1
|
Li W, He SX, Zhou QY, Dai ZH, Liu CJ, Xiao SF, Deng SG, Ma LQ. Foliar-selenium enhances plant growth and arsenic accumulation in As-hyperaccumulator Pteris vittata: Critical roles of GSH-GSSG cycle and arsenite antiporters PvACR3. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135154. [PMID: 38986410 DOI: 10.1016/j.jhazmat.2024.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
It is known that selenium (Se) enhances plant growth and arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated mechanisms are unclear. In this study, P. vittata was exposed to 50 μM arsenate (AsV) under hydroponics plus 25 or 50 μM foliar selenate. After 3-weeks of growth, the plant biomass, As and Se contents, As speciation, malondialdehyde (MDA) and glutathione (GSH and GSSG) levels, and important genes related to As-metabolism in P. vittata were determined. Foliar-Se increased plant biomass by 17 - 30 %, possibly due to 9.1 - 19 % reduction in MDA content compared to the As control. Further, foliar-Se enhanced the As contents by 1.9-3.5 folds and increased arsenite (AsIII) contents by 64 - 136 % in the fronds. The increased AsV reduction to AsIII was attributed to 60 - 131 % increase in glutathione peroxidase activity, which mediates GSH oxidation to GSSG (8.8 -29 % increase) in the fronds. Further, foliar-Se increased the expression of AsIII antiporters PvACR3;1-3;3 by 1.6 - 2.1 folds but had no impact on phosphate transporters PvPht1 or arsenate reductases PvHAC1/2. Our results indicate that foliar-Se effectively enhances plant growth and arsenic accumulation by promoting the GSH-GSSG cycle and upregulating gene expression of AsIII antiporters, which are responsible for AsIII translocation from the roots to fronds and AsIII sequestration into the fronds. The data indicate that foliar-Se can effectively improve phytoremediation efficiency of P. vittata in As-contaminated soils.
Collapse
Affiliation(s)
- Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qian-Yu Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhi-Hua Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shu-Fen Xiao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Song-Ge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Li M, Boisson-Dernier A, Bertoldi D, Ardini F, Larcher R, Grotti M, Varotto C. Elucidation of arsenic detoxification mechanism in Marchantia polymorpha: The role of ACR3. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134088. [PMID: 38555672 DOI: 10.1016/j.jhazmat.2024.134088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
The arsenic-specific ACR3 transporter plays pivotal roles in As detoxification in yeast and a group of ancient tracheophytes, the ferns. Despite putative ACR3 genes being present in the genomes of bryophytes, whether they have the same relevance also in this lineage is currently unknown. In this study, we characterized the MpACR3 gene from the bryophyte Marchantia polymorpha L. through a multiplicity of functional approaches ranging from phylogenetic reconstruction, expression analysis, loss- and gain-of-function as well as genetic complementation with an MpACR3 gene tagged with a fluorescent protein. Genetic complementation demonstrates that MpACR3 plays a pivotal role in As tolerance in M. polymorpha, with loss-of-function Mpacr3 mutants being hypersensitive and MpACR3 overexpressors more tolerant to As. Additionally, MpACR3 activity regulates intracellular As concentration, affects its speciation and controls the levels of intracellular oxidative stress. The MpACR3::3xCitrine appears to localize at the plasma membrane and possibly in other endomembrane systems. Taken together, these results demonstrate the pivotal function of ACR3 detoxification in both sister lineages of land plants, indicating that it was present in the common ancestor to all embryophytes. We propose that Mpacr3 mutants could be used in developing countries as low-cost and low-technology visual bioindicators to detect As pollution in water.
Collapse
Affiliation(s)
- Mingai Li
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, 38098 Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Aurélien Boisson-Dernier
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 400 Route des Chappes, BP167, 06903 Sophia Antipolis Cedex, France
| | - Daniela Bertoldi
- Department of Food and Transformation, Technology Transfer Centre of Fondazione Edmund Mach, E. Mach 1, San Michele all'Adige, 38098 TN, Italy
| | - Francisco Ardini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Roberto Larcher
- Department of Food and Transformation, Technology Transfer Centre of Fondazione Edmund Mach, E. Mach 1, San Michele all'Adige, 38098 TN, Italy
| | - Marco Grotti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Claudio Varotto
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, 38098 Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
3
|
Zhao F, Han Y, Shi H, Wang G, Zhou M, Chen Y. Arsenic in the hyperaccumulator Pteris vittata: A review of benefits, toxicity, and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165232. [PMID: 37392892 DOI: 10.1016/j.scitotenv.2023.165232] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Arsenic (As) is a toxic metalloid, elevated levels of which in soils are becoming a major global environmental issue that poses potential health risks to humans. Pteris vittata, the first known As hyperaccumulator, has been successfully used to remediate As-polluted soils. Understanding why and how P. vittata hyperaccumulates As is the core theoretical basis of As phytoremediation technology. In this review, we highlight the beneficial effects of As in P. vittata, including growth promotion, elemental defense, and other potential benefits. The stimulated growth of P. vittata induced by As can be defined as As hormesis, but differs from that in non-hyperaccumulators in some aspects. Furthermore, the As coping mechanisms of P. vittata, including As uptake, reduction, efflux, translocation, and sequestration/detoxification are discussed. We hypothesize that P. vittata has evolved strong As uptake and translocation capacities to obtain beneficial effects from As, which gradually leads to As accumulation. During this process, P. vittata has developed a strong As vacuolar sequestration ability to detoxify overloaded As, which enables it to accumulate extremely high As concentrations in its fronds. This review also provides insights into several important research gaps that need to be addressed to advance our understanding of As hyperaccumulation in P. vittata from the perspective of the benefits of As.
Collapse
Affiliation(s)
- Fei Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Yu Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Hongyi Shi
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Mingxi Zhou
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 Ceske Budejovice, Czech Republic.
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Bai Y, Wan X, Lei M, Wang L, Chen T. Research advances in mechanisms of arsenic hyperaccumulation of Pteris vittata: Perspectives from plant physiology, molecular biology, and phylogeny. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132463. [PMID: 37690196 DOI: 10.1016/j.jhazmat.2023.132463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Pteris vittata, as the firstly discovered arsenic (As) hyperaccumulator, has great application value in As-contaminated soil remediation. Currently, the genes involved in As hyperaccumulation in P. vittata have been mined continuously, while they have not been used in practice to enhance phytoremediation efficiency. Aiming to better assist the practice of phytoremediation, this review collects 130 studies to clarify the progress in research into the As hyperaccumulation process in P. vittata from multiple perspectives. Antioxidant defense, rhizosphere activities, vacuolar sequestration, and As efflux are important physiological activities involved in As hyperaccumulation in P. vittata. Among related 19 genes, PHT, TIP, ACR3, ACR2 and HAC family genes play essential roles in arsenate (AsⅤ) transport, arsenite (AsⅢ) transport, vacuole sequestration of AsⅢ, and the reduction of AsⅤ to AsⅢ, respectively. Gene ontology enrichment analysis indicated it is necessary to further explore genes that can bind to related ions, with transport activity, or with function of transmembrane transport. Phylogeny analysis results implied ACR2, HAC and ACR3 family genes with rapid evolutionary rate may be the decisive factors for P. vittata as an As hyperaccumulator. A deeper understanding of the As hyperaccumulation network and key gene components could provide useful tools for further bio-engineered phytoremediation.
Collapse
Affiliation(s)
- Yang Bai
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Szuba A, Ratajczak E, Leski T, Jasińska AK, Hanć A, Piechalak A, Woźniak G, Jagodziński AM. Physiological response of adult Salix aurita in wetland vegetation affected by flooding with As-rich fine pyrite particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161197. [PMID: 36586699 DOI: 10.1016/j.scitotenv.2022.161197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
An uncontrolled, natural episode of flooding with waters contaminated with As-rich pyrite (FeAsS) particles caused serious ecological damage leading to necrosis of plants growing in a fresh wet meadow located in an area characterized by unique geological structures rich in arsenopyrites. One of the few plant species capable of surviving this event was Salix aurita L., which grew in numbers in the analyzed area, but individual plants were affected differently by toxic flooding. No significant phenotypic changes (Group I), through partial leaf and/or stem necrosis (Group II) up to necrosis of the whole parental plant and root suckers (Group III), were observed for various willow clumps. These varied phenotypic responses of S. aurita to As-rich sediments were compared with the biochemical status of the foliage of willow trees, and with their rhizosphere physiological parameters. Our in situ study revealed that the biochemical status of leaves reflects the phenotypic damage incurred by adult willows growing in their natural environment and affected by the flooding. In leaves of willows with increasingly negative phenotypic changes (Groups I → II → III) as well as increasing levels of reactive oxygen species, malondialdehyde and decreased levels of glutathione and thiol groups were detected. Phytochelatins, commonly considered major As chelators, were not detected in S. aurita leaves. Despite a decrease in the size of leaves with the intensity of tree damage, all leaves expressed a normal level of leaf pigments. Phenotypic changes observed for particular willow clumps were only partly related to soil As levels. Moreover, As and S (but not Fe) foliar levels were related but did not correspond strictly with foliar biochemical features, or with soil As levels, soil pH or soil microbial activity, with the latter two drastically decreased in the rhizospheres of willows from Groups II and III.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland.
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland.
| | - Tomasz Leski
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland.
| | - Anna K Jasińska
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland.
