1
|
Meriño BM, Villalobos-Barrantes HM, Guerrero PC. Pleistocene climate oscillations have shaped the expansion and contraction speciation model of the globose Eriosyce sect. Neoporteria cacti in Central Chile. ANNALS OF BOTANY 2024; 134:651-664. [PMID: 38824400 PMCID: PMC11523624 DOI: 10.1093/aob/mcae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND AIMS Pleistocene climatic oscillations, characterized by arid (interglacial) and pluvial (glacial) phases, have profoundly impacted the floras of Mediterranean climates. Our study investigates the hypothesis that these climatic extremes have promoted phases of range expansion and contraction in the Eriosyce sect. Neoporteria, resulting in pronounced genetic structuring and restricted gene flow. METHODS Using nuclear microsatellite markers, we genotyped 251 individuals across 18 populations, encompassing all 14 species and one subspecies within the Eriosyce sect. Neoporteria. Additionally, species distribution models were used to reconstruct past (Last Interglacial, Last Glacial Maximum and Mid-Holocene) and current potential distribution patterns, aiming to delineate the climatic influences on species range dynamics. KEY RESULTS The gene flow analysis disclosed disparate levels of genetic interchange among species, with marked restrictions observed between entities that are geographically or ecologically separated. Notably, Eriosyce subgibbosa from Hualpen emerged as genetically distinct, warranting its exclusion for clearer genetic clustering into north, central and south clusters. The species distribution models corroborated these findings, showing marked range expansions during warmer periods and contractions during colder times, indicating significant shifts in distribution patterns in response to climatic changes. CONCLUSIONS Our findings emphasize the critical role of Pleistocene climatic fluctuations in driving the dynamic patterns of range expansions and contractions that have led to geographical isolation and speciation within the Eriosyce sect. Neoporteria. Even in the face of ongoing gene flow, these climate-driven processes have played a pivotal role in sculpting the genetic architecture and diversity of species. This study elucidates the complex interplay between climatic variability and evolutionary dynamics among mediterranean cacti in central Chile, highlighting the necessity of considering historical climatic millennial oscillations in conservation and evolutionary biology studies.
Collapse
Affiliation(s)
- Beatriz M Meriño
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), 4030000, Concepción, Chile
| | - Heidy M Villalobos-Barrantes
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Pablo C Guerrero
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), 4030000, Concepción, Chile
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems, 7800003, Santiago, Chile
| |
Collapse
|
2
|
Thornton BM, Spalding HL, Stoeckel S, Harris ML, Wade RM, Krueger-Hadfield SA. Clonality contributes to the spread of Avrainvillea lacerata (Bryopsidales, Chlorophyta) in Hawai'i. JOURNAL OF PHYCOLOGY 2024. [PMID: 39466082 DOI: 10.1111/jpy.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
The relative rates of sexual versus asexual reproduction influence the partitioning of genetic diversity within and among populations. During range expansions, asexual reproduction often facilitates colonization and establishment. The arrival of the green alga Avrainvillea lacerata has caused shifts in habitat structure and community assemblages since its discovery in 1981 offshore of O'ahu, Hawai'i. Field observations suggest this species is spreading via vegetative reproduction. To characterize the reproductive system of A. lacerata in Hawai'i, we developed seven microsatellite loci and genotyped 321 blades collected between 2018 and 2023 from three intertidal sites at Maunalua Bay and 'Ewa Beach. We observed one to four alleles at multiple loci, suggesting A. lacerata is tetraploid. Each site was characterized by high genotypic richness (R > 0.8). However, clonal rates were also high, suggesting the vegetative spread of A. lacerata plays a significant role. The importance of clonal reproduction for the persistence of A. lacerata in Hawai'i is consistent with the ecological data collected for this species and observations of other abundant macroalgal invaders in Hawai'i and other regions of the world. These data demonstrate the necessity for implementing appropriate population genetic methods and provide insights into the biology of this alga that will contribute to future studies on effective management strategies incorporating its reproductive system. This study represents one of the few that investigate green algal population genetic patterns and contributes to our understanding of algal reproductive system evolution.
Collapse
Affiliation(s)
- Brinkley M Thornton
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Heather L Spalding
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
| | - Solenn Stoeckel
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rachael M Wade
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, Virginia, USA
- William & Mary's Batten School of Coastal and Marine Science at VIMS, Gloucester Point, Virginia, USA
| |
Collapse
|
3
|
Ma J, Awais M, Chen W, Zhang B, Li L, Turakulov KS, Egamberdieva D, Karimjonovich MS, Kang Z, Zhao J. Molecular Genotyping Analysis Suggested High Clonality and Simple Marker Loci in Puccinia striiformis f. sp. tritici Population in Uzbekistan, Central Asian Region. PLANT DISEASE 2024; 108:2958-2967. [PMID: 38885026 DOI: 10.1094/pdis-05-24-0972-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst) is a destructive pathogen that causes wheat stripe rust worldwide. Understanding the population structure and dynamic of pathogen spread is critical to fight against this disease. Limited information is available for the population genetic structure of Pst in Uzbekistan, Central Asia. In this study, we carried out surveillance from nine different regions (Andijan, Fergana, Jizzakh, Kashkadarya, Namangan, Samarkand, Sirdaryo, Surkhandarya, and Tashkent) of Uzbekistan to fill this gap. A total of 255 isolates were collected, which were genotyped using 17 polymorphic simple sequence repeat markers. The DAPC analysis results showed no population subdivision in these sample-collected regions except Surkhandarya. Multilocus genotype (MLG) analysis, FST, and Nei's genetic distance results indicated a clonal population (rBarD ≤ 0.12) and merely three MLGs accounting for 70% of the overall population. MLG-34 was predominant in all regions of Uzbekistan, followed by MLG-36 and MLG-42. Low genotypic diversity was observed in Andijan, Fergana, Jizzakh, Kashkadarya, Namangan, Sirdaryo, and Tashkent (0.56 to 0.76), compared with Samarkand (0.82) and Surkhandarya (0.97). No virulence against Yr5, Yr15, YrSp, and Yr26 was found, while resistance was overcome against Yr1, Yr2, Yr6, Yr9, Yr17, and Yr44 genes (virulence frequency ≥75%). Comparative study results of Uzbekistan with the previous Himalayan population showed divergence from China and Pakistan populations. Further studies need to be conducted in a worldwide context to understand migration patterns; for that purpose, collaborative work is essential because of the Pst long-distance migration capability.
Collapse
Affiliation(s)
- Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, China
| | - Muhammad Awais
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, NWAFU, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenbin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, NWAFU, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingbing Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, NWAFU, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, China
| | - Khurshid S Turakulov
- Institute of Genetics and Plant Experimental Biology of Academy of Science of the Republic of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Dilfuza Egamberdieva
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent 100000, Uzbekistan
| | - Meliev Sodir Karimjonovich
- Institute of Genetics and Plant Experimental Biology of Academy of Science of the Republic of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, NWAFU, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, NWAFU, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Dolan TE, Feldheim KA, O'Leary SJ, Fede CM, McElroy AE, Frisk MG. Patterns of persistence: Genetic and behavioral population complexity of winter flounder amid population declines. JOURNAL OF FISH BIOLOGY 2024; 105:1280-1297. [PMID: 39109654 DOI: 10.1111/jfb.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 10/09/2024]
Abstract
Winter flounder Pseudopleuronectes americanus (Walbaum 1792) are a coastal flatfish species of economic and cultural importance that have dwindled to <15, % of their historic abundance in the southern New England/Mid-Atlantic region of the United States, with evidence indicating near-extirpation of certain local populations. This species exhibits intricate behaviors in spawning and migration that contribute to population complexity and resilience. These behaviors encompass full or partial philopatry to natal estuaries, the generation of multiple pulses of larval delivery, and partial migration. The patterns of genetic diversity within and among estuaries and cohorts presented here carry important implications in understanding the susceptibility to demographic shocks, even if the full extent of genetic diversity within and among winter flounder stocks on the US East Coast remains unresolved. Our findings reveal connectivity between estuaries in Long Island, New York, suggesting the potential for genetic rescue of depleted subpopulations. Family reconstruction and relatedness analysis indicate that split cohorts and migration contingents are not the result of genetically distinct lineages. We found no evidence for genetic structure separating these groups, and in some instances, we were able to detect closely related individuals that belonged to different migratory contingents or cohorts. Characterizing the spatial and behavioral organization of this species at the population level is crucial for comprehending its potential for recovery, not only in terms of biomass but also in reinstating the complex population structure that supports resilience. The search for generality in winter flounder spawning and migration behavior remains elusive, but perhaps the lack of generalities within this species is what has allowed it to persist in the face of decades of environmental and anthropogenic stressors.
Collapse
Affiliation(s)
- Tara E Dolan
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Massachusetts Division of Marine Fisheries, Salem, Massachusetts, USA
| | - Kevin A Feldheim
- Prizker Laboratory for Molecular Systematics and Evolution, The Field Museum, Chicago, Illinois, USA
| | - Shannon J O'Leary
- Department of Biological Sciences, St Anselm College, Goffstown, New Hampshire, USA
| | - Catherine M Fede
- Marine Resources Division, New York State Department of Environmental Conservation, Kings Park, New York, USA
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Michael G Frisk
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
5
|
Belair M, Picot A, Lepais O, Masson C, Hébrard MN, Moronvalle A, Comont G, Gabri Martin VM, Tréguer S, Laloum Y, Corio-Costet MF, Michailides TJ, Moral J, Le Floch G, Pensec F. Genetic diversity and population structure of Botryosphaeria dothidea and Neofusicoccum parvum on English walnut (Juglans regia L.) in France. Sci Rep 2024; 14:19817. [PMID: 39191814 PMCID: PMC11350086 DOI: 10.1038/s41598-024-67613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Botryosphaeriaceae species are the major causal agents of walnut dieback worldwide, along with Diaporthe species. Botryosphaeria dothidea and Neofusicoccum parvum are the only two Botryosphaeriaceae species associated with this recently emergent disease in France, and little is known about their diversity, structure, origin and dispersion in French walnut orchards. A total of 381 isolates of both species were genetically typed using a sequence-based microsatellite genotyping (SSR-seq) method. This analysis revealed a low genetic diversity and a high clonality of these populations, in agreement with their clonal mode of reproduction. The genetic similarity among populations, regardless of the tissue type and the presence of symptoms, supports the hypothesis that these pathogens can move between fruits and twigs and display latent pathogen lifestyles. Contrasting genetic patterns between N. parvum populations from Californian and Spanish walnut orchards and the French ones suggested no conclusive evidence for pathogen transmission from infected materials. The high genetic similarity with French vineyards populations suggested instead putative transmission between these hosts, which was also observed with B. dothidea populations. Overall, this study provides critical insight into the epidemiology of two important pathogens involved in the emerging dieback of French walnut orchards, including their distribution, potential to mate, putative origin and disease pathways.
Collapse
Affiliation(s)
- Marie Belair
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, 29280, Plouzané, France
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, 29280, Plouzané, France
| | | | - Cyrielle Masson
- Station d'expérimentation Nucicole Rhône Alpes, 38160, Chatte, France
| | | | - Aude Moronvalle
- Centre Technique Interprofessionnel des Fruits et Légumes, Centre Opérationnel de Lanxade, 24130, Prigonrieux, France
| | - Gwénaëlle Comont
- INRAE, UMR Santé et Agroécologie du Vignoble, ISVV, Labex Cote, CS 20032, 33882, Villenave d'Ornon, France
| | - Victor M Gabri Martin
- University of California Davis, Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA
| | - Sylvie Tréguer
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, 29280, Plouzané, France
| | - Yohana Laloum
- Centre Technique Interprofessionnel des Fruits et Légumes, Centre Opérationnel de Lanxade, 24130, Prigonrieux, France
| | - Marie-France Corio-Costet
- INRAE, UMR Santé et Agroécologie du Vignoble, ISVV, Labex Cote, CS 20032, 33882, Villenave d'Ornon, France
| | - Themis J Michailides
- University of California Davis, Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA
| | - Juan Moral
- Department of Agronomy (Maria de Maetzu Excellence Unit), University of Córdoba, Campus de Rabanales, 14071, Córdoba, Spain
| | - Gaétan Le Floch
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, 29280, Plouzané, France
| | - Flora Pensec
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, 29280, Plouzané, France.
| |
Collapse
|
6
|
Kalsing A, Velini ED, Merotto A, Carbonari CA. The population genomics of Conyza spp. in soybean macroregions suggest the spread of herbicide resistance through intraspecific and interspecific gene flow. Sci Rep 2024; 14:19536. [PMID: 39174662 PMCID: PMC11341714 DOI: 10.1038/s41598-024-70153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Herbicide-resistant Conyza spp. are a threat to many crops. These widespread weeds are closely related species and often cooccur. To characterize the origins of their resistance and the mechanisms underlying their spread, we assessed the genomic variation in glyphosate-resistant Conyza spp. in Brazil. Twenty populations were sampled from soybean fields across four macroregions (MRSs). A genotyping-by-sequencing study resulted in 2,998 single-nucleotide polymorphisms (SNPs) obtained for C. bonariensis (L.) and the closely related C. sumatrensis (Retz) E. Walker. Higher genomic diversity (π) and heterozygosity (HO/HE) and lower inbreeding coefficient (FIS) values were detected in populations of Conyza spp. from MRS 1 (southern) than in those from other MRSs. Strong genomic structure clustered individuals into three groups (FST = 0.22; p value = 0.000) associated with the MRSs. Thus, resistance to glyphosate originated from independent selection in different MRSs across Brazil. Our dataset supports the occurrence of intraspecific gene flow in Brazil and identified individuals of C. bonariensis that did not group within species. These findings suggest that allelic introgressions within and among species have impacted the evolution and spread of resistance to glyphosate in Conyza spp. We discuss how to mitigate new resistance cases, particularly for the released stacked traits herbicide tolerance in soybeans.
