1
|
Ai YW, Du Y, Chen L, Liu SH, Liu QS, Cheng Y. Brain Inflammatory Marker Abnormalities in Major Psychiatric Diseases: a Systematic Review of Postmortem Brain Studies. Mol Neurobiol 2023; 60:2116-2134. [PMID: 36600081 DOI: 10.1007/s12035-022-03199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are common neuropsychiatric disorders that lead to neuroinflammation in the pathogenesis. It is possible to further explore the connection between inflammation in the brain and SCZ, BD, and MDD. Therefore, we systematically reviewed PubMed and Web of Science on brain inflammatory markers measured in SCZ, BD, and MDD postmortem brains. Out of 2166 studies yielded by the search, 46 studies met the inclusion criteria in SCZ, BD, and MDD postmortem brains. The results were variable across inflammatory markers. For example, 26 studies were included to measure the differential expression between SCZ and control subjects. Similarly, seven of the included studies measured the differential expression of inflammatory markers in patients with BD. The heterogeneity from the included studies is not clear at present, which may be caused by several factors, including the measured brain region, disease stage, brain source, medication, and other factors.
Collapse
Affiliation(s)
- Yang-Wen Ai
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Yang Du
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Lei Chen
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Shu-Han Liu
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Qing-Shan Liu
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China.
| | - Yong Cheng
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China. .,Institute of National Security, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China.
| |
Collapse
|
2
|
Chen PH, Chung CC, Liu SH, Kao YH, Chen YJ. Lithium Treatment Improves Cardiac Dysfunction in Rats Deprived of Rapid Eye Movement Sleep. Int J Mol Sci 2022; 23:ijms231911226. [PMID: 36232526 PMCID: PMC9570242 DOI: 10.3390/ijms231911226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid eye movement (REM) sleep deprivation triggers mania and induces cardiac fibrosis. Beyond neuroprotection, lithium has cardioprotective potential and antifibrotic activity. This study investigated whether lithium improved REM sleep deprivation-induced cardiac dysfunction and evaluated the potential mechanisms. Transthoracic echocardiography, histopathological analysis, and Western blot analysis were performed in control and REM sleep-deprived rats with or without lithium treatment (LiCl of 1 mmol/kg/day administered by oral gavage for 4 weeks) in vivo and in isolated ventricular preparations. The results revealed that REM sleep-deprived rats exhibited impaired contractility and greater fibrosis than control and lithium-treated REM sleep-deprived rats. Western blot analysis showed that REM sleep-deprived hearts had higher expression levels of transforming growth factor beta (TGF-β), phosphorylated Smad 2/3, and alpha-smooth muscle actin than lithium-treated REM sleep-deprived and control hearts. Moreover, lithium-treated REM sleep-deprived hearts had lower expression of angiotensin II type 1 receptor, phosphorylated nuclear factor kappa B p65, calcium release-activated calcium channel protein 1, transient receptor potential canonical (TRPC) 1, and TRPC3 than REM sleep-deprived hearts. The findings suggest that lithium attenuates REM sleep deprivation-induced cardiac fibrogenesis and dysfunction possibly through the downregulation of TGF-β, angiotensin II, and Ca2+ signaling.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Shuen-Hsin Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: (Y.-H.K.); (Y.-J.C.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (Y.-H.K.); (Y.-J.C.)
| |
Collapse
|
3
|
Madireddy S, Madireddy S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder. Int J Mol Sci 2022; 23:ijms23031844. [PMID: 35163764 PMCID: PMC8836876 DOI: 10.3390/ijms23031844] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Bipolar disorder (BD) is characterized by mood changes, including recurrent manic, hypomanic, and depressive episodes, which may involve mixed symptoms. Despite the progress in neurobiological research, the pathophysiology of BD has not been extensively described to date. Progress in the understanding of the neurobiology driving BD could help facilitate the discovery of therapeutic targets and biomarkers for its early detection. Oxidative stress (OS), which damages biomolecules and causes mitochondrial and dopamine system dysfunctions, is a persistent finding in patients with BD. Inflammation and immune dysfunction might also play a role in BD pathophysiology. Specific nutrient supplements (nutraceuticals) may target neurobiological pathways suggested to be perturbed in BD, such as inflammation, mitochondrial dysfunction, and OS. Consequently, nutraceuticals may be used in the adjunctive treatment of BD. This paper summarizes the possible roles of OS, mitochondrial dysfunction, and immune system dysregulation in the onset of BD. It then discusses OS-mitigating strategies that may serve as therapeutic interventions for BD. It also analyzes the relationship between diet and BD as well as the use of nutritional interventions in the treatment of BD. In addition, it addresses the use of lithium therapy; novel antipsychotic agents, including clozapine, olanzapine, risperidone, cariprazine, and quetiapine; and anti-inflammatory agents to treat BD. Furthermore, it reviews the efficacy of the most used therapies for BD, such as cognitive–behavioral therapy, bright light therapy, imagery-focused cognitive therapy, and electroconvulsive therapy. A better understanding of the roles of OS, mitochondrial dysfunction, and inflammation in the pathogenesis of bipolar disorder, along with a stronger elucidation of the therapeutic functions of antioxidants, antipsychotics, anti-inflammatory agents, lithium therapy, and light therapies, may lead to improved strategies for the treatment and prevention of bipolar disorder.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence:
| | | |
Collapse
|
4
|
Osuch E, Ursano R, Li H, Webster M, Hough C, Fullerton C, Leskin G. Brain Environment Interactions: Stress, Posttraumatic Stress Disorder, and the Need for a Postmortem Brain Collection. Psychiatry 2022; 85:113-145. [PMID: 35588486 DOI: 10.1080/00332747.2022.2068916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stress, especially the extreme stress of traumatic events, can alter both neurobiology and behavior. Such extreme environmental situations provide a useful model for understanding environmental influences on human biology and behavior. This paper will review some of the evidence of brain alterations that occur with exposure to environmental stress. This will include recent studies using neuroimaging and will address the need for histological confirmation of imaging study results. We will review the current scientific approaches to understanding brain environment interactions, and then make the case for the collection and study of postmortem brain tissue for the advancement of our understanding of the effects of environment on the brain.Creating a brain tissue collection specifically for the investigation of the effects of extreme environmental stressors fills a gap in the current research; it will provide another of the important pieces to the puzzle that constitutes the scientific investigation of negative effects of environmental exposures. Such a resource will facilitate new discoveries related to the psychiatric illnesses of acute stress disorder and posttraumatic stress disorder, and can enable scientists to correlate structural and functional imaging findings with tissue abnormalities, which is essential to validate the results of recent imaging studies.
Collapse
|
5
|
Faustmann TJ, Corvace F, Faustmann PM, Ismail FS. Effects of Lamotrigine and Topiramate on Glial Properties in an Astrocyte-Microglia Co-Culture Model of Inflammation. Int J Neuropsychopharmacol 2021; 25:185-196. [PMID: 34791253 PMCID: PMC8929754 DOI: 10.1093/ijnp/pyab080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Astrocytes and microglia are involved in the pathophysiology of epilepsy and bipolar disorder with a link to inflammation. We aimed to investigate the effects of the antiepileptic and mood-stabilizing drugs lamotrigine (LTG) and topiramate (TPM) on glial viability, microglial activation, cytokine release, and expression of gap-junctional protein connexin 43 (Cx43) in different set-ups of an in vitro astrocyte-microglia co-culture model of inflammation. METHODS Primary rat co-cultures of astrocytes containing 5% (M5, representing "physiological" conditions) or 30% (M30, representing "pathological, inflammatory" conditions) of microglia were treated with different concentrations of LTG and TPM for 24 hours. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to measure the glial cell viability. The microglial activation state was analyzed by immunocytochemistry. The pro-inflammatory tumor necrosis factor-α (TNF-α) and anti-inflammatory transforming growth factor-ß1 (TGF-ß1) cytokine levels were measured by enzyme-linked immunosorbent assay. The astroglial Cx43 expression was quantified by western blot. RESULTS A significant reduction of the glial cell viability after incubation with LTG or TPM was observed in a concentration-dependent manner under all conditions. LTG caused no significant alterations of the microglial phenotypes. Under pathological conditions, TPM led to a significant concentration-dependent reduction of microglial activation. This correlated with increased astroglial Cx43 expression. TNF-α levels were not affected by LTG and TPM. Treatment with higher concentrations of LTG, but not with TPM, led to a significant increase in TGF-ß1 levels in M5 and M30 co-cultures. CONCLUSIONS Despite the possible glial toxicity of LTG and TPM, both drugs reduced inflammatory activity, suggesting potential positive effects on the neuroinflammatory components of the pathogenesis of epilepsy and bipolar disorder.
Collapse
Affiliation(s)
- Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany,Correspondence: Fatme Seval Ismail, MD, Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, In der Schornau 23–25, 44892 Bochum (; )
| |
Collapse
|
6
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Stern S, Sarkar A, Stern T, Mei A, Mendes APD, Stern Y, Goldberg G, Galor D, Nguyen T, Randolph-Moore L, Kim Y, Rouleau G, Bang A, Alda M, Santos R, Marchetto MC, Gage FH. Mechanisms Underlying the Hyperexcitability of CA3 and Dentate Gyrus Hippocampal Neurons Derived From Patients With Bipolar Disorder. Biol Psychiatry 2020; 88:139-149. [PMID: 31732108 PMCID: PMC7108962 DOI: 10.1016/j.biopsych.2019.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Approximately 1 in every 50 to 100 people is affected with bipolar disorder (BD), making this disease a major economic burden. The introduction of induced pluripotent stem cell methodology enabled better modeling of this disorder. METHODS Having previously studied the phenotype of dentate gyrus granule neurons, we turned our attention to studying the phenotype of CA3 hippocampal pyramidal neurons of 6 patients with BD compared with 4 control individuals. We used patch clamp and quantitative polymerase chain reaction to measure electrophysiological features and RNA expression by specific channel genes. RESULTS We found that BD CA3 neurons were hyperexcitable only when they were derived from patients who responded to lithium; they featured sustained activity with large current injections and a large, fast after-hyperpolarization, similar to what we previously reported in dentate gyrus neurons. The higher amplitudes and faster kinetics of fast potassium currents correlated with this hyperexcitability. Further supporting the involvement of potassium currents, we observed an overexpression of KCNC1 and KCNC2 in hippocampal neurons derived from lithium responders. Applying specific potassium channel blockers diminished the hyperexcitability. Long-term lithium treatment decreased the hyperexcitability observed in the CA3 neurons derived from lithium responders while increasing sodium currents and reducing fast potassium currents. When differentiating this cohort into spinal motor neurons, we did not observe any changes in the excitability of BD motor neurons compared with control motor neurons. CONCLUSIONS The hyperexcitability of BD neurons is neuronal type specific with the involvement of altered potassium currents that allow for a sustained, continued firing activity.
