1
|
Olejkowska N, Gorczyca I, Rękas M, Garley M. Immunopathology of Corneal Allograft Rejection and Donor-Specific Antibodies (DSAs) as Immunological Predictors of Corneal Transplant Failure. Cells 2024; 13:1532. [PMID: 39329716 PMCID: PMC11430735 DOI: 10.3390/cells13181532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Despite tremendous developments in the field of laboratory testing in transplantation, the rules of eligibility for corneal transplantation still do not include typing of human leukocyte antigens (HLAs) in the donor and recipient or detection of donor-specific antibodies (DSAs) in the patient. The standard use of diagnostic algorithms is due to the cornea belonging to immunologically privileged tissues, which usually determines the success of transplantation of this tissue. A medical problem is posed by patients at high risk of transplant rejection, in whom the immune privilege of the eye is abolished and the risk of transplant failure increases. Critical to the success of transplantation in patients at high risk of corneal rejection may be the selection of an HLA-matched donor and recipient, and the detection of existing and/or de novo emerging DSAs in the patient. Incorporating the assessment of these parameters into routine diagnostics may contribute to establishing immune risk stratification for transplant rejection and effective personalized therapy for patients.
Collapse
Affiliation(s)
| | - Iwona Gorczyca
- Department of Ophthalmology, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Marek Rękas
- Department of Ophthalmology, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
2
|
Edwards C, Carey ST, Jewell CM. Harnessing Biomaterials to Study and Direct Antigen-Specific Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:2017-2028. [PMID: 37068126 PMCID: PMC10330265 DOI: 10.1021/acsabm.3c00136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Immunotherapies are an evolving treatment paradigm for addressing cancer, autoimmunity, and infection. While exciting, most of the existing therapies are limited by their specificity─unable to differentiate between healthy and diseased cells at an antigen-specific level. Biomaterials are a powerful tool that enable the development of next-generation immunotherapies due to their tunable synthesis properties. Our lab harnesses biomaterials as tools to study antigen-specific immunity and as technologies to enable new therapeutic vaccines and immunotherapies to combat cancer, autoimmunity, and infections. Our efforts have spanned the study of intrinsic immune profiles of biomaterials, development of novel nanotechnologies assembled entirely from immune cues, manipulation of innate immune signaling, and advanced technologies to direct and control specialized immune niches such as skin and lymph nodes.
Collapse
Affiliation(s)
- Camilla Edwards
- University of Maryland Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sean T Carey
- University of Maryland Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Christopher M Jewell
- University of Maryland Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, Maryland 21201, United States
- Robert E. Fischell Institute for Biomedical Devices, College Park, Maryland 20742, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201, United States
| |
Collapse
|
3
|
Puigmal N, Ramos V, Artzi N, Borrós S. Poly(β-amino ester)s-Based Delivery Systems for Targeted Transdermal Vaccination. Pharmaceutics 2023; 15:pharmaceutics15041262. [PMID: 37111746 PMCID: PMC10143071 DOI: 10.3390/pharmaceutics15041262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Nucleic acid vaccines have become a transformative technology to fight emerging infectious diseases and cancer. Delivery of such via the transdermal route could boost their efficacy given the complex immune cell reservoir present in the skin that is capable of engendering robust immune responses. We have generated a novel library of vectors derived from poly(β-amino ester)s (PBAEs) including oligopeptide-termini and a natural ligand, mannose, for targeted transfection of antigen presenting cells (APCs) such as Langerhans cells and macrophages in the dermal milieu. Our results reaffirmed terminal decoration of PBAEs with oligopeptide chains as a powerful tool to induce cell-specific transfection, identifying an outstanding candidate with a ten-fold increased transfection efficiency over commercial controls in vitro. The inclusion of mannose in the PBAE backbone rendered an additive effect and increased transfection levels, achieving superior gene expression in human monocyte-derived dendritic cells and other accessory antigen presenting cells. Moreover, top performing candidates were capable of mediating surface gene transfer when deposited as polyelectrolyte films onto transdermal devices such as microneedles, offering alternatives to conventional hypodermic administration. We predict that the use of highly efficient delivery vectors derived from PBAEs could advance clinical translation of nucleic acid vaccination over protein- and peptide-based strategies.
Collapse
Affiliation(s)
- Núria Puigmal
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Víctor Ramos
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Natalie Artzi
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| |
Collapse
|
4
|
Obringer C, Lester C, Karb M, Smith A, Ellison CA. Impact of chemical structure on the in vitro hydrolysis of fatty esters of 2-ethylhexanoic acid or 2-ethylhexanol and extrapolation to the in vivo situation. Regul Toxicol Pharmacol 2022; 137:105315. [PMID: 36494001 DOI: 10.1016/j.yrtph.2022.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fatty esters of 2-ethylhexanoic acid (EHA) and 2-ethylhexanol (EH) are commonly used in cosmetics. Human liver and skin S9 and human plasma were used to determine the in vitro rates of clearance (CLint) of a series of compounds, with a range of 2-11 carbons on the acid or alcohol moiety and branching at the C2 position. The impact of carbon chain length on in vitro CLint was most prominent for the liver metabolism of esters of EH, while for in vitro skin metabolism it was greater for esters of EHA. The position of the branching also impacted the liver hydrolysis rates, especially for the C3, C4, and C5 esters with lower CLint in vitro rates for esters of EHA relative to those of EH. When the in vitro intrinsic clearance rates were scaled to in vivo rates of hepatic clearance, all compounds approximated the rate for hepatic blood flow, mitigating this dependence of metabolism on structure. This work shows how structural changes to the molecule can affect in vitro metabolism and, furthermore, allows for an estimation of the in vivo metabolism.
Collapse
Affiliation(s)
- Cindy Obringer
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Cathy Lester
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Michael Karb
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Alex Smith
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | | |
Collapse
|
5
|
Loricrin at the Boundary between Inside and Outside. Biomolecules 2022; 12:biom12050673. [PMID: 35625601 PMCID: PMC9138667 DOI: 10.3390/biom12050673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Cornification is a specialized mode of the cell-death program exclusively allowed for terrestrial amniotes. Recent investigations suggest that loricrin (LOR) is an important cornification effector. As the connotation of its name (“lorica” meaning an armor in Latin) suggests, the keratin-associated protein LOR promotes the maturation of the epidermal structure through organizing covalent cross-linkages, endowing the epidermis with the protection against oxidative injuries. By reviewing cornification mechanisms, we seek to classify ichthyosiform dermatoses based on their function, rather than clinical manifestations. We also reviewed recent mechanistic insights into the Kelch-like erythroid cell-derived protein with the cap “n” collar homology-associated protein 1/nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway in skin health and diseases, as LOR and NRF2 coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of cross-talking between keratinocytes and epidermal resident leukocytes, dissecting an LOR immunomodulatory function.
Collapse
|
6
|
Adelaja A, Taylor B, Sheu KM, Liu Y, Luecke S, Hoffmann A. Six distinct NFκB signaling codons convey discrete information to distinguish stimuli and enable appropriate macrophage responses. Immunity 2021; 54:916-930.e7. [PMID: 33979588 PMCID: PMC8184127 DOI: 10.1016/j.immuni.2021.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/21/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Macrophages initiate inflammatory responses via the transcription factor NFκB. The temporal pattern of NFκB activity determines which genes are expressed and thus, the type of response that ensues. Here, we examined how information about the stimulus is encoded in the dynamics of NFκB activity. We generated an mVenus-RelA reporter mouse line to enable high-throughput live-cell analysis of primary macrophages responding to host- and pathogen-derived stimuli. An information-theoretic workflow identified six dynamical features-termed signaling codons-that convey stimulus information to the nucleus. In particular, oscillatory trajectories were a hallmark of responses to cytokine but not pathogen-derived stimuli. Single-cell imaging and RNA sequencing of macrophages from a mouse model of Sjögren's syndrome revealed inappropriate responses to stimuli, suggestive of confusion of two NFκB signaling codons. Thus, the dynamics of NFκB signaling classify immune threats through six signaling codons, and signal confusion based on defective codon deployment may underlie the etiology of some inflammatory diseases.
