1
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
2
|
Nianpanich S, Rodsiri R, Islamie R, Limpikirati P, Thanusuwannasak T, Vajragupta O, Kanasuwan A, Sarasamkan J. Evaluation of (S)-T1 and (S)-T2 ligands targeting α3β4 nAChR as potential nicotine addiction pharmacotherapy. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06675-w. [PMID: 39177808 DOI: 10.1007/s00213-024-06675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Substance use disorders (SUDs) represent a significant global health concern, demanding the development of effective pharmacological treatments. To address this, an investigation was conducted to examine the anti-addictive properties of two compounds, (S)-T1 and (S)-T2, which specifically target the α3β4 nicotinic acetylcholine receptor (nAChR). METHODS The effects of (S)-T1 and (S)-T2 on nicotine-induced conditioned place preference (CPP), locomotor activity and dopamine levels in particular brain regions associated to addiction were investigated and compared in male C57BL/6N mice. RESULTS The results demonstrate that neither (S)-T1 nor (S)-T2 induced place conditioning or conditioned place aversion (CPA), suggesting the absence of rewarding or aversive effects. Both compounds significantly attenuated nicotine-induced CPP, with (S)-T1 exhibiting a dose-dependent effect. Furthermore, the co-administration of (S)-T2 (10 mg/kg) with nicotine markedly reduced locomotor activity compared to nicotine treatment alone. Additionally, dopamine analysis revealed that nicotine increased dopamine levels in the nucleus accumbens (NAc) and dorsal striatum, whereas the co-administration of (S)-T1 (1, 3, and 10 mg/kg) and (S)-T2 (10 mg/kg) significantly decreased dopamine levels in these brain regions. No significant effects were observed in the prefrontal cortex (PFC). CONCLUSIONS These findings suggest that (S)-T1 and (S)-T2 hold promise for treating nicotine addiction by attenuating nicotine-induced CPP and modulating dopamine release in key reward-related brain regions. Further research is needed to gain insights into the underlying mechanisms behind their anti-addictive effects and substantiate their potential for treating nicotine addiction.
Collapse
Affiliation(s)
- Saranda Nianpanich
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ratchanee Rodsiri
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ridho Islamie
- Department of Clinical and Community Pharmacy, Faculty of Pharmacy, University of Surabaya, Surabaya, 60293, Indonesia
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanundorn Thanusuwannasak
- Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Opa Vajragupta
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apinan Kanasuwan
- National Cyclotron and PET Centre, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Jiradanai Sarasamkan
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Bekci E, Gokmen RC, Kanit L, Gozen O, Balkan B, Koylu EO, Keser A. Enhanced Novel Object Recognition and Spatial Memory in Rats Selectively Bred for High Nicotine Preference. Brain Sci 2024; 14:427. [PMID: 38790406 PMCID: PMC11118842 DOI: 10.3390/brainsci14050427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
This study examined the influence of genetic background on cognitive performance in a selectively bred high nicotine-preferring (NP) rat line. Using the novel object recognition (NOR), novel location recognition (NLR), and Morris water maze (MWM) tests, we evaluated object memory, spatial memory, and spatial navigation in nicotine-naive NP rats compared to controls. Our results demonstrate that in the NOR test, both male and female NP rats spent more time exploring the novel object (higher discrimination index) compared to sex-matched controls. In the NLR, the discrimination index differed significantly from zero chance (no preference) in both NP males and females but not in controls, indicating enhanced spatial memory in the NP line. During MWM acquisition, the NP groups and control males took a shorter path to reach the platform compared to control females. On the probe trial, the distance traveled in the target quadrant was longer for NP males and females compared to their respective controls, suggesting enhanced spatial navigation and learning in the NP rats. The interesting preference for novel objects and locations displayed by NP rats may indicate a potential novelty-seeking phenotype in this line. These results highlight the complex interplay between genetic factors, cognitive function, and nicotine preference.
Collapse
Affiliation(s)
- Eren Bekci
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
| | - Ramazan Can Gokmen
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Lutfiye Kanit
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Oguz Gozen
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Burcu Balkan
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Ersin O. Koylu
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Aysegul Keser
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| |
Collapse
|
4
|
Wang X, Chen Y, Dong J, Ge J, Liu X, Liu J. Neurobiology of Stress-Induced Nicotine Relapse. Int J Mol Sci 2024; 25:1482. [PMID: 38338760 PMCID: PMC10855331 DOI: 10.3390/ijms25031482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Tobacco smoking is the leading cause of preventable death and disease. Although there are some FAD-approved medicines for controlling smoking, the relapse rate remains very high. Among the factors that could induce nicotine relapse, stress might be the most important one. In the last decades, preclinical studies have generated many new findings that lead to a better understanding of stress-induced relapse of nicotine-seeking. Several molecules such as α3β4 nicotinic acetylcholine receptor, α2-adrenergic receptors, cannabinoid receptor 1, trace amine-associated receptor 1, and neuropeptide systems (corticotropin-releasing factor and its receptors, dynorphine and kappa opioid receptor) have been linked to stress-induced nicotine relapse. In this review, we discuss recent advances in the neurobiology, treatment targets, and potential therapeutics of stress-induced nicotine relapse. We also discuss some factors that may influence stress-induced nicotine relapse and that should be considered in future studies. In the final section, a perspective on some research directions is provided. Further investigation on the neurobiology of stress-induced nicotine relapse will shed light on the development of new medicines for controlling smoking and will help us understand the interactions between the stress and reward systems in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianfeng Liu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China (Y.C.); (J.D.)
| |
Collapse
|
5
|
Mineur YS, Picciotto MR. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. J Neurochem 2023; 167:3-15. [PMID: 37621094 PMCID: PMC10616967 DOI: 10.1111/jnc.15943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The neurotransmitter acetylcholine (ACh) plays a central role in the regulation of multiple cognitive and behavioral processes, including attention, learning, memory, motivation, anxiety, mood, appetite, and reward. As a result, understanding ACh dynamics in the brain is essential for elucidating the neural mechanisms underlying these processes. In vivo measurements of ACh in the brain have been challenging because of the low concentrations and rapid turnover of this neurotransmitter. Here, we review a number of techniques that have been developed to measure ACh levels in the brain in vivo. We follow this with a deeper focus on use of genetically encoded fluorescent sensors coupled with fiber photometry, an accessible technique that can be used to monitor neurotransmitter release with high temporal resolution and specificity. We conclude with a discussion of methods for analyzing fiber photometry data and their respective advantages and disadvantages. The development of genetically encoded fluorescent ACh sensors is revolutionizing the field of cholinergic signaling, allowing temporally precise measurement of ACh release in awake, behaving animals. Use of these sensors has already begun to contribute to a mechanistic understanding of cholinergic modulation of complex behaviors.
Collapse
Affiliation(s)
- Yann S. Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
6
|
Bye LJ, Finol-Urdaneta RK, Tae HS, Adams DJ. Nicotinic acetylcholine receptors: Key targets for attenuating neurodegenerative diseases. Int J Biochem Cell Biol 2023; 157:106387. [PMID: 36754161 DOI: 10.1016/j.biocel.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are master regulators of immune functions via the cholinergic anti-inflammatory pathway and are expressed in microglia, the brain's resident immune cells. There is an extensive dialogue between the neurons and the glial cells around them from which microglia are tasked with monitoring, nurturing, and defending their microenvironment. Dysregulation of any of these processes can have devastating and long-lasting consequences involving microglia-mediated neuroinflammation associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, amongst others. Disease-associated microglia acquire a distinguishing phenotype that emphasizes scavenging and defence functions while nurturing and repairing functions become muted. Attempts to resolve this critical imbalance remain a key focus of research. Furthermore, cholinergic modulation of neuroinflammation represents a promising avenue for treatment.
Collapse
Affiliation(s)
- Lydia J Bye
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia.
| |
Collapse
|
7
|
Straub CJ, Rusali LE, Kremiller KM, Riley AP. What We Have Gained from Ibogaine: α3β4 Nicotinic Acetylcholine Receptor Inhibitors as Treatments for Substance Use Disorders. J Med Chem 2023; 66:107-121. [PMID: 36440853 PMCID: PMC10034762 DOI: 10.1021/acs.jmedchem.2c01562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For decades, ibogaine─the main psychoactive alkaloid found in Tabernanthe iboga─has been investigated as a possible treatment for substance use disorders (SUDs) due to its purported ability to interrupt the addictive properties of multiple drugs of abuse. Of the numerous pharmacological actions of ibogaine and its derivatives, the inhibition of α3β4 nicotinic acetylcholine receptors (nAChRs), represents a probable mechanism of action for their apparent anti-addictive activity. In this Perspective, we examine several classes of compounds that have been discovered and developed to target α3β4 nAChRs. Specifically, by focusing on compounds that have proven efficacious in pre-clinical models of drug abuse and have been evaluated clinically, we highlight the promising potential of the α3β4 nAChRs as viable targets to treat a wide array of SUDs. Additionally, we discuss the challenges faced by the existing classes of α3β4 nAChR ligands that must be overcome to develop them into therapeutic treatments.
