1
|
Ali EMT, Abdallah HI, El-Sayed SM. Histomorphological, VEGF and TGF-β immunoexpression changes in the diabetic rats' ovary and the potential amelioration following treatment with metformin and insulin. J Mol Histol 2020; 51:287-305. [PMID: 32399705 DOI: 10.1007/s10735-020-09880-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) affects the ovary by reducing the number and diameters of ovarian follicles and increasing atretic follicles. Follicular growth and diameters depend on VEGF production. Hyperglycemia causes ovarian stromal and follicular degeneration then fibrosis by activating TGF-β. Insulin and metformin promote development of ovarian follicles and reduce atretic follicles. Therefore, the present study investigates the ovarian VEGF and TGF-β immune-expression and its variations in diabetic, insulin and metformin-treated rats. Forty adult female albino rats were divided equally into four groups: control, diabetic (STZ-induced diabetes), diabetic metformin-treated group (100 mg/kg/day orally/eight weeks) and diabetic insulin-treated group (5 U insulin /day). Ovarian sections were stained with hematoxylin and eosin, Masson's trichrome, immunohistochemistry for VEGF and TGF-β. The diabetic group showed noticeable atrophic and degenerative changes in cortex and medulla as well as increased density and distribution of the collagenous fibers. The number and diameter of primary, secondary and tertiary follicles were decreased. However, the number of atretic follicles and corpus luteum was increased. Significant decrease in the surface area percentage of VEGF immuno-expression and significant increase in TGF-β immuno-expression surface area percentage were detected. By treating animals with metformin and insulin, there was restoration of the ovarian histological structure more or less as in control. DM negatively affects the histological and morphometric parameters of ovaries. Furthermore, insulin showed more beneficial effects than metformin in hindering these complications by modifying the expression of VEGF and TGF-β.
Collapse
Affiliation(s)
- Eyad M T Ali
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia. .,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Hesham I Abdallah
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sayed M El-Sayed
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Fuentes-Calvo I, Crespo P, Santos E, López-Novoa JM, Martínez-Salgado C. The small GTPase N-Ras regulates extracellular matrix synthesis, proliferation and migration in fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2734-2744. [DOI: 10.1016/j.bbamcr.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 01/22/2023]
|
3
|
Pscherer S, Freude T, Forst T, Nussler AK, Braun KF, Ehnert S. Anti-diabetic treatment regulates pro-fibrotic TGF-β serum levels in type 2 diabetics. Diabetol Metab Syndr 2013; 5:48. [PMID: 24004910 PMCID: PMC3847073 DOI: 10.1186/1758-5996-5-48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/28/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The single-center, open-label, four-arm, exploratory study investigates the relation of different anti-diabetics to serum levels of active TGF-β, a known pro-fibrotic stimulus, before and after a defined test meal. FINDINGS We investigated sera of patients with type 2 diabetes mellitus (T2DM) treated with metformin and sulfonylurea, insulin glargine or a DPP-4 inhibitor (DPP4i). Patients' sera were analyzed before and 5 h after a defined test meal at intervals of 30 min.The sulfonylurea/metformin group exhibited the highest basal levels of active TGF-β (31.50 ± 3.58 ng/ml). The glargine/metformin group had active TGF-β levels (24.98 ± 1.90 ng/ml) that were comparable to those of the healthy participants (22.12 ± 2.34 ng/ml). The lowest basal levels of active TGF-β were detected in the DPP-4i/metformin group (12.28 ± 0.84 ng/ml). Following the intake of a standardized meal, active TGF-β levels decreased (approx. 30%) in healthy subjects as well as in the sulfonylurea/metformin group and in the glargine/metformin group. After 5 h, the active TGF-β levels were normalized to basal levels. Active TGF-β levels in the DPP-4i/metformin group did not change significantly after the test meal. Overall plasma levels of insulin and proinsulin were comparable between healthy participants, and T2DM patients in the glargin/metformin group and in the DPP4i/metformin group. However, no correlation between active TGF-β levels, glucose, insulin or pro-insulin levels was detected. CONCLUSIONS T2DM patients often exhibit elevated levels of pro-fibrotic active TGF-β. Our results suggest that glargine/metformin and DPP4i/metformin treatment may more effectively reduce active TGF-β serum levels than the sulfonylurea/metformin treatment.