Collapse
Affiliation(s)
- Adewunmi Adelaja
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093
| | - Brooks Taylor
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093
| | - Katherine M Sheu
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093
| | - Yi Liu
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093
| | - Stefanie Luecke
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093.
| |
Collapse
|
7
|
Park S, Matte-Martone C, Gonzalez DG, Lathrop EA, May DP, Pineda CM, Moore JL, Boucher JD, Marsh E, Schmitter-Sánchez A, Cockburn K, Markova O, Bellaïche Y, Greco V. Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nat Cell Biol 2021; 23:476-484. [PMID: 33958758 DOI: 10.1038/s41556-021-00670-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/24/2021] [Indexed: 01/12/2023]
Abstract
Organs consist of multiple cell types that ensure proper architecture and function. How different cell types coexist and interact to maintain their homeostasis in vivo remains elusive. The skin epidermis comprises mostly epithelial cells, but also harbours Langerhans cells (LCs) and dendritic epidermal T cells (DETCs). Whether and how distributions of LCs and DETCs are regulated during homeostasis is unclear. Here, by tracking individual cells in the skin of live adult mice over time, we show that LCs and DETCs actively maintain a non-random spatial distribution despite continuous turnover of neighbouring basal epithelial cells. Moreover, the density of epithelial cells regulates the composition of LCs and DETCs in the epidermis. Finally, LCs require the GTPase Rac1 to maintain their positional stability, density and tiling pattern reminiscent of neuronal self-avoidance. We propose that these cellular mechanisms provide the epidermis with an optimal response to environmental insults.
Collapse
Affiliation(s)
- Sangbum Park
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.,Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA.,Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | | | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Dennis P May
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Jessica L Moore
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Edward Marsh
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Axel Schmitter-Sánchez
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.,Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Katie Cockburn
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Olga Markova
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Yohanns Bellaïche
- Génétique et Biologie du Développement, Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, Paris, France
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA. .,Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA. .,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Papayannakos CJ, DeVoti JA, Israr M, Alsudani H, Bonagura V, Steinberg BM. Extracellular vesicles produced by primary human keratinocytes in response to TLR agonists induce stimulus-specific responses in antigen-presenting cells. Cell Signal 2021; 83:109994. [PMID: 33781846 DOI: 10.1016/j.cellsig.2021.109994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
Cells can communicate through the extracellular vesicles (EVs) they secrete. Pathogen associated molecular patterns (PAMPs), alter the biophysical and communicative properties of EVs released from cells, but the functional consequences of these changes are unknown. Characterization of keratinocyte-derived EVs after poly(I:C) treatment (poly(I:C)-EVs) showed slight differences in levels of EV markers TSG101 and Alix, a loss of CD63 and were positive for autophagosome marker LC3b-II and the cytokine IL36γ compared to EVs from unstimulated keratinocytes (control-EVs). Flagellin treatment (flagellin-EVs) led to an EV marker profile like control-EVs but lacked LC3b-II. Flagellin-EVs also lacked IL-36γ despite nearly identical intracellular levels. While poly(I:C) treatment led to the clear emergence of a > 200 nm diameter EV sub-population, these were not found in flagellin-EVs. EV associated IL-36γ colocalized with LC3b-II in density gradient analysis, equilibrating to 1.10 g/mL, indicating a common EV species. Poly(I:C), but not flagellin, induced intracellular vesicles positive for IL-36γ, LC3b-II, Alix and TSG101, consistent with fusion of autophagosomes and multivesicular bodies. Simultaneous rapamycin and flagellin treatment induced similar intracellular vesicles but was insufficient for the release of IL-36γ+/LC3b-II+ EVs. Finally, a qRT-PCR array screen showed eight cytokine/chemokine transcripts were altered (p < 0.05) in monocyte-derived Langerhans cells (LCs) when stimulated with poly(I:C)-EVs while three were altered when LCs were stimulated with flagellin-EVs compared to control-EVs. After independent confirmation, poly(I:C)-EVs upregulated BMP6 (p = 0.035) and flagellin-EVs upregulated CXCL8 (p = 0.005), VEGFA (p = 0.018) and PTGS2 (p = 0.020) compared to control-EVs. We conclude that exogenous signals derived from pathogens can alter keratinocyte-mediated modulation of the local immune responses by inducing changes in the types of EVs secreted and responses in antigen presenting cells.
Collapse
Affiliation(s)
- Christopher J Papayannakos
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA.
| | - James A DeVoti
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, USA; Department of Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Mohd Israr
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, USA
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, New York, USA
| | - Vincent Bonagura
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, USA; Department of Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Bettie M Steinberg
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, USA; Department of Molecular Medicine, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| |
Collapse
|
9
|
Hendriks A, van Dalen R, Ali S, Gerlach D, van der Marel GA, Fuchsberger FF, Aerts PC, de Haas CJ, Peschel A, Rademacher C, van Strijp JA, Codée JD, van Sorge NM. Impact of Glycan Linkage to Staphylococcus aureus Wall Teichoic Acid on Langerin Recognition and Langerhans Cell Activation. ACS Infect Dis 2021; 7:624-635. [PMID: 33591717 PMCID: PMC8023653 DOI: 10.1021/acsinfecdis.0c00822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Staphylococcus
aureus is the leading cause of
skin and soft tissue infections. It remains incompletely understood
how skin-resident immune cells respond to invading S. aureus and contribute to an effective immune response. Langerhans cells
(LCs), the only professional antigen-presenting cell type in the epidermis,
sense S. aureus through their pattern-recognition
receptor langerin, triggering a proinflammatory response. Langerin
recognizes the β-1,4-linked N-acetylglucosamine
(β1,4-GlcNAc) but not α-1,4-linked GlcNAc (α1,4-GlcNAc)
modifications, which are added by dedicated glycosyltransferases TarS
and TarM, respectively, on the cell wall glycopolymer wall teichoic
acid (WTA). Recently, an alternative WTA glycosyltransferase, TarP,
was identified, which also modifies WTA with β-GlcNAc but at
the C-3 position (β1,3-GlcNAc) of the WTA ribitol phosphate
(RboP) subunit. Here, we aimed to unravel the impact of β-GlcNAc
linkage position for langerin binding and LC activation. Using genetically
modified S. aureus strains, we observed that langerin
similarly recognized bacteria that produce either TarS- or TarP-modified
WTA, yet tarP-expressing S. aureus induced increased cytokine production and maturation of in vitro-generated LCs compared to tarS-expressing S. aureus. Chemically synthesized WTA
molecules, representative of the different S. aureus WTA glycosylation patterns, were used to identify langerin-WTA binding
requirements. We established that β-GlcNAc is sufficient to
confer langerin binding, thereby presenting synthetic WTA molecules
as a novel glycobiology tool for structure-binding studies and for
elucidating S. aureus molecular pathogenesis. Overall,
our data suggest that LCs are able to sense all β-GlcNAc-WTA
producing S. aureus strains, likely performing an
important role as first responders upon S. aureus skin invasion.