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland.
| | - Aneta Piechalak
- Laboratory of Genome Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland.
| | - Gabriela Woźniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | | |
Collapse
|
6
|
Gupta K, Srivastava S, Saxena G, Kumar A. Application of Pteris vittata L. for phytoremediation of arsenic and biomonitoring of the process through cyto-genetic biomarkers of Trigonella foenum-graecum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:91-106. [PMID: 35221574 PMCID: PMC8847651 DOI: 10.1007/s12298-022-01124-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The arsenic (As) contamination demands its remediation from the environment which is naturally possible by the application of Pteris vittata L. However, biomonitoring of phytoremediation potential of P. vittata at chromosomal and DNA level is still meager. The present study was designed to biomonitor the phytoremediation efficiency of P. vittata through phytotoxic and cyto-genotoxic biomarkers assessment using Trigonella foenum-graecum L. (Fenugreek; Methi) as test system. Study revealed hyperaccumulation potential of P. vittata which extracted arsenic in its tissues. Biomonitoring evaluation depicted that phytotoxic damage was reduced in Trigonella exposed to remediated soil, which was revealed through reduced electrolyte leakage, hydrogen peroxide and MDA content. Moreover, cyto-genetic endpoints like mitotic depression (44.03%), relative abnormality rate (16.6%) and chromosomal abnormality frequency (1.06%) were also lesser in test plants grown in remediated soil compared to those grown in non-remediated soil. Along with this various chromosomal aberrations like stickiness, breaks, laggards, bridges, fragmentations and micronuclei were also augmented in test plants exposed to non-remediated arsenic enriched soil. It was evident that arsenic enriched soil caused toxicity to plants in dose-dependent manner that was assessable through the analysis of biochemical parameters and cyto-genetic biomarkers. The cyto-genetic biomarkers are very efficient, simple and non-expensive tools to biomonitor arsenic toxicity at chromosomal as well as DNA level to assess the remediation potential of P. vittata in field conditions.
Collapse
Affiliation(s)
- Kiran Gupta
- Department of Botany, Lucknow University, Lucknow, 226007 India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 India
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, 226007 India
| | - Amit Kumar
- Department of Botany, Lucknow University, Lucknow, 226007 India
| |
Collapse
|
7
|
Zemanová V, Pavlíková D, Hnilička F, Pavlík M. Arsenic Toxicity-Induced Physiological and Metabolic Changes in the Shoots of Pteris cretica and Spinacia oleracea. PLANTS 2021; 10:plants10102009. [PMID: 34685818 PMCID: PMC8540401 DOI: 10.3390/plants10102009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022]
Abstract
Arsenic is a ubiquitous toxic element that can be accumulated into plant parts. The present study investigated the response of Pteris cretica and Spinacia oleracea to As treatment through the analysis of selected physiological and metabolic parameters. Plants were grown in pots in As(V) spiked soil (20 and 100 mg/kg). Plants’ physiological condition was estimated through the determination of elements, gas-exchange parameters, chlorophyll fluorescence, water potential, photosynthetic pigments, and free amino acid content. The results confirmed differing As accumulation in plants, as well as in shoots and roots, which indicated that P. cretica is an As-hyperaccumulator and that S. oleracea is an As-root excluder. Variations in physiological and metabolic parameters were observed among As treatments. Overall, the results revealed a significant effect of 100 mg/kg As treatment on the analysed parameters. In both plants, this treatment affected growth, N, Mg, S, Mn, and Zn content, as well as net photosynthetic rate, chlorophyll fluorescence, and total free amino acid content. In conclusion, the results reflect the similarity between P. cretica and S. oleracea in some aspects of plants’ response to As treatment, while physiological and metabolic parameter changes related to As treatments indicate the higher sensitivity of S. oleracea.
Collapse
Affiliation(s)
- Veronika Zemanová
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic;
- Correspondence: (V.Z.); (D.P.)
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic;
- Correspondence: (V.Z.); (D.P.)
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic;
| | - Milan Pavlík
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic;
| |
Collapse
|
8
|
Chen JX, Cao Y, Yan X, Chen Y, Ma LQ. Novel PvACR3;2 and PvACR3;3 genes from arsenic-hyperaccumulator Pteris vittata and their roles in manipulating plant arsenic accumulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125647. [PMID: 33740714 DOI: 10.1016/j.jhazmat.2021.125647] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Arsenite (AsIII) antiporter ACR3 is crucial for arsenic (As) translocation and sequestration in As-hyperaccumulator Pteris vittata, which has potential for phytoremediation of As-contaminated soils. In this study, two new ACR3 genes PvACR3;2 and PvACR3;3 were cloned from P. vittata and studied in model organism yeast (Saccharomyces cerevisiae) and model plant tobacco (Nicotiana tabacum). Both ACR3s mediated AsIII efflux in yeast, decreasing its As accumulation and enhancing its As tolerance. In addition, PvACR3;2 and PvACR3;3 were expressed in tobacco plant. Localized on the plasma membrane, PvACR3;2 mediated both AsIII translocation to the shoots and AsIII efflux from the roots in tobacco, resulting in 203 - 258% increase in shoot As after exposing to 5 μM AsIII under hydroponics. In comparison, localized to the vacuolar membrane, PvACR3;3 sequestrated AsIII in tobacco root vacuoles, leading to 18 - 20% higher As in the roots and 15 - 36% lower As in the shoots. Further, based on qRT-PCR, both genes were mainly expressed in P. vittata fronds, indicating PvACR3;2 and PvACR3;3 may play roles in AsIII translocation and sequestration in the fronds. This study provides not only new insights into the functions of new ACR3 genes in P. vittata, but also important gene resources for manipulating As accumulation in plants for phytoremediation and food safety.
Collapse
Affiliation(s)
- Jun-Xiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yue Cao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiangjuan Yan
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Popov M, Zemanová V, Sácký J, Pavlík M, Leonhardt T, Matoušek T, Kaňa A, Pavlíková D, Kotrba P. Arsenic accumulation and speciation in two cultivars of Pteris cretica L. and characterization of arsenate reductase PcACR2 and arsenite transporter PcACR3 genes in the hyperaccumulating cv. Albo-lineata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112196. [PMID: 33848737 DOI: 10.1016/j.ecoenv.2021.112196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Pollution and poisoning with carcinogenic arsenic (As) is of major concern globally. Interestingly, there are ferns that can naturally tolerate remarkably high As concentrations in soils while hyperaccumulating this metalloid in their fronds. Besides Pteris vittata in which As-related traits and molecular determinants have been studied in detail, the As hyperaccumulation status has been attributed also to Pteris cretica. We thus inspected two P. cretica cultivars, Parkerii and Albo-lineata, for As hyperaccumulation traits. The cultivars were grown in soils supplemented with 20, 100, and 250 mg kg-1 of inorganic arsenate (iAsV). Unlike Parkerii, Albo-lineata was confirmed to be As tolerant and hyperaccumulating, with up to 1.3 and 6.4 g As kg-1 dry weight in roots and fronds, respectively, from soils amended with 250 mg iAsV kg-1. As speciation analyses rejected that organoarsenical species and binding with phytochelatins and other proteinaceous ligands would play any significant role in the biology of As in either cultivar. While in Parkerii, the dominating As species, particularly in roots, occurred as iAsV, in Albo-lineata the majority of the root and frond As was apparently converted to iAsIII. Parkerii markedly accumulated iAsIII in its fronds when grown on As spiked soils. Considering the roles iAsV reductase ACR2 and iAsIII transporter ACR3 may have in the handling of iAs, we isolated Albo-lineata PcACR2 and PcACR3 genes closely related to P. vittata PvACR2 and PvACR3. The gene expression analysis in Albo-lineata fronds revealed that the transcription of PcACR2 and PcACR3 was clearly As responsive (up to 6.5- and 45-times increase in transcript levels compared to control soil conditions, respectively). The tolerance and uptake assays in yeasts showed that PcACRs can complement corresponding As-sensitive mutations, indicating that PcACR2 and PcACR3 encode functional proteins that can perform, respectively, iAsV reduction and membrane iAsIII transport tasks in As-hyperaccumulating Albo-lineata.
Collapse
Affiliation(s)
- Marek Popov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic; Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Veronika Zemanová
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Milan Pavlík
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Tomáš Matoušek
- Institute of Analytical Chemistry, The Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Antonín Kaňa
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
10
|
Xue Z, Wu M, Hu H, Kianpoor Kalkhajeh Y. Cadmium uptake and transfer by Sedum plumbizincicola using EDTA, tea saponin, and citric acid as activators. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1052-1060. [PMID: 33491471 DOI: 10.1080/15226514.2021.1874290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sedum plumbizincicola (S. plumbizincicola) is known as a sufficient plant for phytoremediation of cadmium (Cd) polluted soils. This study aimed to investigate the effects of ethylene diamine tetraacetic acid (EDTA), tea saponin (TS), and citric acid (CA) on Cd uptake and translocation by S. plumbizincicola. To do so, using a pot experiment, we set four concentration levels of activators (1, 3, 5, and 10 mmol L-1) and a control (CK). Results showed that none of the applied activators had significant impact on soil pH. Except for CA-10, the concentration of available Cd in Cd polluted soils increased by 65.8-72.9% compared with CK. The EDTA-1, CA-1, and TS-5 treatments caused significant increases of 52.3, 67.2, and 38.4%, respectively, in the biomass of aerial parts of S. plumbizincicola (p < 0.05) compared with CK. Except for CA-3, activators increased Cd accumulation in the aerial parts of plants by 47-124% compared with CK. Of all activators, EDTA-3 caused the highest Cd accumulation of 6.64 g pot-1 in the aerial plant tissues followed by CA-10 (6.25 g pot-1) and TS-1 (5.48 g pot-1). Finally, our results suggested that the application of S. plumbizincicola together with different activators sufficiently reduced soil total Cd by 4.64-48.4% compared with CK. These findings suggest that appropriate application of EDTA, TS, and CA can promote phytoremediation of Cd contaminated soils by hyper-accumulators. In particular, the combined use of EDTA and S. plumbizincicola is an affordable and promising strategy for remediation of Cd contaminated soil.Novelty statement: Sedum plumbizincicola (S. plumbizincicola) is a well-known hyper-accumulator plant for remediation of cadmium (Cd) and zinc (Zn) contaminated soils. In addition, low molecular rganic acids and macromolecular chelating agents can improve the solubility and leaching of soil heavy metals. In the present work, we examined the combined effects of three activators (EDTA, tea saponin, and citric acid) with S. plumbizincicola to remediate a Cd contaminated soil in Anhui Province, East China. Our results indicated the effectiveness of these activators to increase soil available Cd, as well as improving the biomass of S. plumbizincicola and its Cd uptake. We believe that this study provides an efficient approach to increase the uptake of Cd by S. plumbizincicola, restoring Cd contaminated soils. Nevertheless, excessive activators may have adverse effects on soil aggregates and soil microorganisms. Therefore, it is necessary to control the amount of chelating agents and subsequently the deterioration of soil quality.