Collapse
Affiliation(s)
- Stefan Pscherer
- Klinikum Traunstein, Diabetes Department, Cuno-Niggl-Straße 3, Traunstein 83278, Germany
| | - Thomas Freude
- BG Trauma Center Tübingen, Schnarrenbergstraße 95, Tübingen 72076, Germany
| | - Thomas Forst
- Department of Endocrinology, ikfe Mainz/University Mainz, Parcusstraße 8, Mainz 55116, Germany
| | - Andreas K Nussler
- BG Trauma Center Tübingen, Schnarrenbergstraße 95, Tübingen 72076, Germany
| | - Karl F Braun
- Department of Trauma Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, Munich 81675, Germany
| | - Sabrina Ehnert
- BG Trauma Center Tübingen, Schnarrenbergstraße 95, Tübingen 72076, Germany
| |
Collapse
|
4
|
Akbar DH, Hagras MM, Amin HA, Khorshid OA. Comparison between the effect of glibenclamide and captopril on experimentally induced diabetic nephropathy in rats. J Renin Angiotensin Aldosterone Syst 2012; 14:103-15. [PMID: 23077081 DOI: 10.1177/1470320312460881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
HYPOTHESIS This study aimed to elucidate the role of glibenclamide in the prevention of diabetic nephropathy and to compare it with a reference drug captopril in rats. MATERIALS AND METHODS There were two main groups of rats. Control group (I) was subdivided into four subgroups which received distilled water, vehicle of streptozotocin, glibenclamide or captopril. The streptozotocin-diabetic Group (II) was subdivided into three subgroups: untreated, glibenclamide or captopril treated. Measurement of arterial blood pressure, serum glucose and creatinine levels, 24 h urinary protein and albumin/creatinine ratio, kidney weight and its histological examination were done after 1, 2, 4, 8, 12 and 16 weeks of treatment. RESULTS In treated diabetic rats captopril reduced blood pressure significantly, while no significant change in the mean arterial blood pressure or blood glucose level was recorded with glibenclamide treatment. Glibenclamide and captopril-treated diabetic rats showed significant decrease in serum creatinine level, urine volume, urinary protein excretion, albumin:creatinine ratio and kidney:body weight ratio compared with the diabetic non-treated group. Histological examination of diabetic kidneys treated with either glibenclamide or captopril showed reduced glomerular hypertrophy, glomerulosclerosis, tubular degeneration and interstitial fibrosis compared with untreated diabetic rats. CONCLUSION Glibenclamide attenuated some biochemical and histological changes produced by diabetic nephropathy, despite persistent hyperglycemia and hypertension.
Collapse
Affiliation(s)
- Daad H Akbar
- Internal Medicine Department, Faculty of Medicine, King Abdulaziz, University, Saudi Arabia
| | | | | | | |
Collapse
|
5
|
Glibenclamide induces collagen IV catabolism in high glucose-stimulated mesangial cells. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:183535. [PMID: 23008698 PMCID: PMC3447387 DOI: 10.1155/2012/183535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 12/12/2022]
Abstract
We have shown the full prevention of mesangial expansion in insulin-deficient diabetic rats by treatment with clinically-relevant dosages of glibenclamide (Glib). Studies in mesangial cells (MCs) also demonstrated reduction in the high glucose (HG)-induced accumulation of collagens, proposing that this was due to increased catabolism. In the present study, we investigated the signaling pathways that may be implicated in Glib action. Rat primary MCs were exposed to HG for 8 weeks with or without Glib in therapeutic (0.01 μM) or supratherapeutic (1.0 μM) concentrations. We found that HG increased collagen IV protein accumulation and PAI-1 mRNA and protein expression, in association with decreased cAMP generating capacity and decreased PKA activity. Low Glib increased collagen IV mRNA but fully prevented collagen IV protein accumulation and PAI-1 overexpression while enhancing cAMP formation and PKA activity. MMP2 mRNA, protein expression and gelatinolytic activity were also enhanced. High Glib was, overall, ineffective. In conclusion, low dosage/concentration Glib prevents HG-induced collagen accumulation in MC by enhancing collagen catabolism in a cAMP-PKA-mediated PAI-1 inhibition.