Collapse
Affiliation(s)
- Augusto Kalsing
- Crop Health Research and Development, Corteva Agriscience™, Mogi Mirim, SP, Brazil. Postgraduate Group of Crop Protection, School of Agriculture Sciences, São Paulo State University-UNESP, Botucatu, SP, Brazil.
| | - Edivaldo D Velini
- Crop Protection Department, School of Agriculture Sciences, São Paulo State University-UNESP, Botucatu, SP, Brazil
| | - Aldo Merotto
- Crop Science Department, School of Agriculture, Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Caio A Carbonari
- Crop Protection Department, School of Agriculture Sciences, São Paulo State University-UNESP, Botucatu, SP, Brazil
| |
Collapse
|
7
|
Tobia J, Muehlbauer M, Honig JA, Pscheidt JW, Hillman BI, Molnar TJ. Genetic Diversity Analysis of Anisogramma anomala in the Pacific Northwest and New Jersey. PLANT DISEASE 2024; 108:2422-2434. [PMID: 38514442 DOI: 10.1094/pdis-08-21-1827-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Anisogramma anomala, a biotrophic ascomycete, causes eastern filbert blight (EFB) of hazelnuts (Corylus spp.). EFB is endemic in eastern North America, preventing the commercial production of European hazelnut (C. avellana L.). In contrast, the historic absence of A. anomala in the Pacific Northwest (PNW) supported the development of a robust hazelnut industry. Circa 1960, A. anomala was inadvertently introduced into southwestern Washington, causing orchard devastation. Distribution of the pathogen in the PNW has been hypothesized to be the result of a single-point introduction. This study aimed to investigate the single-point introduction hypothesis of A. anomala by comparing the genetic diversity of A. anomala samples from the PNW and New Jersey (NJ). Specimens from the main PNW production region (n = 60) and an area within the pathogen's native range, NJ (n = 151), were genotyped using 15 simple sequence repeat (SSR) markers. The following were used to assess genetic diversity and population structure: allelic summary statistics, discriminant analysis of principal components, network median-joining tree, analysis of multilocus genotypes, and allelic population diversity analysis. Analyses separated the samples into one cluster containing all the PNW isolates, and five clusters of NJ isolates. The PNW samples were nearly genetically uniform, and the NJ isolates were diverse. These findings support the hypothesis that A. anomala in the PNW was derived from a single-point introduction and corroborate previous studies that have shown A. anomala is very diverse in NJ. This indicates that maintaining restrictions on the movement of Corylus into the PNW is important to prevent the introduction of new populations of A. anomala, thus protecting the PNW hazelnut industry.
Collapse
Affiliation(s)
- Janine Tobia
- Plant Biology Department, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901
- Research and Evaluation Group at Public Health Management Corporation, Philadelphia, PA 19102
| | - Megan Muehlbauer
- Rutgers University Cooperative Extension of Hunterdon County, Flemington, NJ 08822-2900
| | - Josh A Honig
- Plant Biology Department, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901
| | - Jay W Pscheidt
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331
| | - Bradley I Hillman
- Plant Biology Department, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901
| | - Thomas J Molnar
- Plant Biology Department, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
8
|
Arévalo-Marín E, Casas A, Alvarado-Sizzo H, Ruiz-Sanchez E, Castellanos-Morales G, Jardón-Barbolla L, Fermin G, Padilla-Ramírez JS, Clement CR. Genetic analyses and dispersal patterns unveil the Amazonian origin of guava domestication. Sci Rep 2024; 14:15755. [PMID: 38977809 PMCID: PMC11231237 DOI: 10.1038/s41598-024-66495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Guava (Psidium guajava L.) is a semi-domesticated fruit tree of moderate importance in the Neotropics, utilized for millennia due to its nutritional and medicinal benefits, but its origin of domestication remains unknown. In this study, we examine genetic diversity and population structure in 215 plants from 11 countries in Mesoamerica, the Andes, and Amazonia using 25 nuclear microsatellite loci to propose an origin of domestication. Genetic analyses reveal one gene pool in Mesoamerica (Mexico) and four in South America (Brazilian Amazonia, Peruvian Amazonia and Andes, and Colombia), indicating greater differentiation among localities, possibly due to isolation between guava populations, particularly in the Amazonian and Andean regions. Moreover, Mesoamerican populations show high genetic diversity, with moderate genetic structure due to gene flow from northern South American populations. Dispersal scenarios suggest that Brazilian Amazonia is the probable origin of guava domestication, spreading from there to the Peruvian Andes, northern South America, Central America, and Mexico. These findings present the first evidence of guava domestication in the Americas, contributing to a deeper understanding of its evolutionary history.
Collapse
Affiliation(s)
- Edna Arévalo-Marín
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad-IIES, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico.
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Coyoacán, CDMX, Mexico.
| | - Alejandro Casas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad-IIES, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico.
| | - Hernán Alvarado-Sizzo
- Laboratorio de Biogeografía y Sistemática, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, CDMX, Mexico
| | - Eduardo Ruiz-Sanchez
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Gabriela Castellanos-Morales
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Villahermosa (ECOSUR-Villahermosa), Villahermosa, Tabasco, Mexico
| | - Lev Jardón-Barbolla
- Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX, Mexico
| | - Gustavo Fermin
- Instituto Jardín Botánico de Mérida, Facultad de Ciencias, Universidad de Los Andes, Mérida, Mérida, Venezuela
| | - José S Padilla-Ramírez
- Campo Experimental Pabellón, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Aguascalientes, Mexico
| | - Charles R Clement
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil.
| |
Collapse
|
9
|
Hassett K, Muria-Gonzalez MJ, Martin A, Karakaya A, Çelik Oğuz A, Bakonyi J, Knight NL, Prins R, Ellwood SR. Global Spread, Genetic Differentiation, and Selection of Barley Spot Form Net Blotch Isolates. PHYTOPATHOLOGY 2024; 114:1542-1553. [PMID: 38619562 DOI: 10.1094/phyto-11-23-0442-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Spot form net blotch, caused by Pyrenophora teres f. maculata, is a significant necrotrophic disease of barley that spread worldwide in the twentieth century. Genetic relationships were analyzed to determine the diversity, survival, and dispersal of a diverse collection of 346 isolates from Australia, Southern Africa, North America, Asia Minor, and Europe. The results, based on genome-wide DArTseq data, indicated that isolates from Turkey were the most differentiated with regional sub-structuring, together with individuals closely related to geographically distant genotypes. Elsewhere, population subdivision related to country of origin was evident, although low levels of admixturing was found that may represent rare genotypes or migration from unsampled populations. Canadian isolates were the next most diverged, and Australian and South African the most closely related. With the exception of Turkish isolates, multiple independent Cyp51A mutation events (which confer insensitivity to demethylation inhibitor fungicides) between countries and within regions was evident, with strong selection for a transposable element insertion at the 3' end of the promoter and counterselection elsewhere. Individuals from Western Australia shared genomic regions and Cyp51A haplotypes with South African isolates, suggesting a recent common origin. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Kealan Hassett
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Mariano Jordi Muria-Gonzalez
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Jószef Bakonyi
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Herman Ottó str. 15, 1022 Budapest, Hungary
| | - Noel L Knight
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Renée Prins
- CenGen (Pty) Ltd., Worcester, 6850, South Africa
| | - Simon R Ellwood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
10
|
Suárez-Santiago VN, Provan J, Romero-García AT, Ben-Menni Schuler S. Genetic Diversity and Phylogeography of the Relict Tree Fern Culcita macrocarpa: Influence of Clonality and Breeding System on Genetic Variation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1587. [PMID: 38931019 PMCID: PMC11207926 DOI: 10.3390/plants13121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
The tree fern Culcita macrocarpa, a threatened Iberian-Macaronesian endemism, represents the sole European species of the order Cyatheales. Considered a Tertiary relict of European Palaeotropical flora, its evolutionary history and genetic diversity, potentially influenced by presumed high clonal propagation, remain largely unknown. This study elucidates the phylogeographic history of C. macrocarpa, assessing the impact of vegetative reproduction on population dynamics and genetic variability. We provide genetic data from eight newly identified nuclear microsatellite loci and one plastid DNA region for 17 populations spanning the species' range, together with species distribution modeling data. Microsatellites reveal pervasive clonality in C. macrocarpa, which has varied among populations. We assess the impact of clonality on genetic diversity and evaluate how estimates of intra-population genetic diversity indices and genetic structuring are affected by the chosen definition of "individual" (focusing exclusively on genetically distinct individuals, genets, as opposed to considering all independent clonal replicates, ramets). We identify two main population groups, one in the northern Iberian Peninsula and the other in the Macaronesian archipelagos and southern Iberian Peninsula. Within each group, we found relict populations (in the Azores and the Cantabrian Cornice) as well as recent originated populations. This population structure suggests colonization dynamics in which recent populations originated from one or a few genets of relict populations and became established through intra-gametophytic self-fertilization and vegetative expansion. DAPC analysis facilitated the identification of alleles that most significantly contributed to the observed population structure. The current Andalusian populations appear to have originated from colonization events from the Azores and the Cantabrian Cornice. Our findings suggest that C. macrocarpa persisted through the Last Glacial Maximum in two refugia: the Azores and the Cantabrian Cornice. Colonization into new areas occurred presumably from these refuges, generating two large population groups with structured genetic diversity. This study underscores the significance of clonality in establishing new populations and shaping genetic structure.
Collapse
Affiliation(s)
| | - Jim Provan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | | | | |
Collapse
|
11
|
Poorrashidi M, Hitchcock M, Xu J. Meta-analyses of the global multilocus genotypes of the human pathogen Campylobacter jejuni. Genome 2024; 67:189-203. [PMID: 38427983 DOI: 10.1139/gen-2023-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Campylobacter infections are a leading cause of bacterial diarrheal illness worldwide, with increasing reports of outbreaks in both developing and developed countries. Most studies investigating strain genotypes and epidemiology of Campylobacter jejuni examined on a local scale. Using the archived multilocus sequence typing data at seven loci, and associated strain metadata from the PubMLST database, here we investigated the spatial and temporal genetic structure of the global population of C. jejuni. Our analyses revealed evidence for clonal dispersals of multiple sequence types (STs) among countries and continents. However, despite the observed clonal dispersal and that most genetic variations were found within individual geographic subpopulations, both the non-clone-corrected and clone-corrected samples showed evidence of significant genetic differentiation among national and continental subpopulations, with non-clone-corrected samples showing greater differentiation than clone-corrected samples. Phylogenetic incompatibility analyses provided evidence for recombination within each continental subpopulation. However, linkage disequilibrium analyses rejected the hypothesis of random recombination across the samples. Temporally, multiple STs were found to persist across four decades and the five globally most common STs showed relatively stable frequencies over the last two decades. We discussed the implications of our results to food security, disease transmission, and public health management.
Collapse
Affiliation(s)
- Monir Poorrashidi
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Megan Hitchcock
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
12
|
Runno-Paurson E, Agho CA, Nassar H, Hansen M, Leitaru K, Hallikma T, Cooke DEL, Niinemets Ü. The Variability of Phytophthora infestans Isolates Collected from Estonian Islands in the Baltic Sea. PLANT DISEASE 2024; 108:1645-1658. [PMID: 38127634 DOI: 10.1094/pdis-07-23-1399-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Knowledge of a pathogen's genetic variability and population structure is of great importance to effective disease management. In this study, 193 isolates of Phytophthora infestans collected from three Estonian islands were characterized over 3 years using simple sequence repeat (SSR) marker data complemented by information on their mating type and resistance to metalaxyl. In combination with SSR marker data from samples in the neighboring Pskov region of Northwest Russia, the impact of regional and landscape structure on the level of genetic exchange was also examined. Among the 111 P. infestans isolates from Estonian islands, 49 alleles were detected among 12 SSR loci, and 59 SSR multilocus genotypes were found, of which 64% were unique. The genetic variation was higher among years than that among islands, as revealed by the analysis of molecular variance. The frequency of metalaxyl-resistant isolates increased from 9% in 2012 to 30% in 2014, and metalaxyl resistance was most frequent among A1 isolates. The test for isolation by distance among the studied regions was not significant, and coupled with the absence of genetic differentiation, the result revealed gene flow and the absence of local adaptation. The data are consistent with a sexual population in which diversity is driven by an annual germination of soilborne oospores. The absence of shared genotypes over the years has important implications when it comes to the management of diseases. Such population diversity can make it difficult to predict the nature of the outbreak in the coming year as the genetic makeup is different for each year.