Collapse
Affiliation(s)
- Shani Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California; Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Anindita Sarkar
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tchelet Stern
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arianna Mei
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ana P. D. Mendes
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yam Stern
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gabriela Goldberg
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dekel Galor
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thao Nguyen
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lynne Randolph-Moore
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yongsung Kim
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guy Rouleau
- Montreal Neurological Institute, McGill University,
Montreal
| | - Anne Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham
Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA
92037, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, 5909
Veterans’ Memorial Lane, Halifax, NS, B3H 2E2, Canada
| | - Renata Santos
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA,Laboratory of Dynamic of Neuronal Structure in Health and
Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM,
University of Paris), 102 rue de la Sante, 75014 Paris, France
| | - Maria C. Marchetto
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H. Gage
- Laboratory of Genetics, Salk Institute for Biological
Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA,Co-Corresponding authors: Shani Stern
, Fred H. Gage,
| |
Collapse
|
8
|
Wu C, Chen X, Lai J, Xu Y, Hu S. The efficacy and safety of sulforaphane as an adjuvant in the treatment of bipolar depressive disorder: Study protocol for a randomized, double-blinded, placebo-controlled, parallel-group clinical trial. Medicine (Baltimore) 2020; 99:e20981. [PMID: 32590809 PMCID: PMC7328924 DOI: 10.1097/md.0000000000020981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a chronic and disabling psychiatric disorder. The treatment of BD still remains a significant clinical challenge due to the complex nature of the disease. Nutraceutical therapy as adjunctive role is a promising therapy for BD. Sulforaphane (SFN), a broccoli extract, was reported to be effective for emotional problems and cognitive impairment. However, clinical research of SFN in the treatment of BD was rare. Therefore, this study is designed to evaluate the adjuvant role of SFN in the treatment of BD. METHODS This is a randomized, double-blinded, placebo-controlled, parallel-group clinical trial. A total of 100 patients who meet inclusion criteria will be assigned to receive quetiapine plus SFN or quetiapine plus placebo in a 1:1 ratio. The total duration of the study will be 12 weeks including 5 follow ups. The primary outcome is in the Montgomery-Asberg depression rating scale. The secondary outcomes are the quick inventory of depressive symptomatology-self report, Hamilton anxiety rating scale, young mania rating scale, cognitive function, inflammatory factors, and intestinal flora. Any adverse events will be recorded throughout the trial. DISCUSSION This trial will provide evidences to evaluate the efficacy and safety of SFN combined with quetiapine in the treatment of BD patients, as well as the adjuvant role of SFN in combination. TRIAL REGISTRATION This study protocol was registered at the Chinese clinical trial registry (ChiCTR2000028706).
Collapse
Affiliation(s)
- Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
| | | | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
- The Key Laboratory of Mental Disorder Management of Zhejiang Province
- Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
- The Key Laboratory of Mental Disorder Management of Zhejiang Province
- Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
- The Key Laboratory of Mental Disorder Management of Zhejiang Province
- Brain Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Shonibare DO, Patel R, Islam AH, Metcalfe AWS, Fiksenbaum L, Kennedy JL, Freeman N, MacIntosh BJ, Goldstein BI. Preliminary study of structural magnetic resonance imaging phenotypes related to genetic variation in Interleukin-1β rs16944 in adolescents with Bipolar Disorder. J Psychiatr Res 2020; 122:33-41. [PMID: 31918351 DOI: 10.1016/j.jpsychires.2019.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bipolar disorder (BD), among the most heritable psychiatric conditions, is associated with increased pro-inflammatory blood markers and pro-inflammatory gene expression in post-mortem brain. We therefore examined the effects of pro-inflammatory single nucleotide polymorphism interleukin-1β (IL-1β) rs16944 on brain structure in adolescents with BD and healthy control (HC) adolescents. METHODS T1-weighted 3-T magnetic resonance imaging data were acquired for 38 adolescents with BD and 32 HC adolescents (14-20 years). Using FreeSurfer, a priori regions of interest analyses, examining hippocampus, amygdala, dorsolateral prefrontal cortex (DLPFC), and caudal anterior cingulate cortex, were complemented by exploratory whole-brain vertex-wise analyses. General linear models assessed the association between IL-1β rs16944 and the ROIs, controlling for sex, age, and intracranial volume. RESULTS There was an IL-1β rs16944 polymorphism-by-diagnosis interaction effect on the DLPFC; T-carriers with BD had greater surface area compared to non-carriers with BD. Whereas, HC T-carriers had smaller DLPFC volume compared to HC non-carriers. In vertex-wise analyses, similar interactions were evident in a pars triangularis surface area cluster and a lateral occipital cortex volume cluster. Whole-brain analyses also yielded a main effect of IL-1β rs16944 polymorphism, whereby T-carriers had greater lateral occipital cortex surface area and volume. CONCLUSIONS The IL-1β rs16944 polymorphism is associated with neurostructural phenotypes in cognitive and visual regions that subserve functions, including facial recognition and response inhibition, which are known to be aberrant in BD. Future studies are warranted to evaluate whether the observed rs16944-related structural differences are relevant to neurocognitive function, functional neuroimaging phenotypes and IL-1β protein levels.
Collapse
Affiliation(s)
- Daniel O Shonibare
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Ronak Patel
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Alvi H Islam
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Arron W S Metcalfe
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
| | - Lisa Fiksenbaum
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - James L Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Natalie Freeman
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Research Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Barichello T, Giridharan VV, Bhatti G, Sayana P, Doifode T, Macedo D, Quevedo J. Inflammation as a Mechanism of Bipolar Disorder Neuroprogression. Curr Top Behav Neurosci 2020; 48:215-237. [PMID: 33040314 DOI: 10.1007/7854_2020_173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a severe, debilitating psychiatric condition with onset in adolescence or young adulthood and often follows a relapsing and remitting course throughout life. The concept of neuroprogression in BD refers to the progressive path with an identifiable trajectory that takes place with recurrent mood episodes, which eventually leads to cognitive, functional, and clinical deterioration in the course of BD. Understanding the biological basis of neuroprogression helps to explain the subset of BD patients who experience worsening of their disorder over time. Additionally, the study of the neurobiological mechanisms underpinning neuroprogression will help BD staging based on systems biology. Replicated epidemiological studies have suggested inflammatory mechanisms as primary contributors to the neuroprogression of mood disorders. It is known that dysregulated inflammatory/immune pathways are often associated with BD pathophysiology. Hence, in this chapter, we focus on the evidence for the involvement of inflammation and immune regulated pathways in the neurobiological consequences of BD neuroprogression. Herein we put forth the evidence of immune markers from autoimmune disorders, chronic infections, and gut-brain axis that lead to BD neuroprogression. Further, we highlighted the peripheral and central inflammatory components measured along with BD progression.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. .,Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil. .,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Vijayasree Vayalanellore Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gursimrat Bhatti
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Pavani Sayana
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Tejaswini Doifode
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirao Preto, Brazil
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
11
|
Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry 2020; 25:94-113. [PMID: 31249382 DOI: 10.1038/s41380-019-0448-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Bipolar disorder (BD) is a chronic affective disorder with extreme mood swings that include mania or hypomania and depression. Though the exact mechanism of BD is unknown, neuroinflammation is one of the numerous investigated etiopathophysiological causes of BD. This article presents a systematic review of the data regarding brain inflammation evaluating microglia, astrocytes, cytokines, chemokines, adhesion molecules, and other inflammatory markers in postmortem BD brain samples. This systematic review was performed according to PRISMA recommendations, and relevant studies were identified by searching the PubMed/MEDLINE, PsycINFO, EMBASE, LILACS, IBECS, and Web of Science databases for peer-reviewed journal articles published by March 2019. Quality of included studies appraised using the QUADAS-2 tool. Among the 1814 articles included in the primary screening, 51 articles measured inflammatory markers in postmortem BD brain samples. A number of studies have shown evidence of inflammation in BD postmortem brain samples. However, an absolute statement cannot be concluded whether neuroinflammation is present in BD due to the large number of studies did not evaluate the presence of infiltrating peripheral immune cells in the central nervous system (CNS) parenchyma, cytokines levels, and microglia activation in the same postmortem brain sample. For example, out of 15 studies that evaluated microglia cells markers, 8 studies found no effect of BD on these cells. Similarly, 17 out of 51 studies evaluating astrocytes markers, 9 studies did not find any effect of BD on astrocyte cells, whereas 8 studies found a decrease and 2 studies presented both increase and decrease in different brain regions. In addition, multiple factors account for the variability across the studies, including postmortem interval, brain area studied, age at diagnosis, undergoing treatment, and others. Future analyses should rectify these potential sources of heterogeneity and reach a consensus regarding the inflammatory markers in postmortem BD brain samples.