Collapse
Affiliation(s)
- Carolyn J Straub
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lisa E Rusali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Kyle M Kremiller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Andrew P Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
8
|
Keeley RJ, Prillaman ME, Scarlata M, Vrana A, Tsai PJ, Gomez JL, Bonaventura J, Lu H, Michaelides M, Stein EA. Adolescent nicotine administration increases nicotinic acetylcholine receptor binding and functional connectivity in specific cortico-striatal-thalamic circuits. Brain Commun 2022; 4:fcac291. [PMID: 36440101 PMCID: PMC9683397 DOI: 10.1093/braincomms/fcac291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/05/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2023] Open
Abstract
Nicotine exposure is associated with regional changes in brain nicotinic acetylcholine receptors subtype expression patterns as a function of dose and age at the time of exposure. Moreover, nicotine dependence is associated with changes in brain circuit functional connectivity, but the relationship between such connectivity and concomitant regional distribution changes in nicotinic acetylcholine receptor subtypes following nicotine exposure is not understood. Although smoking typically begins in adolescence, developmental changes in brain circuits and nicotinic acetylcholine receptors following chronic nicotine exposure remain minimally investigated. Here, we combined in vitro nicotinic acetylcholine receptor autoradiography with resting state functional magnetic resonance imaging to measure changes in [3H]nicotine binding and α4ß2 subtype nicotinic acetylcholine receptor binding and circuit connectivity across the brain in adolescent (postnatal Day 33) and adult (postnatal Day 68) rats exposed to 6 weeks of nicotine administration (0, 1.2 and 4.8 mg/kg/day). Chronic nicotine exposure increased nicotinic acetylcholine receptor levels and induced discrete, developmental stage changes in regional nicotinic acetylcholine receptor subtype distribution. These effects were most pronounced in striatal, thalamic and cortical regions when nicotine was administered during adolescence but not in adults. Using these regional receptor changes as seeds, resting state functional magnetic resonance imaging identified dysregulations in cortico-striatal-thalamic-cortical circuits that were also dysregulated following adolescent nicotine exposure. Thus, nicotine-induced increases in cortical, striatal and thalamic nicotinic acetylcholine receptors during adolescence modifies processing and brain circuits within cortico-striatal-thalamic-cortical loops, which are known to be crucial for multisensory integration, action selection and motor output, and may alter the developmental trajectory of the adolescent brain. This unique multimodal study significantly advances our understanding of nicotine dependence and its effects on the adolescent brain.
Collapse
Affiliation(s)
- Robin J Keeley
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - McKenzie E Prillaman
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Miranda Scarlata
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Antonia Vrana
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Pei-Jung Tsai
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Juan L Gomez
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Jordi Bonaventura
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
- Departament de Patologia Terapèutica Experimental, Institut de Neurociènes, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
| | - Hanbing Lu
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael Michaelides
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Elliot A Stein
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
10
|
Synthesis and evaluation of disulfide-rich cyclic α-conotoxin [S9A]TxID analogues as novel α3β4 nAChR antagonists. Bioorg Chem 2021; 112:104875. [PMID: 33823404 DOI: 10.1016/j.bioorg.2021.104875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/30/2022]
Abstract
Head-to-tail cyclization is an effective strategy to improve the biological stability of peptides. The α-conotoxin [S9A]TxID is a peptide that inhibits α3β4 nAChR with high activity and selectivity. Herein, we established a method for cyclizing and oxidative folding of [S9A]TxID, and six cyclic analogues of [S9A]TxID were chemically synthesized with various linker lengths. We used the electrophysiology assay to measure activity values of these cyclic analogues, and obtained the most potent analogue c[S9A]TxID-6, which was more stable than native [S9A]TxID against proteinase K.
Collapse
|
11
|
Food Addiction and Tobacco Use Disorder: Common Liability and Shared Mechanisms. Nutrients 2020; 12:nu12123834. [PMID: 33334010 PMCID: PMC7765398 DOI: 10.3390/nu12123834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
As food addiction is being more commonly recognized within the scientific community, parallels can be drawn between it and other addictive substance use disorders, including tobacco use disorder. Given that both unhealthy diets and smoking are leading risk factors for disability and death, a greater understanding of how food addiction and tobacco use disorder overlap with one another is necessary. This narrative review aimed to highlight literature that investigated prevalence, biology, psychology, and treatment options of food addiction and tobacco use disorder. Published studies up to August 2020 and written in English were included. Using a biopsychosocial lens, each disorder was assessed together and separately, as there is emerging evidence that the two disorders can develop concurrently or sequentially within individuals. Commonalities include but are not limited to the dopaminergic neurocircuitry, gut microbiota, childhood adversity, and attachment insecurity. In addition, the authors conducted a feasibility study with the purpose of examining the association between food addiction symptoms and tobacco use disorder among individuals seeking tobacco use disorder treatment. To inform future treatment approaches, more research is necessary to identify and understand the overlap between the two disorders.
Collapse
|
12
|
Cano M, Reynaga DD, Belluzzi JD, Loughlin SE, Leslie F. Chronic exposure to cigarette smoke extract upregulates nicotinic receptor binding in adult and adolescent rats. Neuropharmacology 2020; 181:108308. [PMID: 32950561 PMCID: PMC7655523 DOI: 10.1016/j.neuropharm.2020.108308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/23/2023]
Abstract
Heavy smokers display increased radioligand binding of nicotinic acetylcholine receptors (nAChRs). This "upregulation" is thought to be a contributing factor to tobacco dependence. Although cigarette smoke contains thousands of constituents that can contribute to nicotine dependence, it is not well understood whether non-nicotine constituents contribute to nAChR upregulation. In this study, we used an aqueous cigarette smoke extract (CSE), which contains nicotine and soluble constituents of cigarette smoke, to induce nAChR upregulation in adult and adolescent rats. To do this, male rats were exposed to nicotine or CSE (1.5 mg/kg/day nicotine equivalent, intravenously) daily for ten days. This experimental procedure produces equivalent levels of brain and plasma nicotine in nicotine- and CSE-treated animals. We then assessed nAChR upregulation using quantitative autoradiography to measure changes in three nAChR types. Adolescents were found to have consistently greater α4β2 nAChR binding than adults in many brain regions. Chronic nicotine exposure did not significantly increase nAChR binding in any brain region at either age. Chronic CSE exposure selectively increased α4β2 nAChR binding in adolescent medial amygdala and α7 binding in adolescent central amygdala and lateral hypothalamus. CSE also increased α3β4 nAChR binding in the medial habenula and interpeduncular nucleus, and α7 binding in the medial amygdala, independent of age. Overall, this work provides evidence that cigarette smoke constituents influence nAChR upregulation in an age-, nAChR type- and region-dependent manner.
Collapse
Affiliation(s)
- Michelle Cano
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| | - Daisy D Reynaga
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - James D Belluzzi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Sandra E Loughlin
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Frances Leslie
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
13
|
Zhao H, Jin T, Cheng X, Qin J, Zhang L, He H, Xue J, Jin G. GAS5 which is regulated by Lhx8 promotes the recovery of learning and memory in rats with cholinergic nerve injury. Life Sci 2020; 260:118388. [PMID: 32890602 DOI: 10.1016/j.lfs.2020.118388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/03/2020] [Accepted: 08/30/2020] [Indexed: 01/24/2023]
Abstract
Damage to the cholinergic system in central nervous system injuries such as traumatic brain injury (TBI) and neurodegenerative diseases leads to impaired learning and cognition. Neural stem cells (NSCs) have self-renewal capacity and multi-directional differentiation potential and considered the best source of cells for cell replacement therapy. However, how to promote the differentiation of NSCs into neurons is a major challenge in current research. Lhx8 has a specific effect on the development of the cholinergic nervous system, but its exact function is unclear. In this study, we found that Lhx8 could regulate the expression of Growth arrest-specific (GAS)5 which has been implicated in cancer but was less studied in the nervous system. Additionally, results from PCR, fluorescence in situ hybridization, and immunocytochemical analyses showed that GAS5 is mainly expressed in the cytoplasm of hippocampal neural stems cells and promotes their differentiation into neurons; the Morris water maze test demonstrated that GAS5 overexpression restored learning and memory in rats with cholinergic injury. These findings indicate that GAS5, which is regulated by Lhx8, improve brain function following cholinergic nerve injury.