Collapse
Affiliation(s)
- Zhongjun Xue
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Mengjun Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hongxiang Hu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yusef Kianpoor Kalkhajeh
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Evaluation of Multiple Responses Associated with Arsenic Tolerance and Accumulation in Pteris vittata L. Plants Exposed to High As Concentrations under Hydroponics. WATER 2020. [DOI: 10.3390/w12113127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chinese brake fern (Pteris vittata L.) is recognized as an arsenic hyperaccumulating plant. Mechanisms underlying this capability and the associated hypertolerance have been described even if not completely elucidated. In this study, with the aim to expand the knowledge on the matter, an experimental trial was developed to investigate an array of responses, at the morphological, physiological, and biochemical level, in P. vittata plants exposed to high As concentrations in a long-term experiment under hydroponics. Results confirmed the ability of fern plants to both tolerate and accumulate a remarkable amount of As, especially in fronds. Notably, in As-treated plants, a far higher As content was detected in young fronds compared to old fronds, with bioaccumulation (BCF) and translocation (Tf) factors in accordance. At the biochemical level, As treatment affected macro and micronutrient, thiol, and phytochelatin concentrations in fronds of treated plants differently than that of the control. Physiological measurements accounted for a reduction in the photosynthetic activity of As-treated plants in the absence of visual symptoms of damage. Overall, the observed As tolerance and accumulation processes were discussed, evidencing how young fronds developed during As treatment maintain their physiological status while accumulating a high As content. Such indications could be very useful to improve the effective utilization of this plant species for phytofiltration of As-polluted water.
Collapse
|
12
|
|
13
|
Hyperaccumulation of arsenic by Pteris vittata, a potential strategy for phytoremediation of arsenic-contaminated soil. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42398-020-00106-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
De Caroli M, Furini A, DalCorso G, Rojas M, Di Sansebastiano GP. Endomembrane Reorganization Induced by Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2020; 9:E482. [PMID: 32283794 PMCID: PMC7238196 DOI: 10.3390/plants9040482] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
Plant cells maintain plasmatic concentrations of essential heavy metal ions, such as iron, zinc, and copper, within the optimal functional range. To do so, several molecular mechanisms have to be committed to maintain concentrations of non-essential heavy metals and metalloids, such as cadmium, mercury and arsenic below their toxicity threshold levels. Compartmentalization is central to heavy metals homeostasis and secretory compartments, finely interconnected by traffic mechanisms, are determinant. Endomembrane reorganization can have unexpected effects on heavy metals tolerance altering in a complex way membrane permeability, storage, and detoxification ability beyond gene's expression regulation. The full understanding of endomembrane role is propaedeutic to the comprehension of translocation and hyper-accumulation mechanisms and their applicative employment. It is evident that further studies on dynamic localization of these and many more proteins may significantly contribute to the understanding of heavy metals tolerance mechanisms. The aim of this review is to provide an overview about the endomembrane alterations involved in heavy metals compartmentalization and tolerance in plants.
Collapse
Affiliation(s)
- Monica De Caroli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.)
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.F.); (G.D.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.F.); (G.D.)
| | - Makarena Rojas
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.)
| | - Gian-Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.)
| |
Collapse
|
15
|
Sun D, Feng H, Li X, Ai H, Sun S, Chen Y, Xu G, Rathinasabapathi B, Cao Y, Ma LQ. Expression of New Pteris vittata Phosphate Transporter PvPht1;4 Reduces Arsenic Translocation from the Roots to Shoots in Tobacco Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1045-1053. [PMID: 31825207 DOI: 10.1021/acs.est.9b05486] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in As uptake, probably through phosphate transporters (Pht). Here, for the first time, we cloned a new PvPht1;4 gene from P. vittata and investigated its role in arsenate (AsV) uptake and transport in yeast and transgenic tobacco plants. On the basis of quantitative real-time polymerase chain reaction (qRT-PCR), PvPht1;4 was abundantly expressed in P. vittata fronds and roots, with its transcripts in the roots being induced by both P deficiency and As exposure. PvPht1;4 was localized to the plasma membrane, which complemented a yeast-mutant defective in P uptake and showed higher P transport affinity than PvPht1;3. Under AsV exposure, PvPht1;4 yeast transformants showed comparable tolerance as PvPht1;3, but higher As accumulation than PvPht1;2 transformants, indicating that PvPht1;4 had considerable AsV and P transport activity. However, in soil and hydroponic experiments, PvPht1;4 expressing tobacco lines accumulated 26-44 and 37-55% lower As in the shoots than wild type plants, with lower root-to-shoot As translocation. In the roots of PvPht1;4 lines, higher glutathione (GSH) contents and expression levels of GSH synthetase gene NtGSH2 were observed. In addition, the transcripts of AsIII-GSH transporter NtABCC1 in PvPht1;4 lines were upregulated. The data suggested that PvPht1;4 lines probably detoxified As by reducing AsV to AsIII, which was then complexed with GSH and stored in the root vacuoles, thereby reducing As translocation in transgenic tobacco. Given its strong AsV transport capacity, expression of PvPht1;4 provides a new molecular approach to reduce As accumulation in plant shoots.
Collapse
Affiliation(s)
- Dan Sun
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Huayuan Feng
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Xinyuan Li
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River , Nanjing Agricultural University , Nanjing 210095 , China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River , Nanjing Agricultural University , Nanjing 210095 , China
| | - Yanshan Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- School of the Environment , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River , Nanjing Agricultural University , Nanjing 210095 , China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department , University of Florida , Gainesville , Florida 32611 , United States
| | - Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Lena Q Ma
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
16
|
Zubair M, Khan QU, Mirza N, Sarwar R, Khan AA, Baloch MS, Fahad S, Shah AN. Physiological response of spinach to toxic heavy metal stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31667-31674. [PMID: 31485949 DOI: 10.1007/s11356-019-06292-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/26/2019] [Indexed: 05/28/2023]
Abstract
This study was carried out to investigate the concentration of two heavy metals, i.e., mercury (Hg) and arsenic (As) in soil and plant. Spinach (Spinacia oleracea L.) was used as a test vegetable in a pot experiment. Five spiked concentrations of both the metals along with sewage water were used as treatments. The analyses of the metals were determined in two cuttings. The results showed significant effect of treatments on the concentration of the two metals in soil and plant. The concentrations of As recorded were higher in 1st spinach cutting and reduced in the second harvest. However, comparing the two metal concentrations, it was found that As was absorbed greater as compared with Hg. Analyzing the plant growth parameter, it was found that metal stress has significantly influenced the plant growth. In sewage water pots, As was significantly higher than Hg. The transfer factor from soil to plant showed higher As in plants at lower concentration, but at higher As levels, the transfer rate declined, while Hg showed it was completely inverse. Positive correlation was found between soil applied metal concentration and plant uptake. It may be concluded from the above results that spinach is a good accumulator of heavy metals and has shown significant result of both As and Hg accumulation in plant. The concentration increased with the increasing concentration in soil.
Collapse
Affiliation(s)
- Muhammad Zubair
- Soil and Environmental Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Qudrat Ullah Khan
- Soil and Environmental Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | | | | | - Asghar Ali Khan
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KPK, 29050, Pakistan
| | - Mohammad Safdar Baloch
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KPK, 29050, Pakistan
| | - Shah Fahad
- Department of Agriculture, University of Swabi, Ambar, Khyber Pakhtunkhwa, Pakistan.
- College of Plant Sciences and Technology, Huazhong Agriculture University, Wuhan, China.
| | - Adnan Noor Shah
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KPK, 29050, Pakistan.
| |
Collapse
|
17
|
Yan H, Gao Y, Wu L, Wang L, Zhang T, Dai C, Xu W, Feng L, Ma M, Zhu YG, He Z. Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:386-396. [PMID: 30690391 DOI: 10.1016/j.jhazmat.2019.01.072] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/02/2019] [Accepted: 01/18/2019] [Indexed: 05/18/2023]
Abstract
Arsenic accumulation in soil is a global problem typically addressed using phytoremediation methods. Pteris vittata, a model arsenic hyperaccumulator, has great potential as a genetically engineered plant for phytoremediation. However, the lack of omic information on this species has severely limited the identification and application of its arsenic hyperaccumulation and regulation components. In this study, we used an optimized single-molecular real-time (SMRT) strategy to create a de novo full-length transcriptomic-tonoplast proteomic database for this unsequenced fern and to determine the genetic components underlying its arsenic hyperaccumulation-regulation mechanisms. We established a comprehensive network consisting of six major transporter families, two novel resistance pathways, and a regulatory system by examining alternative splicing (AS) and long non-coding RNA (lncRNA) in different tissues following As(III) and As(V) treatment. The database and network established in this study will deepen our understanding of the unique hyperaccumulation and regulation mechanisms of P. vittata, ultimately providing a valuable resource for futher research on phytoremediation of arsenic-contaminated soil.