Collapse
|
12
|
Scarr E, Udawela M, Dean B. Changed cortical risk gene expression in major depression and shared changes in cortical gene expression between major depression and bipolar disorders. Aust N Z J Psychiatry 2019; 53:1189-1198. [PMID: 31238704 DOI: 10.1177/0004867419857808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mood disorders likely occur in someone with a genetic predisposition who encounters a deleterious environmental factor leading to dysregulated physiological processes due to genetic mutations and epigenetic mechanisms altering gene expression. To gain data to support this hypothesis, we measured levels of gene expression in three cortical regions known to be affected by the pathophysiologies of major depression and bipolar disorders. METHODS Levels of RNA were measured using the Affymetrix™ Human Exon 1.0 ST Array in Brodmann's areas 9, 10 and 33 (left hemisphere) from individuals with major depression, bipolar disorder and age- and sex-matched controls with changed expression taken as a fold change in RNA ⩾1.2 at p < 0.01. Data were analysed using JMP® genomics 6.0 and the probable biological consequences of changes in gene expression determined using Core and Pathway Designer Analyses in Ingenuity Pathway Analysis. RESULTS There were altered levels of RNA in Brodmann's area 9 (major depression = 424; bipolar disorder = 331), Brodmann's area 10 (major depression = 52; bipolar disorder = 24) and Brodmann's area 33 (major depression = 59 genes; bipolar disorder = 38 genes) in mood disorders. No gene was differentially expressed in all three regions in either disorder. There was a high correlation between fold changes in levels of RNA from 112 genes in Brodmann's area 9 from major depression and bipolar disorder (r2 = 0.91, p < 0.001). Levels of RNA for four risk genes for major depression were lower in Brodmann's area 9 in that disorder. CONCLUSION Our data argue that there are complex regional-specific changes in cortical gene expression in major depression and bipolar disorder that includes the expression of some risk genes for major depression in those with that disorder. It could be hypothesised that the common changes in gene expression in major depression and bipolar disorder are involved in the genesis of symptoms common to both disorders.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Molecular Psychiatry Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,CRC for Mental Health, Carlton, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,CRC for Mental Health, Carlton, VIC, Australia
| | - Brian Dean
- Molecular Psychiatry Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,CRC for Mental Health, Carlton, VIC, Australia.,Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Hawthorne, VIC, Australia
| |
Collapse
|
13
|
Rivera AD, Butt AM. Astrocytes are direct cellular targets of lithium treatment: novel roles for lysyl oxidase and peroxisome-proliferator activated receptor-γ as astroglial targets of lithium. Transl Psychiatry 2019; 9:211. [PMID: 31477687 PMCID: PMC6718419 DOI: 10.1038/s41398-019-0542-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022] Open
Abstract
Astrocytes are multifunctional glial cells that play essential roles in supporting synaptic signalling and white matter-associated connectivity. There is increasing evidence that astrocyte dysfunction is involved in several brain disorders, including bipolar disorder (BD), depression and schizophrenia. The mood stabiliser lithium is a frontline treatment for BD, but the mechanisms of action remain unclear. Here, we demonstrate that astrocytes are direct targets of lithium and identify unique astroglial transcriptional networks that regulate specific molecular changes in astrocytes associated with BD and schizophrenia, together with Alzheimer's disease (AD). Using pharmacogenomic analyses, we identified novel roles for the extracellular matrix (ECM) regulatory enzyme lysyl oxidase (LOX) and peroxisome proliferator-activated receptor gamma (PPAR-γ) as profound regulators of astrocyte morphogenesis. This study unravels new pathophysiological mechanisms in astrocytes that have potential as novel biomarkers and potential therapeutic targets for regulating astroglial responses in diverse neurological disorders.
Collapse
Affiliation(s)
- Andrea D. Rivera
- 0000 0001 0728 6636grid.4701.2Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth, PO1 2DT UK
| | - Arthur M. Butt
- 0000 0001 0728 6636grid.4701.2Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth, PO1 2DT UK
| |
Collapse
|
14
|
Misiak B, Stańczykiewicz B, Kotowicz K, Rybakowski JK, Samochowiec J, Frydecka D. Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: A systematic review. Schizophr Res 2018; 192:16-29. [PMID: 28416092 DOI: 10.1016/j.schres.2017.04.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this article was to perform a systematic review of studies investigating the association between peripheral levels of cytokines and C-reactive protein (CRP), cytokine gene polymorphisms and cognition in patients with schizophrenia and bipolar disorder (BD). METHODS The following databases: PubMed, CINAHL Complete, Academic Search Complete, ERIC and Health Source: Nursing/Academic Edition databases were searched according to the PRISMA guidelines. We included studies that investigated the association between peripheral levels of CRP and cytokines, cytokine gene polymorphisms and cognitive performance in schizophrenia and/or BD patients. Subsequently, quality assessment of eligible publications was performed. Results were synthesized by discussing main findings around correlations between inflammatory markers and cognition. RESULTS Most consistent results indicate worse cognitive performance in schizophrenia patients with higher CRP levels. Less consistent evidence suggests better cognitive functioning of schizophrenia patients with higher levels of tumour necrosis factor-α (TNF-α). Evidence for the involvement of other cytokines in cognitive impairment in patients with schizophrenia is less convincing due to discordant results or scarcity of studies. Due to low number of studies, it is difficult to draw conclusions on the involvement of CRP and cytokine alterations in the development of cognitive deficits in BD. Single studies suggest the role of CRP, interleukin(IL)-1 receptor antagonist, IL-6 and TNF-α with its receptors in the development of cognitive impairment in BD. CONCLUSIONS Peripheral inflammation might be related to cognitive deficits in schizophrenia and BD. Unequivocal conclusions cannot be made due to methodological heterogeneity and low number of studies investigating particular cytokines.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland.
| | | | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznan, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| |
Collapse
|
15
|
Brown GM, McIntyre RS, Rosenblat J, Hardeland R. Depressive disorders: Processes leading to neurogeneration and potential novel treatments. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:189-204. [PMID: 28433459 DOI: 10.1016/j.pnpbp.2017.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/01/2017] [Indexed: 12/18/2022]
Abstract
Mood disorders are wide spread with estimates that one in seven of the population are affected at some time in their life (Kessler et al., 2012). Many of those affected with severe depressive disorders have cognitive deficits which may progress to frank neurodegeneration. There are several peripheral markers shown by patients who have cognitive deficits that could represent causative factors and could potentially serve as guides to the prevention or even treatment of neurodegeneration. Circadian rhythm misalignment, immune dysfunction and oxidative stress are key pathologic processes implicated in neurodegeneration and cognitive dysfunction in depressive disorders. Novel treatments targeting these pathways may therefore potentially improve patient outcomes whereby the primary mechanism of action is outside of the monoaminergic system. Moreover, targeting immune dysfunction, oxidative stress and circadian rhythm misalignment (rather than primarily the monoaminergic system) may hold promise for truly disease modifying treatments that may prevent neurodegeneration rather than simply alleviating symptoms with no curative intent. Further research is required to more comprehensively understand the contributions of these pathways to the pathophysiology of depressive disorders to allow for disease modifying treatments to be discovered.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, 250 College St. Toronto, ON M5T 1R8, Canada.
| | - Roger S McIntyre
- Psychiatry and Pharmacology, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada.
| | - Joshua Rosenblat
- Resident of Psychiatry, Clinician Scientist Stream, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, Buergerstrasse 50, D-37073 Göttingen, Germany.
| |
Collapse
|
16
|
Oliveira J, Oliveira‐Maia AJ, Tamouza R, Brown AS, Leboyer M. Infectious and immunogenetic factors in bipolar disorder. Acta Psychiatr Scand 2017; 136:409-423. [PMID: 28832904 PMCID: PMC7159344 DOI: 10.1111/acps.12791] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Despite the evidence supporting the association between infection and bipolar disorder (BD), the genetic vulnerability that mediates its effects has yet to be clarified. A genetic origin for the immune imbalance observed in BD, possibly involved in the mechanisms of pathogen escape, has, however, been suggested in recent studies. METHOD Here, we present a critical review based on a systematic literature search of articles published until December 2016 on the association between BD and infectious/immunogenetic factors. RESULTS We provide evidence suggesting that infectious insults could act as triggers of maladaptive immune responses in BD and that immunogenetic vulnerability may amplify the effects of such environmental risk factors, increasing susceptibility to subsequent environmental encounters. Quality of evidence was generally impaired by scarce attempt of replication, small sample sizes and lack of high-quality environmental measures. CONCLUSION Infection has emerged as a potential preventable cause of morbidity in BD, urging the need to better investigate components of the host-pathogen interaction in patients and at-risk subjects, and thus opening the way to novel therapeutic opportunities.
Collapse
Affiliation(s)
- J. Oliveira
- Champalimaud Clinical CentreChampalimaud Centre for the UnknownLisboaPortugal,Centro Hospitalar Psiquiátrico de LisboaLisboaPortugal
| | - A. J. Oliveira‐Maia
- Champalimaud Clinical CentreChampalimaud Centre for the UnknownLisboaPortugal,Department of Psychiatry and Mental HealthCentro Hospitalar de Lisboa OcidentalLisboaPortugal,Champalimaud ResearchChampalimaud Centre for the UnknownLisboaPortugal,Faculdade de Ciências MédicasNOVA Medical SchoolUniversidade Nova de LisboaLisboaPortugal
| | - R. Tamouza
- Hôpital Saint LouisINSERM U1160Université Paris DiderotParisFrance,Fondation FondamentalCréteilFrance
| | - A. S. Brown
- Columbia University Medical CenterNew YorkNYUSA
| | - M. Leboyer
- Fondation FondamentalCréteilFrance,Department of PsychiatryAP‐HP, DHU PePSYHôpital Henri MondorUniversité Paris‐Est‐CréteilCréteilFrance,Translational PsychiatryINSERM U955CréteilFrance
| |
Collapse
|
17
|
Balcioglu YH, Kirlioglu SS, Ozgen G. Bipolar disorder with Marfan syndrome: a case illustration based on possible involvement of TGF-β1 in the common etiopathogenesis. PSYCHIAT CLIN PSYCH 2017. [DOI: 10.1080/24750573.2017.1371660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yasin Hasan Balcioglu
- Department of Psychiatry, Bakirkoy Prof Dr M. Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Simge Seren Kirlioglu
- Department of Psychiatry, Bakirkoy Prof Dr M. Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Guliz Ozgen
- Department of Psychiatry, Bakirkoy Prof Dr M. Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
18
|
SayuriYamagata A, Brietzke E, Rosenblat JD, Kakar R, McIntyre RS. Medical comorbidity in bipolar disorder: The link with metabolic-inflammatory systems. J Affect Disord 2017; 211:99-106. [PMID: 28107669 DOI: 10.1016/j.jad.2016.12.059] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 12/23/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with chronic low-grade inflammation, several medical comorbidities and a decreased life expectancy. Metabolic-inflammatory changes have been postulated as one of the main links between BD and medical comorbidity, although there are few studies exploring possible mechanisms underlying this relationship. Therefore, the aims of the current narrative review were 1) synthesize the evidence for metabolic-inflammatory changes that may facilitate the link between medical comorbidity and BD and 2) discuss therapeutic and preventive implications of these pathways. METHODS The PubMed and Google Scholar databases were searched for relevant studies. RESULTS Identified studies suggested that there is an increased risk of medical comorbidities, such as autoimmune disorders, obesity, diabetes and cardiovascular disease in patients with BD. The association between BD and general medical comorbidities seems to be bidirectional and potentially mediated by immune dysfunction. Targeting the metabolic-inflammatory-mood pathway may potential yield improved outcomes in BD; however, further study is needed to determine which specific interventions may be beneficial. LIMITATIONS The majority of identified studies had cross-sectional designs, small sample sizes and limited measurements of inflammation. CONCLUSIONS Treatment and prevention of general medical comorbidities in mood disorders should include preferential prescribing of metabolically neutral agents and adjunctive lifestyle modifications including increased physical activity, improved diet and decreased substance abuse. In addition, the use of anti-inflammatory agents could be a relevant therapeutic target in future research.