Collapse
|
6
|
Fuentes-Calvo I, Blázquez-Medela AM, Eleno N, Santos E, López-Novoa JM, Martínez-Salgado C. H-Ras isoform modulates extracellular matrix synthesis, proliferation, and migration in fibroblasts. Am J Physiol Cell Physiol 2011; 302:C686-97. [PMID: 22094331 DOI: 10.1152/ajpcell.00103.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ras GTPases are ubiquitous plasma membrane transducers of extracellular stimuli. In addition to their role as oncogenes, Ras GTPases are key regulators of cell function. Each of the Ras isoforms exhibits specific modulatory activity on different cellular pathways. This has prompted researchers to determine the pathophysiological roles of each isoform. There is a proven relationship between the signaling pathways of transforming growth factor-β1 (TGF-β1) and Ras GTPases. To assess the individual role of H-Ras oncogene in basal and TGF-β1-mediated extracellular matrix (ECM) synthesis, proliferation, and migration in fibroblasts, we analyzed these processes in embryonic fibroblasts obtained from H-Ras knockout mice (H-ras(-/-)). We found that H-ras(-/-) fibroblasts exhibited a higher basal phosphatidylinositol-3-kinase (PI3K)/Akt activation than wild-type (WT) fibroblasts, whereas MEK/ERK 1/2 activation was similar in both types of cells. Fibronectin and collagen synthesis were higher in H-ras(-/-) fibroblasts and proliferation was lower in H-ras(-/-) than in WT fibroblasts. Moreover, H-Ras appeared indispensable to maintain normal fibroblast motility, which was highly restricted in H-ras(-/-) cells. These results suggest that H-Ras (through downregulation of PI3K/Akt activation) could modulate fibroblast activity by reducing ECM synthesis and upregulating both proliferation and migration. TGF-β1 strongly increased ERK and Akt activation in WT but not in H-ras(-/-) fibroblasts, suggesting that H-Ras is necessary to increase ERK 1/2 activation and to maintain PI3K downregulation in TGF-β1-stimulated fibroblasts. TGF-β1 stimulated ECM synthesis and proliferation, although ECM synthesis was higher and proliferation lower in H-ras(-/-) than in WT fibroblasts. Hence, H-Ras activation seems to play a key role in the regulation of these effects.
Collapse
Affiliation(s)
- Isabel Fuentes-Calvo
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto “Reina Sofía” de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Sokolovska J, Isajevs S, Sugoka O, Sharipova J, Lauberte L, Svirina D, Rostoka E, Sjakste T, Kalvinsh I, Sjakste N. Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model. Arch Physiol Biochem 2010; 116:137-45. [PMID: 20583965 DOI: 10.3109/13813455.2010.494672] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Metformin improves hyperglycaemia via mechanisms which include activation of AMP-activated protein kinase (AMPK). Recent findings indicate that some metabolic actions of metformin occur also by AMPK-independent mechanisms. OBJECTIVE To study the action of metformin on expression of GLUT1 glucose transporter in rat streptozotocin model of diabetes mellitus. MATERIALS AND METHODS Streptozotocin-induced rats were treated with metformin while monitoring parameters of carbohydrate and lipid metabolism. GLUT1 mRNA and protein expression in kidneys, heart, liver and muscles were studied by means of real time quantitative RT-PCR and immunohistochemistry correspondingly. RESULTS Metformin treatment decreased glucose concentration, glycated haemoglobin % and improved glucose tolerance. Streptozotocin diabetes provoked increase of both GLUT1 gene and protein expression in kidneys, metformin treatment produced normalization of the GLUT1 expression levels. In the liver, diabetes triggered an increase in GLUT1 protein expression, which was normalized by metformin. CONCLUSION Metformin is prospective for treatment of diabetic nephropathy.
Collapse
|
8
|
Xiao H, Ma X, Feng W, Fu Y, Lu Z, Xu M, Shen Q, Zhu Y, Zhang Y. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res 2010; 87:504-13. [PMID: 20200042 DOI: 10.1093/cvr/cvq066] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS The mechanism of the cardioprotective action of metformin is incompletely understood. We determined the role of metformin in cardiac fibrosis and investigated the mechanism. METHODS AND RESULTS Ten-week-old male mice (C57BL/6) were subjected to left ventricular pressure overload by transverse aortic constriction. Mice received metformin (200 mg/kg/day) or normal saline for 6 weeks. Metformin inhibited cardiac fibrosis (fibrosis area/total heart area: 0.6 +/- 0.3 vs. 3.6 +/- 0.9%, P < 0.01) induced by pressure overload and improved cardiac diastolic function (left ventricular end-diastolic pressure: 5.2 +/- 0.9 vs. 11.0 +/- 1.6 mmHg, P < 0.05). Metformin inhibited the pressure overload-induced transforming growth factor (TGF)-beta(1) production in mouse hearts and the TGF-beta(1)-induced collagen synthesis in cultured adult mouse cardiac fibroblasts (CFs). Metformin suppressed the phosphorylation of Smad3 in response to TGF-beta(1) in CFs. Metformin also inhibited the nuclear translocation and transcriptional activity of Smad3 in CFs. CONCLUSION Metformin inhibited cardiac fibrosis induced by pressure overload in vivo and inhibited collagen synthesis in CFs probably via inhibition of the TGF-beta(1)-Smad3 signalling pathway. These findings provide a new mechanism for the cardioprotective effects of metformin.