Collapse
Affiliation(s)
- Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yiwei Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyao Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Tian Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhua Dai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxiu Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lu Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Mi Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
18
|
Shi G, Ma H, Chen Y, Liu H, Song G, Cai Q, Lou L, Rengel Z. Low arsenate influx rate and high phosphorus concentration in wheat (Triticum aestivum L.): A mechanism for arsenate tolerance in wheat plants. CHEMOSPHERE 2019; 214:94-102. [PMID: 30261421 DOI: 10.1016/j.chemosphere.2018.09.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Two wheat (Triticum aestivum L.) cultivars differing in arsenic (As)-tolerance were used to investigate the effects of phosphorus (P) concentration and nutrient solution pH on As(V) toxicity and As(V) uptake kinetics, and to illustrate the mechanism of As(V) tolerance in wheat seedlings. Low pH and low phosphate concentration enhanced wheat uptake of As, resulting in high As toxicity. The As(V)-tolerant cultivar MM45 exhibited higher relative root elongation than non-tolerant cultivar HM29 in all treatments, except that no genotypic difference was recorded for the solution P at 100 μmol L-1 or greater. Wheat seedling As(V) tolerance was positively correlated with P concentration in roots and shoots. In short-term (30 min) As(V)-uptake kinetics experiments, the maximum influx rate (Vmax) of As(V) increased with decreasing solution pH (from 7.0 to 6.0). Compared with HM29, although MM45 had lower Vmax, its Michaelis-Menten constant (Km) did not exceed that of HM29 in all treatments. The Vmax values of both cultivars were not significantly affected by phosphate treatments, except for HM29 which had significantly higher Vmax value in the presence of phosphate at pH 7.0. The Km values of the two cultivars increased by 9- to 20-fold when phosphate was present as opposed to absent from the uptake solution. This study showed that the Vmax values are mainly increased by high pH and As(V) uptake Km is mainly increased by phosphate presence. Decreased As(V) influx rates during early stages and increased P concentration in plant tissues are associated with increased As tolerance in wheat seedlings.
Collapse
Affiliation(s)
- Gaoling Shi
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; The UWA Institute of Agriculture, and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
| | - Hongxiang Ma
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; Institute of Soil and Water Conservation, Northwest A&F University, and Chinese Academy of Sciences, Yangling, Shaanxi 712100, PR China
| | - Huan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guicheng Song
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zed Rengel
- The UWA Institute of Agriculture, and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
19
|
Mishra S, Dwivedi S, Mallick S, Tripathi RD. Redox Homeostasis in Plants Under Arsenic Stress. SIGNALING AND COMMUNICATION IN PLANTS 2019. [DOI: 10.1007/978-3-319-95315-1_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Morkunas I, Woźniak A, Mai VC, Rucińska-Sobkowiak R, Jeandet P. The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules 2018; 23:E2320. [PMID: 30208652 PMCID: PMC6225295 DOI: 10.3390/molecules23092320] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 11/16/2022] Open
Abstract
The present review discusses the impact of heavy metals on the growth of plants at different concentrations, paying particular attention to the hormesis effect. Within the past decade, study of the hormesis phenomenon has generated considerable interest because it was considered not only in the framework of plant growth stimulation but also as an adaptive response of plants to a low level of stress which in turn can play an important role in their responses to other stress factors. In this review, we focused on the defence mechanisms of plants as a response to different metal ion doses and during the crosstalk between metal ions and biotic stressors such as insects and pathogenic fungi. Issues relating to metal ion acquisition and ion homeostasis that may be essential for the survival of plants, pathogens and herbivores competing in the same environment were highlighted. Besides, the influence of heavy metals on insects, especially aphids and pathogenic fungi, was shown. Our intention was also to shed light on the relationship between heavy metals deposition in the environment and ecological communities formed under a strong selective pressure.
Collapse
Affiliation(s)
- Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Agnieszka Woźniak
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Van Chung Mai
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
- Department of Plant Physiology, Vinh University, Le Duan 182, Vinh City, Vietnam.
| | - Renata Rucińska-Sobkowiak
- Department of Plant Ecophysiology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | - Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", UPRES EA 4707, Department of Biology and Biochemistry, Faculty of Sciences, University of Reims, P.O. Box 1039, 02 51687 Reims CEDEX, France.
| |
Collapse
|
21
|
|
22
|
Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumder AL, Seal A. An Endophytic Bacterial Consortium modulates multiple strategies to improve Arsenic Phytoremediation Efficacy in Solanum nigrum. Sci Rep 2018; 8:6979. [PMID: 29725058 PMCID: PMC5934359 DOI: 10.1038/s41598-018-25306-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Endophytic microbes isolated from plants growing in contaminated habitats possess specialized properties that help their host detoxify the contaminant/s. The possibility of using microbe-assisted phytoremediation for the clean-up of Arsenic (As) contaminated soils of the Ganga-Brahmaputra delta of India, was explored using As-tolerant endophytic microbes from an As-tolerant plant Lantana camara collected from the contaminated site and an intermediate As-accumulator plant Solanum nigrum. Endophytes from L. camara established within S. nigrum as a surrogate host. The microbes most effectively improved plant growth besides increasing bioaccumulation and root-to-shoot transport of As when applied as a consortium. Better phosphate nutrition, photosynthetic performance, and elevated glutathione levels were observed in consortium-treated plants particularly under As-stress. The consortium maintained heightened ROS levels in the plant without any deleterious effect and concomitantly boosted distinct antioxidant defense mechanisms in the shoot and root of As-treated plants. Increased consortium-mediated As(V) to As(III) conversion appeared to be a crucial step in As-detoxification/translocation. Four aquaporins were differentially regulated by the endophytes and/or As. The most interesting finding was the strong upregulation of an MRP transporter in the root by the As + endophytes, which suggested a major alteration of As-detoxification/accumulation pattern upon endophyte treatment that improved As-phytoremediation.
Collapse
Affiliation(s)
- Gairik Mukherjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chinmay Saha
- Department of Endocrinology & Metabolism, Institute Of Post Graduate Medical Education & Research and SSKM Hospital, Room No. 9A, 4th Floor, Ronald Ross Building, 244, AJC Bose Road, Kolkata, 700020, India
| | - Nabanita Naskar
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
- Saha Institute of Nuclear Physics, Sector - 1, Block - AF Bidhannagar, Kolkata, 700064, India
| | - Abhishek Mukherjee
- Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Arghya Mukherjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Susanta Lahiri
- Saha Institute of Nuclear Physics, Sector - 1, Block - AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Anindita Seal
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
23
|
Wang C, Na G, Bermejo ES, Chen Y, Banks JA, Salt DE, Zhao FJ. Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:206-218. [PMID: 28857170 PMCID: PMC6260828 DOI: 10.1111/nph.14761] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/26/2017] [Indexed: 05/25/2023]
Abstract
Arsenic (As) is an important environmental and food-chain toxin. We investigated the key components controlling As accumulation and tolerance in Arabidopsis thaliana. We tested the effects of different combinations of gene knockout, including arsenate reductase (HAC1), γ-glutamyl-cysteine synthetase (γ-ECS), phytochelatin synthase (PCS1) and phosphate effluxer (PHO1), and the heterologous expression of the As-hyperaccumulator Pteris vittata arsenite efflux (PvACR3), on As tolerance, accumulation, translocation and speciation in A. thaliana. Heterologous expression of PvACR3 markedly increased As tolerance and root-to-shoot As translocation in A. thaliana, with PvACR3 being localized to the plasma membrane. Combining PvACR3 expression with HAC1 mutation led to As hyperaccumulation in the shoots, whereas combining HAC1 and PHO1 mutation decreased As accumulation. Mutants of γ-ECS and PCS1 were hypersensitive to As and had higher root-to-shoot As translocation. Combining γ-ECS or PCS1 with HAC1 mutation did not alter As tolerance or accumulation beyond the levels observed in the single mutants. PvACR3 and HAC1 have large effects on root-to-shoot As translocation. Arsenic hyperaccumulation can be engineered in A. thaliana by knocking out the HAC1 gene and expressing PvACR3. PvACR3 and HAC1 also affect As tolerance, but not to the extent of γ-ECS and PCS1.
Collapse
Affiliation(s)
- Chengcheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - GunNam Na
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Eduardo Sanchez Bermejo
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Yi Chen
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - David E. Salt
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Lindsay ER, Maathuis FJM. New Molecular Mechanisms to Reduce Arsenic in Crops. TRENDS IN PLANT SCIENCE 2017; 22:1016-1026. [PMID: 29056439 DOI: 10.1016/j.tplants.2017.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 05/18/2023]
Abstract
Arsenic is toxic to all life forms and is a potent carcinogen. Its accumulation in crop plants and subsequent consumption poses a serious threat to public health worldwide. Recent developments have enhanced our understanding of the molecular mechanisms governing arsenic uptake, detoxification, and accumulation in plants. In particular, the identification of plant arsenate reductase enzymes and emerging details of the processes underlying arsenic distribution and deposition in the seed will prove invaluable in the development of new strategies to mitigate this threat. Here we provide an outline of these recent developments and suggest new molecular mechanisms that could be employed to reduce arsenic in crops.
