1
|
Mehus AA, Jones M, Trahan M, Kinnunen K, Berwald K, Lindner B, Al-Marsoummi S, Zhou XD, Garrett SH, Sens DA, Sens MA, Somji S. Pevonedistat Inhibits SOX2 Expression and Sphere Formation but Also Drives the Induction of Terminal Differentiation Markers and Apoptosis within Arsenite-Transformed Urothelial Cells. Int J Mol Sci 2023; 24:9149. [PMID: 37298099 PMCID: PMC10252886 DOI: 10.3390/ijms24119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Urothelial cancer (UC) is a common malignancy and its development is associated with arsenic exposure. Around 25% of diagnosed UC cases are muscle invasive (MIUC) and are frequently associated with squamous differentiation. These patients commonly develop cisplatin (CIS) resistance and have poor prognosis. SOX2 expression is correlated to reduced overall and disease-free survival in UC. SOX2 drives malignant stemness and proliferation in UC cells and is associated with development of CIS resistance. Using quantitative proteomics, we identified that SOX2 was overexpressed in three arsenite (As3+)-transformed UROtsa cell lines. We hypothesized that inhibition of SOX2 would reduce stemness and increase sensitivity to CIS in the As3+-transformed cells. Pevonedistat (PVD) is a neddylation inhibitor and is a potent inhibitor of SOX2. We treated non-transformed parent and As3+-transformed cells with PVD, CIS, or in combination and monitored cell growth, sphere forming abilities, apoptosis, and gene/protein expression. PVD treatment alone caused morphological changes, reduced cell growth, attenuated sphere formation, induced apoptosis, and elevated the expression of terminal differentiation markers. However, the combined treatment of PVD with CIS significantly elevated the expression of terminal differentiation markers and eventually led to more cell death than either solo treatment. Aside from a reduced proliferation rate, these effects were not seen in the parent. Further research is needed to explore the potential use of PVD with CIS as a differentiation therapy or alternative treatment for MIUC tumors that may have become resistant to CIS.
Collapse
Affiliation(s)
- Aaron A. Mehus
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (M.J.); (M.T.); (K.K.); (K.B.); (B.L.); (S.A.-M.); (X.D.Z.); (S.H.G.); (D.A.S.); (M.A.S.); (S.S.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Lakha R, Hachicho C, Mehlenbacher MR, Wilcox DE, Austin RN, Vizcarra CL. Metallothionein-3 attenuates the effect of Cu 2+ ions on actin filaments. J Inorg Biochem 2023; 242:112157. [PMID: 36801620 DOI: 10.1016/j.jinorgbio.2023.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Metallothionein 3 (MT-3) is a cysteine-rich metal-binding protein that is expressed in the mammalian central nervous system and kidney. Various reports have posited a role for MT-3 in regulating the actin cytoskeleton by promoting the assembly of actin filaments. We generated purified, recombinant mouse MT-3 of known metal compositions, either with zinc (Zn), lead (Pb), or copper/zinc (Cu/Zn) bound. None of these forms of MT-3 accelerated actin filament polymerization in vitro, either with or without the actin binding protein profilin. Furthermore, using a co-sedimentation assay, we did not observe Zn-bound MT-3 in complex with actin filaments. Cu2+ ions on their own induced rapid actin polymerization, an effect that we attribute to filament fragmentation. This effect of Cu2+ is reversed by adding either EGTA or Zn-bound MT-3, indicating that either molecule can chelate Cu2+ from actin. Altogether, our data indicate that purified recombinant MT-3 does not directly bind actin but it does attenuate the Cu-induced fragmentation of actin filaments.
Collapse
Affiliation(s)
- Rabina Lakha
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | - Carla Hachicho
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | | | - Dean E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Rachel N Austin
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | | |
Collapse
|
3
|
Kalyan G, Slusser-Nore A, Dunlevy JR, Bathula CS, Shabb JB, Muhonen W, Somji S, Sens DA, Garrett SH. Protein interactions with metallothionein-3 promote vectorial active transport in human proximal tubular cells. PLoS One 2022; 17:e0267599. [PMID: 35503771 PMCID: PMC9064079 DOI: 10.1371/journal.pone.0267599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
Metallothionein 3 (MT-3) is a small, cysteine-rich protein that binds to essential metals required for homeostasis, as well as to heavy metals that have the potential to exert toxic effects on cells. MT-3 is expressed by epithelial cells of the human kidney, including the cells of the proximal tubule. Our laboratory has previously shown that mortal cultures of human proximal tubular (HPT) cells express MT-3 and form domes in the cell monolayer, a morphological feature indicative of vectorial active transport, an essential function of the proximal tubule. However, an immortalized proximal tubular cell line HK-2 lacks the expression of MT-3 and fails to form domes in the monolayer. Transfection of HK-2 cells with the MT-3 gene restores dome formation in these cells suggesting that MT-3 is required for vectorial active transport. In order to determine how MT-3 imparts this essential feature to the proximal tubule, we sought to identify proteins that interact either directly or indirectly with MT-3. Using a combination of pulldowns, co-immunoprecipitations, and mass spectrometry analysis, putative protein interactants were identified and subsequently confirmed by Western analysis and confocal microscopy, following which proteins with direct physical interactions were investigated through molecular docking. Our data shows that MT-3 interacts with myosin-9, aldolase A, enolase 1, β-actin, and tropomyosin 3 and that these interactions are maximized at the periphery of the apical membrane of doming proximal tubule cells. Together these observations reveal that MT-3 interacts with proteins involved in cytoskeletal organization and energy metabolism, and these interactions at the apical membrane support vectorial active transport and cell differentiation in proximal tubule cultures.