Collapse
Affiliation(s)
- Astrid Hendriks
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Glaxo-Smith Kline, 53100 Siena, Italy
| | - Rob van Dalen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Sara Ali
- Leiden Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
- Partner Site Tübingen, German Centre for Infection Research (DZIF), 72074 Tübingen, Germany
| | | | | | - Piet C. Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Carla J.C. de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
- Partner Site Tübingen, German Centre for Infection Research (DZIF), 72074 Tübingen, Germany
| | | | - Jos A.G. van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jeroen D.C. Codée
- Leiden Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Nina M. van Sorge
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
10
|
Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dörken B, Norley S, Lipp M, Walther W, Pezzutto A, Westermann J. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology 2021; 1:1537-1545. [PMID: 23264900 PMCID: PMC3525609 DOI: 10.4161/onci.22563] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA vaccines are potential tools for the induction of immune responses against both infectious disease and cancer. The dermal application of DNA vaccines is of particular interest since the epidermal and dermal layers of the skin are characterized by an abundance of antigen-presenting cells (APCs). The aim of our study was to compare tumor protection as obtained by two different methods of intradermal DNA delivery (gene gun and jet injector) in a well-established HER2/neu mouse tumor model. BALB/c mice were immunized twice with a HER2/neu-coding plasmid by gene gun or jet injector. Mice were then subcutaneously challenged with HER2/neu+ syngeneic D2F2/E2 tumor cells. Protection against subsequent challenges with tumor cells as well as humoral and T-cell immune responses induced by the vaccine were monitored. Gene gun immunization was far superior to jet injector both in terms of tumor protection and induction of HER2/neu-specific immune responses. After gene gun immunization, 60% of the mice remained tumor-free until day 140 as compared with 25% after jet injector immunization. Furthermore, gene gun vaccination was able to induce both a strong TH1-polarized T-cell response with detectable cytotoxic T-lymphocyte (CTL) activity and a humoral immune response against HER2/neu, whereas the jet injector was not. Although the disadvantages that were associated with the use of the jet injector in our model may be overcome with methodological modifications and/or in larger animals, which exhibit a thicker skin and/or subcutaneous muscle tissue, we conclude that gene gun delivery constitutes the method of choice for intradermal DNA delivery in preclinical mouse models and possibly also for the clinical development of DNA-based vaccines.
Collapse
Affiliation(s)
- Tam Nguyen-Hoai
- Deptartment of Hematology, Oncology, and Tumor Immunology Charité; University Medicine Berlin; Campus Berlin-Buch, Campus Benjamin Franklin and Campus Virchow-Klinikum; Berlin, Germany ; Max Delbrück Center for Molecular Medicine; Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The Potentials and Pitfalls of a Human Cervical Organoid Model Including Langerhans Cells. Viruses 2020; 12:v12121375. [PMID: 33271909 PMCID: PMC7761032 DOI: 10.3390/v12121375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023] Open
Abstract
Three-dimensional cell culturing to capture a life-like experimental environment has become a versatile tool for basic and clinical research. Mucosal and skin tissues can be grown as “organoids” in a petri dish and serve a wide variety of research questions. Here, we report our experience with human cervical organoids which could also include an immune component, e.g., Langerhans cells. We employ commercially available human cervical keratinocytes and fibroblasts as well as a myeloid cell line matured and purified into langerin-positive Langerhans cells. These are then seeded on a layer of keratinocytes with underlying dermal equivalent. Using about 10-fold more than the reported number in healthy cervical tissue (1–3%), we obtain differentiated cervical epithelium after 14 days with ~1% being Langerhans cells. We provide a detailed protocol for interested researchers to apply the described “aseptic” organoid model for all sorts of investigations—with or without Langerhans cells.
Collapse
|
12
|
Kumbhari A, Egelston CA, Lee PP, Kim PS. Mature Dendritic Cells May Promote High-Avidity Tuning of Vaccine T Cell Responses. Front Immunol 2020; 11:584680. [PMID: 33193401 PMCID: PMC7662095 DOI: 10.3389/fimmu.2020.584680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic vaccines can elicit tumor-specific cytotoxic T lymphocytes (CTLs), but durable reductions in tumor burden require vaccines that stimulate high-avidity CTLs. Recent advances in immunotherapy responses have led to renewed interest in vaccine approaches, including dendritic cell vaccine strategies. However, dendritic cell requirements for vaccines that generate potent anti-tumor T-cell responses are unclear. Here we use mathematical modeling to show that, counterintuitively, increasing levels of immature dendritic cells may lead to selective expansion of high-avidity CTLs. This finding is in contrast with traditional dendritic cell vaccine approaches that have sought to harness ex vivo generated mature dendritic cells. We show that the injection of vaccine antigens in the context of increased numbers of immature dendritic cells results in a decreased overall peptide:MHC complex load that favors high-avidity CTL activation and expansion. Overall, our results provide a firm basis for further development of this approach, both alone and in combination with other immunotherapies such as checkpoint blockade.
Collapse
Affiliation(s)
- Adarsh Kumbhari
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Colt A. Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Peter P. Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Peter S. Kim
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Tunneling Nanotubes and the Eye: Intercellular Communication and Implications for Ocular Health and Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7246785. [PMID: 32352005 PMCID: PMC7171654 DOI: 10.1155/2020/7246785] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
Cellular communication is an essential process for the development and maintenance of all tissues including the eye. Recently, a new method of cellular communication has been described, which relies on formation of tubules, called tunneling nanotubes (TNTs). These structures connect the cytoplasm of adjacent cells and allow the direct transport of cellular cargo between cells without the need for secretion into the extracellular milieu. TNTs may be an important mechanism for signaling between cells that reside long distances from each other or for cells in aqueous environments, where diffusion-based signaling is challenging. Given the wide range of cargoes transported, such as lysosomes, endosomes, mitochondria, viruses, and miRNAs, TNTs may play a role in normal homeostatic processes in the eye as well as function in ocular disease. This review will describe TNT cellular communication in ocular cell cultures and the mammalian eye in vivo, the role of TNTs in mitochondrial transport with an emphasis on mitochondrial eye diseases, and molecules involved in TNT biogenesis and their function in eyes, and finally, we will describe TNT formation in inflammation, cancer, and stem cells, focusing on pathological processes of particular interest to vision scientists.