Collapse
Affiliation(s)
- Han Xiao
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sulkowska M, Wincewicz A, Sulkowski S, Koda M, Kanczuga-Koda L. Relations of TGF-beta1 with HIF-1 alpha, GLUT-1 and longer survival of colorectal cancer patients. Pathology 2009; 41:254-60. [PMID: 19142800 DOI: 10.1080/00313020802579318] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIMS AND METHODS During colorectal carcinogenesis, transforming growth factor beta 1 (TGF-beta1) undergoes a functional change from suppression of cancer cell proliferation to inhibition of T cell mediated anti-cancer immunity. We aimed to evaluate relations among TGF-beta1 and cancer cell survival factors hypoxia inducible factor-1 alpha (HIF-1 alpha) and glucose transporter 1 (GLUT-1) by immunohistochemistry in 108 colorectal cancers. RESULTS TGF-beta1 was detected in 87% (94/108), HIF-1 alpha in 85% (92/108), and GLUT-1 in 65% (70/108) of colorectal cancers. Not only did TGF-beta1 accumulate in cytoplasm of cancer cells but also there was strong immunoreactivity to TGF-beta1 in adjacent inflammatory cells. GLUT-1 was visualised in a membranous fashion while HIF-1 was expressed in a paranuclear pattern and occasionally in nuclei of malignant cells. Cancer immunoreactivities to TGF-beta1 correlated with HIF-1 alpha (p < 0.001, r = 0.516) and GLUT-1 (p < [corrected] 0.001, r = 0.355) in general and subgroups of different clinicopathological traits. TGF-beta1 expressions of inflammatory infiltrates correlated with longer patient survival (p = 0.05, r = 0.449) and immunoreactivities to HIF-1 alpha of cancer cells (p = 0.008, r = 0.254) particularly in node positive and deeply invading cancers but failed to associate significantly with GLUT-1. CONCLUSIONS HIF-1 alpha and GLUT-1 could cooperate with TGF-beta1, and TGF-beta1 might mediate cross-talk between the inflammatory environment and tumour with a favourable impact on patient survival.
Collapse
Affiliation(s)
- Mariola Sulkowska
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | | |
Collapse
|
10
|
Giannico G, Cortes P, Baccora MH, Hassett C, Taube DW, Yee J. Glibenclamide prevents increased extracellular matrix formation induced by high glucose concentration in mesangial cells. Am J Physiol Renal Physiol 2006; 292:F57-65. [PMID: 16896180 DOI: 10.1152/ajprenal.00210.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Other than stimulation of cell contractility, little is known about the potential metabolic effects induced by sulfonylureas, independently of insulin action. Previous studies from our laboratory demonstrated complete abrogation of glomerulosclerosis in an experimental model of type 1 diabetes chronically (9 mo) treated with low-dose sulfonylureas (Biederman JI, Vera E, Pankhaniya R, Hassett C, Giannico G, Yee J, Cortes P. Kidney Int 67: 554-565, 2005). Therefore, the effects of glibenclamide (Glib) on net collagen I, collagen IV, and fibronectin medium net secretion and cell layer collagen I deposition were investigated in mesangial cells continuously exposed to 25 mM glucose for 8 wk and treated with predetermined increasing concentrations of Glib for the same period. Clinically relevant concentrations (0.01 microM) of Glib fully suppressed the high glucose-enhanced accumulation of collagen I, collagen IV, and fibronectin in the medium and inhibited collagen I deposition in the cell layer. These effects occurred while transforming growth factor (TGF)-beta1 medium concentration remained elevated and glucose uptake was increased to levels above those in 25 mM glucose-incubated cultures. The decreased collagen I accumulation occurred simultaneously with enhanced collagen I mRNA expression in concert with marked suppression of plasminogen inhibitor type-1 (PAI-1) mRNA and protein expression. This strongly suggests an accelerated matrix turnover favoring breakdown. Glib-induced effects demonstrated a biphasic pattern, being absent or reversed in cells treated with higher Glib concentrations (0.1 or 1 microM). Therefore, chronic Glib treatment at low concentrations markedly diminishes the high glucose-induced enhanced accumulation of extracellular matrix components by suppression of steady-state PAI-1 transcriptional activity. These results and those previously reported in vivo suggest that long-term Glib treatment may prevent glomerulosclerosis in insulin-deficient diabetes.