Collapse
Affiliation(s)
- Eve Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Collins A Agho
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Helina Nassar
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Merili Hansen
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Kätlin Leitaru
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Tiit Hallikma
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | | | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| |
Collapse
|
13
|
Dalmieda J, Hitchcock M, Xu J. High diversity within and low but significant genetic differentiation among geographic and temporal populations of the global Streptococcus pneumoniae. Can J Microbiol 2024; 70:226-237. [PMID: 38422492 DOI: 10.1139/cjm-2023-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Streptococcus pneumoniae is the major cause of invasive pneumococcal disease. However, the global population structure remains largely unexplored. In this study, we investigated the spatial and temporal patterns of genetic variation of S. pneumoniae based on archived multilocus sequence typing data from PubMLST.org. Our analyses demonstrated both shared and unique distributions of sequence types (STs) and allele types among regional populations. Among the 17 915 global STs, 36 representing 15 263 isolates were broadly shared among all six continents, consistent with recent clonal dispersal and expansion of this pathogen. The analysis of molecular variance revealed that >96% genetic variations were found within individual regional populations. However, though low (<4%), statistically significant genetic differentiation among regional populations was observed. Comparisons between non-clone-corrected and clone-corrected datasets showed that localized clonal expansion contributed significantly to the observed genetic differentiations among regions. Temporal analyses of the isolates showed that implementation of pneumococcal conjugate vaccine impacted the distributions of STs, but the effect on population structure was relatively limited. Linkage disequilibrium analyses identified evidence for recombination in all continental populations; however, the inferred recombination was not random. We discussed the limitations and implications of our analyses to the global epidemiology and future vaccine developments for S. pneumoniae.
Collapse
Affiliation(s)
- Jezreel Dalmieda
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Megan Hitchcock
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
14
|
Saubin M, Tellier A, Stoeckel S, Andrieux A, Halkett F. Approximate Bayesian Computation applied to time series of population genetic data disentangles rapid genetic changes and demographic variations in a pathogen population. Mol Ecol 2024; 33:e16965. [PMID: 37150947 DOI: 10.1111/mec.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023]
Abstract
Adaptation can occur at remarkably short timescales in natural populations, leading to drastic changes in phenotypes and genotype frequencies over a few generations only. The inference of demographic parameters can allow understanding how evolutionary forces interact and shape the genetic trajectories of populations during rapid adaptation. Here we propose a new Approximate Bayesian Computation (ABC) framework that couples a forward and individual-based model with temporal genetic data to disentangle genetic changes and demographic variations in a case of rapid adaptation. We test the accuracy of our inferential framework and evaluate the benefit of considering a dense versus sparse sampling. Theoretical investigations demonstrate high accuracy in both model and parameter estimations, even if a strong thinning is applied to time series data. Then, we apply our ABC inferential framework to empirical data describing the population genetic changes of the poplar rust pathogen following a major event of resistance overcoming. We successfully estimate key demographic and genetic parameters, including the proportion of resistant hosts deployed in the landscape and the level of standing genetic variation from which selection occurred. Inferred values are in accordance with our empirical knowledge of this biological system. This new inferential framework, which contrasts with coalescent-based ABC analyses, is promising for a better understanding of evolutionary trajectories of populations subjected to rapid adaptation.
Collapse
Affiliation(s)
- Méline Saubin
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department for Life Science Systems, Technical University of Munich, Freising, Germany
| | - Aurélien Tellier
- Department for Life Science Systems, Technical University of Munich, Freising, Germany
| | - Solenn Stoeckel
- INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, France
| | | | | |
Collapse
|
15
|
Pedrazzini C, Rehner SA, Strasser H, Zemp N, Holderegger R, Widmer F, Enkerli J. Clonal genomic population structure of Beauveria brongniartii and Beauveria pseudobassiana: Pathogens of the common European cockchafer (Melolontha melolontha L.). Environ Microbiol 2024; 26:e16612. [PMID: 38622804 DOI: 10.1111/1462-2920.16612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
Beauveria brongniartii is a fungal pathogen that infects the beetle Melolontha melolontha, a significant agricultural pest in Europe. While research has primarily focused on the use of B. brongniartii for controlling M. melolontha, the genomic structure of the B. brongniartii population remains unknown. This includes whether its structure is influenced by its interaction with M. melolontha, the timing of beetle-swarming flights, geographical factors, or reproductive mode. To address this, we analysed genome-wide SNPs to infer the population genomics of Beauveria spp., which were isolated from infected M. melolontha adults in an Alpine region. Surprisingly, only one-third of the isolates were identified as B. brongniartii, while two-thirds were distributed among cryptic taxa within B. pseudobassiana, a fungal species not previously recognized as a pathogen of M. melolontha. Given the prevalence of B. pseudobassiana, we conducted analyses on both species. We found no spatial or temporal genomic patterns within either species and no correlation with the population structure of M. melolontha, suggesting that the dispersal of the fungi is independent of the beetle. Both species exhibited clonal population structures, with B. brongniartii fixed for one mating type and B. pseudobassiana displaying both mating types. This implies that factors other than mating compatibility limit sexual reproduction. We conclude that the population genomic structure of Beauveria spp. is primarily influenced by predominant asexual reproduction and dispersal.
Collapse
Affiliation(s)
- Chiara Pedrazzini
- Molecular Ecology, Agroscope, Zürich, Switzerland
- Institute of Environmental Systems Science, ETH, Zürich, Switzerland
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture USDA, Beltsville, Maryland, USA
| | - Hermann Strasser
- Institute of Microbiology, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH, Zürich, Switzerland
| | - Rolf Holderegger
- Institute of Environmental Systems Science, ETH, Zürich, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Jürg Enkerli
- Molecular Ecology, Agroscope, Zürich, Switzerland
| |
Collapse
|
16
|
Ouadhene MA, Callicott KA, Ortega‐Beltran A, Mehl HL, Cotty PJ, Battilani P. Structure of Aspergillus flavus populations associated with maize in Greece, Spain, and Serbia: Implications for aflatoxin biocontrol on a regional scale. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13249. [PMID: 38634243 PMCID: PMC11024511 DOI: 10.1111/1758-2229.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Aspergillus flavus is the most frequently identified producer of aflatoxins. Non-aflatoxigenic members of the A. flavus L strains are used in various continents as active ingredients of bioprotectants directed at preventing aflatoxin contamination by competitive displacement of aflatoxin producers. The current research examined the genetic diversity of A. flavus L strain across southern Europe to gain insights into the population structure and evolution of this species and to evaluate the prevalence of genotypes closely related to MUCL54911, the active ingredient of AF-X1. A total of 2173L strain isolates recovered from maize collected across Greece, Spain, and Serbia in 2020 and 2021 were subjected to simple sequence repeat (SSR) genotyping. The analysis revealed high diversity within and among countries and dozens of haplotypes shared. Linkage disequilibrium analysis indicated asexual reproduction and clonal evolution of A. flavus L strain resident in Europe. Moreover, haplotypes closely related to MUCL54911 were found to belong to the same vegetative compatibility group (VCG) IT006 and were relatively common in all three countries. The results indicate that IT006 is endemic to southern Europe and may be utilized as an aflatoxin mitigation tool for maize across the region without concern for potential adverse impacts associated with the introduction of an exotic microorganism.
Collapse
Affiliation(s)
- Mohamed Ali Ouadhene
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | | | | | | | - Peter J. Cotty
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Paola Battilani
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| |
Collapse
|
17
|
Belcik JT, Ashley MV. Riverscape genetics of the orangethroat darter complex. JOURNAL OF FISH BIOLOGY 2024; 104:837-850. [PMID: 37971888 DOI: 10.1111/jfb.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/16/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Freshwater darters belonging to the orangethroat darter species complex, or Ceasia, are widely distributed in the Central and Southern United States, with ranges that span both glaciated and unglaciated regions. Up to 15 species have been recognized in the complex, with one, Etheostoma spectabile, having a widespread northern distribution and another, Etheostoma pulchellum, having a sizeable southern distribution. The other species in the complex have much more restricted distributions in unglaciated regions of the Central Highlands. We sampled 384 darters from 52 sites covering much of the range of Ceasia and evaluated patterns of genetic diversity, genetic structure, and pre- and post-glacial patterns of range contraction and expansion. We anticipated finding much stronger signals of genetic differentiation and diversification in unglaciated regions, given the higher species diversity and levels of endemism reported there. Surprisingly, microsatellite genotyping revealed two well-differentiated genetic clusters of E. spectabile in samples from glaciated regions, one confined to the Illinois River basin and another found in the Wabash drainage and Great Lakes tributaries. This suggests that there was expansion from two isolated glacial refugia, with little subsequent post-glacial gene flow. Fish collected from throughout the unglaciated region were less genetically differentiated. Fish assigned to Etheostoma burri and Etheostoma uniporum based on collection sites and morphological characters were not genetically differentiated from E. spectabile samples from the region. Hybridization and introgression occurring in the Central Highlands may confound genetic delineation of species in this region of high endemism and diversity.
Collapse
Affiliation(s)
- John T Belcik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- U.S. Army Corps of Engineers Chicago District, Chicago, Illinois, USA
| | - Mary V Ashley
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Davis RP, Simmons LM, Shaw SL, Sass GG, Sard NM, Isermann DA, Larson WA, Homola JJ. Demographic patterns of walleye ( Sander vitreus) reproductive success in a Wisconsin population. Evol Appl 2024; 17:e13665. [PMID: 38468712 PMCID: PMC10925830 DOI: 10.1111/eva.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024] Open
Abstract
Harvest in walleye Sander vitreus fisheries is size-selective and could influence phenotypic traits of spawners; however, contributions of individual spawners to recruitment are unknown. We used parentage analyses using single nucleotide polymorphisms to test whether parental traits were related to the probability of offspring survival in Escanaba Lake, Wisconsin. From 2017 to 2020, 1339 adults and 1138 juveniles were genotyped and 66% of the offspring were assigned to at least one parent. Logistic regression indicated the probability of reproductive success (survival of age-0 to first fall) was positively (but weakly) related to total length and growth rate in females, but not age. No traits analyzed were related to reproductive success for males. Our analysis identified the model with the predictors' growth rate and year for females and the models with year and age and year for males as the most likely models to explain variation in reproductive success. Our findings indicate that interannual variation (i.e., environmental conditions) likely plays a key role in determining the probability of reproductive success in this population and provide limited support that female age, length, and growth rate influence recruitment.
Collapse
Affiliation(s)
- Robert P. Davis
- Wisconsin Cooperative Fishery Research UnitUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Levi M. Simmons
- Wisconsin Cooperative Fishery Research UnitUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Stephanie L. Shaw
- Office of Applied Science, Wisconsin Department of Natural ResourcesEscanaba Lake Research StationBoulder JunctionWisconsinUSA
| | - Greg G. Sass
- Office of Applied Science, Wisconsin Department of Natural ResourcesEscanaba Lake Research StationBoulder JunctionWisconsinUSA
| | - Nicholas M. Sard
- Department of Biological SciencesState University of New York‐OswegoOswegoNew YorkUSA
| | - Daniel A. Isermann
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research UnitUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Wesley A. Larson
- National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay LaboratoriesNational Oceanic and Atmospheric AdministrationJuneauAlaskaUSA
| | - Jared J. Homola
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research UnitUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| |
Collapse
|
19
|
Babarinde S, Burlakoti RR, Peters RD, Al-Mughrabi K, Novinscak A, Sapkota S, Prithiviraj B. Genetic structure and population diversity of Phytophthora infestans strains in Pacific western Canada. Appl Microbiol Biotechnol 2024; 108:237. [PMID: 38407622 PMCID: PMC10896882 DOI: 10.1007/s00253-024-13040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/27/2024]
Abstract
Late blight caused by Phytophthora infestans is an economically important disease of potato and tomato worldwide. In Canada, an increase in late blight incidence and severity coincided with changes in genetic composition of P. infestans. We monitored late blight incidence on tomato and potato in Pacific western and eastern Canada between 2019 and 2022, identified genotypes of P. infestans, and examined their population genetic diversity. We identified four major existing genotypes US11, US17, US8, and US23 as well as 25 new genotypes. The US11 genotype was dominant in Pacific western Canada, accounting for 59% of the total population. We discovered the US17 genotype for the first time in Canada. We revealed a higher incidence of late blight and quite diverse genotypes of P. infestans in Pacific western Canada than in eastern Canada. We found high genetic diversity of P. infestans population from Pacific western Canada, as evidenced by the high number of multilocus genotypes, high values of genetic diversity indices, and emergence of 25 new genotypes. Considering the number of disease incidence, the detection of diverse known genotypes, the emergence of novel genotypes, and the high number of isolates resistant to metalaxyl-m (95%) from Pacific western Canada, the region could play a role in establishing sexual recombination and diverse populations, which could ultimately pose challenges for late blight management. Therefore, continuous monitoring of P. infestans populations in Pacific western region and across Canada is warranted. KEY POINTS: • Genotypes of P. infestans in Pacific western were quite diverse than in eastern Canada. • We discovered US17 genotype for the first time in Canada and identified 26 novel genotypes. • Approximately 95% of P. infestans isolates were resistant to metalaxyl-m.