Collapse
|
14
|
Kumbhari A, Kim PS, Lee PP. Optimisation of anti-cancer peptide vaccines to preferentially elicit high-avidity T cells. J Theor Biol 2020; 486:110067. [DOI: 10.1016/j.jtbi.2019.110067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/24/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
|
15
|
Thélu A, Catoire S, Kerdine-Römer S. Immune-competent in vitro co-culture models as an approach for skin sensitisation assessment. Toxicol In Vitro 2020; 62:104691. [DOI: 10.1016/j.tiv.2019.104691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
|
16
|
Wamhoff EC, Schulze J, Bellmann L, Rentzsch M, Bachem G, Fuchsberger FF, Rademacher J, Hermann M, Del Frari B, van Dalen R, Hartmann D, van Sorge NM, Seitz O, Stoitzner P, Rademacher C. A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell Targeting. ACS CENTRAL SCIENCE 2019; 5:808-820. [PMID: 31139717 PMCID: PMC6535779 DOI: 10.1021/acscentsci.9b00093] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 05/30/2023]
Abstract
Langerhans cells are a subset of dendritic cells residing in the epidermis of the human skin. As such, they are key mediators of immune regulation and have emerged as prime targets for novel transcutaneous cancer vaccines. Importantly, the induction of protective T cell immunity by these vaccines requires the efficient and specific delivery of both tumor-associated antigens and adjuvants. Langerhans cells uniquely express Langerin (CD207), an endocytic C-type lectin receptor. Here, we report the discovery of a specific, glycomimetic Langerin ligand employing a heparin-inspired design strategy and structural characterization by NMR spectroscopy and molecular docking. The conjugation of this glycomimetic to liposomes enabled the specific and efficient targeting of Langerhans cells in the human skin. We further demonstrate the doxorubicin-mediated killing of a Langerin+ monocyte cell line, highlighting its therapeutic and diagnostic potential in Langerhans cell histiocytosis, caused by the abnormal proliferation of Langerin+ myeloid progenitor cells. Overall, our delivery platform provides superior versatility over antibody-based approaches and novel modalities to overcome current limitations of dendritic cell-targeted immuno- and chemotherapy.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| | - Jessica Schulze
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| | - Lydia Bellmann
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Mareike Rentzsch
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Gunnar Bachem
- Department
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Felix F. Fuchsberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Juliane Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Martin Hermann
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Barbara Del Frari
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Rob van Dalen
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - David Hartmann
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nina M. van Sorge
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Oliver Seitz
- Department
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
17
|
Kumar TA, Veeravarmal V, Nirmal RM, Amsaveni R, Nassar MHM, Kesavan G. Expression of Cluster of Differentiation 1a-Positive Langerhans Cells in Oral Lichen Planus. Indian J Dermatol 2019; 64:41-46. [PMID: 30745634 PMCID: PMC6340233 DOI: 10.4103/ijd.ijd_350_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background/Purpose: Lichen planus is a T-cell-mediated mucocutaneous disorder characterized histopathologically by a band of chronic inflammatory cells in the subepithelial zone and degeneration of basal layer. The present study was aimed to evaluate the distribution and quantitative assessment of cluster of differentiation 1a (CD1a)-positive Langerhans cells (LCs) in oral lichen planus (OLP), thus to determine the role of LCs pertaining to the changes occurring in OLP. Materials and Methods: Five cases of normal oral mucosa and 20 cases of OLP were immunostained with CD1a antibody; the positive cells were counted manually in the photomicrographs and statistically analyzed using t-test, Mann–Whitney test, and Wilcoxon signed-rank test. Results: The average percentage of CD1a-positive LCs in normal subjects was 0.9%, and in the OLP cases higher percentage was observed (3.93%). The statistical comparison of these two parameters was significant (P=0.018). The degree of basal cell degeneration and density of subepithelial infiltrate on statistical comparison with the concentration of CD1a-positive LCs showed significant results. Conclusion: LCs play a pivotal role in the recruitment of CD4+ and CD8+ cells to the subepithelial region and basal keratinocytes apoptosis. A small number of study subjects, assessment of only CD1a molecule and LCs in the epidermis only were a few of the drawbacks of the study.
Collapse
Affiliation(s)
- Thankanadar Arul Kumar
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Veeran Veeravarmal
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Ramdas Madhavan Nirmal
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Ramamoorthy Amsaveni
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Mohamed Hanifa Mohamed Nassar
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Ganesan Kesavan
- Department of Oral Pathology, Madha Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Menacher G, Steinritz D, Schmidt A, Popp T, Worek F, Gudermann T, Thiermann H, Balszuweit F. Effects of anti-inflammatory compounds on sulfur mustard injured cells: Recommendations and caveats suggested by in vitro cell culture models. Toxicol Lett 2018; 293:91-97. [DOI: 10.1016/j.toxlet.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 11/27/2022]
|
19
|
Bagnall J, Boddington C, England H, Brignall R, Downton P, Alsoufi Z, Boyd J, Rowe W, Bennett A, Walker C, Adamson A, Patel NMX, O’Cualain R, Schmidt L, Spiller DG, Jackson DA, Müller W, Muldoon M, White MRH, Paszek P. Quantitative analysis of competitive cytokine signaling predicts tissue thresholds for the propagation of macrophage activation. Sci Signal 2018; 11:11/540/eaaf3998. [DOI: 10.1126/scisignal.aaf3998] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Abstract
Psoriasis is a common skin disease that presents with well-demarcated patches of inflammation. Recurrent disease in fixed areas of the skin indicates a localized disease memory that is preserved in resolved lesions. In line with such concept, the involvement of tissue-resident immune cells in psoriasis pathology is increasingly appreciated. Langerhans cells (LCs) are perfectly placed to steer resident T cells and local tissue responses in psoriasis. Here, we present an overview of the current knowledge of LCs in human psoriasis, including findings that highlight pro-inflammatory features of LCs in psoriasis lesions. We also review the literature on conflicting data regarding LC localization and functionality in psoriasis. Our review highlights that further studies are needed to elucidate the molecular mechanisms that drive LCs functionality in inflammatory diseases.
Collapse
Affiliation(s)
- Liv Eidsmo
- Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Elisa Martini
- Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Noske K. Secreted immunoregulatory proteins in the skin. J Dermatol Sci 2017; 89:3-10. [PMID: 29111181 DOI: 10.1016/j.jdermsci.2017.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
Abstract
The skin, thought initially to protect the body passively from pathogenic organisms and other environmental insults, is now recognised additionally as a sophisticated immune organ that actively regulates local immunity. Studies linking local innate and adaptive immunity to skin health and disease have revealed a complex network of cell communication and cytokine signalling. Here, we review the last 10 years of literature on this topic, and its relevance to skin immunity.
Collapse
Affiliation(s)
- Katharina Noske
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba 4102, QLD, Australia.
| |
Collapse
|
22
|
Félix Garza ZC, Liebmann J, Born M, Hilbers PAJ, van Riel NAW. A Dynamic Model for Prediction of Psoriasis Management by Blue Light Irradiation. Front Physiol 2017; 8:28. [PMID: 28184200 PMCID: PMC5266737 DOI: 10.3389/fphys.2017.00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
Clinical investigations prove that blue light irradiation reduces the severity of psoriasis vulgaris. Nevertheless, the mechanisms involved in the management of this condition remain poorly defined. Despite the encouraging results of the clinical studies, no clear guidelines are specified in the literature for the irradiation scheme regime of blue light-based therapy for psoriasis. We investigated the underlying mechanism of blue light irradiation of psoriatic skin, and tested the hypothesis that regulation of proliferation is a key process. We implemented a mechanistic model of cellular epidermal dynamics to analyze whether a temporary decrease of keratinocytes hyper-proliferation can explain the outcome of phototherapy with blue light. Our results suggest that the main effect of blue light on keratinocytes impacts the proliferative cells. They show that the decrease in the keratinocytes proliferative capacity is sufficient to induce a transient decrease in the severity of psoriasis. To study the impact of the therapeutic regime on the efficacy of psoriasis treatment, we performed simulations for different combinations of the treatment parameters, i.e., length of treatment, fluence (also referred to as dose), and intensity. These simulations indicate that high efficacy is achieved by regimes with long duration and high fluence levels, regardless of the chosen intensity. Our modeling approach constitutes a framework for testing diverse hypotheses on the underlying mechanism of blue light-based phototherapy, and for designing effective strategies for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zandra C Félix Garza
- Department of Biomedical Engineering, Eindhoven University of Technology Eindhoven, Netherlands
| | - Joerg Liebmann
- Philips Technologie GmbH, Innovative Technologies Aachen, Germany
| | - Matthias Born
- Philips Technologie GmbH, Innovative Technologies Aachen, Germany
| | - Peter A J Hilbers
- Department of Biomedical Engineering, Eindhoven University of Technology Eindhoven, Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology Eindhoven, Netherlands
| |
Collapse
|
23
|
Manwaring J, Rothe H, Obringer C, Foltz DJ, Baker TR, Troutman JA, Hewitt NJ, Goebel C. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro. Toxicol Appl Pharmacol 2015; 287:139-148. [DOI: 10.1016/j.taap.2015.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 01/20/2023]
|
24
|
Zhang H, Hou W, Henrot L, Schnebert S, Dumas M, Heusèle C, Yang J. Modelling epidermis homoeostasis and psoriasis pathogenesis. J R Soc Interface 2015; 12:rsif.2014.1071. [PMID: 25566881 DOI: 10.1098/rsif.2014.1071] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We present a computational model to study the spatio-temporal dynamics of epidermis homoeostasis under normal and pathological conditions. The model consists of a population kinetics model of the central transition pathway of keratinocyte proliferation, differentiation and loss and an agent-based model that propagates cell movements and generates the stratified epidermis. The model recapitulates observed homoeostatic cell density distribution, the epidermal turnover time and the multilayered tissue structure. We extend the model to study the onset, recurrence and phototherapy-induced remission of psoriasis. The model considers psoriasis as a parallel homoeostasis of normal and psoriatic keratinocytes originated from a shared stem cell (SC) niche environment and predicts two homoeostatic modes of psoriasis: a disease mode and a quiescent mode. Interconversion between the two modes can be controlled by interactions between psoriatic SCs and the immune system and by normal and psoriatic SCs competing for growth niches. The prediction of a quiescent state potentially explains the efficacy of multi-episode UVB irradiation therapy and recurrence of psoriasis plaques, which can further guide designs of therapeutics that specifically target the immune system and/or the keratinocytes.