Collapse
Affiliation(s)
- Giovanna Giannico
- Div. of Nephrology and Hypertension, Dept. of Medicine, Henry Ford Hospital, Clara Ford Pavilion-5, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
11
|
Martínez-Salgado C, Fuentes-Calvo I, García-Cenador B, Santos E, López-Novoa JM. Involvement of H- and N-Ras isoforms in transforming growth factor-beta1-induced proliferation and in collagen and fibronectin synthesis. Exp Cell Res 2006; 312:2093-106. [PMID: 16624289 DOI: 10.1016/j.yexcr.2006.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 11/16/2022]
Abstract
Transforming growth factor beta1 (TGF-beta1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-beta and Ras signaling pathways are closely related: TGF-beta1 overcomes Ras mitogenic effects and Ras counteracts TGF-beta signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-beta1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras(-/-)/N-ras(-/-)) isoforms and from heterozygote mice (H-ras(+/-)/N-ras(+/-)). ECM synthesis is increased in basal conditions in H-ras(-/-)/N-ras(-/-) fibroblasts, this increase being higher after stimulation with TGF-beta1. TGF-beta1-induced fibroblast proliferation is smaller in H-ras(-/-)/N-ras(-/-) than in H-ras(+/-)/N-ras(+/-) fibroblasts. Erk activation is decreased in H-ras(-/-)/N-ras(-/-) fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.
Collapse
|
12
|
Wiernsperger NF. Is non-insulin dependent glucose uptake a therapeutic alternative? Part 2: Do such mechanisms fulfil the required combination of power and tolerability? DIABETES & METABOLISM 2005; 31:521-5. [PMID: 16357799 DOI: 10.1016/s1262-3636(07)70226-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The worldwide burden of diabetes, the unavoidable worsening which is observed in long-term clinical trials despite treatment and the close link between glycaemia and microangiopathy appeal for much stronger treatment strategies. This, in turn, either requires polypharmacy (with new risks) or new, more powerful drugs to be invented. The first part of this review dealt with a thorough analysis of pros and cons for some selected pathways which could potentially increase glucose uptake without necessitating insulin. The choice of such targets for developing completely new drugs, however, requires a favourable background from existing tentatives with either drugs or cell biology approaches. Moreover, because vascular complications are what must ultimately be avoided when treating diabetic patients, we must be sure that increasing glucose uptake in a fashion which is no more controlled by normal physiology is compatible with the physiology of vascular cells (long-term tolerance). The aspect of drug side-effects must therefore be considered systematically. For reasons which are individually developed, it appears that each of the potential pathways analyzed either lacks sufficient power and/or is likely to induce side effects which are not acceptable for long-term application. The fact that GLUT-1 transporters are ubiquitously distributed even extends this cardinal question to the general principle of increasing glucose uptake. In conclusion a precise evaluation suggests that, although non-insulin dependent glucose uptake represents (3/4) of whole body glucose transport, it is difficult to consider such mechanisms able to generate a new treatment fulfilling the unavoidable request of combined efficacy and tolerability.
Collapse
Affiliation(s)
- N F Wiernsperger
- INSERM UMR 585, Bâtiment Louis Pasteur, INSA Lyon, boulevard J. Chapelle, 69621 Villeurbanne Cedex, France.
| |
Collapse
|
13
|
Abstract
BACKGROUND Sulfonylurea agents exert their physiologic effects via binding to specific sulfonylurea receptors (SUR) in adenosine triphosphate-sensitive potassium (K(ATP)) channels. Mesangial cells express K(ATP) and respond to sulfonylureas by altering glucose metabolism, elevating intracellular calcium and contracting. A putative endogenous sulfonylurea, alpha-endosulfine, has been demonstrated in diverse tissues and is a member of the cyclic adenosine monophosphate (cAMP)-regulated family of phosphoproteins. This study investigates mesangial cell expression of ENSA, the gene encoding alpha-endosulfine, and its regulation by glucose. METHODS Expression of rat glomerular and mesangial ENSA was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Northern analysis. In situ hybridization studies were carried out to investigate the presence and distribution of ENSA in kidney cortex. Expression of mesangial cell alpha-endosulfine was studied by immunoblotting, immunofluorescence, and confocal microscopy. RESULTS RT-PCR with gene-specific primers and Northern blotting disclosed abundant expression of two major ENSA transcripts at 2.4 kb and 1.2 kb in whole rat kidney, kidney cortex, and mesangial cells. In situ hybridization of rat kidney demonstrated renal ENSA expression, particularly within glomeruli. Confocal microscopy revealed a diffusely granular, cytosolic distribution of alpha-endosulfine. High glucose concentrations increased ENSA expression by 24 hours, an effect that persisted for at least 10 days. Protein expression paralleled gene expression. CONCLUSION ENSA and alpha-endosulfine are expressed in rat glomeruli and mesangial cell and gene and protein expression are up-regulated by a high glucose environment. alpha-Endosulfine has potential roles as a regulator of metabolism and contractility via mesangial cell K(ATP).