Collapse
Affiliation(s)
- Ana SayuriYamagata
- University of São Paulo (USP), São Paulo, Brazil; Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Elisa Brietzke
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network (UHN), University of Toronto, Toronto, Canada
| | - Ron Kakar
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network (UHN), University of Toronto, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network (UHN), University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017; 71:77-103. [PMID: 27800654 DOI: 10.1111/pcn.12476] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The most common mood disorders are major depressive disorders and bipolar disorders (BD). The pathophysiology of BD is complex, multifactorial, and not fully understood. Creation of new hypotheses in the field gives impetus for studies and for finding new biomarkers for BD. Conversely, new biomarkers facilitate not only diagnosis of a disorder and monitoring of biological effects of treatment, but also formulation of new hypotheses about the causes and pathophysiology of the BD. BD is characterized by multiple associations between disturbed brain development, neuroplasticity, and chronobiology, caused by: genetic and environmental factors; defects in apoptotic, immune-inflammatory, neurotransmitter, neurotrophin, and calcium-signaling pathways; oxidative and nitrosative stress; cellular bioenergetics; and membrane or vesicular transport. Current biological hypotheses of BD are summarized, including related pathophysiological processes and key biomarkers, which have been associated with changes in genetics, systems of neurotransmitter and neurotrophic factors, neuroinflammation, autoimmunity, cytokines, stress axis activity, chronobiology, oxidative stress, and mitochondrial dysfunctions. Here we also discuss the therapeutic hypotheses and mechanisms of the switch between depressive and manic state.
Collapse
Affiliation(s)
- Ekaterina Sigitova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
20
|
Hou L, Bergen SE, Akula N, Song J, Hultman CM, Landén M, Adli M, Alda M, Ardau R, Arias B, Aubry JM, Backlund L, Badner JA, Barrett TB, Bauer M, Baune BT, Bellivier F, Benabarre A, Bengesser S, Berrettini WH, Bhattacharjee AK, Biernacka JM, Birner A, Bloss CS, Brichant-Petitjean C, Bui ET, Byerley W, Cervantes P, Chillotti C, Cichon S, Colom F, Coryell W, Craig DW, Cruceanu C, Czerski PM, Davis T, Dayer A, Degenhardt F, Del Zompo M, DePaulo JR, Edenberg HJ, Étain B, Falkai P, Foroud T, Forstner AJ, Frisén L, Frye MA, Fullerton JM, Gard S, Garnham JS, Gershon ES, Goes FS, Greenwood TA, Grigoroiu-Serbanescu M, Hauser J, Heilbronner U, Heilmann-Heimbach S, Herms S, Hipolito M, Hitturlingappa S, Hoffmann P, Hofmann A, Jamain S, Jiménez E, Kahn JP, Kassem L, Kelsoe JR, Kittel-Schneider S, Kliwicki S, Koller DL, König B, Lackner N, Laje G, Lang M, Lavebratt C, Lawson WB, Leboyer M, Leckband SG, Liu C, Maaser A, Mahon PB, Maier W, Maj M, Manchia M, Martinsson L, McCarthy MJ, McElroy SL, McInnis MG, McKinney R, Mitchell PB, Mitjans M, Mondimore FM, Monteleone P, Mühleisen TW, Nievergelt CM, Nöthen MM, Novák T, Nurnberger JI, Nwulia EA, Ösby U, Pfennig A, Potash JB, Propping P, Reif A, Reininghaus E, Rice J, Rietschel M, Rouleau GA, Rybakowski JK, Schalling M, Scheftner WA, Schofield PR, Schork NJ, Schulze TG, Schumacher J, Schweizer BW, Severino G, Shekhtman T, Shilling PD, Simhandl C, Slaney CM, Smith EN, Squassina A, Stamm T, Stopkova P, Streit F, Strohmaier J, Szelinger S, Tighe SK, Tortorella A, Turecki G, Vieta E, Volkert J, Witt SH, Wright A, Zandi PP, Zhang P, Zollner S, McMahon FJ. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum Mol Genet 2016; 25:3383-3394. [PMID: 27329760 PMCID: PMC5179929 DOI: 10.1093/hmg/ddw181] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/23/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022] Open
Abstract
Bipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behaviour. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ∼2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the X-chromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, P = 5.87 × 10 - 9; odds ratio (OR) = 1.12) and markers within ERBB2 (rs2517959, P = 4.53 × 10 - 9; OR = 1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS.
Collapse
Affiliation(s)
- Liping Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health,U.S. Department of Health & Human Services, Bethesda, MD, USA
| | - Sarah E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health,U.S. Department of Health & Human Services, Bethesda, MD, USA
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Bárbara Arias
- Department of Biologia Animal, Unitat d'Antropologia (Dp. Biología Animal), Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, CIBERSAM, Barcelona, Spain
| | - Jean-Michel Aubry
- Department of Mental Health and Psychiatry, Mood Disorders Unit, Geneva University Hospitals, Geneva, Switzerland
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Judith A Badner
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | | | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, Australia
| | - Frank Bellivier
- INSERM UMR-S 1144 - Université Paris Diderot. Pôle de Psychiatrie, AP-HP, Groupe Hospitalier Lariboisière-F. Widal, Paris, France
| | - Antonio Benabarre
- Bipolar Disorder Program, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Susanne Bengesser
- Special Outpatient Center for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Armin Birner
- Special Outpatient Center for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | | | - Clara Brichant-Petitjean
- INSERM UMR-S 1144 - Université Paris Diderot. Pôle de Psychiatrie, AP-HP, Groupe Hospitalier Lariboisière-F. Widal, Paris, France
| | - Elise T Bui
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health,U.S. Department of Health & Human Services, Bethesda, MD, USA
| | - William Byerley
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
| | - Pablo Cervantes
- McGill University Health Centre, Mood Disorders Program, Montreal, QC, Canada
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
- Division of Medical Genetics and Department of Biomedicine, University of Basel, Switzerland
| | - Francesc Colom
- Bipolar Disorder Program, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - William Coryell
- University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - David W Craig
- The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Cristiana Cruceanu
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Piotr M Czerski
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Tony Davis
- Discipline of Psychiatry, University of Adelaide, Adelaide, Australia
| | - Alexandre Dayer
- Department of Mental Health and Psychiatry, Mood Disorders Unit, Geneva University Hospitals, Geneva, Switzerland
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Maria Del Zompo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bruno Étain
- INSERM U955, Psychiatrie translationnelle, Université Paris Est Créteil, Pôle de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Louise Frisén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Child and Adolescent Psychiatry Research Center, Stockholm, Sweden
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Janice M Fullerton
- Psychiatric Genetics, Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sébastien Gard
- Service de Psychiatrie, Hôpital Charles Perrens, Bordeaux, France
| | - Julie S Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University Göttingen, Göttingen, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Division of Medical Genetics and Department of Biomedicine, University of Basel, Switzerland
| | - Maria Hipolito
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, Washington, DC, USA
| | | | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
- Division of Medical Genetics and Department of Biomedicine, University of Basel, Switzerland
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Stephane Jamain
- INSERM U955, Psychiatrie translationnelle, Université Paris Est Créteil, Pôle de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Esther Jiménez
- Bipolar Disorder Program, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Jean-Pierre Kahn
- Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy - Université de Lorraine, Nancy, France
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health,U.S. Department of Health & Human Services, Bethesda, MD, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Sebastian Kliwicki
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Daniel L Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Barbara König
- Department of Psychiatry and Psychotherapeuthic Medicine, Landesklinikum Neunkirchen, Neunkirchen, Austria
| | - Nina Lackner
- Special Outpatient Center for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Gonzalo Laje
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health,U.S. Department of Health & Human Services, Bethesda, MD, USA
| | - Maren Lang
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - William B Lawson
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, Washington, DC, USA
| | - Marion Leboyer
- INSERM U955, Psychiatrie translationnelle, Université Paris Est Créteil, Pôle de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Susan G Leckband
- Department of Pharmacy, VA San Diego Healthcare System, San Diego, CA, USA
| | - Chunyu Liu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Anna Maaser
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Pamela B Mahon
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Mario Maj
- Department of Psychiatry, University of Naples SUN, Naples, Italy
| | - Mirko Manchia
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Lina Martinsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Michael J McCarthy
- Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA, USA
| | - Susan L McElroy
- Lindner Center of HOPE, University of Cincinnati College of Medicine, Mason, OH, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca McKinney
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, Australia
| | - Marina Mitjans
- Department of Biologia Animal, Unitat d'Antropologia (Dp. Biología Animal), Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, CIBERSAM, Barcelona, Spain
| | - Francis M Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Palmiero Monteleone
- Department of Psychiatry, University of Naples SUN, Naples, Italy
- Neurosciences Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Thomas W Mühleisen
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Tomas Novák
- National Institute of Mental Health, Klecany, Czech Republic
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Evaristus A Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, Washington, DC, USA
| | - Urban Ösby
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - James B Potash
- Department of Psychiatry, Carver College of Medicine, University of Iowa School of Medicine, Iowa City, IA, USA
| | - Peter Propping
- Institute of Human Genetics, University of Bonn, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Reininghaus
- Special Outpatient Center for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - John Rice
- Department of Psychiatry, Washington University School of Medicine in St. Louis
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Peter R Schofield
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Mental Illness, Neuroscience Research Australia, Sydney, Australia
| | | | - Thomas G Schulze
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health,U.S. Department of Health & Human Services, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University Göttingen, Göttingen, Germany
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Barbara W Schweizer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | | | - Claire M Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Erin N Smith
- Scripps Translational Science Institute, La Jolla, CA, USA
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Stamm
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Sarah K Tighe
- Department of Psychiatry, Carver College of Medicine, University of Iowa School of Medicine, Iowa City, IA, USA
| | | | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Eduard Vieta
- Bipolar Disorder Program, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Julia Volkert
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adam Wright
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, Australia
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Peng Zhang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Sebastian Zollner
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health,U.S. Department of Health & Human Services, Bethesda, MD, USA,
| |
Collapse
|
21
|
Rosenblat JD, Gregory JM, McIntyre RS. Pharmacologic implications of inflammatory comorbidity in bipolar disorder. Curr Opin Pharmacol 2016; 29:63-9. [DOI: 10.1016/j.coph.2016.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
|
22
|
Abstract
The etiology and pathophysiology of schizophrenia and related mental disorders such as bipolar disorder and major depression remain largely unclear. Recent advances in mRNA profiling techniques made it possible to perform genome-wide gene expression analysis in a hypothesis-free manner. It was thought that this large-scale data mining approach would reveal unknown molecular cascades involved in mental disorders. Contrary to this initial expectation, however, DNA microarray results in psychiatric fields have been notoriously discordant. Here the authors review the findings of DNA microarray analysis, focusing on systematic gene expression changes in schizophrenia, as well as alterations in the expression of specific genes, that have been reported and replicated. The authors also address the probable causes for the discordance among studies, possible ways to solve the problem, and their preferred approach for data interpretation.