Collapse
Affiliation(s)
- Segun Babarinde
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Rishi R Burlakoti
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada.
| | - Rick D Peters
- Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Khalil Al-Mughrabi
- New Brunswick Department of Agriculture, Aquaculture and Fisheries, 39 Barker Lane, Wicklow, NB, E7L 3S4, Canada
| | - Amy Novinscak
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
| | - Sanjib Sapkota
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
20
|
Cogliati M, Chidebelu PE, Hitchcock M, Chen M, Rickerts V, Ackermann S, Desnos Ollivier M, Inácio J, Nawrot U, Florek M, Kwon-Chung KJ, Yang DH, Firacative C, Puime CA, Escandon P, Bertout S, Roger F, Xu J. Multi-locus sequence typing and phylogenetics of Cryptococcus neoformans AD hybrids. Fungal Genet Biol 2024; 170:103861. [PMID: 38128716 DOI: 10.1016/j.fgb.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Hybrid AD strains of the human pathogenic Cryptococcus neoformans species complex have been reported from many parts of the world. However, their origin, diversity, and evolution are incompletely understood. In this study, we analyzed 102 AD hybrid strains representing 21 countries on five continents. For each strain, we obtained its mating type and its allelic sequences at each of the seven loci that have been used for genotyping haploid serotypes A and D strains of the species complex by the Cryptococcus research community. Our results showed that most AD hybrids exhibited loss of heterozygosity at one or more of the seven analyzed loci. Phylogenetic and population genetic analyses of the allelic sequences revealed multiple origins of the hybrids within each continent, dating back to one million years ago in Africa and up to the present in other continents. We found evidence for clonal reproduction and long-distance dispersal of these hybrids in nature. Comparisons with the global haploid serotypes A and D strains identified new alleles and new haploid multi-locus genotypes in AD hybrids, consistent with the presence of yet-to-be discovered genetic diversity in haploid populations of this species complex in nature. Together, our results indicate that AD hybrids can be effectively genotyped using the same multi-locus sequencing type approach as that established for serotypes A and D strains. Our comparisons of the AD hybrids among each other as well as with the global haploid serotypes A and D strains revealed novel genetic diversity as well as evidence for multiple origins and dynamic evolution of these hybrids in nature.
Collapse
Affiliation(s)
- M Cogliati
- Lab. Medical Mycology, Dept. Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.
| | - P E Chidebelu
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - M Hitchcock
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - M Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Chanzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | - M Desnos Ollivier
- Institut Pasteur, Université de Paris, CNRS UMR2000, Molecular Mycology Unit, National Reference Center for Invasive Mycoses and Antifungals, Paris, France
| | - J Inácio
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - U Nawrot
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - M Florek
- Department of Pathology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - K J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, USA
| | - D-H Yang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, USA
| | - C Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogotá, Colombia
| | - C A Puime
- Unidad de Parasitología y Micología, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo, Uruguay
| | - P Escandon
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - S Bertout
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM, Montpellier, France
| | - F Roger
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM, Montpellier, France
| | - J Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Belton S, Cubry P, Roche JR, Kelleher CT. Molecular characterisation of Pinus sylvestris (L.) in Ireland at the western limit of the species distribution. BMC Ecol Evol 2024; 24:12. [PMID: 38262959 PMCID: PMC10807061 DOI: 10.1186/s12862-023-02181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Scots pine (Pinus sylvestris L.) underwent significant population declines across much of northwest Europe during the mid-to-late Holocene and was thought to have become extirpated in Ireland from about 400 AD. However, most extant populations are plantations reintroduced from Scotland. Others are naturalised therefrom and one in Western Ireland is a putative relict. In this paper, Scots pine in Ireland are genetically described for the first time. RESULTS Using two mitochondrial (mtDNA) loci, eight chloroplast (cpSSR) and 18 nuclear (nSSR) loci, the genetic composition and diversity of 19 Irish Scots pine populations is described and compared to other European populations. All trees sampled in Ireland were fixed for mitotype a, which is the most common across northwest Europe. By contrast, cpSSR (HCP = 0.967) and nSSR (He = 0.540) variation was high, and comparable with estimates for other regions across the species range. Differentiation at both sets of loci were similarly low (cpSSR FST = 0.019; nSSR FST = 0.018), but populations from continental Europe were significantly differentiated from all Irish populations based on nSSR variation. CONCLUSIONS All Irish Scots pine are likely part of a common Irish-Scottish gene pool which diverged from continental Scots pine following post-glacial recolonisation. A high genetic diversity and an absence of evidence of inbreeding suggests the regional decline of Scots pine did not critically reduce allelic variation. The post-glacial relationship between Irish and Scottish pine is discussed, and a suggestion from recent palaeoecological work that reintroduced Scots pine be managed as a native species is now further supported by genetic data.
Collapse
Affiliation(s)
- Samuel Belton
- DBN Plant Molecular Laboratory, National Botanic Gardens of Ireland, Glasnevin, Dublin, Ireland
| | - Philippe Cubry
- DBN Plant Molecular Laboratory, National Botanic Gardens of Ireland, Glasnevin, Dublin, Ireland
- DIADE, Univ de Montpellier, CIRAD, IRD, Montpellier, F-34090, France
| | - Jenni R Roche
- National Parks and Wildlife Service, Department of Housing, Local Government and Heritage, 90 King Street North, Smithfield, Dublin, Ireland
| | - Colin T Kelleher
- DBN Plant Molecular Laboratory, National Botanic Gardens of Ireland, Glasnevin, Dublin, Ireland.
| |
Collapse
|
22
|
Kaur N, Mehl HL, Langston D, Haak DC. Evaluation of Stagonospora Nodorum Blotch Severity and Parastagonospora nodorum Population Structure and Genetic Diversity Across Multiple Locations and Wheat Varieties in Virginia. PHYTOPATHOLOGY 2024; 114:258-268. [PMID: 37316953 DOI: 10.1094/phyto-10-22-0392-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Parastagonospora nodorum is a necrotrophic pathogen that causes Stagonospora nodorum blotch (SNB) in wheat. Wheat varieties grown in Virginia vary in susceptibility to SNB, and the severity of SNB varies across locations and years. However, the impacts of wheat genetic backgrounds and environments on SNB severity and the structure of P. nodorum populations in the region have not been well studied. Thus, a population genetic study was conducted utilizing P. nodorum isolates collected from different wheat varieties and locations in Virginia. A total of 320 isolates were collected at seven locations over 2 years from five wheat varieties. Isolates were genotyped using multilocus simple sequence repeat markers, and necrotrophic effector (NE) and mating type genes were amplified using gene-specific primers. Wheat varieties varied in susceptibility to SNB, but site-specific environmental conditions were the primary drivers of disease severity. Fungal populations were genetically diverse, but no genetic subdivision was observed among locations or varieties. The ratio of the two mating type idiomorphs was not significantly different from 1:1, consistent with the P. nodorum population undergoing sexual reproduction. Three major NE genes were detected within the P. nodorum population, but not with equal frequency. However, NE gene profiles were similar for groups of isolates originating from different varieties, suggesting that wheat genetic backgrounds do not differentially select for NEs. There was no evidence of population structure among P. nodorum populations in Virginia and, thus, no support for wheat genetic backgrounds shaping these populations. Finally, although varieties only exhibited moderate resistance to SNB, current levels of resistance are likely to be durable over time and remain a useful tool for integrated management of SNB in the region. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Navjot Kaur
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
- Virginia Tech Tidewater Agricultural Research and Extension Center, Suffolk, VA 23437
| | - Hillary L Mehl
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
- Virginia Tech Tidewater Agricultural Research and Extension Center, Suffolk, VA 23437
| | - David Langston
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
- Virginia Tech Tidewater Agricultural Research and Extension Center, Suffolk, VA 23437
| | - David C Haak
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
| |
Collapse
|
23
|
Terefe TG, Boshoff WHP, Park RF, Pretorius ZA, Visser B. Wheat Stem Rust Surveillance Reveals Two New Races of Puccinia graminis f. sp. tritici in South Africa During 2016 to 2020. PLANT DISEASE 2024; 108:20-29. [PMID: 37580885 DOI: 10.1094/pdis-06-23-1120-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat in South Africa (SA) and is primarily controlled using resistant cultivars. Understanding virulence diversity of Pgt is essential for successful breeding of resistant cultivars. Samples of infected wheat stems were collected across the major wheat-growing regions of SA from 2016 to 2020 to determine the pathogenic variability of Pgt isolates. Seven races were identified from 517 isolates pathotyped. The most frequently found races were 2SA104 (BPGSC + Sr9h,27,Kw) (35% frequency) and 2SA88 (TTKSF + Sr8b) (33%). Race 2SA42 (PTKSK + Sr8b), which was found in 2017, and 2SA5 (BFGSF + Sr9h), identified in 2017, are new races. The Ug99 variant race 2SA42 is similar in its virulence to 2SA107 (PTKST + Sr8b) except for avirulence to Sr24 and virulence to Sr8155B1. Race 2SA5 is closely related in its virulence to existing races that commonly infect triticale. Certain races showed limited geographical distribution. Races 2SA5, 2SA105, and 2SA108 were found only in the Western Cape, whereas 2SA107 and 2SA42 were detected only in the Free State province. The new and existing races were compared using microsatellite (SSR) marker analysis and their virulence on commercial cultivars was also determined. Seedling response of 113 wheat entries against the new races, using 2SA88, 2SA88+9h, 2SA106, and 2SA107 as controls, revealed 2SA107 as the most virulent (67 entries susceptible), followed by 2SA42 (64), 2SA106 (60), 2SA88+9h (59), 2SA88 (25), and 2SA5 (17). Thus, 2SA5 may not pose a significant threat to local wheat production. SSR genotyping revealed that 2SA5 is genetically distinct from all other SA Pgt races.
Collapse
Affiliation(s)
- Tarekegn G Terefe
- Agricultural Research Council-Small Grain, Bethlehem 9700, South Africa
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Robert F Park
- Plant Breeding Institute Cobbitty, The University of Sydney, Narellan, NSW 2567, Australia
| | - Zacharias A Pretorius
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Botma Visser
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
24
|
Cao X, Han Q, Xiao Y, He J, Chuan X, Jiang G, West JS, Xu X. Population Genetic Structure of the Rubber Tree Powdery Mildew Pathogen ( Erysiphe quercicola) from China. PLANT DISEASE 2024; 108:62-70. [PMID: 37467126 DOI: 10.1094/pdis-03-23-0575-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In order to manage agricultural pathogens, it is crucial to understand the population structure underlying epidemics. Rubber tree powdery mildew, caused by Erysiphe quercicola, is a serious threat to rubber plantations worldwide, especially in subtropical environments including all rubber tree-growing regions in China. However, the population structure of the pathogen is uncertain. In this study, 16 polymorphic microsatellite markers were used to genotype powdery mildew samples from the main rubber tree-growing regions including Yunnan (YN), Hainan (HN), western Guangdong (WG), and eastern Guangdong (EG). YN had higher genotypic diversity (Simpson's indices), genotypic evenness, Nei's gene diversity, allelic richness, and private allelic richness than the other regions. Cluster analysis, discriminant analysis of principal components, pairwise divergence, and shared multilocus genotype analyses all showed that YN differed significantly from the other regions. The genetic differentiation was small among the other three regions (HN, WG, and EG). Analysis of molecular variance indicated that the variability among regions accounted for 22.37% of the total variability. Genetic differentiation was significantly positively correlated (Rxy = 0.772, P = 0.001) with geographic distance. Linkage equilibrium analysis suggested possible occurrence of sexual recombination although asexual reproduction predominates in E. quercicola. The results suggested that although significant genetic differentiation of E. quercicola occurred between YN and the other regions, pathogen populations from the other three regions lacked genetic differentiation.
Collapse
Affiliation(s)
- Xueren Cao
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qiaohui Han
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University, Guiyang 550025, China
| | - Ying Xiao
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjun He
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524031, China
| | - Xiangxian Chuan
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, China
| | - Guizhi Jiang
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | | | | |
Collapse
|
25
|
Heck DW, Hay F, Pethybridge SJ. Enabling Population Biology Studies of Stemphylium vesicarium from Onion with Microsatellites. PLANT DISEASE 2023; 107:3886-3895. [PMID: 37330630 DOI: 10.1094/pdis-04-23-0706-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Stemphylium leaf blight (SLB), caused by the fungus Stemphylium vesicarium, is dominant within the foliar disease complex affecting onion production in New York (NY). The disease causes premature defoliation and significant reductions in bulb weight and quality. Foliar diseases of onion are usually managed by an intensive fungicide program, but SLB management is complicated by resistance to multiple single-site modes of action. The design of integrated disease management strategies is limited by incomplete knowledge surrounding the dominant sources of S. vesicarium inoculum. To facilitate genomic-based studies of S. vesicarium populations, nine microsatellite markers were developed. The markers were multiplexed into two PCR assays containing four and five fluorescently labeled microsatellite markers. Initial testing of the S. vesicarium isolates found the markers were highly polymorphic and reproducible with an average of 8.2 alleles per locus. The markers were used to characterize 54 S. vesicarium isolates from major NY onion production regions in 2016 (n = 27) and 2018 (n = 27). Fifty-two multilocus genotypes (MLGs) were identified between these populations. Genotypic and allelic diversities were high in both the 2016 and 2018 populations. A greater degree of genetic variation was observed within populations than between years. No distinct pattern of MLGs according to population was identified and some MLGs were closely related between 2016 and 2018. The lack of evidence for linkage among loci also was strongly suggestive of clonal populations with only minor differences between the two populations. These microsatellite markers will be a foundational resource for the testing of hypotheses surrounding the population biology of S. vesicarium and therefore informing disease management.