Collapse
Affiliation(s)
- Heyan Zhao
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Tianren Jin
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Jianbing Qin
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Lei Zhang
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Hui He
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Jianhua Xue
- Departments of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Nantong, China
| | - Guohua Jin
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
14
|
Icick R, Forget B, Cloëz-Tayarani I, Pons S, Maskos U, Besson M. Genetic susceptibility to nicotine addiction: Advances and shortcomings in our understanding of the CHRNA5/A3/B4 gene cluster contribution. Neuropharmacology 2020; 177:108234. [PMID: 32738310 DOI: 10.1016/j.neuropharm.2020.108234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Over the last decade, robust human genetic findings have been instrumental in elucidating the heritable basis of nicotine addiction (NA). They highlight coding and synonymous polymorphisms in a cluster on chromosome 15, encompassing the CHRNA5, CHRNA3 and CHRNB4 genes, coding for three subunits of the nicotinic acetylcholine receptor (nAChR). They have inspired an important number of preclinical studies, and will hopefully lead to the definition of novel drug targets for treating NA. Here, we review these candidate gene and genome-wide association studies (GWAS) and their direct implication in human brain function and NA-related phenotypes. We continue with a description of preclinical work in transgenic rodents that has led to a mechanistic understanding of several of the genetic hits. We also highlight important issues with regards to CHRNA3 and CHRNB4 where we are still lacking a dissection of their role in NA, including even in preclinical models. We further emphasize the use of human induced pluripotent stem cell-derived models for the analysis of synonymous and intronic variants on a human genomic background. Finally, we indicate potential avenues to further our understanding of the role of this human genetic variation. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Romain Icick
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis, Lariboisière, Fernand Widal, Assistance-Publique Hôpitaux de Paris, Paris, F-75010, France; INSERM UMR-S1144, Paris, F-75006, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Benoît Forget
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; Génétique Humaine et Fonctions Cognitives, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Isabelle Cloëz-Tayarani
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Stéphanie Pons
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Morgane Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France.
| |
Collapse
|
15
|
Richardson BD, Sottile SY, Caspary DM. Mechanisms of GABAergic and cholinergic neurotransmission in auditory thalamus: Impact of aging. Hear Res 2020; 402:108003. [PMID: 32703637 DOI: 10.1016/j.heares.2020.108003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022]
Abstract
Age-related hearing loss is a complex disorder affecting a majority of the elderly population. As people age, speech understanding becomes a challenge especially in complex acoustic settings and negatively impacts the ability to accurately analyze the auditory scene. This is in part due to an inability to focus auditory attention on a particular stimulus source while simultaneously filtering out other sound stimuli. The present review examines the impact of aging on two neurotransmitter systems involved in accurate temporal processing and auditory gating in auditory thalamus (medial geniculate body; MGB), a critical brain region involved in the coding and filtering of auditory information. The inhibitory neurotransmitter GABA and its synaptic receptors (GABAARs) are key to maintaining accurate temporal coding of complex sounds, such as speech, throughout the central auditory system. In the MGB, synaptic and extrasynaptic GABAARs mediate fast phasic and slow tonic inhibition respectively, which in turn regulate MGB neuron excitability, firing modes, and engage thalamocortical oscillations that shape coding and gating of acoustic content. Acoustic coding properties of MGB neurons are further modulated through activation of tegmental cholinergic afferents that project to MGB to potentially modulate attention and help to disambiguate difficult to understand or novel sounds. Acetylcholine is released onto MGB neurons and presynaptic terminals in MGB activating neuronal nicotinic and muscarinic acetylcholine receptors (nAChRs, mAChRs) at a subset of MGB afferents to optimize top-down and bottom-up information flow. Both GABAergic and cholinergic neurotransmission is significantly altered with aging and this review will detail how age-related changes in these circuits within the MGB may impact coding of acoustic stimuli.
Collapse
Affiliation(s)
- B D Richardson
- WWAMI Medical Education, University of Idaho, Moscow, ID, 83844, USA; Biological Engineering, University of Idaho, Moscow, ID, 83844, USA
| | - S Y Sottile
- Center for Clinical Research Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - D M Caspary
- Department of Pharmacology Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
16
|
Ma ZG, Jiang N, Huang YB, Ma XK, Brek Eaton J, Gao M, Chang YC, Lukas RJ, Whiteaker P, Neisewander J, Wu J. Cocaine potently blocks neuronal α 3β 4 nicotinic acetylcholine receptors in SH-SY5Y cells. Acta Pharmacol Sin 2020; 41:163-172. [PMID: 31399700 PMCID: PMC7471406 DOI: 10.1038/s41401-019-0276-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/23/2019] [Indexed: 02/05/2023] Open
Abstract
Cocaine is one of the most abused illicit drugs worldwide. It is well known that the dopamine (DA) transporter is its major target; but cocaine also acts on other targets including nicotinic acetylcholine receptors (nAChRs). In this study, we investigated the effects of cocaine on a special subtype of neuronal nAChR, α3β4-nAChR expressed in native SH-SY5Y cells. α3β4-nAChR-mediated currents were recorded using whole-cell recordings. Drugs were applied using a computer-controlled U-tube drug perfusion system. We showed that bath application of nicotine induced inward currents in a concentration-dependent manner with an EC50 value of 20 µM. Pre-treatment with cocaine concentration-dependently inhibited nicotine-induced current with an IC50 of 1.5 μM. Kinetic analysis showed that cocaine accelerated α3β4-nAChR desensitization, which caused a reduction of the amplitude of nicotine-induced currents. Co-application of nicotine and cocaine (1.5 μM) depressed the maximum response on the nicotine concentration-response curve without changing the EC50 value, suggesting a non-competitive mechanism. The cocaine-induced inhibition of nicotine response exhibited both voltage- and use-dependence, suggesting an open-channel blocking mechanism. Furthermore, intracellular application of GDP-βS (via recording electrode) did not affect cocaine-induced inhibition, suggesting that cocaine did not alter receptor internalization. Moreover, intracellular application of cocaine (30 µM) failed to alter the nicotine response. Finally, cocaine (1.5 μM) was unable to inhibit the nicotine-induced inward current in heterologous expressed α6/α3β2β3-nAChRs and α4β2-nAChRs expressed in human SH-EP1 cells. Collectively, our results suggest that cocaine is a potent blocker for native α3β4-nAChRs expressed in SH-SY5Y cells.
Collapse
Affiliation(s)
- Ze-Gang Ma
- Department of Physiology, Institute of Brain Science and Disorders, Medical College of Qingdao University, Qingdao, 266071, China
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Nan Jiang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuan-Bing Huang
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China
| | - Xiao-Kuang Ma
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Physiology, Shantou University Medical College, Shantou, 515004, China
| | - Jason Brek Eaton
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ming Gao
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Yong-Chang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Janet Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Jie Wu
- Department of Physiology, Institute of Brain Science and Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China.
- Department of Physiology, Shantou University Medical College, Shantou, 515004, China.
| |
Collapse
|
17
|
Bertrand D, Wallace TL. A Review of the Cholinergic System and Therapeutic Approaches to Treat Brain Disorders. Curr Top Behav Neurosci 2020; 45:1-28. [PMID: 32451956 DOI: 10.1007/7854_2020_141] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Since its identification over a hundred years ago, the neurotransmitter acetylcholine (ACh) has proven to play an essential role in supporting many diverse functions. Some well-characterized functions include: chemical transmission at the neuromuscular junction; autonomic function in the peripheral nervous system; and, sustained attention, sleep/wake regulation, and learning and memory within the central nervous system. Within the brain, major cholinergic projection pathways from the basal forebrain and the brainstem support these centrally mediated processes, and dysregulation of the cholinergic system is implicated in cognitive decline associated with aging and dementias including Alzheimer's disease. ACh exerts its effects by binding to two different membrane-bound receptor classes: (1) G‑protein coupled muscarinic acetylcholine receptors (mAChRs), and (2) ligand-gated nicotinic acetylcholine receptors (nAChRs). These receptor systems are described in detail within this chapter along with discussion on the successes and failures of synthetic ligands designed to selectively target receptor subtypes for treating brain disorders. New molecular approaches and advances in our understanding of the target biology combined with opportunities to re-purpose existing cholinergic drugs for new indications continue to highlight the exciting opportunities for modulating this system for therapeutic purposes.
Collapse
|
18
|
Cross SJ, Reynaga DD, Cano M, Belluzzi JD, Zaveri NT, Leslie FM. Differences in mechanisms underlying reinstatement of cigarette smoke extract- and nicotine-seeking behavior in rats. Neuropharmacology 2020; 162:107846. [PMID: 31704271 PMCID: PMC7034132 DOI: 10.1016/j.neuropharm.2019.107846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
Abstract
Despite extensive research, current therapies for smoking cessation are largely ineffective at maintaining abstinence for more than a year. Whereas most preclinical studies use nicotine alone, the goal of the present study was to evaluate whether inclusion of non-nicotine tobacco constituents provides better face validity for the development of new pharmacological therapies for smoking cessation. Here, we trained adult male rats to self-administer nicotine alone or cigarette smoke extract (CSE), which contains nicotine and other aqueous constituents of cigarette smoke. After stable self-administration behavior was established, animals underwent extinction training followed by drug and cue primed reinstatement testing. We show that animals that self-administered CSE had significant reinstatement in all drug and drug + cue stimulus conditions whereas animals that self-administered nicotine only showed significant reinstatement in the drug + cue conditions. AT-1001, an α3β4 nicotinic acetylcholine receptor (nAChR) functional antagonist, attenuated drug + cue-primed reinstatement of both CSE- and nicotine-seeking behavior. However, AT-1001 was less potent in blocking drug-primed reinstatement in animals that had self-administered CSE than in those that had self-administered nicotine alone. This was the case even when nicotine was used to prime reinstatement in animals that had self-administered CSE, suggesting that prior CSE exposure had altered the functional role of α3β4-containing nAChRs in drug-seeking behavior. These findings confirm the importance of non-nicotine tobacco constituents and α3β4* nAChRs in cue- and nicotine-primed craving. They also suggest that tests using CSE may be more valid models to study tobacco dependence than use of nicotine alone.