Collapse
Affiliation(s)
- Hong Zhang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, People's Republic of China Naval Submarine Academy, Qingdao, Shandong 266000, People's Republic of China
| | - Wenhong Hou
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, People's Republic of China
| | - Laurence Henrot
- Sprim Advanced Life Sciences, 1 Daniel Burnham Court, San Francisco, CA 94109, USA
| | | | - Marc Dumas
- LVMH Research, 185 Avenue de Verdun, Saint-Jean-de-Braye 45804, France
| | - Catherine Heusèle
- LVMH Research, 185 Avenue de Verdun, Saint-Jean-de-Braye 45804, France
| | - Jin Yang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, People's Republic of China
| |
Collapse
|
25
|
Confocal stereology: an efficient tool for measurement of microscopic structures. Cell Tissue Res 2015; 360:13-28. [PMID: 25743691 DOI: 10.1007/s00441-015-2138-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/27/2015] [Indexed: 01/26/2023]
Abstract
Quantitative measurements of geometric forms or counting of objects in microscopic specimens is an essential tool in studies of microstructure. Confocal stereology represents a contemporary approach to the evaluation of microscopic structures by using a combination of stereological methods and confocal microscopy. 3-D images acquired by confocal microscopy can be used for the estimation of geometrical characteristics of microscopic structures by stereological methods, based on the evaluation of optical sections within a thick slice and using computer-generated virtual test probes. Such methods can be used for estimating volume, number, surface area and length using relevant spatial probes, which are generated by specific software. The interactions of the probes with the structure under study are interactively evaluated. An overview of the methods of confocal stereology developed during the past 30 years is presented. Their advantages and pitfalls in comparison with other methods for measurement of geometrical characteristics of microscopic structures are discussed.
Collapse
|
26
|
Balszuweit F, Menacher G, Bloemeke B, Schmidt A, Worek F, Thiermann H, Steinritz D. Development of a co-culture of keratinocytes and immune cells for in vitro investigation of cutaneous sulfur mustard toxicity. Chem Biol Interact 2014; 223:117-24. [DOI: 10.1016/j.cbi.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
|
27
|
Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M, Hladik F. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 2014; 42:7290-304. [PMID: 24838567 PMCID: PMC4066774 DOI: 10.1093/nar/gku347] [Citation(s) in RCA: 437] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022] Open
Abstract
Semen contains relatively ill-defined regulatory components that likely aid fertilization, but which could also interfere with defense against infection. Each ejaculate contains trillions of exosomes, membrane-enclosed subcellular microvesicles, which have immunosuppressive effects on cells important in the genital mucosa. Exosomes in general are believed to mediate inter-cellular communication, possibly by transferring small RNA molecules. We found that seminal exosome (SE) preparations contain a substantial amount of RNA from 20 to 100 nucleotides (nts) in length. We sequenced 20-40 and 40-100 nt fractions of SE RNA separately from six semen donors. We found various classes of small non-coding RNA, including microRNA (21.7% of the RNA in the 20-40 nt fraction) as well as abundant Y RNAs and tRNAs present in both fractions. Specific RNAs were consistently present in all donors. For example, 10 (of ∼2600 known) microRNAs constituted over 40% of mature microRNA in SE. Additionally, tRNA fragments were strongly enriched for 5'-ends of 18-19 or 30-34 nts in length; such tRNA fragments repress translation. Thus, SE could potentially deliver regulatory signals to the recipient mucosa via transfer of small RNA molecules.
Collapse
Affiliation(s)
- Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Sangsoon Woo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Sean Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Claire Levy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Lamar Ballweber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Renan P Sauteraud
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Johanna Strobl
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Katharine Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA Department of Medicine, University of Washington, Seattle, USA
| | - Muneesh Tewari
- Department of Medicine, University of Washington, Seattle, USA Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA Department of Medicine, University of Washington, Seattle, USA
| |
Collapse
|
28
|
Tőke ER, Lőrincz O, Csiszovszki Z, Somogyi E, Felföldi G, Molnár L, Szipőcs R, Kolonics A, Malissen B, Lori F, Trocio J, Bakare N, Horkay F, Romani N, Tripp CH, Stoitzner P, Lisziewicz J. Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes. Gene Ther 2014; 21:566-74. [PMID: 24694539 DOI: 10.1038/gt.2014.29] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/19/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022]
Abstract
There is no clinically available cancer immunotherapy that exploits Langerhans cells (LCs), the epidermal precursors of dendritic cells (DCs) that are the natural agent of antigen delivery. We developed a DNA formulation with a polymer and obtained synthetic 'pathogen-like' nanoparticles that preferentially targeted LCs in epidermal cultures. These nanoparticles applied topically under a patch-elicited robust immune responses in human subjects. To demonstrate the mechanism of action of this novel vaccination strategy in live animals, we assembled a high-resolution two-photon laser scanning-microscope. Nanoparticles applied on the native skin poorly penetrated and poorly induced LC motility. The combination of nanoparticle administration and skin treatment was essential both for efficient loading the vaccine into the epidermis and for potent activation of the LCs to migrate into the lymph nodes. LCs in the epidermis picked up nanoparticles and accumulated them in the nuclear region demonstrating an effective nuclear DNA delivery in vivo. Tissue distribution studies revealed that the majority of the DNA was targeted to the lymph nodes. Preclinical toxicity of the LC-targeting DNA vaccine was limited to mild and transient local erythema caused by the skin treatment. This novel, clinically proven LC-targeting DNA vaccine platform technology broadens the options on DC-targeting vaccines to generate therapeutic immunity against cancer.