Collapse
Affiliation(s)
- Kazuya Iwamoto
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Saitama, Japan.
| | | |
Collapse
|
23
|
Abstract
The pathophysiology of bipolar disorder (BD) remains poorly understood. Current psychopharmacologic treatments are often poorly tolerated and carry high rates of treatment resistance. Mounting evidence has suggested that innate immune system dysfunction may play a role in the pathophysiology of BD. Elevated proinflammatory cytokine levels have been identified. The innate immune system is a novel therapeutic target in BD. Lithium has been shown to have antiinflammatory properties. Further research is needed to establish the role of antiinflammatory agents in the treatment of BD; however, evidence from several clinical trials indicates that antiinflammatory agents may be incorporated into clinical practice soon.
Collapse
Affiliation(s)
- Joshua D Rosenblat
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, 399 Bathurst Street, MP 9-325, Toronto, Ontario M5T 2S8, Canada
| | - Roger S McIntyre
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, 399 Bathurst Street, MP 9-325, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
24
|
Rosenblat JD, McIntyre RS. Are medical comorbid conditions of bipolar disorder due to immune dysfunction? Acta Psychiatr Scand 2015; 132:180-91. [PMID: 25772638 DOI: 10.1111/acps.12414] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Epidemiological data have shown a clear association between bipolar disorder (BD) and medical comorbidities. The aim of this article was to assess the evidence of immune dysfunction as a key mediator of this observed association. METHOD For this narrative clinical overview, the MEDLINE/PubMed, EMBASE, Google Scholar, and ClinicalTrials.gov databases were searched for relevant articles. RESULTS Bipolar disorder has been shown to have an increased prevalence in patients with autoimmune disorders, cardiovascular disease, and metabolic dysfunction. Further, an elevation in proinflammatory cytokines in BD has been repeatedly demonstrated. Several mechanisms have been proposed to explain the effect of immune dysfunction on mood and cognition. Anti-inflammatory agents including TNF-α inhibitors, non-steroidal anti-inflammatory drugs (NSAIDs), minocycline and omega-3 polyunsaturated fatty acids (O3PUFA) are being investigated for their use as novel treatment of BD in patients with immune dysfunction. CONCLUSION Immune dysfunction appears to be an important mediator of the association observed between BD and medical comorbidities. It therefore serves as a potential novel target for treatment of BD. Further, the observed bidirectional interaction merits screening for psychiatric disorders in patients with immune dysfunction and vice versa to allow for early detection and treatment of this at risk population.
Collapse
Affiliation(s)
- J D Rosenblat
- Department of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada.,Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - R S McIntyre
- Department of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Li H, Hong W, Zhang C, Wu Z, Wang Z, Yuan C, Li Z, Huang J, Lin Z, Fang Y. IL-23 and TGF-β1 levels as potential predictive biomarkers in treatment of bipolar I disorder with acute manic episode. J Affect Disord 2015; 174:361-6. [PMID: 25545602 DOI: 10.1016/j.jad.2014.12.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Growing evidence suggests that immune dysfunction may be involved in the physiopathology of bipolar disorders, with typical first-line treatment using lithium and quetiapine serving to restore pro-inflammation status. This study aimed to explore the relationship between inflammatory cytokines-especially regulatory factors and the effect of combination treatment-with quetiapine and lithium in manic patients. METHODS 41 patients of bipolar I disorder with manic episode were enrolled and received combination treatment with quetiapine and lithium. Blood sampling and assessments were performed at baseline and after 8-week treatment. YMRS was used to evaluate the severity of manic symptoms at the same time of detecting plasma levels. A control group comprised of 36 age and gender matched healthy volunteers were enrolled, and their blood samples were assessed at the time of enrollment. RESULTS TGF-β1 and IL-23 plasma levels in patients were significantly higher than healthy controls at baseline (P<0.05). When comparing remitted patients with non-remitted patients, initial plasma level TGF-β1 was higher (P=0.029) while IL-23 was lower (P=0.035). The plasma levels of TNF-α, TGF-β1, IL-23 and IL-17 significantly decreased after treatment among the patients who achieved response (P<0.05). LIMITATIONS The relatively small sample size in patients and control groups should be considered as a limitation of the study. CONCLUSIONS The high initial plasma level of TGF-β1 and low initial plasma level of IL-23 indicated better prognosis during combination treatment with quetiapine and lithium in manic patients. The trend of decreasing plasma levels of TNF-α, TGF-β1, IL-23 and IL-17 indicated therapeutic effect.
Collapse
Affiliation(s)
- Haozhe Li
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wu Hong
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuowei Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Mood Disorders, Hongkou District Mental Health Center, Shanghai, China
| | - Chenmei Yuan
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Shanghai Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Jia Huang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguang Lin
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Andreazza AC, Gildengers A, Rajji TK, Zuzarte PML, Mulsant BH, Young LT. Oxidative stress in older patients with bipolar disorder. Am J Geriatr Psychiatry 2015; 23:314-9. [PMID: 24974141 PMCID: PMC4247347 DOI: 10.1016/j.jagp.2014.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Increases in oxidative stress have been consistently reported in younger patients with bipolar disorder (BD) in postmortem brain and blood samples studies. Changes in oxidative stress are also associated with the natural aging process. Thus, the investigation of oxidative stress across the life span of patients with BD is crucial. METHODS We compared the levels of oxidative damage to proteins and lipids in plasma from 110 euthymic older patients with BD I or II (mean±SD age: 63.9±9.7 years) and 75 older healthy individuals (66.0±9.6 years). To assess protein oxidation, we measured the plasma levels of protein carbonyl (PC) and 3-nitrotyrosine (3-NT) using the ELISA technique. To assess lipid peroxidation, we measured plasma levels of lipid hydroperoxide (LPH) and 4-hydroxynonenal (4-HNE) using spectrophotometric assays. RESULTS LPH levels were higher in patients than in the comparison healthy individuals, whereas there were no significant differences for PC, 3-NT, and 4-HNE between the two groups. CONCLUSIONS The increased levels of an early component of the peroxidation chain (LPH) in euthymic older patients with BD support the hypothesis of a persistent effect of reactive species of oxygen in patients with BD into late life.
Collapse
Affiliation(s)
- AC Andreazza
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada,Centre for Addition and Mental Health, Toronto, ON, Canada
| | - A Gildengers
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - TK Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Centre for Addition and Mental Health, Toronto, ON, Canada
| | - PML Zuzarte
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - BH Mulsant
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Centre for Addition and Mental Health, Toronto, ON, Canada
| | - LT Young
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada,Centre for Addition and Mental Health, Toronto, ON, Canada
| |
Collapse
|
27
|
Mamdani F, Rollins B, Morgan L, Sequeira PA, Vawter MP. The somatic common deletion in mitochondrial DNA is decreased in schizophrenia. Schizophr Res 2014; 159:370-5. [PMID: 25270547 PMCID: PMC4252352 DOI: 10.1016/j.schres.2014.08.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/18/2023]
Abstract
Large deletions in mitochondrial DNA (mtDNA) can occur during or result from oxidative stress leading to a vicious cycle that increases reactive oxygen species (ROS) damage and decreases mitochondrial function, thereby causing further oxidative stress. The objective of this study was to determine if disease specific brain differences of the somatic mtDNA common deletion (4977 bp) could be observed in major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) compared to a control group. The accumulation of the mtDNA common deletion was measured using a quantitative assay across 10 brain regions (anterior cingulate cortex, amygdala, caudate nucleus, dorsolateral prefrontal cortex, hippocampus, nucleus accumbens, orbitofrontal cortex, putamen, substantia nigra, and thalamus). The correlation with age of the mtDNA deletion was highly significant across brain regions as previously shown. A significant decrease in the global accumulation of common deletion in subjects with SZ compared to MDD, BD, and controls was observed after correcting for age, pH, PMI, and gender. The decreases in SZ were largest in dopaminergic regions. One potential side effect of antipsychotic drugs on mitochondria is the impairment of mitochondria function, which might explain these findings. The decreased global brain mtDNA common deletion levels suggests that mitochondrial function is impaired and might be part of an overall mitochondria dysfunction signature in subjects with schizophrenia.
Collapse
Affiliation(s)
- Firoza Mamdani
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, USA
| | - Brandi Rollins
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, USA
| | - Ling Morgan
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, USA
| | - P Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, USA.
| |
Collapse
|
28
|
Cytokines in bipolar disorder: paving the way for neuroprogression. Neural Plast 2014; 2014:360481. [PMID: 25313338 PMCID: PMC4172873 DOI: 10.1155/2014/360481] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/23/2014] [Indexed: 12/16/2022] Open
Abstract
Bipolar disorder (BD) is a severe, chronic, and recurrent psychiatric illness. It has been associated with high prevalence of medical comorbidities and cognitive impairment. Its neurobiology is not completely understood, but recent evidence has shown a wide range of immune changes. Cytokines are proteins involved in the regulation and the orchestration of the immune response. We performed a review on the involvement of cytokines in BD. We also discuss the cytokines involvement in the neuroprogression of BD. It has been demonstrated that increased expression of cytokines in the central nervous system in postmortem studies is in line with the elevated circulating levels of proinflammatory cytokines in BD patients. The proinflammatory profile and the immune imbalance in BD might be regarded as potential targets to the development of new therapeutic strategies.