Collapse
Affiliation(s)
- Sarah J Cross
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
| | - Daisy D Reynaga
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Michelle Cano
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - James D Belluzzi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | | | - Frances M Leslie
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
19
|
Reno CM, Bayles J, Huang Y, Oxspring M, Hirahara AM, Dosdall DJ, Fisher SJ. Severe Hypoglycemia-Induced Fatal Cardiac Arrhythmias Are Mediated by the Parasympathetic Nervous System in Rats. Diabetes 2019; 68:2107-2119. [PMID: 31439645 PMCID: PMC7118248 DOI: 10.2337/db19-0306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
The contribution of the sympathetic nervous system (SNS) versus the parasympathetic nervous system (PSNS) in mediating fatal cardiac arrhythmias during insulin-induced severe hypoglycemia is not well understood. Therefore, experimental protocols were performed in nondiabetic Sprague-Dawley rats to test the SNS with 1) adrenal demedullation and 2) chemical sympathectomy, and to test the PSNS with 3) surgical vagotomy, 4) nicotinic receptor (mecamylamine) and muscarinic receptor (AQ-RA 741) blockade, and 5) ex vivo heart perfusions with normal or low glucose, acetylcholine (ACh), and/or mecamylamine. In protocols 1-4, 3-h hyperinsulinemic (0.2 units/kg/min) and hypoglycemic (10-15 mg/dL) clamps were performed. Adrenal demedullation and chemical sympathectomy had no effect on mortality or arrhythmias during severe hypoglycemia compared with controls. Vagotomy led to a 6.9-fold decrease in mortality; reduced first- and second-degree heart block 4.6- and 4-fold, respectively; and prevented third-degree heart block compared with controls. Pharmacological blockade of nicotinic receptors, but not muscarinic receptors, prevented heart block and mortality versus controls. Ex vivo heart perfusions demonstrated that neither low glucose nor ACh alone caused arrhythmias, but their combination induced heart block that could be abrogated by nicotinic receptor blockade. Taken together, ACh activation of nicotinic receptors via the vagus nerve is the primary mediator of severe hypoglycemia-induced fatal cardiac arrhythmias.
Collapse
Affiliation(s)
- Candace M Reno
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Justin Bayles
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Yiqing Huang
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Milan Oxspring
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Annie M Hirahara
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT
| | - Derek J Dosdall
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT
| | - Simon J Fisher
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| |
Collapse
|
20
|
Miller CN, Ruggery C, Kamens HM. The α3β4 nicotinic acetylcholine receptor antagonist 18-Methoxycoronaridine decreases binge-like ethanol consumption in adult C57BL/6J mice. Alcohol 2019; 79:1-6. [PMID: 30496781 DOI: 10.1016/j.alcohol.2018.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/12/2023]
Abstract
Binge alcohol drinking is a health burden in the United States, which has an alarming economic impact. Unfortunately, medications available for alcohol abuse have low efficacy or adverse side effects, creating a need to evaluate novel therapies. Growing research suggests that 18-Methoxycoronaridine (18-MC), an α3β4 nicotinic acetylcholine receptor (nAChR) antagonist, may be effective at reducing ethanol consumption. However, its effects on binge-like ethanol consumption and other ethanol behaviors have not been examined. The present study examined the effect of α3β4 nAChRs antagonism on basal locomotor activity in male and female C57BL/6J mice. Next we tested the effect of 18-MC on binge-like ethanol consumption, ethanol-induced sedation, and ethanol metabolism. Finally, we tested the effect of α3β4 nAChRs on saccharin consumption to ensure effects were specific for ethanol. We observed that 18-MC decreased binge-like ethanol consumption without altering saccharin consumption, the sedative effects of ethanol, or ethanol metabolism. High doses of 18-MC caused locomotor sedation in C57BL/6J mice, but the effects were brief and likely did not contribute to differences in ethanol consumption. Our results support the involvement of the α3β4 nAChRs in binge-like ethanol intake, and further work should explore the use of 18-MC for treatment of alcohol use disorders.
Collapse
|
21
|
Hsu LM, Keeley RJ, Liang X, Brynildsen JK, Lu H, Yang Y, Stein EA. Intrinsic Insular-Frontal Networks Predict Future Nicotine Dependence Severity. J Neurosci 2019; 39:5028-5037. [PMID: 30992371 PMCID: PMC6670258 DOI: 10.1523/jneurosci.0140-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Accepted: 04/06/2019] [Indexed: 01/01/2023] Open
Abstract
Although 60% of the US population have tried smoking cigarettes, only 16% smoke regularly. Identifying this susceptible subset of the population before the onset of nicotine dependence may encourage targeted early interventions to prevent regular smoking and/or minimize severity. While prospective neuroimaging in human populations can be challenging, preclinical neuroimaging models before chronic nicotine administration can help to develop translational biomarkers of disease risk. Chronic, intermittent nicotine (0, 1.2, or 4.8 mg/kg/d; N = 10-11/group) was administered to male Sprague Dawley rats for 14 d; dependence severity was quantified using precipitated withdrawal behaviors collected before, during, and following forced nicotine abstinence. Resting-state fMRI functional connectivity (FC) before drug administration was subjected to a graph theory analytical framework to form a predictive model of subsequent individual differences in nicotine dependence. Whole-brain modularity analysis identified five modules in the rat brain. A metric of intermodule connectivity, participation coefficient, of an identified insular-frontal cortical module predicted subsequent dependence severity, independent of nicotine dose. To better spatially isolate this effect, this module was subjected to a secondary exploratory modularity analysis, which segregated it into three submodules (frontal-motor, insular, and sensory). Higher FC among these three submodules and three of the five originally identified modules (striatal, frontal-executive, and sensory association) also predicted dependence severity. These data suggest that predispositional, intrinsic differences in circuit strength between insular-frontal-based brain networks before drug exposure may identify those at highest risk for the development of nicotine dependence.SIGNIFICANCE STATEMENT Developing biomarkers of individuals at high risk for addiction before the onset of this brain-based disease is essential for prevention, early intervention, and/or subsequent treatment decisions. Using a rodent model of nicotine dependence and a novel data-driven, network-based analysis of resting-state fMRI data collected before drug exposure, functional connections centered on an intrinsic insular-frontal module predicted the severity of nicotine dependence after drug exposure. The predictive capacity of baseline network measures was specific to inter-regional but not within-region connectivity. While insular and frontal regions have consistently been implicated in nicotine dependence, this is the first study to reveal that innate, individual differences in their circuit strength have the predictive capacity to identify those at greatest risk for and resilience to drug dependence.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Robin J Keeley
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Xia Liang
- Research Center of Basic Space Science, Harbin Institute of Technology, Nangang Qu, Haerbin Shi 150001, Heilongjiang Sheng, People's Republic of China
| | - Julia K Brynildsen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| |
Collapse
|
22
|
Spanos M, Xie X, Gras-Najjar J, White SC, Sombers LA. NMDA Receptor-Dependent Cholinergic Modulation of Mesolimbic Dopamine Cell Bodies: Neurochemical and Behavioral Studies. ACS Chem Neurosci 2019; 10:1497-1505. [PMID: 30412381 DOI: 10.1021/acschemneuro.8b00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Substance abuse disorders are devastating, costly, and difficult to treat. Identifying the neurochemical mechanisms underlying reinforcement promises to provide critical information in the development of effective treatments. Several lines of evidence suggest that striatal dopamine (DA) release serves as a teaching signal in reinforcement learning, and that shifts in DA release from the primary reward to reward-predicting stimuli play a critical role in the self-administration of both natural and non-natural rewards. However, far less is known about the reinforcing effects of motivationally neutral sensory stimuli, or how these signals can facilitate self-administration behavior. Thus, we trained rats ( n = 7) to perform a visual stimulus-induced instrumental task, which involved lever pressing for activation of a stimulus light. We then microinfused vehicle (phosphate buffered saline), carbachol (acetylcholine receptor agonist), or carbachol in the presence of an N-methyl-d-aspartate (NMDA) receptor-specific drug (NMDA itself, or the antagonist, AP5) into the ventral tegmental area (VTA). This enabled us to directly evaluate how chemical modulation of dopamine cell bodies affects the instrumental behavior, as well as the nature of extracellular dopamine transients recorded in the nucleus accumbens shell (NAc shell) using fast-scan cyclic voltammetry (FSCV). Intra-VTA infusion of carbachol enhanced the magnitude and frequency of dopamine transients in the NAc shell and potentiated active lever responding without altering inactive lever responding, as compared to infusion of vehicle. Coinfusion of carbachol with AP5 abolished dopamine transients recorded in the NAc and attenuated active lever responding without altering inactive lever responding. Finally, coadministration of carbachol and NMDA into the VTA restored both lever pressing and dopaminergic signals recorded in the striatum. Together, these results suggest that acetylcholine and glutamate synergistically act at dopamine cells in the VTA to modulate VTA-NAc shell dopaminergic output, and this underlies motivation to lever press for a motivationally neutral visual stimulus.