Collapse
Affiliation(s)
- Jerry Yee
- Department of Medicine, Division of Nephrology and Hypertension, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Coates G, Nissim I, Battarbee H, Welbourne T. Glitazones regulate glutamine metabolism by inducing a cellular acidosis in MDCK cells. Am J Physiol Endocrinol Metab 2002; 283:E729-37. [PMID: 12217890 DOI: 10.1152/ajpendo.00485.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effect of the antihyperglycemic glitazones, ciglitazone, troglitazone, and rosiglitazone, on glutamine metabolism in renal tubule-derived Madin-Darby canine kidney (MDCK) cells. Troglitazone (25 microM) enhanced glucose uptake and lactate production by 108 and 92% (both P < 0.001). Glutamine utilization was not inhibited, but alanine formation decreased and ammonium formation increased (both P < 0.005). The decrease in net alanine formation occurred with a change in alanine aminotransferase (ALT) reactants, from close to equilibrium to away from equilibrium, consistent with inhibition of ALT activity. A shift of glutamine's amino nitrogen from alanine into ammonium was confirmed by using L-[2-(15)N]glutamine and measuring the [(15)N]alanine and [(15)N]ammonium production. The glitazone-induced shift from alanine to ammonium in glutamate metabolism was dose dependent, with troglitazone being twofold more potent than rosiglitazone and ciglitazone. All three glitazones induced a spontaneous cellular acidosis, reflecting impaired acid extrusion in responding to both an exogenous (NH) and an endogenous (lactic acid) load. Our findings are consistent with glitazones inducing a spontaneous cellular acidosis associated with a shift in glutamine amino nitrogen metabolism from predominantly anabolic into a catabolic pathway.
Collapse
Affiliation(s)
- Greg Coates
- Departments of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
15
|
Diez-Marques L, Ortega-Velazquez R, Langa C, Rodriguez-Barbero A, Lopez-Novoa JM, Lamas S, Bernabeu C. Expression of endoglin in human mesangial cells: modulation of extracellular matrix synthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:36-44. [PMID: 12009422 DOI: 10.1016/s0925-4439(02)00051-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transforming growth factor-beta (TGF-beta) has been identified as a key mediator of glomerulosclerosis in kidney diseases. Endoglin is a component of the TGF-beta receptor system that is upregulated during glomerulosclerosis, suggesting a role during progression of renal diseases characterized by extracellular matrix (ECM) synthesis and accumulation. The expression of endoglin was demonstrated in cultured human mesangial cells (HMC) by flow cytometry, Northern blot, reverse transcriptase polymerase chain reaction (RT-PCR), and Western blot analyses. TGF-beta upregulated not only the expression of endoglin, but also that of TGF-beta itself, TGF-beta receptor type II, collagen I, collagen IV, and fibronectin. To study the role of endoglin in TGF-beta responses, transfectant fibroblasts overexpressing endoglin were analyzed. Untreated and TGF-beta-treated endoglin(+) cells showed significantly lower levels of collagens than those in control cells, indicating that endoglin negatively regulates ECM levels of collagens. These findings may have important implications in the pathological states associated with renal fibrosis.
Collapse
Affiliation(s)
- Luisa Diez-Marques
- Department of Physiology, Faculty of Medicine, Alcala University, Alcala de Henares, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Yee J, Szamosfalvi B. A new mesangial triumvirate: sulfonylureas, their receptors and endosulfines. EXPERIMENTAL NEPHROLOGY 2002; 10:1-6. [PMID: 11803199 DOI: 10.1159/000049892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although sulfonylureas have long been therapeutically utilized for their hypoglycemic properties in type 2 diabetic patients, there is a paucity of clinical or experimental data that suggests that this pharmacotherapeutic class confers a benefit on the course of diabetic renal disease. Because the mesangial compartment is central to the fibrogenic response that evolves during the course of diabetic nephropathy, determining the metabolic influence of sulfonylureas on mesangial cells is important. In this article, the current knowledge regarding the metabolic and functional consequences of a mesangial triumvirate of sulfonylureas, their sulfonylurea receptors and sulfonylurea-like ligands termed endosulfines will be reviewed.