Collapse
|
29
|
Brambilla P, Bellani M, Isola M, Bergami A, Marinelli V, Dusi N, Rambaldelli G, Tansella M, Maria Finardi A, Martino G, Perlini C, Furlan R. Increased M1/decreased M2 signature and signs of Th1/Th2 shift in chronic patients with bipolar disorder, but not in those with schizophrenia. Transl Psychiatry 2014; 4:e406. [PMID: 24984193 PMCID: PMC4119216 DOI: 10.1038/tp.2014.46] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/10/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022] Open
Abstract
We here present data on immune gene expression of chemokines, chemokine receptors, cytokines and regulatory T-cell (T-reg) markers in chronic patients suffering from either schizophrenia (SCZ, N=20) or bipolar disorder (BD=20) compared with healthy controls (HCs, N=20). We extracted RNA from peripheral blood mononuclear cells and performed real-time (RT)-PCR to measure mRNA levels of chemokines, chemokine receptors, cytokines and T-reg markers. All the analyses were Bonferroni-corrected. The classical monocyte activation (M1) markers il6, ccl3 were significantly increased in BD as compared with both HC and SCZ patients (P=0.03 and P=0.002; P=0.024 and P=0.021, respectively), whereas markers of alternative (M2) monocyte activation ccl1, ccl22 and il10 were coherently decreased (controls: P=0.01, P=0.001 and P=0.09; SCZ subjects: P=0.02, P=0.05 and P=0.011, respectively). Concerning T-cell markers, BD patients had compared with HC downregulated ccr5 (P=0.02) and upregulated il4 (P=0.04) and compared with both healthy and SCZ individuals downregulated ccl2 (P=0.006 and P=0.003) and tgfβ (P=0.004 and P=0.007, respectively). No significant associations were found between any immune gene expression and clinical variables (prior hospitalizations, Brief Psychiatric Rating Scale, medications' dosages and lifetime administration). Although some markers are expressed by different immune cell types, these findings suggest a coherent increased M1/decrease M2 signature in the peripheral blood of BD patients with potential Th1/Th2 shift. In contrast, all the explored immune marker levels were preserved in SCZ. Further larger studies are needed to investigate the relevance of inflammatory response in BD, trying to correlate it to psychopathology, treatment and outcome measures and, possibly, to brain connectivity.
Collapse
Affiliation(s)
- P Brambilla
- DISM, Inter-University Center for Behavioural Neurosciences (ICBN), University of Udine, Udine, Italy,IRCCS “E. Medea” Scientific Institute, Udine, Italy,DISM, Inter-University Center for Behavioural Neurosciences (ICBN), University of Udine, P.le Kolbe no. 3, Udine 33100, Italy. E-mail:
| | - M Bellani
- Section of Psychiatry and Section of Clinical Psychology, Department of Public Health and Community Medicine, ICBN, University of Verona, Verona, Italy
| | - M Isola
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - A Bergami
- Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - V Marinelli
- Section of Psychiatry and Section of Clinical Psychology, Department of Public Health and Community Medicine, ICBN, University of Verona, Verona, Italy
| | - N Dusi
- Section of Psychiatry and Section of Clinical Psychology, Department of Public Health and Community Medicine, ICBN, University of Verona, Verona, Italy
| | - G Rambaldelli
- Section of Psychiatry and Section of Clinical Psychology, Department of Public Health and Community Medicine, ICBN, University of Verona, Verona, Italy
| | - M Tansella
- Section of Psychiatry and Section of Clinical Psychology, Department of Public Health and Community Medicine, ICBN, University of Verona, Verona, Italy
| | - A Maria Finardi
- Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - G Martino
- Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - C Perlini
- Section of Psychiatry and Section of Clinical Psychology, Department of Public Health and Community Medicine, ICBN, University of Verona, Verona, Italy
| | - R Furlan
- Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
30
|
Abstract
Bipolar disorder (BD) is a psychiatric condition associated with elevated frequency of clinical comorbidities and cognitive impairment. The neurobiology of BD is not completely understood. Recent evidence has implicated immune dysfunction in its physiopathology. Here, we review several data supporting the presence of immunological dysfunction in BD: (i) increased frequency of autoimmune diseases; (ii) distinct immune cell profile; (iii) release of/altered cytokines by stimulated mononuclear cells; (iv) elevated levels of circulating immune markers, and (v) inflammatory changes in the central nervous system. We also discuss the interplay between immunological dysfunction and neuroprogression in BD.
Collapse
Affiliation(s)
- Izabela Guimarães Barbosa
- Laboratório Interdisciplinar de Investigação Médica da Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
31
|
Datson NA, van den Oever JME, Korobko OB, Magarinos AM, de Kloet ER, McEwen BS. Previous history of chronic stress changes the transcriptional response to glucocorticoid challenge in the dentate gyrus region of the male rat hippocampus. Endocrinology 2013; 154:3261-72. [PMID: 23633533 PMCID: PMC3749472 DOI: 10.1210/en.2012-2233] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic stress is a risk factor for several neuropsychiatric diseases, such as depression and psychosis. In response to stress glucocorticoids (GCs) are secreted that bind to mineralocorticoid and glucocorticoid receptors, ligand-activated transcription factors that regulate the transcription of gene networks in the brain necessary for coping with stress, recovery, and adaptation. Chronic stress particularly affects the dentate gyrus (DG) subregion of the hippocampus, causing several functional and morphological changes with consequences for learning and memory, which are likely adaptive but at the same time make DG neurons more vulnerable to subsequent challenges. The aim of this study was to investigate the transcriptional response of DG neurons to a GC challenge in male rats previously exposed to chronic restraint stress (CRS). An intriguing finding of the current study was that having a history of CRS had profound consequences for the subsequent response to acute GC challenge, differentially affecting the expression of several hundreds of genes in the DG compared with challenged nonstressed control animals. This enduring effect of previous stress exposure suggests that epigenetic processes may be involved. In line with this, CRS indeed affected the expression of several genes involved in chromatin structure and epigenetic processes, including Asf1, Ash1l, Hist1h3f, and Tp63. The data presented here indicate that CRS alters the transcriptional response to a subsequent GC injection. We propose that this altered transcriptional potential forms part of the molecular mechanism underlying the enhanced vulnerability for stress-related disorders like depression caused by chronic stress.
Collapse
Affiliation(s)
- Nicole A Datson
- Division of Medical Pharmacology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Seifuddin F, Pirooznia M, Judy JT, Goes FS, Potash JB, Zandi PP. Systematic review of genome-wide gene expression studies of bipolar disorder. BMC Psychiatry 2013; 13:213. [PMID: 23945090 PMCID: PMC3765828 DOI: 10.1186/1471-244x-13-213] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/13/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Numerous genome-wide gene expression studies of bipolar disorder (BP) have been carried out. These studies are heterogeneous, underpowered and use overlapping samples. We conducted a systematic review of these studies to synthesize the current findings. METHODS We identified all genome-wide gene expression studies on BP in humans. We then carried out a quantitative mega-analysis of studies done with post-mortem brain tissue. We obtained raw data from each study and used standardized procedures to process and analyze the data. We then combined the data and conducted three separate mega-analyses on samples from 1) any region of the brain (9 studies); 2) the prefrontal cortex (PFC) (6 studies); and 3) the hippocampus (2 studies). To minimize heterogeneity across studies, we focused primarily on the most numerous, recent and comprehensive studies. RESULTS A total of 30 genome-wide gene expression studies of BP done with blood or brain tissue were identified. We included 10 studies with data on 211 microarrays on 57 unique BP cases and 229 microarrays on 60 unique controls in the quantitative mega-analysis. A total of 382 genes were identified as significantly differentially expressed by the three analyses. Eleven genes survived correction for multiple testing with a q-value < 0.05 in the PFC. Among these were FKBP5 and WFS1, which have been previously implicated in mood disorders. Pathway analyses suggested a role for metallothionein proteins, MAP Kinase phosphotases, and neuropeptides. CONCLUSION We provided an up-to-date summary of results from gene expression studies of the brain in BP. Our analyses focused on the highest quality data available and provided results by brain region so that similarities and differences can be examined relative to disease status. The results are available for closer inspection on-line at Metamoodics [http://metamoodics.igm.jhmi.edu/], where investigators can look up any genes of interest and view the current results in their genomic context and in relation to leading findings from other genomic experiments in bipolar disorder.
Collapse
Affiliation(s)
- Fayaz Seifuddin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Mehdi Pirooznia
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer T Judy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - James B Potash
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
33
|
Kerman IA, Bernard R, Bunney WE, Jones EG, Schatzberg AF, Myers RM, Barchas JD, Akil H, Watson SJ, Thompson RC. Evidence for transcriptional factor dysregulation in the dorsal raphe nucleus of patients with major depressive disorder. Front Neurosci 2012; 6:135. [PMID: 23087602 PMCID: PMC3475304 DOI: 10.3389/fnins.2012.00135] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/30/2012] [Indexed: 12/22/2022] Open
Abstract
Extensive evidence implicates dysfunction in serotonin (5-HT) signaling in the etiology of major depressive disorder (MDD). Dorsal raphe nucleus (DR) is a major source of serotonin in the brain, and previous studies have reported within it alterations in 5-HT-related gene expression, protein levels, receptor binding, and morphological organization in mood disorders. In the present study, we utilized in situ hybridization-guided laser capture microdissection to harvest tissue samples from the middle-caudal subregion of the human DR post-mortem from MDD patients and from psychiatrically normal comparison subjects. Extracted RNA was prepared for gene expression profiling, and subsequent confirmation of select targets with quantitative real-time PCR. Our data indicate expression changes in functional gene families that regulate: (1) cellular stress and energy balance, (2) intracellular signaling and transcriptional regulation, and (3) cell proliferation and connectivity. The greatest changes in expression were observed among transcriptional regulators, including downregulation in the expression of TOB1, EGR1, and NR4A2 and their downstream targets. Previous studies have implicated these gene products in the regulation of functional domains impacted by MDD, including cognitive function, affective regulation, and emotional memory formation. These observations indicate altered function of several transcriptional regulators and their downstream targets, which may lead to the dysregulation of multiple cellular functions that contribute to the pathophysiology of MDD. Future studies will require single cell analyses in the DR to determine potential impact of these changes on its cellular functions and related circuits.