Collapse
Affiliation(s)
- Emma R Lindsay
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
25
|
Wang Y, Zhang C, Zheng Y, Ge Y. Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21213-21221. [PMID: 28733823 DOI: 10.1007/s11356-017-9758-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 07/11/2017] [Indexed: 05/05/2023]
Abstract
Dunaliella salina is a potential candidate for the phycoremediation of saline water contaminated with arsenic (As) due to its strong tolerance of salt and this toxic metalloid. However, the efficiency of As removal by this microalga varies under different phosphate regimes and the underlying mechanisms remain unresolved. Therefore, more detailed studies are needed to optimize As remediation using D. salina. Here, we investigated the dynamic processes of arsenite (As(III)) and arsenate (As(V)) uptake, transformation, and excretion by D. salina under phosphate-deficient (-P) and phosphate-enriched (+P) conditions through short-term and long-term uptake experiments. In the short-term uptake experiment, the absorption of As(III) or As(V) by D. salina was significantly suppressed by an increased phosphate supply. The V max values for As(III) and As(V) decreased by 2- and 2.5-fold, respectively, under +P conditions, although the Michaelis constants (K m ) were similar irrespective of the phosphate supply. Long-term uptake experiments also revealed enhanced As(III)/As(V) absorption and efflux rates and As(V) reduction by D. salina under -P conditions. This study quantified the kinetic processes of As metabolism in D. salina. More importantly, the results imply that the optimal As remediation by this microalga may be achieved by regulating the phosphate level in the culture.
Collapse
Affiliation(s)
- Ya Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanheng Zheng
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Ge
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Chen G, Feng T, Li Z, Chen Z, Chen Y, Wang H, Xiang Y. Influence of Sulfur on the Arsenic Phytoremediation Using Vallisneria natans (Lour.) Hara. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:411-414. [PMID: 28676914 DOI: 10.1007/s00128-017-2135-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Influences of sulfur (S) on the accumulation and detoxification of arsenic (As) in Vallisneria natans (Lour.) Hara, an arsenic hyperaccumulating submerged aquatic plant, were investigated. At low sulfur levels (<20 mg/L), the thiols and As concentrations in the plant increased significantly with increasing sulfate nutrient supply. If sulfur levels were above 20 mg/L, the thiols and As concentrations in the plant did not increase further. There was a significant positive correlation between thiols and As in the plant. As(III) is the main form (>75%) present in the plant after exposure to As(V). Sulfur plays an important role in the arsenic translocation and detoxification, possibly through stimulating the synthesis of thiols and complexation of arsenite-phytochelatins. This suggests that addition of sulfur to the arsenic-contaminated water may provide a way to promote arsenic bioaccumulation in plants for phytoremediation of arsenic pollution.
Collapse
Affiliation(s)
- Guoliang Chen
- Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Tao Feng
- Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhixian Li
- Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhang Chen
- Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yuanqi Chen
- Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Haihua Wang
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yanci Xiang
- School of Architecture and Art Design, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
27
|
Han YH, Liu X, Rathinasabapathi B, Li HB, Chen Y, Ma LQ. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:569-577. [PMID: 28501771 DOI: 10.1016/j.envpol.2017.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As) in soils is of major environmental concern due to its ubiquity and carcinogenicity. Pteris vittata (Chinese brake fern) is the first known As-hyperaccumulator, which is highly efficient in extracting As from soils and translocating it to the fronds, making it possible to be used for phytoremediation of As-contaminated soils. In addition, P. vittata has served as a model plant to study As metabolisms in plants. Based on the recent advances, we reviewed the mechanisms of efficient As solubilization and transformation in rhizosphere soils of P. vittata and effective As uptake, translocation and detoxification in P. vittata. We also provided future research perspectives to further improve As phytoremediation by P. vittata.
Collapse
Affiliation(s)
- Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Xue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, United States
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States.
| |
Collapse
|
28
|
Peng JS, Ding G, Meng S, Yi HY, Gong JM. Enhanced metal tolerance correlates with heterotypic variation in SpMTL, a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola. PLANT, CELL & ENVIRONMENT 2017; 40:1368-1378. [PMID: 28152585 DOI: 10.1111/pce.12929] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 01/05/2017] [Accepted: 01/24/2017] [Indexed: 05/19/2023]
Abstract
Mechanistic insight into metal hyperaccumulation is largely restricted to Brassicaceae plants; therefore, it is of great importance to obtain corresponding knowledge from system outside the Brassicaceae. Here, we constructed and screened a cDNA library of the Cd/Zn hyperaccumulator Sedum plumbizincicola and identified a novel metallothionein-like protein encoding gene SpMTL. SpMTL showed functional similarity to other known MT proteins and also to its orthologues from non-hyperaccumulators. However, three additional cysteine residues were observed in SpMTL and appeared to be hyperaccumulator specific. Removal of these three residues significantly decreased its ability to tolerate Cd and the stoichiometry of Cd against SpMTL (molar ratio of Cd/SpMTL) to a level comparable to those of Cd/SaMTL and Cd/SeMTL in the corresponding non-hyperaccumulating relatives. SpMTL expressed in S. plumbizincicola roots at a much higher level than those of its orthologues in the non-hyperaccumulator roots. Interestingly, a positive correlation was observed between transcript levels of SpMTL in roots and Cd accumulation in leaves. Taking these results together, we propose that elevated transcript levels and heterotypic variation in protein sequences of SpMTL might contribute to the trait of Cd hyperaccumulation and hypertolerance in S. plumbizincicola.
Collapse
Affiliation(s)
- Jia-Shi Peng
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ge Ding
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Crops Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Shuan Meng
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Ying Yi
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
29
|
Datta R, Das P, Tappero R, Punamiya P, Elzinga E, Sahi S, Feng H, Kiiskila J, Sarkar D. Evidence for exocellular Arsenic in Fronds of Pteris vittata. Sci Rep 2017; 7:2839. [PMID: 28588214 PMCID: PMC5460129 DOI: 10.1038/s41598-017-03194-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/25/2017] [Indexed: 11/08/2022] Open
Abstract
The arsenic (As) hyperaccumulating fern species Pteris vittata (PV) is capable of accumulating large quantities of As in its aboveground tissues. Transformation to AsIII and vacuolar sequestration is believed to be the As detoxification mechanism in PV. Here we present evidence for a preponderance of exocellular As in fronds of Pteris vittata despite numerous reports of a tolerance mechanism involving intracellular compartmentalization. Results of an extraction experiment show that 43-71% of the As extruded out of the fronds of PV grown in 0.67, 3.3 and 6.7 mM AsV. SEM-EDX analysis showed that As was localized largely on the lower pinna surface, with smaller amounts on the upper surface, as crystalline deposits. X-ray fluorescence imaging of pinna cross-sections revealed preferential localization of As on the pinna surface in the proximity of veins, with the majority localized near the midrib. Majority of the As in the pinnae is contained in the apoplast rather than vacuoles. Our results provide evidence that exocellular sequestration is potentially a mechanism of As detoxification in PV, particularly at higher As concentrations, raising concern about its use for phytoremediation.
Collapse
Affiliation(s)
- Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Padmini Das
- Department of Biology, Nazareth College of Rochester, NY, 14618, USA
| | - Ryan Tappero
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Pravin Punamiya
- Parsons, 200 Cottontail Lane South 08873, Somerset, 08873, NJ, United States
| | - Evert Elzinga
- Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, 07102, USA
| | - Shivendra Sahi
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA
| | - Jeffrey Kiiskila
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| |
Collapse
|
30
|
Shi GL, Lou LQ, Li DJ, Hu ZB, Cai QS. Phytochelatins play key roles for the difference in root arsenic accumulation of different Triticum aestivum cultivars in comparison with arsenate uptake kinetics and reduction. CHEMOSPHERE 2017; 175:192-199. [PMID: 28222373 DOI: 10.1016/j.chemosphere.2017.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
In the previous studies, we have found that arsenic (As) accumulation in roots of bread wheat (Triticum aestivum L.) seedlings were significantly different among different wheat cultivars, and As(V) tolerant wheat cultivars have much higher capacities of root As accumulation. However, the reason for the difference remains unclear. Four wheat cultivars with high (MM45 and FM8) or low (QF1 and HM29) levels of arsenic (As) accumulation were selected to investigate the relationship between root As(V) uptake kinetics and root As accumulation. MM45 and HM29 were also used to examine As(V) reduction ability and non-protein thiol (cysteine [Cys], glutathione [GSH], and phytochelatins [PCs]) concentrations in wheat seedlings. MM45 had the lowest Michaelis-Menten constant (Km) and maximum influx rate (Vmax). No difference in the Km values was found among the three other cultivars. No difference in As(V) reduction capacity was observed between MM45 and HM29. GSH and PC2 were significantly induced by 10 μM As(V) in roots of wheat seedlings, particularly in MM45. Synthesis of GSH and PCs was completely suppressed in the presence of l-buthionine sulfoximine (BSO), a specific inhibitor of γ-glutamylcysteine synthetase. BSO markedly decreased the As tolerance of wheat seedlings and decreased the accumulation of As in roots, but increased As accumulation in shoots. No significant difference in As concentrations was found between MM45 and HM29 under the BSO treatment. GSH and PCs are the reason why As accumulation and As(V) tolerance differ in roots of different wheat cultivars.