Collapse
Affiliation(s)
- Marina Spanos
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Xiaohu Xie
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Julie Gras-Najjar
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Stephanie C. White
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Leslie A. Sombers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
23
|
Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology 2019; 44:129-139. [PMID: 30022063 PMCID: PMC6235989 DOI: 10.1038/s41386-018-0137-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 01/04/2023]
Abstract
Women are more likely than men to suffer from psychiatric disorders with hyperarousal symptoms, including posttraumatic stress disorder (PTSD) and major depression. In contrast, women are less likely than men to be diagnosed with schizophrenia and attention deficit hyperactivity disorder (ADHD), which share attentional impairments as a feature. Stressful events exacerbate symptoms of the aforementioned disorders. Thus, researchers are examining whether sex differences in stress responses bias women and men towards different psychopathology. Here we review the preclinical literature suggesting that, compared to males, females are more vulnerable to stress-induced hyperarousal, while they are more resilient to stress-induced attention deficits. Specifically described are sex differences in receptors for the stress neuropeptide, corticotropin-releasing factor (CRF), that render the locus coeruleus arousal system of females more vulnerable to stress and less adaptable to CRF hypersecretion, a condition found in patients with PTSD and depression. Studies on the protective effects of ovarian hormones against CRF-induced deficits in sustained attention are also detailed. Importantly, we highlight how comparing males and females in preclinical studies can lead to the development of novel therapeutics to improve treatments for psychiatric disorders in both women and men.
Collapse
|
24
|
Lee C, Lee S, Woo C, Kang SJ, Kim Kwon Y, Shin KS. Differential regulation of neuronal excitability by nicotine and substance P in subdivisions of the medial habenula. Anim Cells Syst (Seoul) 2018; 22:165-171. [PMID: 30460094 PMCID: PMC6138320 DOI: 10.1080/19768354.2018.1456485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 11/18/2022] Open
Abstract
The medial habenula (MHb) plays an important role in nicotine-related behaviors, such as aversion and withdrawal. The MHb is composed of distinct subregions with unique neurotransmitter expression and neuronal connectivity. Here, we showed that nicotine and substance P (SP) differentially regulate neuronal excitability in subdivisions of the MHb (ventrolateral division, MHbVL; dorsal division; MHbD and superior division: MHbS). Nicotine remarkably increased spontaneous neuronal firing in the MHbVL and MHbD, but not in the MHbS, which was consistent with different magnitudes of whole-cell inward currents evoked by nicotine in each subdivision. Meanwhile, SP enhanced neuronal excitability in the MHbVL and MHbS. Although the MHbD is composed of SP-expressing neurons, they did not respond to SP. Neurons in the MHbVL increased their firing in response to bath-applied nicotine, which was attenuated by neurokinin receptor antagonists. Furthermore, nicotine addiction and withdrawal attenuated and augmented excitatory SP effects in the MHbVL, respectively. On the whole, we suggest that MHb-involving nicotine-related behaviors might be associated with SP signaling in MHb subdivisions.
Collapse
Affiliation(s)
- Changwoo Lee
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Soonje Lee
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Changsu Woo
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Shin Jung Kang
- Department of Molecular Biology, Sejong University, Seoul, Republic of Korea
| | - Yunhee Kim Kwon
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Soon Shin
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Yu J, Zhu X, Harvey PJ, Kaas Q, Zhangsun D, Craik DJ, Luo S. Single Amino Acid Substitution in α-Conotoxin TxID Reveals a Specific α3β4 Nicotinic Acetylcholine Receptor Antagonist. J Med Chem 2018; 61:9256-9265. [DOI: 10.1021/acs.jmedchem.8b00967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jinpeng Yu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Peta J. Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
26
|
Peng C, Yan Y, Kim VJ, Engle SE, Berry JN, McIntosh JM, Neve RL, Drenan RM. Gene editing vectors for studying nicotinic acetylcholine receptors in cholinergic transmission. Eur J Neurosci 2018; 50:2224-2238. [PMID: 29779223 DOI: 10.1111/ejn.13957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 04/16/2018] [Indexed: 01/28/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs), prototype members of the cys-loop ligand-gated ion channel family, are key mediators of cholinergic transmission in the central nervous system. Despite their importance, technical gaps exist in our ability to dissect the function of individual subunits in the brain. To overcome these barriers, we designed CRISPR/Cas9 small guide RNA sequences (sgRNAs) for the production of loss-of-function alleles in mouse nAChR genes. These sgRNAs were validated in vitro via deep sequencing. We subsequently targeted candidate nAChR genes in vivo by creating herpes simplex virus (HSV) vectors delivering sgRNAs and Cas9 expression to mouse brain. The production of loss-of-function insertions or deletions (indels) by these 'all-in-one' HSV vectors was confirmed using brain slice patch clamp electrophysiology coupled with pharmacological analysis. Next, we developed a scheme for cell type-specific gene editing in mouse brain. Knockin mice expressing Cas9 in a Cre-dependent manner were validated using viral microinjections and genetic crosses to common Cre-driver mouse lines. We subsequently confirmed functional Cas9 activity by targeting the ubiquitous neuronal protein, NeuN, using adeno-associated virus (AAV) delivery of sgRNAs. Finally, the mouse β2 nAChR gene was successfully targeted in dopamine transporter (DAT)-positive neurons via CRISPR/Cas9. The sgRNA sequences and viral vectors, including our scheme for Cre-dependent gene editing, should be generally useful to the scientific research community. These tools could lead to new discoveries related to the function of nAChRs in neurotransmission and behavioral processes.
Collapse
Affiliation(s)
- Can Peng
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Searle 5-450, Chicago, IL, 60611, USA
| | - Yijin Yan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Searle 5-450, Chicago, IL, 60611, USA
| | - Veronica J Kim
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Searle 5-450, Chicago, IL, 60611, USA
| | - Staci E Engle
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jennifer N Berry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, USA
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Searle 5-450, Chicago, IL, 60611, USA
| |
Collapse
|
27
|
Vivekanandarajah A, Waters KA, Machaalani R. Cigarette smoke exposure effects on the brainstem expression of nicotinic acetylcholine receptors (nAChRs), and on cardiac, respiratory and sleep physiologies. Respir Physiol Neurobiol 2018; 259:1-15. [PMID: 30031221 DOI: 10.1016/j.resp.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022]
Abstract
Cigarette smoking during pregnancy is the largest modifiable risk factor for adverse outcomes in the infant. Investigations have focused on the psychoactive component of cigarettes, nicotine. One proposed mechanism leading to adverse effects is the interaction between nicotine and its nicotinic acetylcholine receptors (nAChRs). Much data has been generated over the past three decades on the effects of cigarette smoke exposure (CSE) on the expression of the nAChRs in the brainstem and physiological parameters related to cardiac, respiration and sleep, in the offspring of smoking mothers and animal models of nicotine exposure. This review summarises this data and discusses the main findings, highlighting that findings in animal models closely correlate with those from human studies, and that the major brainstem sites where the expression level for the nAChRs are consistently affected include those that play vital roles in cardiorespiration (hypoglossal nucleus, dorsal motor nucleus of the vagus, nucleus of the solitary tract), chemosensation (nucleus of the solitary tract, arcuate nucleus) and arousal (rostral mesopontine sites such as the locus coeruleus and nucleus pontis oralis). These findings provide evidence for the adverse effects of CSE during and after pregnancy to the infant and the need to continue with the health campaign advising against CSE.
Collapse
Affiliation(s)
- Arunnjah Vivekanandarajah
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Medical Foundation Building K25, University of Sydney, NSW 2006, Australia.
| | - Karen A Waters
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Medical Foundation Building K25, University of Sydney, NSW 2006, Australia; Discipline of Paediatrics and Child Health, Children's Hospital Westmead, NSW, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Medical Foundation Building K25, University of Sydney, NSW 2006, Australia; Discipline of Paediatrics and Child Health, Children's Hospital Westmead, NSW, Australia
| |
Collapse
|
28
|
Cippitelli A, Brunori G, Schoch J, Armishaw CJ, Wu J, Zaveri NT, Giulianotti MA, Welmaker GS, Toll L. Differential regulation of alcohol taking and seeking by antagonism at α4β2 and α3β4 nAChRs. Psychopharmacology (Berl) 2018; 235:1745-1757. [PMID: 29572652 PMCID: PMC5949259 DOI: 10.1007/s00213-018-4883-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
RATIONALE Alcoholism is a serious public health problem throughout the world. Current pharmacotherapies for the treatment of this disorder are poorly effective. Preclinical and clinical findings point to nicotinic acetylcholine receptors (nAChRs) as a promising target for the development of novel and effective medications. Assuage Pharmaceuticals, in collaboration with Torrey Pines Institute for Molecular Studies, has discovered a new class of potent and selective α4β2 nAChR antagonists. OBJECTIVE Here, it was hypothesized that α4β2 nAChR antagonism is a viable approach for treatment of alcohol use disorders. RESULTS When tested in rats, one lead compound, AP-202, attenuated both operant alcohol and nicotine self-administration in a paradigm in which the two reinforcers were concurrently available. The conotoxin TP2212-59, a selective α3β4 nAChR antagonist, was only effective in reducing nicotine self-administration. AP-202 also reduced alcohol but not food responding when alcohol was presented as the only reinforcer, whereas the commercially available α4β2 nAChR antagonist dihydro-β-erythroidine failed to alter alcohol self-administration. AP-202 did not block relapse-like behavior induced by previously alcohol-associated stimuli or yohimbine stress. In a reinstatement paradigm, in which alcohol seeking was triggered by a nicotine challenge, a behavior successfully inhibited by the nonselective nAChR antagonist mecamylamine, AP-202 was not effective, while pretreatment with TP2212-59 abolished nicotine-induced reinstatement of alcohol seeking. CONCLUSIONS These findings suggest differential roles for α4β2 and α3β4 nAChR on alcohol taking and seeking with selective blockade of α4β2 nAChR being more implicated in modulating alcohol taking while selective blockade of α3β4 nAChR is involved in nicotine-induced alcohol seeking.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL, 34987, USA.
