulators.
Collapse
Affiliation(s)
- G S Lall
- Medway School of Pharmacy, University of Kent, Chatham ME4 4TB, UK.
| | | | | | | | | |
Collapse
|
44
|
Summa KC, Vitaterna MH, Turek FW. Environmental perturbation of the circadian clock disrupts pregnancy in the mouse. PLoS One 2012; 7:e37668. [PMID: 22649550 PMCID: PMC3359308 DOI: 10.1371/journal.pone.0037668] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
Background The circadian clock has been linked to reproduction at many levels in mammals. Epidemiological studies of female shift workers have reported increased rates of reproductive abnormalities and adverse pregnancy outcomes, although whether the cause is circadian disruption or another factor associated with shift work is unknown. Here we test whether environmental disruption of circadian rhythms, using repeated shifts of the light:dark (LD) cycle, adversely affects reproductive success in mice. Methodology/Principal Findings Young adult female C57BL/6J (B6) mice were paired with B6 males until copulation was verified by visual identification of vaginal plug formation. Females were then randomly assigned to one of three groups: control, phase-delay or phase-advance. Controls remained on a constant 12-hr light:12-hr dark cycle, whereas phase-delayed and phase-advanced mice were subjected to 6-hr delays or advances in the LD cycle every 5–6 days, respectively. The number of copulations resulting in term pregnancies was determined. Control females had a full-term pregnancy success rate of 90% (11/12), which fell to 50% (9/18; p<0.1) in the phase-delay group and 22% (4/18; p<0.01) in the phase-advance group. Conclusions/Significance Repeated shifting of the LD cycle, which disrupts endogenous circadian timekeeping, dramatically reduces pregnancy success in mice. Advances of the LD cycle have a greater negative impact on pregnancy outcomes and, in non-pregnant female mice, require longer for circadian re-entrainment, suggesting that the magnitude or duration of circadian misalignment may be related to the severity of the adverse impact on pregnancy. These results explicitly link disruptions of circadian entrainment to adverse pregnancy outcomes in mammals, which may have important implications for the reproductive health of female shift workers, women with circadian rhythm sleep disorders and/or women with disturbed circadian rhythms for other reasons.
Collapse
Affiliation(s)
- Keith C. Summa
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
45
|
Lucassen EA, van Diepen HC, Houben T, Michel S, Colwell CS, Meijer JH. Role of vasoactive intestinal peptide in seasonal encoding by the suprachiasmatic nucleus clock. Eur J Neurosci 2012; 35:1466-74. [PMID: 22512278 DOI: 10.1111/j.1460-9568.2012.08054.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is critical for the proper functioning of the neural circuit that generates circadian rhythms. Mice lacking VIP show profound deficits in the ability to generate many behavioral and physiological rhythms. To explore how the loss of VIP impacts on the intact circadian system, we carried out in vivo multiunit neural activity (MUA) recordings from the suprachiasmatic nucleus of freely moving VIP knockout (KO) mice. The MUA rhythms were largely unaltered in the VIP KO mice, with no significant differences being seen in the amplitude or phase of the rhythms in light-dark conditions. Robust differences between the genotypes were revealed when the mice were transferred from light-dark to constant darkness conditions. In addition, the ability of the VIP KO mice to encode changes in photoperiod was examined. Strikingly, the behavioral and physiological rhythms of VIP KO mice showed no adaptation to short or long photoperiods. The data indicate that the intact circadian system can compensate for some of the consequences of the loss of VIP, whereas this peptide is indispensable for endogenous encoding of seasonal information.
Collapse
Affiliation(s)
- Eliane A Lucassen
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Gerstner JR. On the evolution of memory: a time for clocks. Front Mol Neurosci 2012; 5:23. [PMID: 22403527 PMCID: PMC3289401 DOI: 10.3389/fnmol.2012.00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/11/2012] [Indexed: 12/16/2022] Open
Abstract
Evolutionarily, what was the earliest engram? Biology has evolved to encode representations of past events, and in neuroscience, we are attempting to link experience-dependent changes in molecular signaling with cellular processes that ultimately lead to behavioral output. The theory of evolution has guided biological research for decades, and since phylogenetically conserved mechanisms drive circadian rhythms, these processes may serve as common predecessors underlying more complex behavioral phenotypes. For example, the cAMP/MAPK/CREB cascade is interwoven with the clock to trigger circadian output, and is also known to affect memory formation. Time-of-day dependent changes have been observed in long-term potentiation (LTP) within the suprachiasmatic nucleus and hippocampus, along with light-induced circadian phase resetting and fear conditioning behaviors. Together this suggests during evolution, similar processes underlying metaplasticity in more simple circuits may have been redeployed in higher-order brain regions. Therefore, this notion predicts a model that LTP and metaplasticity may exist in neural circuits of other species, through phylogenetically conserved pathways, leading to several testable hypotheses.