Collapse
Affiliation(s)
- E R Tőke
- Genetic Immunity Kft, H-1045 Budapest, Hungary
| | - O Lőrincz
- Genetic Immunity Kft, H-1045 Budapest, Hungary
| | | | - E Somogyi
- Genetic Immunity Kft, H-1045 Budapest, Hungary
| | - G Felföldi
- Genetic Immunity Kft, H-1045 Budapest, Hungary
| | - L Molnár
- Genetic Immunity Kft, H-1045 Budapest, Hungary
| | - R Szipőcs
- 1] Wigner RCP of HAS, H-1121 Budapest, Hungary [2] R&D Ultrafast Lasers Ltd, H-1539 Budapest, Hungary
| | - A Kolonics
- 1] Wigner RCP of HAS, H-1121 Budapest, Hungary [2] R&D Ultrafast Lasers Ltd, H-1539 Budapest, Hungary
| | - B Malissen
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix Marseille Université, Marseille, France
| | - F Lori
- Research Institute for Genetic and Human Therapy (RIGHT), Bethesda, MD, USA
| | - J Trocio
- Research Institute for Genetic and Human Therapy (RIGHT), Bethesda, MD, USA
| | - N Bakare
- Research Institute for Genetic and Human Therapy (RIGHT), Bethesda, MD, USA
| | - F Horkay
- Section on Tissue Biophysics and Biomimetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - N Romani
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - C H Tripp
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - P Stoitzner
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
29
|
Preza GC, Tanner K, Elliott J, Yang OO, Anton PA, Ochoa MT. Antigen-presenting cell candidates for HIV-1 transmission in human distal colonic mucosa defined by CD207 dendritic cells and CD209 macrophages. AIDS Res Hum Retroviruses 2014; 30:241-9. [PMID: 24134315 DOI: 10.1089/aid.2013.0145] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A common route for HIV-1 infection is sexual transmission across colorectal mucosa, which is thought to be 10-2,000 times more vulnerable to infection than that of the female genital tract. Mucosal surfaces are the first line of defense against many pathogens but the antigen-presenting cells (APCs), key regulators of innate immunity and determinants of adaptive immunity, are not well defined in these target tissues. Using immunohistochemistry, dendritic cells expressing Langerin (CD207(+)), a lectin known to bind and internalize HIV-1, were detected in the periphery of colonic glands and sparsely scattered in the submucosa similarly in colorectal mucosa. This cell type, well known in skin, has generally not been reported in colonic/rectal mucosa. Unexpectedly, the largest APC population observed was a macrophage-like population expressing the well-characterized tissue macrophage markers CD68 and CD163. Confocal microscopy of these cells revealed colocalization of CD209 (DC-SIGN), a presumed dendritic cell marker believed to facilitate HIV-1 transmission, but not other dendritic cell markers. These results show evidence of the unconfirmed presence of Langerhans cells in colorectal mucosa and a predominance of macrophage-like APCs that express CD209 (DC-SIGN). These findings define potential target cells in the pathogenesis of HIV-1 transmission, which may have key implications for the study of early transmission events in normal colorectal mucosa, as well as other infectious diseases and primary immune diseases involving the gut.
Collapse
Affiliation(s)
- Gloria C Preza
- 1 Department of Dermatology, Keck School of Medicine, University of Southern California , Los Angeles, California
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Vaccines have evolved for hundreds of years, but all utilize the premise that safely pre-exposing the host to some component of a pathogen allows for enhanced immune recognition, and potential protection from disease, upon encountering the pathogen at a later date. Early vaccination strategies used inactivated or attenuated vaccines, many of which contained toxins and other components that resulted in reactogenicity or risk of reversion to virulence. DNA vaccines supplant many of the issues associated with inactivated or attenuated vaccines, but these vaccines tend to provide weak immunological responses, particularly in primates. DNA Electroporation may prove to be the "missing link" in the evolution of DNA vaccines allowing for enhanced immune responses from DNA vaccination in humans thereby resulting in protection from disease post-pathogen exposure.
Collapse
|
31
|
Larsen BE, Sandvik JA, Karlsen J, Pettersen EO, Melvik JE. Oxygen consumption in T-47D cells immobilized in alginate. Cell Prolif 2013; 46:469-81. [PMID: 23869767 DOI: 10.1111/cpr.12041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/06/2013] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Encapsulation or entrapment of cells is increasingly being used in a wide variety of scientific studies for tissue engineering and development of novel medical devices. The effect on cell metabolism of such systems is, in general, not well characterized. In this work, a simple system for monitoring respiration of cells embedded in 3-D alginate cultures was characterized. MATERIALS AND METHODS T-47D cells were cultured in alginate gels. Oxygen concentration curves were recorded within cell-gel constructs using two different sensor systems, and cell viability and metabolic state were characterized using confocal microscopy and commercially available stains. RESULTS At sufficient depth within constructs, recorded oxygen concentration curves were not significantly influenced by influx of oxygen through cell-gel layers and oxygen consumption rate could be calculated simply by dividing oxygen loss in the system per time, by the number of cells. This conclusion was supported by a 3-D numeric simulation. For the T-47D cells, the oxygen consumption rate was found to be 61 ± 6 fmol/cell/h, 3-4 times less than has previously been found for these cells, when grown exponentially in monolayer culture. CONCLUSIONS The experimental set-up presented here may be varied in multiple ways by changing the cell-gel construct 3-D microenvironment, easily allowing investigation of a variety of factors on cell respiration.
Collapse
Affiliation(s)
- B E Larsen
- School of Pharmacy, Universiy of Oslo, Oslo, 0316, Norway.
| | | | | | | | | |
Collapse
|
32
|
Lisziewicz J, Tőke ER. Nanomedicine applications towards the cure of HIV. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:28-38. [DOI: 10.1016/j.nano.2012.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/23/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
33
|
Nguyen-Hoai T, Hohn O, Vu MD, Baldenhofer G, Sayed Ahmed MS, Dörken B, Norley S, Lipp M, Pezzutto A, Westermann J. CCL19 as an adjuvant for intradermal gene gun immunization in a Her2/neu mouse tumor model: improved vaccine efficacy and a role for B cells as APC. Cancer Gene Ther 2012; 19:880-7. [DOI: 10.1038/cgt.2012.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Relationship of epidermal melanocytes and langerhans cells with epidermal cambial cells. Bull Exp Biol Med 2012; 153:367-70. [PMID: 22866314 DOI: 10.1007/s10517-012-1718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Studies of mouse ear epidermis showed that proliferative activity of basal epidermal cells has two active and two passive phases throughout 24 h. Active phases consist of two subphases: long (proliferation of cambial cell descendants) and very short (cambial cell proliferation). Cambial cells proliferate at the boundary between active and passive phases; this results in an increase in the counts of epidermal melanocytes and Langerhans cells resultant from division of epidermal cambial cells. The count of Langerhans cells almost 2-fold surpasses melanocyte count, because melanocytes gradually transform into epidermal basal cells.
Collapse
|
35
|
Lori F. DermaVir: a plasmid DNA-based nanomedicine therapeutic vaccine for the treatment of HIV/AIDS. Expert Rev Vaccines 2012; 10:1371-84. [PMID: 21988301 DOI: 10.1586/erv.11.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The HIV global pandemic continues to rage with over 33 million people living with the disease. Although multidrug therapy has improved the prognosis for those infected by the virus, it has not eradicated the infection. Immunological therapies, including therapeutic vaccines, are needed to supplement drug therapy in the search for a 'functional cure' for HIV. DermaVir (Genetic Immunity Kft, Budapest, Hungary and McLean, Virginia, USA), an experimental HIV/AIDS therapeutic vaccine, combines three key elements of rational therapeutic vaccine design: a single plasmid DNA (pDNA) immunogen expressing 15 HIV antigens, a synthetic pDNA nanomedicine formulation and a dendritic cell-targeting topical-vaccine administration. DermaVir's novel mechanism of action, natural transport by epidermal Langerhans cells to the lymph nodes to express the pDNA-encoded HIV antigens and induce precursor/memory T cells with high proliferation capacity, has been consistently demonstrated in mouse, rabbit, primate and human subjects. Safety, immunogenicity and preliminary efficacy of DermaVir have been clinically demonstrated in HIV-infected human subjects. The DermaVir technology platform for dendritic cell-based therapeutic vaccination might offer a new treatment paradigm for cancer and infectious diseases.