Collapse
Affiliation(s)
- Jerry Yee
- Department of Medicine, Division of Nephrology and Hypertension, Henry Ford Hospital, Detroit, MI 48202-2689, USA.
| | | |
Collapse
|
17
|
Szamosfalvi B, Cortes P, Alviani R, Asano K, Riser BL, Zasuwa G, Yee J. Putative subunits of the rat mesangial KATP: a type 2B sulfonylurea receptor and an inwardly rectifying K+ channel. Kidney Int 2002; 61:1739-49. [PMID: 11967023 DOI: 10.1046/j.1523-1755.2002.00302.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Sulfonylurea agents exert their physiological effects in many cell types via binding to specific sulfonylurea receptors (SUR). SUR couple to inwardly-rectifying K+ channel (Kir6.x) to form tetradimeric ATP-sensitive K+ channels (KATP). The SUR subunits confer ATP-sensitivity on KATP and also provide the binding sites for sulfonylureas and other pharmacological agents. Our previous work demonstrated that the exposure of mesangial cells (MC) to sulfonylureas generated profound effects on MC glucose uptake and matrix metabolism and induced heightened cell contractility in association with Ca2+ transients. Because these responses likely resulted from the binding of sulfonylurea to a mesangial SUR2, we subsequently documented [3H]-glibenclamide binding to MC and the gene expression of several mesangial SUR2 transcripts. From these data, we inferred that MC expressed the components of a mesangial KATP and sought to establish their presence in primary MC. METHODS To obtain mesangial SUR2 cDNA sequences, rapid amplification of cDNA ends (RACE) was utilized. DNA sequences were established by the fluorescent dye termination method. Gene expression of mesangial SUR2 and Kir6.1/2 was examined by reverse transcription polymerase chain reaction (RT-PCR) and Northern analysis. SUR2 proteins were identified by immunoblotting of mesangial proteins from membrane-enriched fractions with polyclonal antiserum directed against SUR2. RESULTS RACE cloning yielded two mesangial SUR2 cDNAs of 4.8 and 6.7 kbp whose open reading frames translated proteins of 964 and 1535 aa, respectively. Using probes specific to each cDNA, the presence of a unique, 5.5 kbp serum-regulated mesangial SUR2 splice variant was established. The sequence of this mesangial SUR2 (mcSUR2B) shares identity with the recently cloned rat SUR2B (rSUR2B), but, in comparison to rSUR2B, is truncated by 12 exons at the N-terminus where it contains a unique insert of 16 aa. Immunoblotting studies with anti-SUR2 antiserum demonstrated SUR2 proteins of 108 and 170 kD in membrane-enriched fractions of MC protein extracts. Complementary studies showed abundant gene expression of Kir6.1, thereby establishing gene expression of both components of KATP. CONCLUSIONS Based upon analogy to vascular smooth muscle cells (VSMC), there are at least two putative mesangial KATP that most likely represent hetero-octamers, comprised of either rSUR2B or mcSUR2 in complex with Kir6.1. Our results define the mesangial SUR2B as the possible first link in a chain of cellular events that culminates in MC contraction and altered extracellular matrix metabolism following exposure to sulfonylureas. In addition, our results serve as the basis for the future elucidation of the electrophysiologic characteristics of the mesangial KATP and the study of endogenous regulators of mesangial cell contractility.
Collapse
Affiliation(s)
- Balázs Szamosfalvi
- Department of Medicine, Division of Nephrology and Hypertension, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Troglitazone is a peroxisome proliferator-activated receptor-gamma agonist that has been shown to halt mesangium expansion in experimental models of type 2 diabetes mellitus and to act directly on rat mesangial cells. Because glutamine serves as the precursor for cellular biosynthetic processes, we asked whether troglitazone would inhibit mesangial cell glutamine metabolism under these conditions. Confluent monolayers of rat mesangial cells were incubated in RPMI medium in the presence of troglitazone or vehicle (DMSO). Troglitazone effected a dose-dependent reduction in glutamine utilization and in alanine formation, associated with a decrease in monolayer collagen-glycosaminoglycan content. Despite the reduced glutamine uptake, ammonium formation did not decrease, consistent with increased glutamate flux through the deamination pathway. Assayable activity of the alanine aminotransferase decreased by 63%, whereas assayable glutamate dehydrogenase remained unchanged. In control monolayers, the sum of ammonium plus alanine plus glutamate nitrogen released accounted for <75% of the glutamine nitrogen uptake. In troglitazone-treated monolayers, all of the glutamine nitrogen taken up could be accounted for as ammonium nitrogen released into the medium. These results are consonant with troglitazone reducing glutamine metabolism and specifically the transamination pathway in rat mesangial cells associated with a reduction in collagen-glycosaminoglycan content.