| | - Gloria Brunori
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Jennifer Schoch
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Christopher J. Armishaw
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Jinhua Wu
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Nurulain T. Zaveri
- Astraea Therapeutics, LLC, 320 Logue Avenue, Mountain View, CA 94043, USA
| | - Marc A. Giulianotti
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Gregory S. Welmaker
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| |
Collapse
|
29
|
Moretti M, Fasoli F, Gotti C, Marks MJ. Reduced α4 subunit expression in α4 +- and α4 +- /β2 +- nicotinic acetylcholine receptors alters α4β2 subtype up-regulation following chronic nicotine treatment. Br J Pharmacol 2018; 175:1944-1956. [PMID: 28585241 PMCID: PMC5980142 DOI: 10.1111/bph.13896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Genomic analysis has shown many variants in both CHRNA4 and CHRNB2, genes which encode the α4 and β2 subunits of nicotinic ACh receptors (nAChR) respectively. Some variants influence receptor expression, raising the possibility that CHRNA4 variants may affect response to tobacco use in humans. Chronic exposure to nicotine increases expression of nAChRs, particularly α4β2-nAChRs, in humans and laboratory animals. Here, we have evaluated whether the initial level of receptor expression affects the increase in expression. EXPERIMENTAL APPROACH Mice differing in expression of α4 and/or β2 nAChR subunits were chronically treated with saline, 0.25, 1.0 or 4.0 mg·kg-1 ·h-1 nicotine. Brain preparations were analysed autoradiographically by [125 I]-epibatidine binding, immunoprecipitation and Western blotting. KEY RESULTS Immunochemical studies confirmed that most of the [3 H]-epibatidine binding corresponds to α4β2*-nAChR and that increases in binding correspond to increases in α4 and β2 proteins. Consistent with previous reports, the dose-dependent increase in nAChR in wild-type mice following chronic nicotine treatment, measured with any of the methods, reached a maximum. Although receptor expression was reduced by approximately 50% in β2+- mice, the pattern of response to chronic treatment resembled that of wild-type mice. In contrast, both α4+- and α4+- /β2+- exhibited relatively greater up-regulation. Consistent with previous reports, α4β2α5-nAChR did not increase in response to nicotine. CONCLUSIONS AND IMPLICATIONS These results indicate that mice with reduced expression of the α4 nAChR subunit have a more robust response to chronic nicotine than mice with normal expression of this subunit. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Milena Moretti
- CNR, Institute of Neuroscience Milan, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Cecilia Gotti
- CNR, Institute of Neuroscience Milan, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Michael J Marks
- Instute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
30
|
Nicotine drug discrimination and nicotinic acetylcholine receptors in differentially reared rats. Psychopharmacology (Berl) 2018; 235:1415-1426. [PMID: 29464302 DOI: 10.1007/s00213-018-4850-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/05/2018] [Indexed: 01/31/2023]
Abstract
RATIONALE Individuals vary in sensitivity to the behavioral effects of nicotine, resulting in differences in vulnerability to nicotine addiction. The role of rearing environment in determining individual sensitivity to nicotine is unclear. The neuropharmacological mechanisms mediating the effect of rearing environment on the behavioral actions of nicotine are also poorly understood. OBJECTIVES The contribution of rearing environment in determining the sensitivity to the interoceptive effects of nicotine was determined in rats reared in isolated conditions (IC) or enriched conditions (EC). The role of dopamine receptors and α4β2*-nicotinic acetylcholine (nACh) receptors in mediating the differential effect of IC and EC on the interoceptive action of nicotine was determined. METHODS The interoceptive action of nicotine was measured as the discriminative stimulus effect of nicotine. Mecamylamine- and eticlopride-inhibition of the nicotine stimulus were used to examine nACh and dopamine receptors, respectively. α4β2*-nACh receptor expression in the mesolimbic dopamine pathway was determined by quantitative autoradiography of [125I]-epibatidine binding. RESULTS EC-reared rats are less sensitive than IC-reared rats to the discriminative stimulus effects of nicotine at all but maximally effective doses. Mecamylamine inhibited the nicotine stimulus threefold more potently in EC-reared rats (IC50 = 0.25 mg/kg) compared to IC-reared rats (IC50 = 0.75 mg/kg); eticlopride inhibition was not different. [125I]-epibatidine binding in the ventral tegmental area of EC-reared rats was reduced (2.8 ± 0.3 fmol) compared to that of IC-reared rats (4.0 ± 0.4 fmol); there was no difference in the nucleus accumbens. CONCLUSIONS Rearing environment regulates the sensitivity to the interoceptive effects of nicotine and α4β2*-nACh receptor expression in the mesolimbic dopamine pathway.
Collapse
|
31
|
Bertrand D, Terry AV. The wonderland of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 2017; 151:214-225. [PMID: 29248596 DOI: 10.1016/j.bcp.2017.12.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022]
Abstract
Nearly 30 years of experimental evidence supports the argument that ligands of nicotinic acetylcholine receptors (nAChRs) have potential as therapeutic agents. However, as in the famous Lewis Carroll novel "Alice in Wonderland", there have been many unexpected adventures along the pathway of development, and few nAChR ligands have been approved for any clinical condition to date with the exception of nicotine dependence. The recent failures of nAChR ligands in AD and schizophrenia clinical trials have reduced enthusiasm for this therapeutic strategy and many pharmaceutical companies have now abandoned this field of research. As with other clinical failures, multiple questions arise as to the basis for the failure. More generic questions focus on a potential translational gap between the animal models used and the human clinical condition they are meant to simulate, or the clinical trial mindset that large Ns have to be achieved for statistical power (often requiring multiple trial sites) as opposed to smaller patient cohorts at limited sites where conditions can be better controlled and replicated. More specific to the nAChR field are questions about subtype selectivity, dose selection, whether an agonist, antagonist, or allosteric modulator strategy is best, etc. The purpose of this review is to discuss each of these questions, but also to provide a brief overview of the remarkable progress that has been made over the last three decades in our understanding of this unique ligand-gated ion channel and how this new knowledge may help us improve drug development successes in the future.
Collapse
Affiliation(s)
- Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland.
| | - A V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta 30912, Georgia
| |
Collapse
|
32
|
Wu J, Cippitelli A, Zhang Y, Debevec G, Schoch J, Ozawa A, Yu Y, Liu H, Chen W, Houghten RA, Welmaker GS, Giulianotti MA, Toll L. Highly Selective and Potent α4β2 nAChR Antagonist Inhibits Nicotine Self-Administration and Reinstatement in Rats. J Med Chem 2017; 60:10092-10104. [PMID: 29178785 DOI: 10.1021/acs.jmedchem.7b01250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The α4β2 nAChR is the most predominant subtype in the brain and is a well-known culprit for nicotine addiction. Previously we presented a series of α4β2 nAChR selective compounds that were discovered from a mixture-based positional-scanning combinatorial library. Here we report further optimization identified highly potent and selective α4β2 nAChR antagonists 5 (AP-202) and 13 (AP-211). Both compounds are devoid of in vitro agonist activity and are potent inhibitors of epibatidine-induced changes in membrane potential in cells containing α4β2 nAChR, with IC50 values of approximately 10 nM, but are weak agonists in cells containing α3β4 nAChR. In vivo studies show that 5 can significantly reduce operant nicotine self-administration and nicotine relapse-like behavior in rats at doses of 0.3 and 1 mg/kg. The pharmacokinetic data also indicate that 5, via sc administration, is rapidly absorbed into the blood, reaching maximal concentration within 10 min with a half-life of less than 1 h.
Collapse
Affiliation(s)
- Jinhua Wu
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Assuage Pharmaceuticals, Inc , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Andrea Cippitelli
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Yaohong Zhang
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China.,School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University , Shaoxing 312000, Zhejiang, P. R. China
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Jennifer Schoch
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Akihiko Ozawa
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Yongping Yu
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Huan Liu
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Wenteng Chen
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Richard A Houghten
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Assuage Pharmaceuticals, Inc , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Gregory S Welmaker
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Assuage Pharmaceuticals, Inc , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Marc A Giulianotti
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Assuage Pharmaceuticals, Inc , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Assuage Pharmaceuticals, Inc , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| |
Collapse
|
33
|
A little rein on addiction. Semin Cell Dev Biol 2017; 78:120-129. [PMID: 28986065 DOI: 10.1016/j.semcdb.2017.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
Rewarding and aversive experiences influence emotions, motivate specific behaviors, and modify future action in animals. Multiple conserved vertebrate neural circuits have been discovered that act in a species-specific manner to reinforce behaviors that are rewarding, while attenuating those with an adverse outcome. A growing body of research now suggests that malfunction of the same circuits is an underlying cause for many human disorders and mental ailments. The habenula (Latin for "little rein") complex, an epithalamic structure that regulates midbrain monoaminergic activity has emerged in recent years as one such region in the vertebrate brain that modulates behavior. Its dysfunction, on the other hand, is implicated in a spectrum of psychiatric disorders in humans such as schizophrenia, depression and addiction. Here, I review the progress in identification of potential mechanisms involving the habenula in addiction.