Collapse
Affiliation(s)
- Gao Ling Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China; Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Lai Qing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Dao Jun Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhu Bing Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qing Sheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
31
|
Zhang X, Yang X, Wang H, Li Q, Wang H, Li Y. A significant positive correlation between endogenous trans-zeatin content and total arsenic in arsenic hyperaccumulator Pteris cretica var. nervosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:199-205. [PMID: 28061413 DOI: 10.1016/j.ecoenv.2016.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
A pot experiment was conducted to compare the content of endogenous trans-zeatin (Z), plant arsenic (As) uptake and physiological indices in the fronds of As-hyperaccumulator (Pteris cretica var. nervosa) and non-hyperaccumulator (Pteris ensiformis). Furthermore, a stepwise regression method was used to study the relationship among determined indices, and the time-course effect of main indices was also investigated under 100mg/kg As stress with time extension. In the 100-200mg/kg As treatments, plant height showed no significant difference and endogenous Z content significantly increased in P. cretica var. nervosa compared to the control, but a significant decrease of height and endogenous Z was observed in P. ensiformis. The concentrations of As (III) and As (V) increased significantly in the fronds of two plants, but this increase was much higher in P. cretica var. nervosa. Compared to the control, the contents of chlorophyll and soluble protein were significantly increased in P. cretica var. nervosa but decreased in P. ensiformis in the 200mg/kg As treatment, respectively. A significant positive correlation was found between the contents of endogenous Z and total As in P. cretica var. nervosa, but such a correlation was not found in P. ensiformis. Additionally, in the time-course effect experiment, a peak value of each index was appeared in the 43rd day in two plants, except for chlorophyll in P. ensiformis, but this value was significantly higher in P. cretica var. nervosa than that in P. ensiformis. In conclusion, a higher endogenous Z content contributed to As accumulation of P. cretica var. nervosa under As stress.
Collapse
Affiliation(s)
- Xuemei Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiaoyan Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| | - Qinchun Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Yanyan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| |
Collapse
|
32
|
Wang Y, Zhang C, Zheng Y, Ge Y. Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 136:150-160. [PMID: 27865115 DOI: 10.1016/j.ecoenv.2016.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the dynamic variations in thiol compounds, including cysteine (Cys), glutathione (GSH), and phytochelatins (PCs), in Dunaliella salina samples exposed to arsenite [As(III)] and arsenate [As(V)] under various phosphate (PO43-) regimes. Our results showed that GSH was the major non-protein sulfhydryl compound in D. salina cells. As(III) and As(V) induced PC syntheses in D. salina. PC2, PC3, and PC4 were all found in algal cells; the PC concentrations decreased gradually while exposed to As for 3 d. The synthesis of PC2-3 was significantly affected by As(III) and As(V) concentrations in the cultures. More PCs were detected in the As(V)-treated algal cells compared with the As(III) treatment. PC levels increased with As(III)/As(V) amount in the medium, but remained stable after 112μgL-1 As(V) exposure. In contrast, significant (p<0.001) positive correlations were observed between PC synthesis and intracellular As(III) content or As accumulation in As(III)-treated algal cells during the 72-h exposure. PO43- had a significant influence on the PC synthesis in algal cells, irrespective of the As-treated species. Reductions in As uptake and subsequent PC synthesis by D. salina were observed as the PO43- concentration in the growth medium increased. L-Buthionine sulfoximine (BSO) differentially influenced PC synthesis in As-treated D. salina under different extracellular PO43- regimes. Overall, our data demonstrated that the production of GSH and PCs was affected by PO43- and that these thiols played an important role in As detoxification by D. salina.
Collapse
Affiliation(s)
- Ya Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanheng Zheng
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Ge
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Mishra S, Mattusch J, Wennrich R. Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Sci Rep 2017; 7:40522. [PMID: 28094280 PMCID: PMC5240135 DOI: 10.1038/srep40522] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/07/2016] [Indexed: 11/09/2022] Open
Abstract
Environmental contamination of arsenic (As) and its accumulation in rice (Oryza sativa L.) is of serious human health concern. In planta speciation of As is an important tool to understand As metabolism in plants. In the present study, we investigated root to shoot As translocation and speciation in rice exposed to inorganic and methylated As. Arsenate (AsV) and methylarsonate (MAV) were efficiently reduced to arsenite (AsIII) and MAIII, respectively in rice root and shoot but no trivalent form of dimethylarsinate (DMAV) was detected. Further, up to 48 and 83% of root As in AsV and MAV exposed plants, respectively were complexed with various thiols showing up to 20 and 16 As species, respectively. Several mixed As- and MA-complexes with hydroxymethyl-phytochelatin, DesGly-phytochelatin, hydroxymethyl-GSH and cysteine were identified in rice. Despite high complexation in roots, more As was translocated to shoots in MAV exposed plants than AsV, with shoot/root As transfer factor being in order DMAV > MAV > AsV. Moreover, in shoots 78% MAIII and 71% AsIII were present as weakly bound species which is alarming, as MAIII has been found to be more cytotoxic than AsIII for human and it could also be an important factor inducing straighthead (spikelet sterility disorder) in rice.
Collapse
Affiliation(s)
- Seema Mishra
- UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig, Germany
- CSIR-National Botanical Research Institute, Plant Ecology & Environmental Science Division, Rana Pratap Marg, Lucknow 226 001 (U.P.), India
| | - Jürgen Mattusch
- UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Rainer Wennrich
- UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig, Germany
| |
Collapse
|
34
|
Sharma SS, Dietz KJ, Mimura T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. PLANT, CELL & ENVIRONMENT 2016; 39:1112-26. [PMID: 26729300 DOI: 10.1111/pce.12706] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 05/02/2023]
Abstract
Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non-essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP-dependent pumps. While HM non-hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long-distance translocation. The distinct strategies evolved as a consequence of organ-specific differences particularly in vacuolar transporters and in addition to distinct features in long-distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla, 171005, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501, Bielefeld, Germany
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
35
|
Li H, Chen XW, Wong MH. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. CHEMOSPHERE 2016; 145:224-30. [PMID: 26688259 DOI: 10.1016/j.chemosphere.2015.10.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 05/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) - Rhizophagus intraradices was inoculated to rice to investigate its effects on arsenic (As) uptake, grain As speciation, and rhizospheric As concentration of six rice cultivars grown in As-amended soil (60 mg As kg(-1) soil). The AMF inoculation induced either positive, neutral or negative responses in rice grown in As contaminated soil, suggesting that functional diversity may exist in AMF symbiosis when As is taken up and transferred. The ratios of inorganic/organic As concentrations in rice grains of all cultivars were significantly reduced by AMF, that involved the transformation of inorganic As into less toxic organic form dimethylarsinic acid (DMA) in rice. AMF decreased significantly total As and inorganic As concentrations in rice grains of Handao 3. Positive correlations (R(2) = 0.30-0.56, P < 0.05) between As in the rhizospheric soil solution and As in rice grain at different periods were observed. This inferred that the As survey of soil solution can be an effective measure for evaluating As in grains.
Collapse
Affiliation(s)
- H Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China; Consortium on Environment, Health, Education and Research (CHEER), Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275 PR China
| | - X W Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - M H Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China; Consortium on Environment, Health, Education and Research (CHEER), Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong, PR China.
| |
Collapse
|
36
|
Li N, Wang J, Song WY. Arsenic Uptake and Translocation in Plants. PLANT & CELL PHYSIOLOGY 2016; 57:4-13. [PMID: 26454880 DOI: 10.1093/pcp/pcv143] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/20/2015] [Indexed: 05/02/2023]
Abstract
Arsenic (As) is a highly toxic metalloid that is classified as a non-threshold class-1 carcinogen. Millions of people worldwide suffer from As toxicity due to the intake of As-contaminated drinking water and food. Reducing the As concentration in drinking water and food is thus of critical importance. Phytoremediation of soil contaminated with As and the reduction of As contamination in food depend on a detailed understanding of As uptake and transport in plants. As transporters play essential roles in As uptake, translocation and accumulation in plant cells. In this review, we summarize the current understanding of As transport in plants, with an emphasis on As uptake, mechanisms of As resistance and the long-distance translocation of As, especially the accumulation of As in grains through phloem-mediated transport.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation RCBB, College of Resources and Environment, Southwest University, Beibei Dist., Chongqing, 400715, PR China
| | - Jingchao Wang
- Research Center of Bioenergy and Bioremediation RCBB, College of Resources and Environment, Southwest University, Beibei Dist., Chongqing, 400715, PR China
| | - Won-Yong Song
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
37
|
Farooq MA, Li L, Ali B, Gill RA, Wang J, Ali S, Gill MB, Zhou W. Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10699-10712. [PMID: 25752633 DOI: 10.1007/s11356-015-4269-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/23/2015] [Indexed: 05/28/2023]
Abstract
Environmental contamination due to arsenic (As) has become a major risk throughout the world; this affects plant growth and productivity. Its accumulation in food chain may pose a severe threat to organisms. The present study was carried out to observe the toxic effects of As (0, 50, 100, and 200 μM) on physiological and biochemical changes in four Brassica napus cultivars (ZS 758, Zheda 619, ZY 50, and Zheda 622). Results showed that As toxicity provoked a significant inhibition in growth parameters of B. napus cultivars and this reduction was more obvious in cultivar Zheda 622. The highest concentration of MDA, H2O2, and O2 (-) contents in both leaf and root tissues were observed at 200 μM As level, and a gradual decrease was observed at lower concentrations. Increasing As concentration gradually decreased chlorophyll and carotenoids contents. Activity of antioxidant enzymes such as SOD, CAT, APX, GR, and GSH was positively correlated with As treatments in all cultivars. The microscopic study of leaves and roots at 200 μM As level showed the disorganization in cell organelles. Disturbance in the morphology of chloroplast, broken cell wall, increase in size, and number of starch grains and immature nucleus were found in leaf ultrastructures under higher concentration of As. Moreover, damaged nucleus, diffused cell wall, enlarged vacuoles, and a number of mitochondria were observed in root tip cells at 200 μM As level. These results suggest that B. napus cultivars have efficient mechanism to tolerate As toxicity, as evidenced by an increased level of antioxidant enzymes.