Collapse
Affiliation(s)
- Daniel W Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Frank Hay
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| |
Collapse
|
26
|
Muniz AC, de Oliveira Buzatti RS, de Lemos-Filho JP, Heuertz M, Nazareno AG, Lovato MB. Genomic signatures of ecological divergence between savanna and forest populations of a Neotropical tree. ANNALS OF BOTANY 2023; 132:523-540. [PMID: 37642427 PMCID: PMC10667007 DOI: 10.1093/aob/mcad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND AIMS In eastern Neotropical South America, the Cerrado, a large savanna vegetation, and the Atlantic Forest harbour high biodiversity levels, and their habitats are rather different from each other. The biomes have intrinsic evolutionary relationships, with high lineage exchange that can be attributed, in part, to a large contact zone between them. The genomic study of ecotypes, i.e. populations adapted to divergent habitats, can be a model to study the genomic signatures of ecological divergence. Here, we investigated two ecotypes of the tree Plathymenia reticulata, one from the Cerrado and the other from the Atlantic Forest, which have a hybrid zone in the ecotonal zone of Atlantic Forest-Cerrado. METHODS The ecotypes were sampled in the two biomes and their ecotone. The evolutionary history of the divergence of the species was analysed with double-digest restriction site-associated DNA sequencing. The genetic structure and the genotypic composition of the hybrid zone were determined. Genotype-association analyses were performed, and the loci under putative selection and their functions were investigated. KEY RESULTS High divergence between the two ecotypes was found, and only early-generation hybrids were found in the hybrid zone, suggesting a partial reproductive barrier. Ancient introgression between the Cerrado and Atlantic Forest was not detected. The soil and climate were associated with genetic divergence in Plathymenia ecotypes and outlier loci were found to be associated with the stress response, with stomatal and root development and with reproduction. CONCLUSIONS The high genomic, ecological and morphophysiological divergence between ecotypes, coupled with partial reproductive isolation, indicate that the ecotypes represent two species and should be managed as different evolutionary lineages. We advise that the forest species should be re-evaluated and restated as vulnerable. Our results provide insights into the genomic mechanisms underlying the diversification of species across savanna and forest habitats and the evolutionary forces acting in the species diversification in the Neotropics.
Collapse
Affiliation(s)
- André Carneiro Muniz
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG 31270-901, Brazil
| | | | - José Pires de Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Myriam Heuertz
- Biogeco, INRAE, Univ. Bordeaux, 69 route d’Arcachon, 33610 Cestas, France
| | - Alison Gonçalves Nazareno
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG 31270-901, Brazil
| | - Maria Bernadete Lovato
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
27
|
Wu W, Li W, Liu F, Chen S. Evidence of High Genetic Diversity and Differences in the Population Diversity of the Eucalyptus Leaf Blight Pathogen Calonectria pseudoreteaudii from Diseased Leaves and Soil in a Plantation in Guangxi, China. Microorganisms 2023; 11:2785. [PMID: 38004796 PMCID: PMC10673236 DOI: 10.3390/microorganisms11112785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Calonectria pseudoreteaudii is an important causal agent of Eucalyptus leaf blight in southern China. This pathogen causes Eucalyptus tree disease across numerous regions in southern China. In addition to diseased leaves, C. pseudoreteaudii has occasionally been isolated from soil in Eucalyptus plantations. The aim of this study was to clarify whether C. pseudoreteaudii causing Eucalyptus leaf blight in China is mainly clonally reproduced and to determine the potential spreading mechanism of C. pseudoreteaudii between diseased leaves and soil. To this end, 10 polymorphic microsatellite markers were analyzed to detect the genetic diversity of 97 C. pseudoreteaudii isolates from diseased leaves and soil in a Eucalyptus plantation in Guangxi Zhuang Autonomous Region, southern China. The analysis showed that the genetic diversity of the isolates from both the diseased leaves and soil was high. However, the gene and genotype diversity of the C. pseudoreteaudii isolates from diseased leaves were higher than those of the isolates from the soil. Moreover, all genotypes detected in the isolates from the soil were also found in the isolates from the diseased leaves. Structural analyses did not show clear population structures related to the population substrates of the diseased leaves or soil, and molecular variance analyses indicated that no significant genetic differentiation existed between the diseased leaf and soil populations. These results suggest that C. pseudoreteaudii in soil spreads from diseased leaves, and that an asexual cycle is the primary reproductive mode in both diseased leaf and soil populations. This is the first study on the genetic diversity and population structure of C. pseudoreteaudii. The high genetic diversity and spread pathways of this pathogen may pose challenges in controlling the disease. C. pseudoreteaudii from both diseased leaves and soils in Eucalyptus plantations needs to be carefully monitored for disease control and management.
Collapse
Affiliation(s)
- Wenxia Wu
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China; (W.W.); (W.L.); (F.L.)
- College of Forestry, Nanjing Forestry University (NJFU), Nanjing 210037, China
| | - Wenwen Li
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China; (W.W.); (W.L.); (F.L.)
| | - Feifei Liu
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China; (W.W.); (W.L.); (F.L.)
| | - Shuaifei Chen
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China; (W.W.); (W.L.); (F.L.)
| |
Collapse
|
28
|
Gutiérrez-Larruscain D, Donat S, Pausas JG, Segarra-Moragues JG. Development and characterization of microsatellite loci in Ulex parviflorus Pourr. And its cross-transferability to other Genisteae. Mol Biol Rep 2023; 50:9721-9729. [PMID: 37814034 DOI: 10.1007/s11033-023-08813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND The genus Ulex is composed by 15 species distributed in Europe and Africa, but the majority of them are restricted to the Iberian Peninsula and Northwest Africa. Some of these species are common elements at the landscape level, and others contribute to global biodiversity as narrow endemics. Assayed nuclear and plastid Sanger-sequenced regions do not provide enough resolution to perform evolutionary studies on the genus, neither at the intraspecific population level nor at the interspecific phylogenetic level. Thus, we have developed and characterized a set of nuclear microsatellite loci in U. parviflorus to provide new highly polymorphic molecular markers for the genus Ulex. METHODS AND RESULTS Genomic DNA enriched in microsatellite motifs using streptavidin-coated M-280 magnetic beads attached to 5'-biotinylated oligonucleotides was sequenced in a 454GS Junior System. After primer design, fluorescent-dyed amplicons were analyzed through capillary sequencing (ABI3730XL). Here we present twelve new high polimorphic SSRs markers developed in U. parviflorus specimens and tested in 120 individuals. The 12 SSR loci amplified a total of 152 alleles, and detected expected heterozygosities that ranged from 0.674 to 0.725 in the genotyped populations. Successful cross-species transferability of the 12 SSR loci to the rest of species included in the genus Ulex and three other representative Genisteae was achieved. CONCLUSIONS The 12 novel proposed SSRs loci will contribute to perform evolutionary studies and genetic research on the genus Ulex and in other Genisteae.
Collapse
Affiliation(s)
- David Gutiérrez-Larruscain
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), Ctra. Náquera Km. 4.5, Moncada, E-46113, Valencia, Spain.
| | - Santiago Donat
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), Ctra. Náquera Km. 4.5, Moncada, E-46113, Valencia, Spain
| | - Juli G Pausas
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), Ctra. Náquera Km. 4.5, Moncada, E-46113, Valencia, Spain
| | - José Gabriel Segarra-Moragues
- Departamento de Botánica y Geología, Facultad de Ciencias Biológicas, Universitat de València, Avda. Dr. Moliner 50, Burjassot, E-46100, Valencia, Spain
| |
Collapse
|
29
|
Dai Y, Gan L, Lan C, Liu X, Liu W, Yang X. Population structure and mixed reproductive strategies in Bipolaris maydis from single and multiple corn cultivars in Fujian Province, China. FRONTIERS IN PLANT SCIENCE 2023; 14:1232414. [PMID: 37860250 PMCID: PMC10583543 DOI: 10.3389/fpls.2023.1232414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
Bipolaris maydis is the pathogenic microorganism of southern corn leaf blight, a persistent biotic constraint responsible for substantial yield losses of corn worldwide. In the present study, 96 isolates from six representative fields growing single and multiple sweet corn cultivars in Pingnan, Fuqing, and Jian'ou in Fujian Province, which are characterized by different geographical characteristics and cropping patterns, were genetically analyzed using inter-simple sequence repeat (ISSR) markers to assess the impact of geographical origins and corn cultivars on B. maydis population differentiation. B. maydis isolates originated from diverse regions possessed higher genetic variety than those from single and multiple sweet corn cultivars. Phylogenetic analysis showed that the isolates from single and multiple sweet corn cultivars were randomly grouped into different clusters, with those from the same location tending to form clusters. A greater genetic differentiation among different geographical populations than between those from single and multiple sweet corn cultivars was observed by pairwise comparison. Hierarchical analysis indicated that among-population variation was higher when comparatively analyzed B. maydis populations from different locations than in those from single and multiple sweet corn cultivars. In conclusion, these results suggest that geographical origin acts a more considerable role in genetic differentiation of B. maydis than corn cultivar. Two divided genetic clusters were detected in the B. maydis populations from single and multiple sweet corn cultivars at the three locations in Fujian Province, with major genetic variation being derived within populations. The high haplotypic diversity and expected mating type ratio of 1:1 in combination with significant linkage disequilibrium suggested that a mixed reproductive strategy occurs in the B. maydis population in Fujian Province. This study will enrich the information on the role that geographical origins and corn cultivars play in the population structure of the pathogen as well as the reproductive strategies in B. maydis population in Fujian Province.
Collapse
Affiliation(s)
- Yuli Dai
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Lin Gan
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Chengzhong Lan
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Xiaofei Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiujuan Yang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
30
|
Sullivan TJ, Roberts H, Bultman TL. Genetic Covariation Between the Vertically Transmitted Endophyte Epichloë canadensis and Its Host Canada Wildrye. MICROBIAL ECOLOGY 2023; 86:1686-1695. [PMID: 36725749 DOI: 10.1007/s00248-022-02166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Symbiotic mutualisms are thought to be stabilized by correlations between the interacting genotypes which may be strengthened via vertical transmission and/or reduced genetic variability within each species. Vertical transmission, however, may weaken interactions over time as the endosymbionts would acquire mutations that could not be purged. Additionally, temporal variation in a conditional mutualism could create genetic variation and increased variation in the interaction outcome. In this study, we assessed genetic variation in both members of a symbiosis, the endosymbiotic fungal endophyte Epichloë canadensis and its grass host Canada wildrye (Elymus canadensis). Both species exhibited comparable levels of diversity, mostly within populations rather than between. There were significant differences between populations, although not in the same pattern for the two species, and the differences were not correlated with geographic distance for either species. Interindividual genetic distance matrices for the two species were significantly correlated, although all combinations of discriminant analysis of principle components (DAPC) defined multilocus genotype groups were found suggesting that strict genotype matching is not necessary. Variation in interaction outcome is common in grass/endophyte interactions, and our results suggest that the accumulation of mutations overtime combined with temporal variation in selection pressures increasing genetic variation in the symbiosis may be the cause.
Collapse
Affiliation(s)
- T J Sullivan
- School of Sciences, Indiana University Kokomo, 2300 S. Washington St, Kokomo, IN, 46902, USA.
| | - Holly Roberts
- School of Sciences, Indiana University Kokomo, 2300 S. Washington St, Kokomo, IN, 46902, USA
| | - Thomas L Bultman
- Department of Biology, Hope College, 35 E. 12th St., Holland, MI, 49423, USA
| |
Collapse
|
31
|
Pintye A, Németh MZ, Molnár O, Horváth ÁN, Matolcsi F, Bókony V, Spitzmüller Z, Pálfi X, Váczy KZ, Kovács GM. Comprehensive analyses of the occurrence of a fungicide resistance marker and the genetic structure in Erysiphe necator populations. Sci Rep 2023; 13:15172. [PMID: 37704655 PMCID: PMC10499922 DOI: 10.1038/s41598-023-41454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
Genetically distinct groups of Erysiphe necator, the fungus causing grapevine powdery mildew infect grapevine in Europe, yet the processes sustaining stable genetic differences between those groups are less understood. Genotyping of over 2000 field samples from six wine regions in Hungary collected between 2017 and 2019 was conducted to reveal E. necator genotypes and their possible differentiation. The demethylase inhibitor (DMI) fungicide resistance marker A495T was detected in all wine regions, in 16% of the samples. Its occurrence differed significantly among wine regions and grape cultivars, and sampling years, but it did not differ between DMI-treated and untreated fields. Multilocus sequence analyses of field samples and 59 in vitro maintained isolates revealed significant genetic differences among populations from distinct wine regions. We identified 14 E. necator genotypes, of which eight were previously unknown. In contrast to the previous concept of A and B groups, European E. necator populations should be considered genetically more complex. Isolation by geographic distance, growing season, and host variety influence the genetic structuring of E. necator, which should be considered both during diagnoses and when effective treatments are planned.