Collapse
|
34
|
Effects of triterpenoid Alisol-F on human 5-hydroxytryptamine 3A and α3β4 nicotinic acetylcholine receptor channel activity. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0030-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
The α3β4 nAChR partial agonist AT-1001 attenuates stress-induced reinstatement of nicotine seeking in a rat model of relapse and induces minimal withdrawal in dependent rats. Behav Brain Res 2017; 333:251-257. [PMID: 28693859 DOI: 10.1016/j.bbr.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022]
Abstract
The strong reinforcing effects of nicotine and the negative symptoms such as anxiety experienced during a quit attempt often lead to relapse and low success rates for smoking cessation. Treatments that not only block the reinforcing effects of nicotine but also attenuate the motivation to relapse are needed to improve cessation rates. Recent genetic and preclinical studies have highlighted the involvement of the α3, β4, and α5 nicotinic acetylcholine receptor (nAChR) subunits and the α3β4 nAChR subtype in nicotine dependence and withdrawal. However, the involvement of these nAChR in relapse is not fully understood. We previously reported that the α3β4 nAChR partial agonist AT-1001 selectively decreases nicotine self-administration in rats without affecting food responding. In the present experiments, we examined the efficacy of AT-1001 in attenuating reinstatement of nicotine-seeking behavior in a model of stress-induced relapse. Rats extinguished from nicotine self-administration were treated with the pharmacological stressor yohimbine prior to AT-1001 treatment and reinstatement testing. We also examined whether AT-1001 produced any withdrawal-related effects when administered to nicotine-dependent rats. We found that AT-1001 dose-dependently reduced yohimbine stress-induced reinstatement of nicotine seeking. When administered to nicotine-dependent rats at the dose that significantly blocked nicotine reinstatement, AT-1001 elicited minimal somatic withdrawal signs in comparison to the nicotinic antagonist mecamylamine, which is known to produce robust withdrawal. Our data suggest that α3β4 nAChR-targeted compounds may be a promising approach for nicotine addiction treatment because they can not only block nicotine's reinforcing effects, but also decrease motivation to relapse without producing significant withdrawal effects.
Collapse
|
36
|
Leung J, McPhee DM, Renda A, Penty N, Farhoomand F, Nashmi R, Delaney KR. MeCP2-deficient mice have reduced α4 and α6 nicotinic receptor mRNA and altered behavioral response to nicotinic agonists. Behav Brain Res 2017; 330:118-126. [PMID: 28506623 DOI: 10.1016/j.bbr.2017.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/10/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Affiliation(s)
- J Leung
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - D M McPhee
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - A Renda
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - N Penty
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - F Farhoomand
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - R Nashmi
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada.
| | - K R Delaney
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada.
| |
Collapse
|
37
|
Radiosynthesis of (S)-[ 18F]T1: The first PET radioligand for molecular imaging of α3β4 nicotinic acetylcholine receptors. Appl Radiat Isot 2017; 124:106-113. [PMID: 28365525 DOI: 10.1016/j.apradiso.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/08/2017] [Accepted: 03/17/2017] [Indexed: 11/27/2022]
Abstract
Recent pharmacologic data revealed the implication of α3β4 nicotinic acetylcholine receptors (nAChRs) in nicotine and drug addiction. To image α3β4 nAChRs in vivo, we aimed to establish the synthesis of a [18F]-labelled analog of the highly affine and selective α3β4 ligand (S)-3-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)quinuclidine ((S)-T1). (S)-[18F]T1 was synthesized from ethynyl-4-[18F]fluorobenzene ([18F]5) and (S)-azidoquinuclidine by click reaction. After a synthesis time of 130min (S)-[18F]T1 was obtained with a radiochemical yield (non-decay corrected) of 4.3±1.3%, a radiochemical purity of >99% and a molar activity of >158 GBq/μmol. The brain uptake and the brain-to-blood ratio of (S)-[18F]T1 in mice at 30min post injection were 2.02 (SUV) and 6.1, respectively. According to an ex-vivo analysis, the tracer remained intact (>99%) in brain. Only one major radiometabolite was detected in plasma and urine samples. In-vitro autoradiography on pig brain slices revealed binding of (S)-[18F]T1 to brain regions associated with the expression of α3β4 nAChRs, which could be reduced by the α3β4 nAChR selective drug AT-1001. These findings make (S)-[18F]T1 a potential tool for the non-invasive imaging of α3β4 nAChRs in the brain by PET.
Collapse
|
38
|
Zuo L, Tan Y, Li CSR, Wang Z, Wang K, Zhang X, Lin X, Chen X, Zhong C, Wang X, Guo X, Wang J, Lu L, Luo X. Associations of rare nicotinic cholinergic receptor gene variants to nicotine and alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1057-1071. [PMID: 27473937 PMCID: PMC5587505 DOI: 10.1002/ajmg.b.32476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
Nicotine's rewarding effects are mediated through distinct subunits of nAChRs, encoded by different nicotinic cholinergic receptor (CHRN) genes and expressed in discrete regions in the brain. In the present study, we aimed to test the associations between rare variants at CHRN genes and nicotine dependence (ND), and alcohol dependence (AD). A total of 26,498 subjects with nine different neuropsychiatric disorders in 15 independent cohorts, which were genotyped on Illumina, Affymetrix, or PERLEGEN microarray platforms, were analyzed. Associations between rare variants (minor allele frequency (MAF) <0.05) at CHRN genes and nicotine dependence, and alcohol dependence were tested. The mRNA expression of all Chrn genes in whole mouse brain and 10 specific brain areas was investigated. All CHRN genes except the muscle-type CHRNB1, including eight genomic regions containing 11 neuronal CHRN genes and three genomic regions containing four muscle-type CHRN genes, were significantly associated with ND, and/or AD. All of these genes were expressed in the mouse brain. We conclude that CHRNs are associated with ND (mainly) and AD, supporting the hypothesis that the full catalog of ND/AD risk genes may contain most neuronal nAChRs-encoding genes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiren Wang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Xiangyang Zhang
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiandong Lin
- Provincial Key Laboratory of Translational Cancer Medicine, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine and Department of Psychology, University of Nevada, Las Vegas, NV, USA
| | - Chunlong Zhong
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai First People’s Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Xiaoyun Guo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of EEG & Neuroimaging, Shanghai Mental Health Center, Shanghai, China
| | - Jijun Wang
- Department of EEG & Neuroimaging, Shanghai Mental Health Center, Shanghai, China
| | - Lu Lu
- Provincial Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, China
- Departments of Genetics, Genomics, Informatics, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
39
|
Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence. Genes (Basel) 2016; 7:genes7110095. [PMID: 27827986 PMCID: PMC5126781 DOI: 10.3390/genes7110095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/20/2016] [Accepted: 11/02/2016] [Indexed: 01/31/2023] Open
Abstract
It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.
Collapse
|
40
|
Ghasemi M, Hadipour-Niktarash A. Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: implication for pharmacological interventions. Rev Neurosci 2016; 26:199-223. [PMID: 25565544 DOI: 10.1515/revneuro-2014-0044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022]
Abstract
Accumulating evidence suggests that neuronal nicotinic acetylcholine receptors (nAChRs) may play a key role in the pathophysiology of some neurological diseases such as epilepsy. Based on genetic studies in patients with epileptic disorders worldwide and animal models of seizure, it has been demonstrated that nAChR activity is altered in some specific types of epilepsy, including autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and juvenile myoclonic epilepsy (JME). Neuronal nAChR antagonists also have antiepileptic effects in pre-clinical studies. There is some evidence that conventional antiepileptic drugs may affect neuronal nAChR function. In this review, we re-examine the evidence for the involvement of nAChRs in the pathophysiology of some epileptic disorders, especially ADNFLE and JME, and provide an overview of nAChR antagonists that have been evaluated in animal models of seizure.
Collapse
|
41
|
Noninvasive evaluation of nicotinic acetylcholine receptor availability in mouse brain using single-photon emission computed tomography with [123I]5IA. Nucl Med Biol 2016; 43:372-8. [DOI: 10.1016/j.nucmedbio.2016.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/31/2016] [Accepted: 02/22/2016] [Indexed: 11/20/2022]
|
42
|
Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother 2016; 16:671-80. [PMID: 27086593 DOI: 10.1080/14737175.2016.1175303] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Huperzine A (HupA) is an acetylcholinesterase (AChE) inhibitor extracted from Huperzia Serrata, a firmoss, which has been used for various diseases in traditional Chinese medicine for fever and inflammation. More recently, it has been used in Alzheimer's disease and other forms of dementia with a presumed mechanism of action via central nicotinic and muscarinic receptors. HupA is marketed as a dietary supplement in the U.S. This article reviews newly proposed neuroprotective and anticonvulsant HupA properties based on animal studies. HupA exerts its effects mainly via α7nAChRs and α4β2nAChRs, thereby producing a potent anti-inflammatory response by decreasing IL-1β, TNF-α protein expression, and suppressing transcriptional activation of NF-κB signaling. Thus, it provides protection from excitotoxicity and neuronal death as well as increase in GABAergic transmission associated with anticonvulsant activity.