Collapse
Affiliation(s)
- Franco Lori
- ViroStatics srl, Viale Umberto I, 07100, Sassari, Italy.
| |
Collapse
|
36
|
Ikejiri A, Ito Y, Naito S, Takada K. Two-and Three-Layered Dissolving Microneedles for Transcutaneous Delivery of Model Vaccine Antigen in Rats. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbnb.2012.33030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Ito Y, Murano H, Hamasaki N, Fukushima K, Takada K. Incidence of low bioavailability of leuprolide acetate after percutaneous administration to rats by dissolving microneedles. Int J Pharm 2011; 407:126-31. [DOI: 10.1016/j.ijpharm.2011.01.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 11/28/2022]
|
38
|
Simonsson C, Andersson SI, Stenfeldt AL, Bergström J, Bauer B, Jonsson CA, Ericson MB, Broo KS. Caged fluorescent haptens reveal the generation of cryptic epitopes in allergic contact dermatitis. J Invest Dermatol 2011; 131:1486-93. [PMID: 21228815 DOI: 10.1038/jid.2010.422] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Allergic contact dermatitis (ACD) is the most prevalent form of human immunotoxicity. It is caused by skin exposure to haptens, i.e., protein-reactive, low-molecular-weight chemical compounds, which form hapten-protein complexes (HPCs) in the skin, triggering the immune system. These immunogenic HPCs are elusive. In this study a series of thiol-reactive caged fluorescent haptens, i.e., bromobimanes, were deployed in combination with two-photon fluorescence microscopy, immunohistochemistry, and proteomics to identify possible hapten targets in proteins in human skin. Key targets found were the basal keratinocytes and the keratins K5 and K14. Particularly, cysteine 54 of K5 was found to be haptenated by the bromobimanes. In addition, elevated levels of anti-keratin antibodies were found in the sera of mice exposed to bromobimanes in vivo. The results indicate a general mechanism in which thiol-reactive haptens generate cryptic epitopes normally concealed from the immune system. In addition, keratinocytes and keratin seem to have an important role in the mechanism behind ACD, which is a subject for further investigations.
Collapse
Affiliation(s)
- Carl Simonsson
- Department of Chemistry, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Teunissen MBM, Haniffa M, Collin MP. Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design. Curr Top Microbiol Immunol 2011; 351:25-76. [PMID: 21833835 DOI: 10.1007/82_2011_169] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dendritic cells (DC) are the key initiators and regulators of any immune response which determine the outcome of CD4(+) and CD8(+) T-cell responses. Multiple distinct DC subsets can be distinguished by location, phenotype, and function in the homeostatic and inflamed human skin. The function of steady-state cutaneous DCs or recruited inflammatory DCs is influenced by the surrounding cellular and extracellular skin microenvironment. The skin is an attractive site for vaccination given the extended local network of DCs and the easy access to the skin-draining lymph nodes to generate effector T cells and immunoglobulin-producing B cells for long-term protective immunity. In the context of intradermal vaccination we describe in this review the skin-associated immune system, the characteristics of the different skin DC subsets, the mechanism of antigen uptake and presentation, and how the properties of DCs can be manipulated. This knowledge is critical for the development of intradermal vaccine strategies and supports the concept of intradermal vaccination as a superior route to the conventional intramuscular or subcutaneous methods.
Collapse
Affiliation(s)
- M B M Teunissen
- Department of Dermatology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
40
|
Ito Y, Maeda T, Fukushima K, Sugioka N, Takada K. Permeation enhancement of ascorbic acid by self-dissolving micropile array tip through rat skin. Chem Pharm Bull (Tokyo) 2010; 58:458-63. [PMID: 20410623 DOI: 10.1248/cpb.58.458] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ascorbic acid (AA) loaded self-dissolving micropiles (SDMP) were prepared using chondroitin sulfate as the base for the percutaneous administration of AA. AA solution was added to dense solution of chondroitin solution, glue, and array tip, 1.0 cm(2), containing 100 SDMPs of which length was 500 microm and basal diameter was 300 microm, were prepared. Two kinds of AA array tips containing 1344.2+/-1.7 microg (high content ones) and 638.7+/-4.3 microg (low content ones) were used. In vitro dissolution study showed that more than 90% of AA were released from both SDMP array tips within 5 min. Stability experiment showed that 99.2-99.4% of AA was detected in SDMP array tips when stored at 23 degrees C for 1 week. When in vitro permeation experiments were performed after AA SDMP array was inserted to the isolated rat abdominal skin, extremely high amounts of AA, 1285.3+/-369.0 microg (95.3%) for high content SDMP tip and 405.6+/-84.3 microg (65.8%) for low content SDMP tip, were permeated for 6 h into the receptor compartment due to the break down of the skin barrier function. When AA SDMP array tip was administered to the rat skin under anesthetized condition with the different contact times, 10, 20 and 30 min, the permeated amount of AA was dependent on both the AA content in SDMP array tips and the contact time. When AA SDMP was contact to the skin for 30 min, permeated amounts of AA were 146.8+/-22.9 microg (10.9%) for high content-SDMP tip and 61.2+/-18.2 microg (9.6%) for low content SDMP tip. These results suggest the usefulness of SDMP array tip for the percutaneous absorption of AA.
Collapse
Affiliation(s)
- Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
41
|
Fukushima K, Yamazaki T, Hasegawa R, Ito Y, Sugioka N, Takada K. Pharmacokinetic and pharmacodynamic evaluation of insulin dissolving microneedles in dogs. Diabetes Technol Ther 2010; 12:465-74. [PMID: 20470231 DOI: 10.1089/dia.2009.0176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND This study tested the hypothesis that dissolving microneedles are a useful transdermal drug delivery system (TDDS) for insulin. METHODS Insulin was loaded on a patch (1.0 cm2) that had 100 dissolving microneedles with chondroitin sulfate by microfabrication technology. Pharmacodynamic evaluation was performed by applying two or four patches to the shaved abdominal skin of dogs, and blood samples were collected for 360 min to measure plasma glucose and insulin levels. In diffusion experiment, microneedles containing fluorescein isothiocyanate-insulin and/or Evans blue were administered to the rat skin, and the diffusion rates of tracers were recorded. RESULTS The mean length, diameter of basement, and drug-loaded space from the top of the microneedles were 492.6 +/- 2.4, 290.0 +/- 3.6, and 316.0 +/- 7.3 microm, respectively. The insulin content was 1.67 +/- 0.17 IU per patch. The time when the minimum plasma glucose level was obtained was 50.0 +/- 8.7 min for two-patch and 82.5 +/- 14.4 min for four-patch studies. A dose-dependent hypoglycemic effect was observed. By comparing the cumulative percentage change in the plasma glucose level between insulin microneedles and solution, the relative physiological availabilities were calculated to be 71.1 +/- 17.8% (for two patches) and 59.3 +/- 4.4% (for four patches). Bioavailabilities of insulin from microneedles were 72.1 +/- 11.6% (for two patches) and 72.4 +/- 8.3% (for four patches). High diffusion rates of fluorescein isothiocyanate-insulin and Evans blue were observed at the administered skin site and correlated well with the high absorption rate of insulin into the systemic circulation. Insulin was stable in dissolving microneedles for 1 month at 4 degrees C; the recovered percentage was 99.2 +/- 13.9%. CONCLUSIONS Dissolving microneedles were demonstrated to be a useful TDDS as an immediate-acting insulin preparation.
Collapse
Affiliation(s)
- Keizo Fukushima
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Kamp S, Jemec GBE, Kemp K, Kjeldsen CR, Stenderup K, Pakkenberg B, Dam TN. Application of stereology to dermatological research. Exp Dermatol 2010; 18:1001-9. [PMID: 19758342 DOI: 10.1111/j.1600-0625.2009.00947.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Stereology is a set of mathematical and statistical tools to estimate three-dimensional (3-D) characteristics of objects from regular two-dimensional (2-D) sections. In medicine and biology, it can be used to estimate features such as cell volume, cell membrane surface area, total length of blood vessels per volume tissue and total number of cells. The unbiased quantification of these 3-D features allows for a better understanding of morphology in vivo compared with 2-D methods. This review provides an introduction to the field of stereology with specific emphasis on the application of stereology to dermatological research by supplying a short insight into the theoretical basis behind the technique and presenting previous dermatological studies in which stereology was an integral part. Both the theory supporting stereology and a practical approach in a dermatological setting are reviewed with the aim to provide the reader with the capability to better assess papers employing stereological estimators and to design stereological studies independently.