Collapse
Affiliation(s)
- Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Islam MS, Saito T, Kurasaki M. Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: phytotoxicity, uptake kinetics, and mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 112:193-200. [PMID: 25463871 DOI: 10.1016/j.ecoenv.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
Arsenic (As) and cadmium (Cd) are noxious and carcinogenic pollutants that can be removed from water by using emerging, ecofriendly, phytofiltration technology that employs Micranthemum umbrosum. After culturing M. umbrosum for 7 days in a hydroponic experiment, accumulation of 1219±44.11 µg As g(-1) and 799.40±30.95 µg Cd g(-1) were observed in the leaves, from 1000 µg As L(-1) and 1000 µg Cd L(-1) of water, respectively. Plant and water samples were analyzed for assessing the As and Cd accumulations, translocations, phytotoxic effects, uptake mechanisms and kinetics, and for evaluating the potential of M. umbrosum in As and Cd phytofiltration. The uptake pattern was leaf>stem>root for both pollutants. The plant showed higher resistance to As than to that to Cd. Uptake of inorganic As species was much greater than that of organic As and was found at above the substrate concentration. However, Cd showed similar uptake pattern to that of inorganic As species, and the data was better fit to a non-linear than a linear model. Low molecular weight substances that have thiol group(s) may be responsible for the binding of As in plants whereas Cd showed a different mechanism to that of As. M. umbrosum showed good As phytofiltration capabilities without any phytotoxic effects, but it was found to be a moderate accumulator of Cd with some phytotoxic effect compare to some other previously studied plant.
Collapse
Affiliation(s)
- Md Shariful Islam
- Environmental Adaptation Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Saito
- Laboratory of Environmental Health Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Masaaki Kurasaki
- Environmental Adaptation Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan; Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
39
|
Chen G, Liu X, Brookes PC, Xu J. Opportunities for Phytoremediation and Bioindication of Arsenic Contaminated Water Using a Submerged Aquatic Plant:Vallisneria natans (lour.) Hara. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:249-255. [PMID: 25397983 DOI: 10.1080/15226514.2014.883496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The identification of plants with high arsenic hyperaccumulating efficiency from water is required to ensure the successful application of phytoremediation technology. Five dominant submerged plant species (Vallisneria natans (Lour.) Hara., Potamageton crispus L., Myriophyllum spicatum L., Ceratophyllum demersum L. and Hydrilla verticillata (L.f.) Royle) in China were used to determine their potential to remove As from contaminated water. V. natans had the highest accumulation of As among them. The characteristics of As accumulation, transformation and the effect of phosphate on As accumulation in V. natans were then further studied. The growth of V. natans was not inhibited even when the As concentration reached 2.0 mg L(-1). After 21 d of As treatment, the bioconcentration factor (BCF) reached 1300. The As concentration in the environment and exposure time are major factors controlling the As concentration in V. natans. After being absorbed, As(V) is efficiently reduced to As(III) in plants. The synthesis of non-enzymic antioxidants may play an important role under As stress and increase As detoxication. In addition, As(V) uptake by V. natans was negatively correlated with phosphate (P) uptake when P was sufficiently supplied. As(V) is probably taken up via P transporters in V. natans.
Collapse
Affiliation(s)
- Guoliang Chen
- a Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition , Zhejiang University , Hangzhou , China
| | | | | | | |
Collapse
|
40
|
Zhang X, Ren BH, Wu SL, Sun YQ, Lin G, Chen BD. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil. CHEMOSPHERE 2015; 119:224-230. [PMID: 25016555 DOI: 10.1016/j.chemosphere.2014.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 05/06/2023]
Abstract
In two pot experiments, wild type and a non-mycorrhizal mutant (TR25:3-1) of Medicago truncatula were grown in arsenic (As)-contaminated soil to investigate the influences of arbuscular mycorrhizal fungi (AMF) on As accumulation and speciation in host plants. The results indicated that the plant biomass of M. truncatula was dramatically increased by AM symbiosis. Mycorrhizal colonization significantly increased phosphorus concentrations and decreased As concentrations in plants. Moreover, mycorrhizal colonization generally increased the percentage of arsenite in total As both in shoots and roots, while dimethylarsenic acid (DMA) was only detected in shoots of mycorrhizal plants. The results suggested that AMF are most likely to get involved in the methylating of inorganic As into less toxic organic DMA and also in the reduction of arsenate to arsenite. The study allowed a deeper insight into the As detoxification mechanisms in AM associations. By using the mutant M. truncatula, we demonstrated the importance of AMF in plant As tolerance under natural conditions.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bai-Hui Ren
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Song-Lin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu-Qing Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ge Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bao-Dong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
41
|
|
42
|
García-Salgado S, Quijano MÁ. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:604-612. [PMID: 24513726 DOI: 10.1039/c3em00624g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ten native terrestrial plants from soils polluted by former mining activities (Mónica mine, NW Madrid, Spain), with high total arsenic concentration levels (up to 3500 μg g(-1)), have been studied to determine the fraction of arsenic present as toxic forms (inorganic and methylated species), which present a higher mobility and therefore the potential risk associated with their reintegration into the environment is high. Roots and aboveground parts were analyzed separately to assess possible transformations from translocation processes. Extractions were carried out with deionized water by microwave-assisted extraction at a temperature of 90 °C and three extraction steps of 7.5 min each. Total extracted arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry, showing extraction percentages from 9 to 39% (calculated as the ratio between total extracted arsenic (Asext) and total arsenic (AsT) concentrations in plants). Speciation studies, performed by high performance liquid chromatography-photo-oxidation-hydride generation-atomic fluorescence spectrometry, showed the main presence of arsenate (As(v)) (up to 350 μg g(-1)), followed by arsenite (As(iii)), in both plant parts. Monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) were also found only in some plants. On the other hand, the use of 0.5 mol L(-1) acetic acid as an extractant led to higher extraction percentages (33-87%), but lower column recoveries, probably due to the extraction of arsenic compounds different to the toxic free ions studied, which may come from biotransformation mechanisms carried out by plants to reduce arsenic toxicity. However, As(v) concentrations increased up to 800 μg g(-1) in acid medium, indicating the probable release of As(v) from organoarsenic compounds and therefore a higher potential risk for the environment.
Collapse
Affiliation(s)
- Sara García-Salgado
- Departamento de Ingeniería Civil: Tecnología Hidráulica y Energética, Escuela Técnica Superior de Ingeniería Civil, Universidad Politécnica de Madrid, C/Alfonso XII, 3, 28014 Madrid, Spain.
| | | |
Collapse
|
43
|
Mirza N, Mahmood Q, Maroof Shah M, Pervez A, Sultan S. Plants as useful vectors to reduce environmental toxic arsenic content. ScientificWorldJournal 2014; 2014:921581. [PMID: 24526924 PMCID: PMC3913097 DOI: 10.1155/2014/921581] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 10/23/2013] [Indexed: 11/17/2022] Open
Abstract
Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.
Collapse
Affiliation(s)
- Nosheen Mirza
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Mohammad Maroof Shah
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Arshid Pervez
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Sikander Sultan
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
44
|
Kamran MA, Mufti R, Mubariz N, Syed JH, Bano A, Javed MT, Munis MFH, Tan Z, Chaudhary HJ. The potential of the flora from different regions of Pakistan in phytoremediation: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:801-12. [PMID: 24091528 DOI: 10.1007/s11356-013-2187-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/20/2013] [Indexed: 05/08/2023]
Abstract
Soil and water quality is greatly affected by environmental pollution due to the increasing trend of urbanization and industrialization. In many developing countries, including Pakistan, the situation is more alarming as no preventive measures are still taken to tackle the problem. Although in developed countries, many techniques are used to remediate the environment including phytoremediation. It is the most eco-friendly technique in which plants are used to remove pollutants from the environment. Pakistan has also a great diversity of plants which could be used for the remediation of environmental pollutants. To our knowledge, few studies from Pakistan were reported about the use of flora for phytoremediation. According to recent literature, 50 plant species from Pakistan are studied for remediation purposes. In this review, the potential of different plant species for phytoremediation from Pakistan has been discussed along with their comparison to other countries to relate future perspectives.
Collapse
Affiliation(s)
- Muhammad Aqeel Kamran
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Srivastava AK, Srivastava S, Mishra S, D'Souza SF, Suprasanna P. Identification of redox-regulated components of arsenate (AsV) tolerance through thiourea supplementation in rice. Metallomics 2014; 6:1718-30. [DOI: 10.1039/c4mt00039k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, the effect of the interaction between As and thiourea was utilized for the identification of redox regulatory mechanisms of As tolerance in rice.
Collapse
Affiliation(s)
- A. K. Srivastava
- Nuclear Agriculture and Biotechnology Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| | - S. Srivastava
- Nuclear Agriculture and Biotechnology Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| | - S. Mishra
- UFZ – Helmholtz Centre for Environmental Research
- Department of Analytical Chemistry
- D-04318 Leipzig, Germany
| | - S. F. D'Souza
- Nuclear Agriculture and Biotechnology Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| | - P. Suprasanna
- Nuclear Agriculture and Biotechnology Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| |
Collapse
|
46
|
Danh LT, Truong P, Mammucari R, Foster N. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:429-53. [PMID: 24912227 DOI: 10.1080/15226514.2013.798613] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The discovery of the arsenic hyperaccumulator, Pteris vittata (Chinese brake fern), has contributed to the promotion of its application as a means of phytoremediation for arsenic removal from contaminated soils and water. Understanding the mechanisms involved in arsenic tolerance and accumulation of this plant provides valuable tools to improve the phytoremediation efficiency. In this review, the current knowledge about the physiological and molecular mechanisms of arsenic tolerance and accumulation in P. vittata is summarized, and an attempt has been made to clarify some of the unresolved questions related to these mechanisms. In addition, the capacity of P. vittata for remediation of arsenic-contaminated soils is evaluated under field conditions for the first time, and possible solutions to improve the remediation capacity of Pteris vittata are also discussed.