Collapse
Affiliation(s)
- U Damar
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| | - R Gersner
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| | - J T Johnstone
- b Research and Development - Neurology , Biscayne Pharmaceuticals, Inc ., Miami , FL , USA
| | - S Schachter
- c Departments of Neurology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital , Harvard Medical School , Boston , MA , USA
| | - A Rotenberg
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
43
|
Renda A, Penty N, Komal P, Nashmi R. Vulnerability to nicotine self-administration in adolescent mice correlates with age-specific expression of α4* nicotinic receptors. Neuropharmacology 2016; 108:49-59. [PMID: 27102349 DOI: 10.1016/j.neuropharm.2016.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022]
Abstract
The majority of smokers begin during adolescence, a developmental period with a high susceptibility to substance abuse. Adolescents are affected differently by nicotine compared to adults, with adolescents being more vulnerable to nicotine's rewarding properties. It is unknown if the age-dependent molecular composition of a younger brain contributes to a heightened susceptibility to nicotine addiction. Nicotine, the principle pharmacological component of tobacco, binds and activates nicotinic acetylcholine receptors (nAChRs) in the brain. The most prevalent is the widely expressed α4-containing (α4*) subtype which mediates reward and is strongly implicated in nicotine dependence. Exposing different age groups of mice, postnatal day (P) 44-86 days old, to a two bottle-choice oral nicotine self-administration paradigm for five days yielded age-specific consumption levels. Nicotine self-administration was elevated in the P44 group, peaked at P54-60 and was drastically lower in the P66 through P86 groups. We also quantified α4* nAChR expression via spectral confocal imaging of brain slices from α4YFP knock-in mice, in which the α4 nAChR subunit is tagged with a yellow fluorescent protein. Quantitative fluorescence revealed age-specific α4* nAChR expression in dopaminergic and GABAergic neurons of the ventral tegmental area. Receptor expression showed a strong positive correlation with daily nicotine dose, suggesting that α4* nAChR expression levels are age-specific and may contribute to the propensity to self-administer nicotine.
Collapse
Affiliation(s)
- Anthony Renda
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada
| | - Nora Penty
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada
| | - Pragya Komal
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada
| | - Raad Nashmi
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada.
| |
Collapse
|
44
|
Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse. Neurosci Biobehav Rev 2016; 65:173-84. [PMID: 27068856 DOI: 10.1016/j.neubiorev.2016.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/13/2023]
Abstract
In order to continue the decline of smoking prevalence, it is imperative to identify factors that contribute to the development of nicotine and tobacco addiction, such as adolescent initiation of nicotine use, adolescent stress, and their interaction. This review highlights the biological differences between adolescent and adults in nicotine use and resulting effects, and examines the enduring consequences of adolescent nicotine administration. A review of both clinical and preclinical literature indicates that adolescent, but not adult, nicotine administration leads to increased susceptibility for development of long-lasting impairments in learning and affect. Finally, the role stress plays in normal adolescent development, the deleterious effects stress has on learning and memory, and the negative consequences resulting from the interaction of stress and nicotine during adolescence is reviewed. The review concludes with ways in which future policies could benefit by addressing adolescent stress as a means of reducing adolescent nicotine abuse.
Collapse
|
45
|
Vivekanandarajah A, Chan YL, Chen H, Machaalani R. Prenatal cigarette smoke exposure effects on apoptotic and nicotinic acetylcholine receptor expression in the infant mouse brainstem. Neurotoxicology 2016; 53:53-63. [DOI: 10.1016/j.neuro.2015.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/22/2015] [Accepted: 12/26/2015] [Indexed: 02/06/2023]
|
46
|
Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory. Physiol Behav 2015; 155:162-71. [PMID: 26687895 DOI: 10.1016/j.physbeh.2015.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 11/21/2022]
Abstract
The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits.
Collapse
|
47
|
Rogers SW, Gahring LC. Upregulation of Nicotinic Acetylcholine Receptor alph4+beta2 through a Ligand-Independent PI3Kbeta Mechanism That Is Enhanced by TNFalpha and the Jak2/p38Mapk Pathways. PLoS One 2015; 10:e0143319. [PMID: 26619345 PMCID: PMC4664291 DOI: 10.1371/journal.pone.0143319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022] Open
Abstract
High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.
Collapse
Affiliation(s)
- Scott W Rogers
- Salt Lake City Veteran's Administration Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, 84148, United States of America.,Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, 84132, United States of America
| | - Lorise C Gahring
- Salt Lake City Veteran's Administration Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, 84148, United States of America.,Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, Utah, 84132, United States of America
| |
Collapse
|
48
|
Frahm S, Antolin-Fontes B, Görlich A, Zander JF, Ahnert-Hilger G, Ibañez-Tallon I. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence. eLife 2015; 4:e11396. [PMID: 26623516 PMCID: PMC4718731 DOI: 10.7554/elife.11396] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/03/2015] [Indexed: 12/24/2022] Open
Abstract
A great deal of interest has been focused recently on the habenula and its critical role in aversion, negative-reward and drug dependence. Using a conditional mouse model of the ACh-synthesizing enzyme choline acetyltransferase (Chat), we report that local elimination of acetylcholine (ACh) in medial habenula (MHb) neurons alters glutamate corelease and presynaptic facilitation. Electron microscopy and immuno-isolation analyses revealed colocalization of ACh and glutamate vesicular transporters in synaptic vesicles (SVs) in the central IPN. Glutamate reuptake in SVs prepared from the IPN was increased by ACh, indicating vesicular synergy. Mice lacking CHAT in habenular neurons were insensitive to nicotine-conditioned reward and withdrawal. These data demonstrate that ACh controls the quantal size and release frequency of glutamate at habenular synapses, and suggest that the synergistic functions of ACh and glutamate may be generally important for modulation of cholinergic circuit function and behavior.
Collapse
Affiliation(s)
- Silke Frahm
- Molecular Neurobiology Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Beatriz Antolin-Fontes
- Molecular Neurobiology Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Laboratory of Molecular Biology, The Rockefeller University, New York, United States
| | - Andreas Görlich
- Laboratory of Molecular Biology, The Rockefeller University, New York, United States
| | | | - Gudrun Ahnert-Hilger
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Ibañez-Tallon
- Molecular Neurobiology Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Laboratory of Molecular Biology, The Rockefeller University, New York, United States
| |
Collapse
|
49
|
Ogunjirin AE, Fortunak JM, Brown LL, Xiao Y, Dávila-García MI. Competition, Selectivity and Efficacy of Analogs of A-84543 for Nicotinic Acetylcholine Receptors with Repositioning of Pyridine Nitrogen. Neurochem Res 2015; 40:2131-42. [PMID: 26508288 PMCID: PMC4741274 DOI: 10.1007/s11064-015-1705-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play a crucial role in a number of clinically relevant mental and neurological pathways, as well as autonomic and immune functions. The development of subtype-selective ligands for nAChRs therefore is potentially useful for targeted therapeutic management of conditions where nAChRs are involved. We tested if selectivity for a particular nAChR subtype can be achieved through small structural modifications of a lead compound containing the nicotinic pharmacophore by changing the distance between the electronegative elements. For this purpose, analogs of A-84543 were designed, synthesized and characterized as potentially new nAChR subtype-selective ligands. Compounds were tested for their binding properties in rat cerebral cortical tissue homogenates, and subtype-selectivity was determined using stably transfected HEK cells expressing different nAChR subtypes. All compounds synthesized were found to competitively displace [(3)H]-epibatidine ([(3)H]EB) from the nAChR binding site. Of all the analogues, H-11MNH showed highest affinity for nAChRs compared to a ~ fivefold to tenfold lower affinity of A-84543. All other compounds had affinities >10,000 nM. Both A-84543 and H-11MNH have highest affinity for α2β2 and α4β2 nAChRs and show moderate affinity for β4- and α7-containing receptors. H-11MNH was found to be a full agonist with high potency at α3β4, while A-84543 is a partial agonist with low potency. Based on their unique pharmacological binding properties we suggest that A-84543 and its desmethylpyrrolidine analog can be useful as pharmacological ligands for studying nAChRs if selective pharmacological and/or genetic tools are used to mask the function of other receptors subtypes.
Collapse
Affiliation(s)
- Adebowale E Ogunjirin
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
| | - Joseph M Fortunak
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
- Department of Chemistry, Howard University, Washington, DC, 20059, USA
| | - LaVerne L Brown
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Martha I Dávila-García
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA.
| |
Collapse
|
50
|
Methadone’s effect on nAChRs—a link between methadone use and smoking? Biochem Pharmacol 2015; 97:542-549. [DOI: 10.1016/j.bcp.2015.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022]
|