Collapse
Affiliation(s)
- Ilan A Kerman
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Loftis JM, Huckans M, Morasco BJ. Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis 2009; 37:519-33. [PMID: 19944762 DOI: 10.1016/j.nbd.2009.11.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/05/2009] [Accepted: 11/18/2009] [Indexed: 01/16/2023] Open
Abstract
The relationships between immune and neural function are an increasingly important area of study for neuropsychiatric disorders, in particular depression. This is exemplified by the growing number of publications on cytokines and depression during the last 10 years, as compared to earlier decades. This review summarizes the current theories and novel treatment strategies for depression, with a focus on cytokine-induced depression. Neuroimmune mechanisms are now viewed as central to the development of depressive symptoms and emerging evidence is beginning to identify the neural circuits involved in cytokine-induced depression. The current diagnostic categories for depression, as defined by the Diagnostic and Statistical Manual of Mental Disorders, however, are not etiologically or biologically derived, and it has been proposed that "depression", likely reflects multiple pathogeneses leading to varying symptom constellations. As we move toward a better biological understanding of depression-related symptom constellations or syndromes, the term "depression" may prove inadequately broad, and an integration of interdisciplinary literatures will increase in importance. Future research should aim to characterize these depression-related symptom constellations or syndromes better with the goal of optimizing treatment strategies.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research and Development Service, Behavioral Health and Clinical Neurosciences Division, Portland VA Medical Center, 3710 SW US Veterans Hospital Rd., Portland, OR 97239, USA.
| | | | | |
Collapse
|
35
|
Grünblatt E, Monoranu CM, Apfelbacher M, Keller D, Michel TM, Alafuzoff I, Ferrer I, Al-Saraj S, Keyvani K, Schmitt A, Falkai P, Schittenhelm J, McLean C, Halliday GM, Harper C, Deckert J, Roggendorf W, Riederer P. Tryptophan is a marker of human postmortem brain tissue quality. J Neurochem 2009; 110:1400-8. [DOI: 10.1111/j.1471-4159.2009.06233.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Autry AE, Adachi M, Cheng P, Monteggia LM. Gender-specific impact of brain-derived neurotrophic factor signaling on stress-induced depression-like behavior. Biol Psychiatry 2009; 66:84-90. [PMID: 19358977 PMCID: PMC2734472 DOI: 10.1016/j.biopsych.2009.02.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 01/30/2009] [Accepted: 02/03/2009] [Indexed: 11/25/2022]
Abstract
BACKGROUND Major depressive disorder is a leading debilitating disease known to occur at a two-fold higher rate in women than in men. The neurotrophic hypothesis of depression suggests that loss of brain-derived neurotrophic factor (BDNF) may increase susceptibility for depression-like behavior, although direct evidence is lacking. METHODS Using the chronic unpredictable stress (CUS) paradigm, we investigated whether male and female mice with inducible BDNF deletion in the forebrain were more susceptible to depression-related behavior. RESULTS We demonstrate that in certain behavioral measures the loss of BDNF lowers the threshold for female mice studied at random throughout estrus to display anxiogenic and anhedonic behaviors after chronic stress compared with wild-type female mice. However, the loss of BDNF in forebrain does not increase the susceptibility to depression-like behavior in male mice. CONCLUSIONS These gender differences suggest a role for BDNF in mediating some aspects of depression-related behavior in females.
Collapse
|
37
|
A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. Int J Neuropsychopharmacol 2009; 12:561-78. [PMID: 19224657 PMCID: PMC2771334 DOI: 10.1017/s1461145709009924] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A growing body of data suggests that hyperactivation of the immune system has been implicated in the pathophysiology of major depressive disorder (MDD). Several pro-inflammatory cytokines, such as tumour necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1) have been found to be significantly increased in patients with MDD. This review focuses on these two cytokines based on multiple lines of evidence from genetic, animal behaviour, and clinical studies showing that altered levels of serum TNF-alpha and IL-1 are associated with increased risk of depression, cognitive impairments, and reduced responsiveness to treatment. In addition, recent findings have shown that centrally expressed TNF-alpha and IL-1 play a dual role in the regulation of synaptic plasticity. In this paper, we review and critically appraise the mechanisms by which cytokines regulate synaptic and neural plasticity, and their implications for the pathophysiology and treatment of MDD. Finally, we discuss the therapeutic potential of anti-inflammatory-based approaches for treating patients with severe mood disorders. This is a promising field for increasing our understanding of the mechanistic interaction between the immune system, synaptic plasticity, and antidepressants, and for the ultimate development of novel and improved therapeutics for severe mood disorders.
Collapse
|
38
|
Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT, McMahon FJ, Schork NJ, Nurnberger JI, Niculescu AB. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:155-81. [PMID: 19025758 DOI: 10.1002/ajmg.b.30887] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Given the mounting convergent evidence implicating many more genes in complex disorders such as bipolar disorder than the small number identified unambiguously by the first-generation Genome-Wide Association studies (GWAS) to date, there is a strong need for improvements in methodology. One strategy is to include in the next generation GWAS larger numbers of subjects, and/or to pool independent studies into meta-analyses. We propose and provide proof of principle for the use of a complementary approach, convergent functional genomics (CFG), as a way of mining the existing GWAS datasets for signals that are there already, but did not reach significance using a genetics-only approach. With the CFG approach, the integration of genetics with genomics, of human and animal model data, and of multiple independent lines of evidence converging on the same genes offers a way of extracting signal from noise and prioritizing candidates. In essence our analysis is the most comprehensive integration of genetics and functional genomics to date in the field of bipolar disorder, yielding a series of novel (such as Klf12, Aldh1a1, A2bp1, Ak3l1, Rorb, Rora) and previously known (such as Bdnf, Arntl, Gsk3b, Disc1, Nrg1, Htr2a) candidate genes, blood biomarkers, as well as a comprehensive identification of pathways and mechanisms. These become prime targets for hypothesis driven follow-up studies, new drug development and personalized medicine approaches.
Collapse
Affiliation(s)
- H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, Wait R, Dunn MJ, Cotter DR. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2008; 13:1102-17. [PMID: 17938637 DOI: 10.1038/sj.mp.4002098] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is evidence for both similarity and distinction in the presentation and molecular characterization of schizophrenia and bipolar disorder. In this study, we characterized protein abnormalities in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder using two-dimensional gel electrophoresis. Tissue samples were obtained from 35 individuals with schizophrenia, 35 with bipolar disorder and 35 controls. Eleven protein spots in schizophrenia and 48 in bipolar disorder were found to be differentially expressed (P<0.01) in comparison to controls, with 7 additional spots found to be altered in both diseases. Using mass spectrometry, 15 schizophrenia-associated proteins and 51 bipolar disorder-associated proteins were identified. The functional groups most affected included synaptic proteins (7 of the 15) in schizophrenia and metabolic or mitochondrial-associated proteins (25 of the 51) in bipolar disorder. Six of seven synaptic-associated proteins abnormally expressed in bipolar disorder were isoforms of the septin family, while two septin protein spots were also significantly differentially expressed in schizophrenia. This finding represented the largest number of abnormalities from one protein family. All septin protein spots were upregulated in disease in comparison to controls. This study provides further characterization of the synaptic pathology present in schizophrenia and of the metabolic dysfunction observed in bipolar disorder. In addition, our study has provided strong evidence implicating the septin protein family of proteins in psychiatric disorders for the first time.
Collapse
Affiliation(s)
- K Pennington
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Bush AI. N-acetyl cysteine for depressive symptoms in bipolar disorder--a double-blind randomized placebo-controlled trial. Biol Psychiatry 2008; 64:468-75. [PMID: 18534556 DOI: 10.1016/j.biopsych.2008.04.022] [Citation(s) in RCA: 360] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 04/11/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND Treatment-resistant subthreshold depression is a major problem in bipolar disorder. Both depression and bipolar disorder are complicated by glutathione depletion. We hypothesized that treatment with N-acetyl cysteine (NAC), a safe, orally bioavailable precursor of glutathione, may improve the depressive component of bipolar disorder. METHODS A randomized, double-blind, multicenter, placebo-controlled study of individuals (n = 75) with bipolar disorder in the maintenance phase treated with NAC (1 g twice daily) adjunctive to usual medication over 24 weeks, with a 4-week washout. The two primary outcomes were the Montgomery Asberg Depression Rating Scale (MADRS) and time to a mood episode. Secondary outcomes included the Bipolar Depression Rating Scale and 11 other ratings of clinical status, quality of life, and functioning. RESULTS NAC treatment caused a significant improvement on the MADRS (least squares mean difference [95% confidence interval]: -8.05 [-13.16, -2.95], p = .002) and most secondary scales at end point. Benefit was evident by 8 weeks on the Global Assessment of Functioning Scale and Social and Occupational Functioning Assessment Scale and at 20 weeks on the MADRS. Improvements were lost after washout. There was no effect of NAC on time to a mood episode (log-rank test: p = .968) and no significant between-group differences in adverse events. Effect sizes at end point were medium to high for improvements in MADRS and 9 of the 12 secondary readouts. CONCLUSIONS NAC appears a safe and effective augmentation strategy for depressive symptoms in bipolar disorder.
Collapse
Affiliation(s)
- Michael Berk
- The Mental Health Research Institute of Victoria, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Rook GAW, Lowry CA. The hygiene hypothesis and psychiatric disorders. Trends Immunol 2008; 29:150-8. [PMID: 18328783 DOI: 10.1016/j.it.2008.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 12/11/2022]
Abstract
The hygiene hypothesis proposes that several chronic inflammatory disorders (allergies, autoimmunity, inflammatory bowel disease) are increasing in prevalence in developed countries because a changing microbial environment has perturbed immunoregulatory circuits which normally terminate inflammatory responses. Some stress-related psychiatric disorders, particularly depression and anxiety, are associated with markers of ongoing inflammation, even without any accompanying inflammatory disorder. Moreover, pro-inflammatory cytokines can induce depression, which is commonly seen in patients treated with interleukin-2 or interferon-alpha. Therefore, some psychiatric disorders in developed countries might be attributable to failure of immunoregulatory circuits to terminate ongoing inflammatory responses. This is discussed in relation to the effects of the immune system on a specific group of brain serotonergic neurons involved in the pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Infectious Diseases and International Health, Windeyer Institute of Medical Sciences, Royal Free and University College Medical School, 46 Cleveland Street, London W1T 4JF, UK.
| | | |
Collapse
|
42
|
Elashoff M, Higgs BW, Yolken RH, Knable MB, Weis S, Webster MJ, Barci BM, Torrey EF. Meta-analysis of 12 genomic studies in bipolar disorder. J Mol Neurosci 2008; 31:221-43. [PMID: 17726228 DOI: 10.1385/jmn:31:03:221] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Multiple genome-wide expression studies of bipolar disorder have been published. However, a unified picture of the genomic basis for the disease has not yet emerged. Genes identified in one study often fail to be identified in other studies, prompting the question of whether microarray studies in the brain are inherently unreliable. To answer this question, we performed a meta-analysis of 12 microarray studies of bipolar disorder. These studies included >500 individual array samples, on a range of microarray platforms and brain regions. Although we confirmed that individual studies showed some differences in results, clear and striking regulation patterns emerged across the studies. These patterns were found at the individual gene level, at the functional level, and at the broader pathway level. The patterns were generally found to be reproducible across platform and region, and were highly statistically significant. We show that the seeming discordance between the studies was primarily a result of the following factors, which are also typical for other brain array studies: (1) Sample sizes were, in retrospect, too small; (2) criteria were at once too restrictive (generally focusing on fold changes >1.5) and too broad (generally using p < 0.05 or p < 0.01 as criteria for significance); and (3) statistical adjustments were not consistently applied for confounders. In addition to these general conclusions, we also summarize the primary biological findings of the meta-analysis, focusing on areas that confirm previous research and also on novel findings.