Collapse
|
47
|
Watanabe T, Kouho R, Katayose T, Kitajima N, Sakamoto N, Yamaguchi N, Shinano T, Yurimoto H, Osaki M. Arsenic alters uptake and distribution of sulphur in Pteris vittata. PLANT, CELL & ENVIRONMENT 2014; 37:45-53. [PMID: 23611758 DOI: 10.1111/pce.12124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/18/2013] [Accepted: 04/11/2013] [Indexed: 05/27/2023]
Abstract
Low-molecular-weight thiol (LMWT) synthesis has been reported to be directly induced by arsenic (As) in Pteris vittata, an As hyperaccumulator. Sulphur (S) is a critical component of LMWTs. Here, the effect of As treatment on the uptake and distribution of S in P. vittata was investigated. In P. vittata grown under low S conditions, the presence of As in the growth medium enhanced the uptake of SO4(2-), which was used for LMWT synthesis in fronds. In contrast, As application did not affect SO4(2-) uptake in Nephrolepis exaltata, an As non-hyperaccumulator. Moreover, the isotope microscope system revealed that S absorbed with As accumulated locally in a vacuole-like organelle in epidermal cells, whereas S absorbed alone was distributed uniformly. These results suggest that S is involved in As transport and/or accumulation in P. vittata. X-ray absorption near-edge structure analysis revealed that the major As species in the fronds and roots of P. vittata were inorganic As(III) and As(V), respectively, and that As-LMWT complexes occurred as a minor species. Consequently, in case of As accumulation in P. vittata, S possibly acts as a temporary ligand for As in the form of LMWTs in intercellular and/or intracellular transport (e.g. vacuolar sequestration).
Collapse
Affiliation(s)
- Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 060-8589, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li H, Man YB, Ye ZH, Wu C, Wu SC, Wong MH. Do arbuscular mycorrhizal fungi affect arsenic accumulation and speciation in rice with different radial oxygen loss? JOURNAL OF HAZARDOUS MATERIALS 2013; 262:1098-1104. [PMID: 22673057 DOI: 10.1016/j.jhazmat.2012.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
The effects of arbuscular mycorrhizal fungi (AMF) on the temporal variation of arsenic (As) speciation and accumulation in two paddy rice cultivars (TD 71 and Xiushui 11) with different degrees of radial oxygen loss (ROL) at three growth periods (day 7, day 35, day 63 after flooding the soil) were investigated in soil, spiked with and without 30 mg As kg(-1). The results showed that TD 71 with high ROL colonized by Glomus intraradices led to higher root colonization rates than Xiushui 11 at three growth periods, both in soil with or without 30 mg As kg(-1) (p<0.05). Mycorrhizal inoculation led to elevated (p<0.05) root ratios of arsenite (As(III)) conc./arsenate (As(V)) conc. (concentration) in TD 71 with high ROL at three growth periods in As contaminated flooding soils. Furthermore, the ratios of As(III) conc./As(V) conc. in roots of TD71 were significantly more than Xiushui 11 when colonized by AMF at three growth periods in 30 mg As kg(-1) soil (p<0.05). Therefore, rice with high ROL can favor AM fungal infection and enhance root ratio of As(III) conc./As(V) conc. in the presence of AMF.
Collapse
Affiliation(s)
- H Li
- Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China; Department of Environmental Engineering, Jinan University, Guangzhou 510632, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Mishra S, Wellenreuther G, Mattusch J, Stärk HJ, Küpper H. Speciation and distribution of arsenic in the nonhyperaccumulator macrophyte Ceratophyllum demersum. PLANT PHYSIOLOGY 2013; 163:1396-408. [PMID: 24058164 PMCID: PMC3813659 DOI: 10.1104/pp.113.224303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/18/2013] [Indexed: 05/20/2023]
Abstract
Although arsenic (As) is a common pollutant worldwide, many questions about As metabolism in nonhyperaccumulator plants remain. Concentration- and tissue-dependent speciation and distribution of As was analyzed in the aquatic plant Ceratophyllum demersum to understand As metabolism in nonhyperaccumulator plants. Speciation was analyzed chromatographically (high-performance liquid chromatography-[inductively coupled plasma-mass spectrometry]-[electrospray ionization-mass spectrometry]) in whole-plant extracts and by tissue-resolution confocal x-ray absorption near-edge spectroscopy in intact shock-frozen hydrated leaves, which were also used for analyzing cellular element distribution through x-ray fluorescence. Chromatography revealed up to 20 As-containing species binding more than 60% of accumulated As. Of these, eight were identified as thiol-bound (phytochelatins [PCs], glutathione, and cysteine) species, including three newly identified complexes: Cys-As(III)-PC2, Cys-As-(GS)2, and GS-As(III)-desgly-PC2. Confocal x-ray absorption near-edge spectroscopy showed arsenate, arsenite, As-(GS)3, and As-PCs with varying ratios in various tissues. The epidermis of mature leaves contained the highest proportion of thiol (mostly PC)-bound As, while in younger leaves, a lower proportion of As was thiol bound. At higher As concentrations, the percentage of unbound arsenite increased in the vein and mesophyll of young mature leaves. At the same time, x-ray fluorescence showed an increase of total As in the vein and mesophyll but not in the epidermis of young mature leaves, while this was reversed for zinc distribution. Thus, As toxicity was correlated with a change in As distribution pattern and As species rather than a general increase in many tissues.
Collapse
Affiliation(s)
| | - Gerd Wellenreuther
- Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D–78457 Konstanz, Germany (S.M., H.K.)
- Helmholtz Centre for Environmental Research-UFZ, Department of Analytical Chemistry, D–04318 Leipzig, Germany (S.M., J.M., H.-J.S.)
- HASYLAB at DESY, 22603 Hamburg, Germany (G.W.); and
- University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, CZ–370 05 Ceske Budejovice, Czech Republic (H.K.)
| | - Jürgen Mattusch
- Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D–78457 Konstanz, Germany (S.M., H.K.)
- Helmholtz Centre for Environmental Research-UFZ, Department of Analytical Chemistry, D–04318 Leipzig, Germany (S.M., J.M., H.-J.S.)
- HASYLAB at DESY, 22603 Hamburg, Germany (G.W.); and
- University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, CZ–370 05 Ceske Budejovice, Czech Republic (H.K.)
| | - Hans-Joachim Stärk
- Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D–78457 Konstanz, Germany (S.M., H.K.)
- Helmholtz Centre for Environmental Research-UFZ, Department of Analytical Chemistry, D–04318 Leipzig, Germany (S.M., J.M., H.-J.S.)
- HASYLAB at DESY, 22603 Hamburg, Germany (G.W.); and
- University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, CZ–370 05 Ceske Budejovice, Czech Republic (H.K.)
| | - Hendrik Küpper
- Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D–78457 Konstanz, Germany (S.M., H.K.)
- Helmholtz Centre for Environmental Research-UFZ, Department of Analytical Chemistry, D–04318 Leipzig, Germany (S.M., J.M., H.-J.S.)
- HASYLAB at DESY, 22603 Hamburg, Germany (G.W.); and
- University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, CZ–370 05 Ceske Budejovice, Czech Republic (H.K.)
| |
Collapse
|
50
|
de Abreu LB, Augusti R, Schmidt L, Dressler VL, Flores EMDM, Nascentes CC. Desorption electrospray ionization mass spectrometry (DESI-MS) applied to the speciation of arsenic compounds from fern leaves. Anal Bioanal Chem 2013; 405:7643-51. [PMID: 23873446 DOI: 10.1007/s00216-013-6986-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/08/2013] [Accepted: 04/12/2013] [Indexed: 01/14/2023]
Abstract
The different chemical forms of arsenic compounds, including inorganic and organic species, present distinct environmental impacts and toxicities. Desorption electrospray ionization mass spectrometry (DESI-MS) is an excellent technique for in situ analysis, as it operates under atmospheric pressure and room temperature and is conducted with no/minimal sample pretreatment. Aimed at expanding its scope, DESI-MS is applied herein for the quick and reliable detection of inorganic (arsenate--As(V): AsO4(3-) and arsenite--As(III): AsO2(-)) and organic (dimethylarsinic acid--DMA: (CH3)2AsO(OH) and disodium methyl arsonate hexahydrate: CH3AsO3·2Na·6H2O) arsenic compounds in fern leaves. Operational conditions of DESI-MS were optimized with DMA standard deposited on paper surfaces to improve ionization efficiency and detection limits. Mass spectra data for all arsenic species were acquired in both the positive and negative ion modes. The positive ion mode was shown to be useful in detecting both the organic and inorganic arsenic compounds. The negative ion mode was shown only to be useful in detecting As(V) species. Moreover, MS/MS spectra were recorded to confirm the identity of each arsenic compound by the characteristic fragmentation profiles. Optimized conditions of DESI-MS were applied to the analysis of fern leaves. LC-ICP-MS was employed to confirm the results obtained by DESI-MS and to quantify the arsenic species in fern leaves. The results confirmed the applicability of DESI-MS in detecting arsenic compounds in complex matrices.
Collapse
Affiliation(s)
- Lívia Botelho de Abreu
- Department of Chemistry, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|