Collapse
Affiliation(s)
- Alexandra Pintye
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Márk Z Németh
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary.
| | - Orsolya Molnár
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Áron N Horváth
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Fruzsina Matolcsi
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Bókony
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Zsolt Spitzmüller
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Xénia Pálfi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Kálmán Z Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Gábor M Kovács
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
32
|
Zhou D, Gong J, Duan C, He J, Zhang Y, Xu J. Genetic structure and triazole resistance among Aspergillus fumigatus populations from remote and undeveloped regions in Eastern Himalaya. mSphere 2023; 8:e0007123. [PMID: 37341484 PMCID: PMC10449526 DOI: 10.1128/msphere.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/03/2023] [Indexed: 06/22/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous mold and a common human fungal pathogen. Recent molecular population genetic and epidemiological analyses have revealed evidence for long-distance gene flow and high genetic diversity within most local populations of A. fumigatus. However, little is known about the impact of regional landscape factors in shaping the population diversity patterns of this species. Here we sampled extensively and investigated the population structure of A. fumigatus from soils in the Three Parallel Rivers (TPR) region in Eastern Himalaya. This region is remote, undeveloped and sparsely populated, bordered by glaciated peaks more than 6,000 m above sea level, and contained three rivers separated by tall mountains over very short horizontal distances. A total of 358 A. fumigatus strains from 19 sites along the three rivers were isolated and analyzed at nine loci containing short tandem repeats. Our analyses revealed that mountain barriers, elevation differences, and drainage systems all contributed low but statistically significant genetic variations to the total A. fumigatus population in this region. We found abundant novel alleles and genotypes in the TPR population of A. fumigatus and significant genetic differentiation between this population and those from other parts of Yunnan and the globe. Surprisingly, despite limited human presence in this region, about 7% of the A. fumigatus isolates were resistant to at least one of the two medical triazoles commonly used for treating aspergillosis. Our results call for greater surveillance of this and other human fungal pathogens in the environment. IMPORTANCE The extreme habitat fragmentation and substantial environmental heterogeneity in the TPR region have long known to contribute to geographically shaped genetic structure and local adaptation in several plant and animal species. However, there have been limited studies of fungi in this region. Aspergillus fumigatus is a ubiquitous pathogen capable of long-distance dispersal and growth in diverse environments. In this study, using A. fumigatus as a model, we investigated how localized landscape features contribute to genetic variations in fungal populations. Our results revealed that elevation and drainage isolation rather than direct physical distances significantly impacted genetic exchange and diversity among the local A. fumigatus populations. Interestingly, within each local population, we found high allelic and genotypic diversities, and with evidence ~7% of all isolates being resistant to two medical triazoles, itraconazole and voriconazole. Given the high frequency of ARAF found in mostly natural soils of sparsely populated sites in the TPR region, close monitoring of their dynamics in nature and their effects on human health is needed.
Collapse
Affiliation(s)
- Duanyong Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
- Key Laboratory of Biological Genetic Resources Mining and Molecular Breeding of Qianxinan Prefecture, Minzu Normal University of Xingyi, Xingyi, China
| | - Jianchuan Gong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Chengyan Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Jingrui He
- School of Life Science, Yunnan University, Kunming, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Saville AC, McGrath MT, Jones C, Polo J, Ristaino JB. Understanding the Genotypic and Phenotypic Structure and Impact of Climate on Phytophthora nicotianae Outbreaks on Potato and Tomato in the Eastern United States. PHYTOPATHOLOGY 2023; 113:1506-1514. [PMID: 36989124 DOI: 10.1094/phyto-11-22-0411-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Samples from potato fields with lesions with late blight-like symptoms were collected from eastern North Carolina in 2017 and the causal agent was identified as Phytophthora nicotianae. We have identified P. nicotianae in potato and tomato samples from North Carolina, Virginia, Maryland, Pennsylvania, and New York. Ninety-two field samples were collected from 46 fields and characterized for mefenoxam sensitivity, mating type, and simple sequence repeat genotype using microsatellites. Thirty-two percent of the isolates were the A1 mating type, while 53% were the A2 mating type. In six cases, both A1 and A2 mating types were detected in the same field in the same year. All isolates tested were sensitive to mefenoxam. Two genetic groups were discerned based on STRUCTURE analysis: one included samples from North Carolina and Maryland, and one included samples from all five states. The data suggest two different sources of inoculum from the field sites sampled. Multiple haplotypes within a field and the detection of both mating types in close proximity suggests that P. nicotianae may be reproducing sexually in North Carolina. There was a decrease in the average number of days with weather suitable for late blight, from 2012 to 2016 and 2017 to 2021 in all of the North Carolina counties where P. nicotianae was reported. P. nicotianae is more thermotolerant than P. infestans and grows at higher temperatures (25 to 35°C) than P. infestans (18 to 22°C). Late blight outbreaks have decreased in recent years and first reports of disease are later, suggesting that the thermotolerant P. nicotianae may cause more disease as temperatures rise due to climate change.
Collapse
Affiliation(s)
- Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606
| | - Margaret T McGrath
- Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901
| | - Chris Jones
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695
| | - John Polo
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
34
|
Pereyra RT, Rafajlović M, De Wit P, Pinder M, Kinnby A, Töpel M, Johannesson K. Clones on the run: The genomics of a recently expanded partially clonal species. Mol Ecol 2023; 32:4209-4223. [PMID: 37199478 DOI: 10.1111/mec.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Why species that in their core areas mainly reproduce sexually become enriched with clones in marginal populations ("geographic parthenogenesis") remains unclear. Earlier hypotheses have emphasized that selection might promote clonality because it protects locally adapted genotypes. On the other hand, it also hampers recombination and adaptation to changing conditions. The aim of the present study was to investigate the early stages of range expansion in a partially clonal species and what drives an increase in cloning during such expansion. We used genome-wide sequencing to investigate the origin and evolution of large clones formed in a macroalgal species (Fucus vesiculosus) during a recent expansion into the postglacial Baltic Sea. We found low but persistent clonality in core populations, while at range margins, large dominant clonal lineages had evolved repeatedly from different sexual populations. A range expansion model showed that even when asexual recruitment is less favourable than sexual recruitment in core populations, repeated bottlenecks at the expansion front can establish a genetically eroded clonal wave that spreads ahead of a sexual wave into the new area. Genetic variation decreases by drift following repeated bottlenecks at the expansion front. This results in the emerging clones having low expected heterozygosity, which corroborated our empirical observations. We conclude that Baker's Law (clones being favoured by uniparental reproductive assurance in new areas) can play an important role during range expansion in partially clonal species, resulting in a complex spatiotemporal mosaic of clonal and sexual lineages that might persist during thousands of generations.
Collapse
Affiliation(s)
- Ricardo T Pereyra
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marina Rafajlović
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Pierre De Wit
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthew Pinder
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Kinnby
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mats Töpel
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Johannesson
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Tomowski M, Lozada-Gobilard S, Jeltsch F, Tiedemann R. Recruitment and migration patterns reveal a key role for seed banks in the meta-population dynamics of an aquatic plant. Sci Rep 2023; 13:11269. [PMID: 37438408 DOI: 10.1038/s41598-023-37974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
Progressive habitat fragmentation threatens plant species with narrow habitat requirements. While local environmental conditions define population growth rates and recruitment success at the patch level, dispersal is critical for population viability at the landscape scale. Identifying the dynamics of plant meta-populations is often confounded by the uncertainty about soil-stored population compartments. We combined a landscape-scale assessment of an amphibious plant's population structure with measurements of dispersal complexity in time to track dispersal and putative shifts in functional connectivity. Using 13 microsatellite markers, we analyzed the genetic structure of extant Oenanthe aquatica populations and their soil seed banks in a kettle hole system to uncover hidden connectivity among populations in time and space. Considerable spatial genetic structure and isolation-by-distance suggest limited gene flow between sites. Spatial isolation and patch size showed minor effects on genetic diversity. Genetic similarity found among extant populations and their seed banks suggests increased local recruitment, despite some evidence of migration and recent colonization. Results indicate stepping-stone dispersal across adjacent populations. Among permanent and ephemeral demes the resulting meta-population demography could be determined by source-sink dynamics. Overall, these spatiotemporal connectivity patterns support mainland-island dynamics in our system, highlighting the importance of persistent seed banks as enduring sources of genetic diversity.
Collapse
Affiliation(s)
- Maxi Tomowski
- Unit of Evolutionary Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Florian Jeltsch
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
36
|
Hernawan UE, van Dijk K, Kendrick GA, Feng M, Berry O, Kavazos C, McMahon K. Ocean connectivity and habitat characteristics predict population genetic structure of seagrass in an extreme tropical setting. Ecol Evol 2023; 13:e10257. [PMID: 37404702 PMCID: PMC10316484 DOI: 10.1002/ece3.10257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Understanding patterns of gene flow and processes driving genetic differentiation is important for a broad range of conservation practices. In marine organisms, genetic differentiation among populations is influenced by a range of spatial, oceanographic, and environmental factors that are attributed to the seascape. The relative influences of these factors may vary in different locations and can be measured using seascape genetic approaches. Here, we applied a seascape genetic approach to populations of the seagrass, Thalassia hemprichii, at a fine spatial scale (~80 km) in the Kimberley coast, western Australia, a complex seascape with strong, multidirectional currents greatly influenced by extreme tidal ranges (up to 11 m, the world's largest tropical tides). We incorporated genetic data from a panel of 16 microsatellite markers, overwater distance, oceanographic data derived from predicted passive dispersal on a 2 km-resolution hydrodynamic model, and habitat characteristics from each meadow sampled. We detected significant spatial genetic structure and asymmetric gene flow, in which meadows 12-14 km apart were less connected than ones 30-50 km apart. This pattern was explained by oceanographic connectivity and differences in habitat characteristics, suggesting a combined scenario of dispersal limitation and facilitation by ocean current with local adaptation. Our findings add to the growing evidence for the key role of seascape attributes in driving spatial patterns of gene flow. Despite the potential for long-distance dispersal, there was significant genetic structuring over small spatial scales implicating dispersal and recruitment bottlenecks and highlighting the importance of implementing local-scale conservation and management measures.
Collapse
Affiliation(s)
- Udhi E. Hernawan
- School of Science and Centre for Marine Ecosystems ResearchEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Research Centre for Oceanography (PRO), National Research and Innovation Agency (BRIN)JakartaIndonesia
| | - Kor‐jent van Dijk
- School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Gary A. Kendrick
- School of Biological Sciences and The Ocean InstituteThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Western Australian Marine Science InstitutionPerthWestern AustraliaAustralia
| | - Ming Feng
- Western Australian Marine Science InstitutionPerthWestern AustraliaAustralia
- CSIRO Environment, Indian Ocean Marine Research CentreCrawleyWestern AustraliaAustralia
| | - Oliver Berry
- Western Australian Marine Science InstitutionPerthWestern AustraliaAustralia
- CSIRO Environment, Indian Ocean Marine Research CentreCrawleyWestern AustraliaAustralia
| | - Christopher Kavazos
- School of Science and Centre for Marine Ecosystems ResearchEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Kathryn McMahon
- School of Science and Centre for Marine Ecosystems ResearchEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Western Australian Marine Science InstitutionPerthWestern AustraliaAustralia
| |
Collapse
|
37
|
Garrido PA, Proaño-Cuenca F, Flor FJF, Benítez EAD, Torres IFS, Kaiser ARK, Sain L, Peñaloza YAM, Marek SM, Melouk H, Daughtrey M, Garzon CD. Identification and Characterization of Pythium, Globisporangium, and Phytopythium Species Present in Floricultural Crops from Long Island, New York. PHYTOPATHOLOGY 2023; 113:1335-1346. [PMID: 36510360 DOI: 10.1094/phyto-06-22-0195-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several Pythium, Globisporangium, and Phytopythium species cause Pythium diseases in greenhouse floricultural crops, resulting in significant seasonal losses. Four hundred and eighteen Pythium, Globisporangium, and Phytopythium isolates from flowering crops, growing media, or bench and floor debris were collected from Long Island greenhouses or clinic samples between 2002 and 2013. Isolates were identified to species based on morphology and internal transcribed spacer barcoding. Twenty-two species of Pythium, Phytopythium, and Globisporangium were identified, with Globisporangium irregulare sensu lato (s.l.) being the most common. To determine the origin of inoculum during the 2011 cropping season, 11 microsatellite loci were analyzed in 124 G. irregulare s.l. isolates collected in four greenhouses and six previously collected from clinic samples. Cluster analyses grouped G. irregulare s.l. isolates into four groups: G. irregulare sensu stricto, plus three G. cryptoirregulare clusters. The population structure defined by greenhouse and host was found in two clades. Additionally, the population dynamics of G. irregulare s.l. isolates associated with Pelargonium spp. from 2011 to 2013 were examined using 85 isolates and nine informative microsatellite loci to assess inoculum survival over multiple cropping seasons. Although most isolates had unique genotypes, closely related genotypes were found in the same locations over different years. Our results indicate that G. irregulare s.l. inocula have local as well as remote origins. Isolates may be initially brought into ornamental operations from common sources, such as infected plant materials or infested potting mixes. Our results support the hypothesis that established strains can serve as inocula and survive in greenhouse facilities over multiple seasons.