Collapse
Affiliation(s)
- Jason R Gerstner
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Hughes ATL, Piggins HD. Feedback actions of locomotor activity to the circadian clock. PROGRESS IN BRAIN RESEARCH 2012; 199:305-336. [PMID: 22877673 DOI: 10.1016/b978-0-444-59427-3.00018-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The phase of the mammalian circadian system can be entrained to a range of environmental stimuli, or zeitgebers, including food availability and light. Further, locomotor activity can act as an entraining signal and represents a mechanism for an endogenous behavior to feedback and influence subsequent circadian function. This process involves a number of nuclei distributed across the brain stem, thalamus, and hypothalamus and ultimately alters SCN electrical and molecular function to induce phase shifts in the master circadian pacemaker. Locomotor activity feedback to the circadian system is effective across both nocturnal and diurnal species, including humans, and has recently been shown to improve circadian function in a mouse model with a weakened circadian system. This raises the possibility that exercise may be useful as a noninvasive treatment in cases of human circadian dysfunction including aging, shift work, transmeridian travel, and the blind.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
48
|
Atkinson SE, Maywood ES, Chesham JE, Wozny C, Colwell CS, Hastings MH, Williams SR. Cyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus. J Biol Rhythms 2011; 26:210-20. [PMID: 21628548 DOI: 10.1177/0748730411402810] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian pacemaking in suprachiasmatic nucleus (SCN) neurons revolves around transcriptional/posttranslational feedback loops, driven by protein products of "clock" genes. These loops are synchronized and sustained by intercellular signaling, involving vasoactive intestinal peptide (VIP) via its VPAC2 receptor, which positively regulates cAMP synthesis. In turn, SCN cells communicate circadian time to the brain via a daily rhythm in electrophysiological activity. To investigate the mechanisms whereby VIP/VPAC2/cAMP signaling controls SCN molecular and electrical pacemaking, we combined bioluminescent imaging of circadian gene expression and whole-cell electrophysiology in organotypic SCN slices. As a potential direct target of cAMP, we focused on hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. Mutations of VIP-ergic signaling compromised the SCN molecular pacemaker, diminishing the amplitude and intercellular synchrony of circadian gene expression. These deficits were transiently reversed by elevation of cAMP. Similarly, cellular synchrony in electrical firing rates was lost in SCN slices lacking the VPAC2 receptor for VIP. Whole-cell current-clamp recordings in wild-type (WT) slices revealed voltage responses shaped by the conductance I(h), which is mediated by HCN channel activity. The influence of I(h) on voltage responses showed a modest peak in early circadian day, identifying HCN channels as a putative mediator of cAMP-dependent circadian effects on firing rate. I(h), however, was unaffected by loss of VIP-ergic signaling in VPAC2-null slices, and inhibition of cAMP synthesis had no discernible effect on I(h) but did suppress gene expression and SCN firing rates. Moreover, only sustained but not acute, pharmacological blockade of HCN channels reduced action potential (AP) firing. Thus, our evidence suggests that in the SCN, cAMP-mediated signaling is not a principal regulator of HCN channel function and that HCN is not a determinant of AP firing rate. VIP/cAMP-dependent signaling sustains the SCN molecular oscillator and action potential firing via mechanisms yet to be identified.
Collapse
Affiliation(s)
- Susan E Atkinson
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Kvajo M, McKellar H, Gogos JA. Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience 2011; 211:136-64. [PMID: 21821099 DOI: 10.1016/j.neuroscience.2011.07.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 01/31/2023]
Abstract
Schizophrenia is one of the most common psychiatric disorders, but despite progress in identifying the genetic factors implicated in its development, the mechanisms underlying its etiology and pathogenesis remain poorly understood. Development of mouse models is critical for expanding our understanding of the causes of schizophrenia. However, translation of disease pathology into mouse models has proven to be challenging, primarily due to the complex genetic architecture of schizophrenia and the difficulties in the re-creation of susceptibility alleles in the mouse genome. In this review we highlight current research on models of major susceptibility loci and the information accrued from their analysis. We describe and compare the different approaches that are necessitated by diverse susceptibility alleles, and discuss their advantages and drawbacks. Finally, we discuss emerging mouse models, such as second-generation pathophysiology models based on innovative approaches that are facilitated by the information gathered from the current genetic mouse models.
Collapse
Affiliation(s)
- M Kvajo
- Department of Physiology and Cellular Biophysics, College of Physicians & Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
50
|
Hughes ATL, Guilding C, Piggins HD. Neuropeptide signaling differentially affects phase maintenance and rhythm generation in SCN and extra-SCN circadian oscillators. PLoS One 2011; 6:e18926. [PMID: 21559484 PMCID: PMC3084722 DOI: 10.1371/journal.pone.0018926] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/11/2011] [Indexed: 02/02/2023] Open
Abstract
Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC(2), play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC(2) receptors (Vipr2(-/-)) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC(2) receptor expression; both VPAC(2) receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC(2) receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2(-/-) mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC(2) receptor. Vipr2(-/-) SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2(-/-) Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2(-/-) cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2(-/-) mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2(-/-) animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | |
Collapse
|