Collapse
|
43
|
Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP. Mitochondrial involvement in psychiatric disorders. Ann Med 2008; 40:281-95. [PMID: 18428021 PMCID: PMC3098560 DOI: 10.1080/07853890801923753] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent findings of mitochondrial abnormalities in brains from subjects with neurological disorders have led to a renewed search for mitochondrial abnormalities in psychiatric disorders. A growing body of evidence suggests that there is mitochondrial dysfunction in schizophrenia, bipolar disorder, and major depressive disorder, including evidence from electron microscopy, imaging, gene expression, genotyping, and sequencing studies. Specific evidence of dysfunction such as increased common deletion and decreased gene expression in mitochondria in psychiatric illnesses suggests that direct examination of mitochondrial DNA from postmortem brain cells may provide further details of mitochondrial alterations in psychiatric disorders.
Collapse
Affiliation(s)
- Ling Shao
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kato T, Kakiuchi C, Iwamoto K. Comprehensive gene expression analysis in bipolar disorder. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2007; 52:763-71. [PMID: 18186176 DOI: 10.1177/070674370705201203] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review recent findings by DNA microarray in bipolar disorder (BD). METHOD A literature search was performed. RESULTS Comprehensive gene expression analysis in the brain, peripheral blood cells, and olfactory neuroepithelium would be a promising strategy for the research of BD. To date, alterations in glutamate receptors (GR), mitochondria-related genes, chaperone genes, oligodendrocyte genes, and markers of gamma amino butyric acidergic (GABAergic) neurons in postmortem brains are replicated by several different strategies. However, alterations in mitochondria-related genes are associated with agonal factors, sample pH, and effects of drugs. Analysis of blood cells showed altered endoplasmic reticulum stress pathway and other molecular cascades. Analysis of olfactory epithelium showed altered expression of genes associated with apoptosis. CONCLUSIONS These findings warrant that comprehensive gene expression analysis by DNA microarray will be useful to identify the molecular cascades responsible for BD.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | | | | |
Collapse
|
45
|
Wang JF. Defects of mitochondrial electron transport chain in bipolar disorder: implications for mood-stabilizing treatment. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2007; 52:753-62. [PMID: 18186175 DOI: 10.1177/070674370705201202] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Converging lines of evidence indicate that defects in the mitochondrial electron transport chain (ETC) are associated with bipolar disorder (BD), and that mood-stabilizing drugs produce neuroprotective effects. Our objective is to review the most recent findings regarding this research. METHOD We searched MEDLINE and have reviewed here the most recently published articles. RESULTS There are deletions, mutation, and decreased expression of mitochondrial ETC complexes in BD. Because ETC is a major source of reactive oxygen species, these factors, along with decreased expression of antioxidant enzymes in BD, suggest the presence of oxidative damage in this disorder. Numerous recent studies have shown that mood-stabilizing drugs produce neuroprotective effects against oxidative damage and increase expression and activities of endogenous antioxidant enzymes in the rat brain. CONCLUSION These findings indicate that the process of oxidative damage could be a significant therapeutic target for the treatment of BD with mood-stabilizing drugs.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Department of Psychiatry, University of British Columbia, Vancouver.
| |
Collapse
|
46
|
Matigian N, Windus L, Smith H, Filippich C, Pantelis C, McGrath J, Mowry B, Hayward N. Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry 2007; 12:815-25. [PMID: 17440432 DOI: 10.1038/sj.mp.4001998] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To identify genes dysregulated in bipolar disorder (BD1), we carried out global gene expression profiling using whole-genome microarrays. To minimize genetic variation in gene expression levels between cases and controls, we compared expression profiles in lymphoblastoid cell lines from monozygotic twin pairs discordant for the disease. We identified 82 genes that were differentially expressed by >or=1.3-fold in three BD1 cases compared to their co-twins, and which were statistically (P<or=0.05) differentially expressed between the groups of BD1 cases and controls. Using quantitative reverse transcriptase-polymerase chain reaction, we confirmed the differential expression of some of these genes, including: KCNK1, MAL, PFN2, TCF7, PGK1 and PI4KCB, in at least two of the twin pairs. In contrast to the findings of a previous study by Kakiuchi and colleagues with similar discordant BD1 twin design, our data do not support the dysregulation of XBP1 and HSPA5. From pathway and gene ontology analysis, we identified upregulation of the WNT signalling pathway and the biological process of apoptosis. The differentially regulated genes and pathways identified in this study may provide insights into the biology of BD1.
Collapse
Affiliation(s)
- N Matigian
- Queensland Centre for Mental Health Research, Herston, QLD, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The study of the profile of gene expression in a cell or tissue at a particular moment gives an insight into the plans of the cell for protein synthesis. Recent technological advances make it possible to analyze the expression of the entire genome in a single experiment. These "gene expression assays" complement or replace previous assays which measured the gene expression of only one gene, or a select group of genes. Within this chapter we outline the development of the gene expression assay and provide examples of the wide range of disciplines in which it is used. An overview of the current technologies is given, and includes an introduction to laser capture microdissection and linear amplification of RNA, both of which have extended the application of gene expression assays. Illustrative examples in the field of cancer and neuroscience highlight the scientific achievements. This technology has made in understanding the pathogenesis of diseases, including breast cancer, Huntington's disease, and schizophrenia. With recent advances including exon arrays to investigate alternative splicing, tiling arrays to investigate novel transcription start sites, and on-chip chromatin immunoprecipitation to investigate DNA-protein interactions, the future of gene expression assays is set to further our understanding of the complexities of gene expression.
Collapse
Affiliation(s)
- Janine Kirby
- Academic Neurology Unit, Section of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | | | | | | |
Collapse
|
48
|
Sequeira A, Turecki G. Genome Wide Gene Expression Studies in Mood Disorders. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2006; 10:444-54. [PMID: 17233556 DOI: 10.1089/omi.2006.10.444] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microarrays offer the possibility of screening in parallel virtually all genes expressed in a given tissue or to study the molecular signature associated with available treatments. As such, this technology has been increasingly used to investigate multifactorial and polygenic complex traits such as psychiatric disorders, in particular, schizophrenia and mood disorders. This review focuses on microarray studies investigating mood disorders. Study designs, methodologic approaches and limitations, subsequent follow-up strategies, and confirmation of results are discussed. Despite the apparent disparate and not always concordant results, it appears evident that this technology is a powerful and inevitable approach for the study of mood disorders, especially when phenotype-specific confounders are properly accounted for. Thus, alterations of mitochondrial, oligodendrocyte, and myelin related genes in bipolar disorder, of signaling and olidendroglial related genes in depression, and of GABA-glutamate related genes in depression and suicide have been observed and have confirmed new avenues for the study and the treatment of these complex disorders.
Collapse
Affiliation(s)
- Adolfo Sequeira
- McGill Group for Suicide Studies, Douglas Hospital, McGill University, Verdun, Quebec, Canada
| | | |
Collapse
|
49
|
Rodd ZA, Bertsch BA, Strother WN, Le-Niculescu H, Balaraman Y, Hayden E, Jerome RE, Lumeng L, Nurnberger JI, Edenberg HJ, McBride WJ, Niculescu AB. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. THE PHARMACOGENOMICS JOURNAL 2006; 7:222-56. [PMID: 17033615 DOI: 10.1038/sj.tpj.6500420] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We describe a comprehensive translational approach for identifying candidate genes for alcoholism. The approach relies on the cross-matching of animal model brain gene expression data with human genetic linkage data, as well as human tissue data and biological roles data, an approach termed convergent functional genomics. An analysis of three animal model paradigms, based on inbred alcohol-preferring (iP) and alcohol-non-preferring (iNP) rats, and their response to treatments with alcohol, was used. A comprehensive analysis of microarray gene expression data from five key brain regions (frontal cortex, amygdala, caudate-putamen, nucleus accumbens and hippocampus) was carried out. The Bayesian-like integration of multiple independent lines of evidence, each by itself lacking sufficient discriminatory power, led to the identification of high probability candidate genes, pathways and mechanisms for alcoholism. These data reveal that alcohol has pleiotropic effects on multiple systems, which may explain the diverse neuropsychiatric and medical pathology in alcoholism. Some of the pathways identified suggest avenues for pharmacotherapy of alcoholism with existing agents, such as angiotensin-converting enzyme (ACE) inhibitors. Experiments we carried out in alcohol-preferring rats with an ACE inhibitor show a marked modulation of alcohol intake. Other pathways are new potential targets for drug development. The emergent overall picture is that physical and physiological robustness may permit alcohol-preferring individuals to withstand the aversive effects of alcohol. In conjunction with a higher reactivity to its rewarding effects, they may able to ingest enough of this nonspecific drug for a strong hedonic and addictive effect to occur.
Collapse
Affiliation(s)
- Z A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S. Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry 2006; 11:965-78. [PMID: 16894394 DOI: 10.1038/sj.mp.4001875] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology to determine the expression of approximately 22,000 mRNA transcripts in post-mortem tissue from two brain regions in patients with bipolar disorder and matched healthy controls. Dorsolateral prefrontal cortex tissue from a cohort of 70 subjects and orbitofrontal cortex tissue from a separate cohort of 30 subjects was investigated. The final analysis included 30 bipolar and 31 control subjects for the dorsolateral prefrontal cortex and 10 bipolar and 11 control subjects for the orbitofrontal cortex. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing. In the orbitofrontal cortex, 393 differentially expressed transcripts were identified by microarray analysis and a representative subset was validated by quantitative real-time PCR. Pathway analysis revealed significant upregulation of genes involved in G-protein coupled receptor signalling and response to stimulus (in particular the immune response), while genes relating to the ubiquitin cycle and intracellular transport showed coordinated downregulation in bipolar disorder. Additionally, several genes involved in synaptic function were significantly downregulated in bipolar disorder. No significant changes in gene expression were observed in the dorsolateral prefrontal cortex using microarray analysis or quantitative real-time PCR. Our findings implicate the orbitofrontal cortex as a region prominently involved in bipolar disorder and indicate that diverse processes are affected. Overall, our results suggest that dysregulation of the ubiquitin pathway and synaptic function may be central to the disease process.
Collapse
Affiliation(s)
- M M Ryan
- Cambridge Centre for Neuropsychiatric Research, Institute of Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|