Collapse
Affiliation(s)
- Patricia A Garrido
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Fernanda Proaño-Cuenca
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Francisco J Flores Flor
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Microbiology and Environmental Research Team, Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Edinson A Díaz Benítez
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Facultad de Ciencias Agrarias y del Ambiente, Universidad Francisco de Paula Santander, Cúcuta, Colombia
| | - Ivanna F Sánchez Torres
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Microbiology and Environmental Research Team, Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Alma R Koch Kaiser
- Microbiology and Environmental Research Team, Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Linda Sain
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Yaneth Amparo Muñoz Peñaloza
- Plant Pathology and Plant-Microbe Biology Section, Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901, U.S.A
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Hassan Melouk
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Margery Daughtrey
- Plant Pathology and Plant-Microbe Biology Section, Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901, U.S.A
| | - Carla D Garzon
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Department of Plant Science and Landscape Architecture, Delaware Valley University, Doylestown, PA 18901, U.S.A
| |
Collapse
|
38
|
Sapkota S, Burlakoti RR, Lubberts M, Lamour K. Genome resources and whole genome resequencing of Phytophthora rubi isolates from red raspberry. FRONTIERS IN PLANT SCIENCE 2023; 14:1161864. [PMID: 37457337 PMCID: PMC10339809 DOI: 10.3389/fpls.2023.1161864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023]
Abstract
Phytophthora rubi is a primary causal agent of Phytophthora root rot and wilting of raspberry (Rubus idaeus L.) worldwide. The disease is a major concern for raspberry growers in Canada and USA. To date, no information is available on genomic diversity of P. rubi population from raspberry in Canada. Using a PCR-free library prep with dual-indexing for an Illumina HiSEQX running a 2x150 bp configuration, we generated whole genome sequence data of P. rubi isolates (n = 25) recovered during 2018 to 2020 from nine fields, four locations and four cultivars of raspberry growing areas of British Columbia, Canada. The assembled genome of 24 isolates of P. rubi averaged 8,541 scaffolds, 309× coverage, and 65,960,000 bp. We exploited single nucleotide polymorphisms (SNPs) obtained from whole genome sequence data to analyze the genome structure and genetic diversity of the P. rubi isolates. Low heterozygosity among the 72% of pathogen isolates and standardized index of association revealed that those isolates were clonal. Principal component analysis, discriminant analysis of principal component, and phylogenetic tree revealed that P. rubi isolates clustered with the raspberry specific cultivars. This study provides novel resources and insight into genome structure, genetic diversity, and reproductive biology of P rubi isolated from red raspberry. The availability of the P. rubi genomes also provides valuable resources for future comparative genomic and evolutionary studies for oomycetes pathogens.
Collapse
Affiliation(s)
- Sanjib Sapkota
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Rishi R. Burlakoti
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Mark Lubberts
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
39
|
Mesanza N, Barnes I, van der Nest A, Raposo R, Berbegal M, Iturritxa E. Genetic Diversity of Lecanosticta acicola in Pinus Ecosystems in Northern Spain. J Fungi (Basel) 2023; 9:651. [PMID: 37367587 DOI: 10.3390/jof9060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Lecanosticta acicola is one of the most damaging species affecting Pinus radiata plantations in Spain. Favourable climatic conditions and unknown endogenous factors of the pathogen and host led to a situation of high incidence and severity of the disease in these ecosystems. With the main aim of understanding the factors intrinsic to this pathogenic species, a study of the population structure in new established plantations with respect to older plantations was implemented. The genetic diversity, population structure and the ability of the pathogen to spread was determined in Northern Spain (Basque Country), where two thirds of the total Pinus radiata plantations of Spain are located. From a total of 153 Lecanosticta acicola isolates analysed, two lineages were present; the southern lineage, which was prevalent, and the northern lineage, which was scarce. A total of 22 multilocus genotypes were detected with a balanced composition of both mating types and evidence for sexual reproduction. In addition to the changing environmental conditions enhancing disease expression, the complexity and diversity of the pathogen will make it difficult to control and to maintain the wood productive system fundamentally based on this forest species.
Collapse
Affiliation(s)
- Nebai Mesanza
- Neiker-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Granja Modelo s/n, Antigua Carretera Nacional 1, Km. 355, 01192 Arkaute, Spain
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa
| | - Ariska van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa
| | - Rosa Raposo
- ICIFOR, INIA-CSIC, Carretera La Coruña Km 7.5, 28040 Madrid, Spain
| | - Mónica Berbegal
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Eugenia Iturritxa
- Neiker-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Granja Modelo s/n, Antigua Carretera Nacional 1, Km. 355, 01192 Arkaute, Spain
| |
Collapse
|
40
|
Argyropoulos DC, Tan MH, Adobor C, Mensah B, Labbé F, Tiedje KE, Koram KA, Ghansah A, Day KP. Performance of SNP barcodes to determine genetic diversity and population structure of Plasmodium falciparum in Africa. Front Genet 2023; 14:1071896. [PMID: 37323661 PMCID: PMC10267394 DOI: 10.3389/fgene.2023.1071896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Panels of informative biallelic single nucleotide polymorphisms (SNPs) have been proposed to be an economical method to fast-track the population genetic analysis of Plasmodium falciparum in malaria-endemic areas. Whilst used successfully in low-transmission areas where infections are monoclonal and highly related, we present the first study to evaluate the performance of these 24- and 96-SNP molecular barcodes in African countries, characterised by moderate-to-high transmission, where multiclonal infections are prevalent. For SNP barcodes it is generally recommended that the SNPs chosen i) are biallelic, ii) have a minor allele frequency greater than 0.10, and iii) are independently segregating, to minimise bias in the analysis of genetic diversity and population structure. Further, to be standardised and used in many population genetic studies, these barcodes should maintain characteristics i) to iii) across various iv) geographies and v) time points. Using haplotypes generated from the MalariaGEN P. falciparum Community Project version six database, we investigated the ability of these two barcodes to fulfil these criteria in moderate-to-high transmission African populations in 25 sites across 10 countries. Predominantly clinical infections were analysed, with 52.3% found to be multiclonal, generating high proportions of mixed-allele calls (MACs) per isolate thereby impeding haplotype construction. Of the 24- and 96-SNPs, loci were removed if they were not biallelic and had low minor allele frequencies in all study populations, resulting in 20- and 75-SNP barcodes respectively for downstream population genetics analysis. Both SNP barcodes had low expected heterozygosity estimates in these African settings and consequently biased analyses of similarity. Both minor and major allele frequencies were temporally unstable. These SNP barcodes were also shown to identify weak genetic differentiation across large geographic distances based on Mantel Test and DAPC. These results demonstrate that these SNP barcodes are vulnerable to ascertainment bias and as such cannot be used as a standardised approach for malaria surveillance in moderate-to-high transmission areas in Africa, where the greatest genomic diversity of P. falciparum exists at local, regional and country levels.
Collapse
Affiliation(s)
- Dionne C. Argyropoulos
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Courage Adobor
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Benedicta Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frédéric Labbé
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Queiroz CA, Caniato FF, Siqueira VKS, de Moraes Catarino A, Hanada RE, O'Donnell K, Laraba I, Rehner SA, Sousa NR, Silva GF. Population Genetic Analysis of Fusarium decemcellulare, a Guaraná Pathogen, Reveals High Genetic Diversity in the Amazonas State, Brazil. PLANT DISEASE 2023:PDIS01220083RE. [PMID: 36350732 DOI: 10.1094/pdis-01-22-0083-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Guaraná is indigenous to the Brazilian Amazon where it has cultural and agroeconomic significance. However, its cultivation is constrained by a disease termed oversprouting of guaraná caused by Fusarium decemcellulare, with yield losses reaching as high as 100%. The disease can affect different parts of the plant, causing floral hypertrophy and hyperplasia, stem galls, and oversprouting of vegetative buds. To date, no study has been conducted characterizing the genetic diversity and population structure of this pathogen. Here, we report genetic diversity and genetic structure among 224 isolates from eight guaraná production areas of Amazonas State, Brazil, that were genotyped using a set of 10 inter-simple-sequence repeat (ISSR) markers. Despite moderate gene diversity (Hexp = 0.21 to 0.32), genotypic diversity was at or near maximum (223 multilocus genotypes among 224 isolates). Population genetic analysis of the 10 ISSR marker fragments with STRUCTURE software identified two populations designated C1 and C2 within the F. decemcellulare collection from the eight sites. Likewise, UPGMA hierarchical clustering and discriminant analysis of principal components of the strains from guaraná resolved these same two groups. Analysis of molecular variance demonstrated that 71% of genetic diversity occurred within the C1 and C2 populations. A pairwise comparison of sampling sites for both genetic populations revealed that 59 of 66 were differentiated from one another (P < 0.05), and high and significant gene flow was detected only between sampling sites assigned to the same genetic population. The presence of MAT1-1 and MAT1-2 strains, in conjunction with the high genotypic diversity and no significant linkage disequilibrium, suggests that each population of F. decemcellulare might be undergoing sexual reproduction. Isolation by distance was not observed (R2 = 0.02885, P > 0.05), which suggests that human-mediated movement of seedlings may have played a role in shaping the F. decemcellulare genetic structure in Amazonas State, Brazil.
Collapse
Affiliation(s)
- Claudia A Queiroz
- Departamento de Biologia, Universidade Federal do Amazonas, Manaus, Brazil
| | - Fernanda F Caniato
- Departamento de Ciências Fundamentais e Desenvolvimento Agrícola, Universidade Federal do Amazonas, Manaus, Brazil
| | | | | | | | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Imane Laraba
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, U.S.A
| | | | | |
Collapse
|
42
|
Hassett K, Muria-Gonzalez MJ, Turner A, McLean MS, Wallwork H, Martin A, Ellwood SR. Widespread genetic heterogeneity and genotypic grouping associated with fungicide resistance among barley spot form net blotch isolates in Australia. G3 (BETHESDA, MD.) 2023; 13:jkad076. [PMID: 37002913 PMCID: PMC10151411 DOI: 10.1093/g3journal/jkad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 04/04/2023]
Abstract
Spot form net blotch, caused by Pyrenophora teres f. maculata, is a major foliar disease of barley worldwide. Knowledge of the pathogen's genetic diversity and population structure is critical for a better understanding of inherent evolutionary capacity and for the development of sustainable disease management strategies. Genome-wide, single nucleotide polymorphism data of 254 Australian isolates revealed genotypic diversity and an absence of population structure, either between states, or between fields and cultivars in different agro-ecological zones. This indicates there is little geographical isolation or cultivar directional selection and that the pathogen is highly mobile across the continent. However, two cryptic genotypic groups were found only in Western Australia, predominantly associated with genes involved in fungicide resistance. The findings in this study are discussed in the context of current cultivar resistance and the pathogen's adaptive potential.
Collapse
Affiliation(s)
- Kealan Hassett
- Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | | | - Aleesha Turner
- Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Mark S McLean
- Field Crops Pathology, Agriculture Victoria, Horsham, Victoria 3401, Australia
| | - Hugh Wallwork
- Cereal Pathology Laboratory, South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
| | - Simon R Ellwood
- Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
43
|
Wang W, Xiong T, Zeng Y, Li W, Jiao C, Xu J, Li H. Clonal Expansion in Multiple Phyllosticta Species Causing Citrus Black Spot or Similar Symptoms in China. J Fungi (Basel) 2023; 9:449. [PMID: 37108904 PMCID: PMC10145914 DOI: 10.3390/jof9040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Phyllosticta spp. are important pathogens of citrus plants. Several Phyllosticta species associated with Citrus species grown in China have been reported; however, the relative prevalences of individual species and the distributions of their genotypes among host Citrus species remain largely unknown. In this study, we conducted an extensive survey of Phyllosticta species across 11 citrus-producing provinces in southern China. From fruits and leaves with black spots or black-spot-like symptoms, a total of 461 Phyllosticta strains were isolated. Based on molecular (ITS, actA, tef1, gapdh, LSU, and rpb2 sequences) and morphological data, the strains were systematically identified as belonging to five species: P. capitalensis, P. citrichinaensis, P. citriasiana, P. citricarpa, and P. paracitricarpa. To further understand intraspecific genetic diversity and relationships, strains of five species from different geographic and host sources were analyzed based on the multilocus sequence data. Our population genetic analyses revealed that all five Phyllosticta species on citrus showed evidence for clonal dispersals within and among geographic regions. In addition, pathogenicity tests using representative strains showed that all five species can cause disease on the tested Citrus spp. We discuss the implications of our results for the control and management of Citrus Black Spot and related diseases.