Collapse
Affiliation(s)
- Søren Kamp
- Department of Dermatology, Roskilde Hospital, Kogevej 7-13, Roskilde, Denmark.
| | | | | | | | | | | | | |
Collapse
|
43
|
Two-Layered Dissolving Microneedles for Percutaneous Delivery of Peptide/Protein Drugs in Rats. Pharm Res 2010; 28:7-21. [DOI: 10.1007/s11095-010-0097-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
44
|
Ito Y, Yamazaki T, Sugioka N, Takada K. Self-dissolving micropile array tips for percutaneous administration of insulin. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:835-841. [PMID: 19915962 DOI: 10.1007/s10856-009-3923-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 10/26/2009] [Indexed: 05/28/2023]
Abstract
Two kinds of insulin were loaded into self-dissolving micropile array tip (following tip). Fully-loaded tip (f-tip) and partially-loaded tip (p-tip) were prepared using chondroitin sulfate for the percutaneous administration of insulin. One hundred micropiles were constructed on a 1.0 x 1.0 cm tip. The mean length of the micropile in a tip were 483.4 +/- 4.7 mum for the f-tip and 492.6 +/- 2.4 mum for the p-tip. The insulin content of the p-tip was 28.5% of that of the f-tip. The pharmacological efficiency of insulin loaded tip was evaluated in rat experiments by measuring their hypoglycemic effects. The maximum hypoglycemic effect of insulin was observed at 1.7 +/- 0.2 h for the f-tip and 1.5 +/- 0.2 h for the p-tip. Good dose-dependency was observed for the plasma glucose level vs. time curves. These results suggest the usefulness of p-tip as a percutaneous DDS of insulin.
Collapse
Affiliation(s)
- Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan.
| | | | | | | |
Collapse
|
45
|
Ito Y, Hasegawa R, Fukushima K, Sugioka N, Takada K. Self-Dissolving Micropile Array Chip as Percutaneous Delivery System of Protein Drug. Biol Pharm Bull 2010; 33:683-90. [DOI: 10.1248/bpb.33.683] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Ryo Hasegawa
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Keizo Fukushima
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | | | - Kanji Takada
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| |
Collapse
|
46
|
Abstract
Millions of people die each year from infectious disease, with a main stumbling block being our limited ability to deliver vaccines to optimal sites in the body. Specifically, effective methods to deliver vaccines into outer skin and mucosal layers--sites with immunological, physical and practical advantages that cannot be targeted via traditional delivery methods--are lacking. This chapter investigates the challenge for physical delivery approaches that are primarily needle-free. We examine the skin's structural and immunogenic properties in the context of the physical cell targeting requirements of the viable epidermis, and we review selected current physical cell targeting technologies engineered to meet these needs: needle and syringe, diffusion patches, liquid jet injectors, and microneedle arrays/patches. We then focus on biolistic particle delivery: we first analyze engineering these systems to meet demanding clinical needs, we then examine the interaction of biolistic devices with the skin, focusing on the mechanical interactions of ballistic impact and cell death, and finally we discuss the current clinical outcomes of one key application of engineered delivery devices--DNA vaccines.
Collapse
Affiliation(s)
- Mark A F Kendall
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Building 75-Cnr of College and Cooper Road The University of Queensland Brisbane, Brisbane, QLD4072, Australia.
| |
Collapse
|
47
|
Ng KW, Pearton M, Coulman S, Anstey A, Gateley C, Morrissey A, Allender C, Birchall J. Development of an ex vivo human skin model for intradermal vaccination: tissue viability and Langerhans cell behaviour. Vaccine 2009; 27:5948-55. [PMID: 19679220 DOI: 10.1016/j.vaccine.2009.07.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/29/2009] [Accepted: 07/23/2009] [Indexed: 01/16/2023]
Abstract
The presence of resident Langerhans cells (LCs) in the epidermis makes the skin an attractive target for DNA vaccination. However, reliable animal models for cutaneous vaccination studies are limited. We demonstrate an ex vivo human skin model for cutaneous DNA vaccination which can potentially bridge the gap between pre-clinical in vivo animal models and clinical studies. Cutaneous transgene expression was utilised to demonstrate epidermal tissue viability in culture. LC response to the culture environment was monitored by immunohistochemistry. Full-thickness and split-thickness skin remained genetically viable in culture for at least 72 h in both phosphate-buffered saline (PBS) and full organ culture medium (OCM). The epidermis of explants cultured in OCM remained morphologically intact throughout the culture duration. LCs in full-thickness skin exhibited a delayed response (reduction in cell number and increase in cell size) to the culture conditions compared with split-thickness skin, whose response was immediate. In conclusion, excised human skin can be cultured for a minimum of 72 h for analysis of gene expression and immune cell activation. However, the use of split-thickness skin for vaccine formulation studies may not be appropriate because of the nature of the activation. Full-thickness skin explants are a more suitable model to assess cutaneous vaccination ex vivo.
Collapse
Affiliation(s)
- Keng Wooi Ng
- Gene Delivery Research Group, Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3NB, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Peiser M, Koeck J, Kirschning CJ, Wittig B, Wanner R. Human Langerhans cells selectively activated via Toll-like receptor 2 agonists acquire migratory and CD4+
T cell stimulatory capacity. J Leukoc Biol 2008; 83:1118-27. [DOI: 10.1189/jlb.0807567] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
49
|
Abstract
There are many mechanisms by which melanocytes, keratinocytes, and Langerhans cells interact within the epidermis. Inflammatory mediators affect melanocyte function and melanogenic agents such as alpha-MSH alter the functions of keratinocytes and Langerhans cells. The epidermal melanin unit is better labeled the KLM unit.
Collapse
|
50
|
Stoecklinger A, Grieshuber I, Scheiblhofer S, Weiss R, Ritter U, Kissenpfennig A, Malissen B, Romani N, Koch F, Ferreira F, Thalhamer J, Hammerl P. Epidermal langerhans cells are dispensable for humoral and cell-mediated immunity elicited by gene gun immunization. THE JOURNAL OF IMMUNOLOGY 2007; 179:886-93. [PMID: 17617579 DOI: 10.4049/jimmunol.179.2.886] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene gun immunization, i.e., bombardment of skin with DNA-coated particles, is an efficient method for the administration of DNA vaccines. Direct transfection of APC or cross-presentation of exogenous Ag acquired from transfected nonimmune cells enables MHC-I-restricted activation of CD8(+) T cells. Additionally, MHC-II-restricted presentation of exogenous Ag activates CD4(+) Th cells. Being the principal APC in the epidermis, Langerhans cells (LC) seem ideal candidates to accomplish these functions. However, the dependence on LC of gene gun-induced immune reactions has not yet been demonstrated directly. This was primarily hampered by difficulties to discriminate the contributions of LC from those of other dermal dendritic cells. To address this problem, we have used Langerin-diphtheria toxin receptor knockin mice that allow for selective inducible ablation of LC. LC deficiency, even over the entire duration of experiments, did not affect any of the gene gun-induced immune functions examined, including proliferation of CD4(+) and CD8(+) T cells, IFN-gamma secretion by spleen cells, Ab production, CTL activity, and development of protective antitumor immunity. Together, our data show that gene gun immunization is capable of inducing humoral and cell-mediated immune reactions independently of LC.
Collapse
Affiliation(s)
- Angelika Stoecklinger
- Christian Doppler Laboratory of Allergy Diagnostics and Therapy, Department of Molecular Biology, University Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|