Collapse
Affiliation(s)
- Robert Routh
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
19
|
Rodríguez-Barbero A, Obreo J, Eleno N, Rodríguez-Peña A, Düwel A, Jerkic M, Sánchez-Rodríguez A, Bernabéu C, López-Novoa JM. Endoglin expression in human and rat mesangial cells and its upregulation by TGF-beta1. Biochem Biophys Res Commun 2001; 282:142-7. [PMID: 11263983 DOI: 10.1006/bbrc.2001.4526] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endoglin is a component of the TGF-beta receptor complex present in the kidney at the human glomerular mesangium. Since the cellular origin of the glomerular endoglin is unknown, in the present study we investigated the expression of endoglin in mesangial cells in culture, as well as their response to TGF-beta1. Western and Northern blot analysis identified the expression of endoglin protein and mRNA transcript in both human and rat mesangial cells. Flow cytometry and immunocytochemistry analyses revealed that endoglin is present on the cell membrane. Exogenous TGF-beta1 stimulated not only the expression of collagen alpha1 (I) I and TGF-beta1, but also that of endoglin. These data provide the first evidence for the expression of endoglin in mesangial cells, as well as its upregulation by TGF-beta1, thus suggesting that endoglin may have a role in modulating the effects of TGF-beta1 on the glomerular mesangium.
Collapse
Affiliation(s)
- A Rodríguez-Barbero
- Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mogyorósi A, Ziyadeh FN. GLUT1 and TGF-beta: the link between hyperglycaemia and diabetic nephropathy. Nephrol Dial Transplant 1999; 14:2827-9. [PMID: 10570081 DOI: 10.1093/ndt/14.12.2827] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent experimental work implicates transforming growth factor-beta (TGF-beta) as an aetiologic mediator of diabetic nephropathy and the ubiquitous glucose transporter GLUT1 as an important permissive factor for the tissue injury caused by hyperglycaemia. High ambient glucose increases GLUT1 expression and glucose transport activity when compared with physiologic glucose concentrations. Treatment of rat mesangial cells with TGF-beta up-regulates GLUT1 mRNA and protein levels and significantly increases glucose uptake. Addition of neutralizing anti-TGF-beta antibody prevents the stimulatory effects of high glucose on GLUT1 expression. Cultured rat mesangial cells transduced with the human GLUT1 gene and thus overexpressing the GLUT1 protein show marked increase in glucose uptake and the synthesis of extracellular matrix molecules, even when grown in normal ambient glucose concentrations. Thus, TGF-beta and GLUT1, two proteins that are up-regulated in glomerular mesangial cells in a hyperglycaemic milieu, can influence the expression of one another. It is therefore fair to conclude that, with successful interruption of the TGF-beta-GLUT1 axis, the beneficial effects of strict glucose control on the development of diabetic nephropathy could likely be augmented.
Collapse
Affiliation(s)
- A Mogyorósi
- Division of Nephrology, Department of Medicine, Virginia Commonwealth University/Medical College of Virginia and McGuire VAMC, Richmond, USA
| | | |
Collapse
|
21
|
Asano K, Cortes P, Garvin JL, Riser BL, Rodríguez-Barbero A, Szamosfalvi B, Yee J. Characterization of the rat mesangial cell type 2 sulfonylurea receptor. Kidney Int 1999; 55:2289-98. [PMID: 10354277 DOI: 10.1046/j.1523-1755.1999.00485.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Sulfonylurea receptors are classified as either high-affinity type 1 (SUR1) or low-affinity type 2 receptors (SUR2), and the gene expression of SURs has recently been demonstrated in kidney. However, functional data regarding a renal SUR are lacking. We previously demonstrated that mesangial cell (MC) gene and protein expression of extracellular matrix components were up-regulated by the sulfonylurea, tolazamide. After noting this biological response, we next sought to investigate the presence of a sulfonylurea receptor in rat MCs. METHODS Equilibrium binding studies employing [3H]glibenclamide as a ligand were performed on crude MC membrane preparations. Gene expression for SUR was explored by Northern analysis of cultured MCs and whole kidney tissue. The effect of sulfonylurea on intracellular Ca2+ in MCs was assayed by spectrofluorometry, and glibenclamide-induced changes in the contractility of MCs were assessed. RESULTS MCs bound [3H]glibenclamide with a KD of 2.6 microM and a Bmax of 30.4 pmol/mg protein as determined by Scatchard analysis. Three SUR2 transcripts were detected in MCs. A major transcript was detected at 5.5 kb and minor transcripts at 7.5 and 8.6 kb. Following sulfonylurea treatment of MCs, real-time videomicroscopy revealed intense MC contraction, coinciding with oscillatory increments of intracellular Ca2+ concentration. Further evidence of sulfonylurea-induced MC contraction was demonstrated by glibenclamide-induced deformation of a silicone rubber substrate. CONCLUSIONS These results demonstrate that SUR2 resides on MCs. Functional activation of this receptor by sulfonylurea induces Ca2+ transients that result in MC contraction.
Collapse
Affiliation(s)
- K Asano
- Department of Medicine, Division of Nephrology, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|