Collapse
Affiliation(s)
- Wen Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agricultural, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tao Xiong
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agricultural, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yating Zeng
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agricultural, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wenwen Li
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Chen Jiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agricultural, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agricultural, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
44
|
Thi Le L, Adreit H, Thi Ha L, Milazzo J, Lebrun M, Tharreau D, Hoi Pham X, Thanh Nguyen H, Fournier E, Thi Hoang G. Population structure of Pyricularia oryzae on rice in Vietnam reveals diversified populations with four pandemic and two endemic clusters. Fungal Genet Biol 2023; 166:103794. [PMID: 37003467 DOI: 10.1016/j.fgb.2023.103794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
We characterized the genetic structure of 609 strains of Pyricularia oryzae, the fungal pathogen causing rice blast disease, in three main regions in Vietnam using microsatellites (SSR) markers. From the 447 distinct multilocus genotypes identified, six genetic clusters were defined, all of them showing elevated genetic and genotypic diversities. Four of these clusters were related to rice-attacking lineages already described at the worldwide scale, whereas the two remaining clusters were endemic to Vietnam. Strains were unevenly distributed into the six clusters depending on their groups of rice variety (indica / japonica) or type of varieties (traditional / modern) of origin, but none of the clusters was specifically related to these two factors. The highest diversity of blast population was found in Northern mountainous area, and the lowest in Red River Delta in both term of genetic diversity and gene diversity. Hierarchical AMOVAs confirmed that all three factors considered (rice variety group, type of variety origin and geography) significantly contributed to the population structure of P. oryzae in Vietnam, with highest contribution from rice variety group. Mating types were unevenly distributed among clusters. Combined with results of female fertility and linkage disequilibirum, we hypothesized that clonal reproduction probably occurred in all clusters, but that sexual reproduction likely took place at least in some restricted areas in the Northern mountainous area for strains belonging to the cluster related to the previously described recombinant lineage (worldwide lineage 1). Our study pictures the genetic diversity, population structure and reproductive mode of the blast fungus in central and north Vietnam, and shows that the observed population structure is explained by several factors, the most important one being the variability of rice variety. All these new information might help for elaborating appropriate strategies to controlling the blast disease.
Collapse
Affiliation(s)
- Lieu Thi Le
- Agricultural Genetics Institute, VAAS, National Key Laboratory for Plant Cell Biotechnology, LMI RICE-2, Hanoi, Vietnam; University of Science and Technology of Hanoi, Hanoi, Vietnam
| | - Henri Adreit
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France; CIRAD, UMR PHIM, 34090 Montpellier, France
| | - Loan Thi Ha
- Agricultural Genetics Institute, VAAS, National Key Laboratory for Plant Cell Biotechnology, LMI RICE-2, Hanoi, Vietnam
| | - Joelle Milazzo
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France; CIRAD, UMR PHIM, 34090 Montpellier, France
| | - Michel Lebrun
- University of Science and Technology of Hanoi, Hanoi, Vietnam
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France; CIRAD, UMR PHIM, 34090 Montpellier, France
| | - Xuan Hoi Pham
- Agricultural Genetics Institute, VAAS, National Key Laboratory for Plant Cell Biotechnology, LMI RICE-2, Hanoi, Vietnam
| | - Hai Thanh Nguyen
- Vietnam National University of Agriculture, Faculty of Biotechnology, Faculty of Agronomy, Hanoi, Vietnam
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.
| | - Giang Thi Hoang
- Agricultural Genetics Institute, VAAS, National Key Laboratory for Plant Cell Biotechnology, LMI RICE-2, Hanoi, Vietnam; Vietnam National University of Agriculture, Faculty of Biotechnology, Faculty of Agronomy, Hanoi, Vietnam.
| |
Collapse
|
45
|
Conservation genetics of the tropical gar (Atractosteus tropicus, Lepisosteidae). CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
46
|
Zhao Y, Huang X, Li Q, Huang L, Kang Z, Zhao J. Virulence Phenotyping and Molecular Genotyping Reveal High Diversity Within and Strong Gene Flow Between the Puccinia striiformis f. sp. tritici Populations Collected from Barberry and Wheat in Shaanxi Province of China. PLANT DISEASE 2023; 107:701-712. [PMID: 35869588 DOI: 10.1094/pdis-12-21-2713-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emergence of new Puccinia striiformis f. sp. tritici races that overcome resistance of wheat cultivars is a challenging issue for wheat production. Although sexual reproduction of the fungus on barberry plants under field conditions in the spring in China has been reported, the diversity of the pathogen on barberry plants and the relationship to the population in wheat fields have not been determined. In the present study, two P. striiformis f. sp. tritici populations collected in western Shaanxi Province in May 2016, one from barberry plants (103 isolates) and the other from nearby wheat crops (107 isolates), were phenotyped for virulence and genotyped with simple sequence repeat (SSR) markers. The phenotypic and genotypic data of the two populations were compared to determine their relationships. A total of 120 races, including 29 previously known races (seven were shared by the two populations) and 91 new races (35 from barberry and 56 from wheat), were identified. Similarly, a total of 132 multilocus genotypes, including 51 only from barberry, 77 only from wheat, and four from both, were detected using the SSR markers. Analyses of molecular variance identified high (93%) genetic variance within populations and low but still significant variance (7%) between the populations. Nonparametric multivariate discriminant analysis of principal components and STRUCTURE analysis showed that the two populations had a close relationship with little genetic differentiation (FST = 0.038) and strong gene flow (Nm = 6.34, P = 0.001) between them. Although the analysis of linkage disequilibrium indicated clonal populations, the isolation of P. striiformis f. sp. tritici from barberry plants and the high genetic diversities in the barberry and wheat populations suggest that barberry plants provide aeciospores to infect wheat crops in the area. The information is useful for understanding stripe rust epidemiology and management of the disease.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Qiao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Yangling, Shaanxi 712100, China
| |
Collapse
|
47
|
Hitchcock M, Xu J. Global Analyses of Multi-Locus Sequence Typing Data Reveal Geographic Differentiation, Hybridization, and Recombination in the Cryptococcus gattii Species Complex. J Fungi (Basel) 2023; 9:276. [PMID: 36836390 PMCID: PMC9967412 DOI: 10.3390/jof9020276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cryptococcus gattii species complex (CGSC) is a basidiomycete haploid yeast and globally distributed mammalian pathogen. CGSC is comprised of six distinct lineages (VGI, VGII, VGIII, VGIV, VGV, and VGVI); however, the geographical distribution and population structure of these lineages is incompletely described. In this study, we analyze published multi-locus sequence data at seven loci for 566 previously recorded sequence types (STs) encompassing four distinct lineages (VGI, VGII, VGIII, and VGIV) within the CGSC. We investigate indicators of both clonal dispersal and recombination. Population genetic analyses of the 375 STs representing 1202 isolates with geographic information and 188 STs representing 788 isolates with ecological source data suggested historically differentiated geographic populations with infrequent long-distance gene flow. Phylogenetic analyses of sequences at the individual locus and of the concatenated sequences at all seven loci among all 566 STs revealed distinct clusters largely congruent with four major distinct lineages. However, 23 of the 566 STs (4%) each contained alleles at the seven loci belonging to two or more lineages, consistent with their hybrid origins among lineages. Within each of the four major lineages, phylogenetic incompatibility analyses revealed evidence for recombination. However, linkage disequilibrium analyses rejected the hypothesis of random recombination across all samples. Together, our results suggest evidence for historical geographical differentiation, sexual recombination, hybridization, and both long-distance and localized clonal expansion in the global CGSC population.
Collapse
Affiliation(s)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
48
|
Fariña-Flores D, Berbegal M, Iturritxa E, Hernandez-Escribano L, Aguín O, Raposo R. Temporal and Spatial Variation in the Population Structure of Spanish Fusarium circinatum Infecting Pine Stands. J Fungi (Basel) 2023; 9:jof9020159. [PMID: 36836273 PMCID: PMC9962447 DOI: 10.3390/jof9020159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Fusarium circinatum is an introduced fungal pathogen extended to the northern regions of Spain that causes Pine Pitch Canker (PPC) disease. In this work, we analyzed the pathogen's genetic diversity to study changes over time and space since the first outbreak occurred in Spain. Using six polymorphic SSR markers, 15 MLGs were identified in 66 isolates, and only three haplotypes were found with frequencies higher than one. In general, genotypic diversity was low and decreased shortly over time in the northwestern regions while maintained at País Vasco, where only one haplotype (MLG32) was detected 10 years. This population also included isolates of a single mating type (MAT-2) and VCGs identified in only two groups, while isolates from NW regions were of both mating types and VCGs represented in 11 groups. The existence of haplotype MLG32 maintained on time and widely distributed suggests its good adaptation to the environment and the host. Results showed that the pathogen in País Vasco remains clearly differentiated from other northwestern populations. This fact was supported with no evidence of migration among regions. Results are explained by the asexual reproduction, but also selfing at least to a lesser extent that leads to identification of two new haplotypes.
Collapse
Affiliation(s)
- David Fariña-Flores
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, 28040 Madrid, Spain
| | - Mónica Berbegal
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Correspondence:
| | - Eugenia Iturritxa
- NEIKER, Granja Modelo—Arkaute, Apdo. 46, 01080 Vitoria-Gasteiz, Spain
| | | | - Olga Aguín
- Estación Fitopatolóxica Areeiro, Diputación Pontevedra, 36153 Pontevedra, Spain
| | - Rosa Raposo
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
49
|
D'Arcangelo KN, Wallace EC, Miles TD, Quesada-Ocampo LM. Carboxylic Acid Amide but Not Quinone Outside Inhibitor Fungicide Resistance Mutations Show Clade-Specific Occurrence in Pseudoperonospora cubensis Causing Downy Mildew in Commercial and Wild Cucurbits. PHYTOPATHOLOGY 2023; 113:80-89. [PMID: 35918851 DOI: 10.1094/phyto-05-22-0166-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since its reemergence in 2004, Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew (CDM), has experienced significant changes in fungicide sensitivity. Presently, frequent fungicide applications are required to control the disease in cucumber due to the loss of host resistance. Carboxylic acid amides (CAA) and quinone outside inhibitors (QoI) are two fungicide groups used to control foliar diseases in cucurbits, including CDM. Resistance to these fungicides is associated with single nucleotide polymorphism (SNP) mutations. In this study, we used population analyses to determine the occurrence of fungicide resistance mutations to CAA and QoI fungicides in host-adapted clade 1 and clade 2 P. cubensis isolates. Our results revealed that CAA-resistant genotypes occurred more prominently in clade 2 isolates, with more sensitive genotypes observed in clade 1 isolates, while QoI resistance was widespread across isolates from both clades. We also determined that wild cucurbits can serve as reservoirs for P. cubensis isolates containing fungicide resistance alleles. Finally, we report that the G1105W substitution associated with CAA resistance was more prominent within clade 2 P. cubensis isolates while the G1105V resistance substitution and sensitivity genotypes were more prominent in clade 1 isolates. Our findings of clade-specific occurrence of fungicide resistance mutations highlight the importance of understanding the population dynamics of P. cubensis clades by crop and region to design effective fungicide programs and establish accurate baseline sensitivity to active ingredients in P. cubensis populations.
Collapse
Affiliation(s)
- K N D'Arcangelo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606-7825
| | - E C Wallace
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606-7825
| | - T D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - L M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606-7825
| |
Collapse
|
50
|
Cao X, Zhang Q, He Y, Che H, Lin Y, Luo D, West JS, Xu X. Genetic Analysis of Colletotrichum siamense Populations from Different Hosts and Counties in Hainan, China, Using Microsatellite Markers. PLANT DISEASE 2023; 107:60-66. [PMID: 35666218 DOI: 10.1094/pdis-03-22-0576-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colletotrichum siamense was demonstrated as the dominant species among Colletotrichum spp. that infected rubber tree, areca palm, and coffee in Hainan, China. However, the extent of genetic differentiation within the species C. siamense in relation to geographical regions and host species is not known. In this study, 112 C. siamense isolates were genotyped with 12 microsatellite markers. In total, there were 99 multilocus genotypes. Results from permutational multivariate analysis of variance and analysis of molecular variance indicated that there was no significant genetic differentiation between fungal populations with respect to host, location (county), and year. Discriminant analysis of principal components and STRUCTURE analysis showed that C. siamense isolates grouped into three clusters; further analysis confirmed that there were significant (P < 0.001) genetic differences among the three clusters. However, each cluster had isolates from different hosts, counties, or years, supporting the lack of genetic differentiation with respect to host, county, and year. Statistical analyses of allelic associations indicated some evidence for recombination within the populations defined on the basis of host or county. The present findings provide insights into the genetic structure of C. siamense on the three perennial host species in Hainan and suggest that the disease on these three crops can be effectively considered as one disease and, hence, needs to be controlled simultaneously in mixed plantations.
Collapse
Affiliation(s)
- Xueren Cao
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qun Zhang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yongxiang He
- College of Plant Protection, Hainan University, Haikou 570228 China
| | - Haiyan Che
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yating Lin
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Daquan Luo
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | | | - Xiangming Xu
- NIAB EMR, New Road, East Malling, Kent ME19 6BJ, U.K
| |
Collapse
|