Collapse
Affiliation(s)
- Gazal Kalyan
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Andrea Slusser-Nore
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Jane R. Dunlevy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Chandra S. Bathula
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - John B. Shabb
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Wallace Muhonen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- * E-mail:
| |
Collapse
|
4
|
Shrestha S, Singhal S, Kalonick M, Guyer R, Volkert A, Somji S, Garrett SH, Sens DA, Singhal SK. Role of HRTPT in kidney proximal epithelial cell regeneration: Integrative differential expression and pathway analyses using microarray and scRNA-seq. J Cell Mol Med 2021; 25:10466-10479. [PMID: 34626063 PMCID: PMC8581341 DOI: 10.1111/jcmm.16976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to proximal tubules due to exposure to toxicants can lead to conditions such as acute kidney injury (AKI), chronic kidney disease (CKD) and ultimately end‐stage renal failure (ESRF). Studies have shown that kidney proximal epithelial cells can regenerate particularly after acute injury. In the previous study, we utilized an immortalized in vitro model of human renal proximal tubule epithelial cells, RPTEC/TERT1, to isolate HRTPT cell line that co‐expresses stem cell markers CD133 and CD24, and HREC24T cell line that expresses only CD24. HRTPT cells showed most of the key characteristics of stem/progenitor cells; however, HREC24T cells did not show any of these characteristics. The goal of this study was to further characterize and understand the global gene expression differences, upregulated pathways and gene interaction using scRNA‐seq in HRTPT cells. Affymetrix microarray analysis identified common gene sets and pathways specific to HRTPT and HREC24T cells analysed using DAVID, Reactome and Ingenuity software. Gene sets of HRTPT cells, in comparison with publicly available data set for CD133+ infant kidney, urine‐derived renal progenitor cells and human kidney‐derived epithelial proximal tubule cells showed substantial similarity in organization and interactions of the apical membrane. Single‐cell analysis of HRTPT cells identified unique gene clusters associated with CD133 and the 92 common gene sets from three data sets. In conclusion, the gene expression analysis identified a unique gene set for HRTPT cells and narrowed the co‐expressed gene set compared with other human renal–derived cell lines expressing CD133, which may provide deeper understanding in their role as progenitor/stem cells that participate in renal repair.
Collapse
Affiliation(s)
- Swojani Shrestha
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sonalika Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Matthew Kalonick
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Rachel Guyer
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Alexis Volkert
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Scott H Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Donald A Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sandeep K Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
5
|
Shrestha S, Singhal S, Sens DA, Somji S, Davis BA, Guyer R, Breen S, Kalonick M, Garrett SH. Elevated glucose represses lysosomal and mTOR-related genes in renal epithelial cells composed of progenitor CD133+ cells. PLoS One 2021; 16:e0248241. [PMID: 33764985 PMCID: PMC7993790 DOI: 10.1371/journal.pone.0248241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia is one of the major health concern in many parts of the world. One of the serious complications of high glucose levels is diabetic nephropathy. The preliminary microarray study performed on primary human renal tubular epithelial (hRTE) cells exposed to high glucose levels showed a significant downregulation of mTOR as well as its associated genes as well as lysosomal genes. Based on this preliminary data, the expression of various lysosomal genes as well as mTOR and its associated genes were analyzed in hRTE cells exposed to 5.5, 7.5, 11 and 16 mM glucose. The results validated the microarray analysis, which showed a significant decrease in the mRNA as well as protein expression of the selected genes as the concentration of glucose increased. Co-localization of lysosomal marker, LAMP1 with mTOR showed lower expression of mTOR as the glucose concentration increased, suggesting decrease in mTOR activity. Although the mechanism by which glucose affects the regulation of lysosomal genes is not well known, our results suggest that high levels of glucose may lead to decrease in mTOR expression causing the cells to enter an anabolic state with subsequent downregulation of lysosomal genes.
Collapse
Affiliation(s)
- Swojani Shrestha
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Sandeep Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Bethany A. Davis
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Rachel Guyer
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Spencer Breen
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Matthew Kalonick
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
6
|
The Function of Transthyretin Complexes with Metallothionein in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239003. [PMID: 33256250 PMCID: PMC7730073 DOI: 10.3390/ijms21239003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most frequently diagnosed types of dementia in the elderly. An important pathological feature in AD is the aggregation and deposition of the β-amyloid (Aβ) in extracellular plaques. Transthyretin (TTR) can cleave Aβ, resulting in the formation of short peptides with less activity of amyloid plaques formation, as well as being able to degrade Aβ peptides that have already been aggregated. In the presence of TTR, Aβ aggregation decreases and toxicity of Aβ is abolished. This may prevent amyloidosis but the malfunction of this process leads to the development of AD. In the context of Aβplaque formation in AD, we discuss metallothionein (MT) interaction with TTR, the effects of which depend on the type of MT isoform. In the brains of patients with AD, the loss of MT-3 occurs. On the contrary, MT-1/2 level has been consistently reported to be increased. Through interaction with TTR, MT-2 reduces the ability of TTR to bind to Aβ, while MT-3 causes the opposite effect. It increases TTR-Aβ binding, providing inhibition of Aβ aggregation. The protective effect, assigned to MT-3 against the deposition of Aβ, relies also on this mechanism. Additionally, both Zn7MT-2 and Zn7MT-3, decrease Aβ neurotoxicity in cultured cortical neurons probably because of a metal swap between Zn7MT and Cu(II)Aβ. Understanding the molecular mechanism of metals transfer between MT and other proteins as well as cognition of the significance of TTR interaction with different MT isoforms can help in AD treatment and prevention.
Collapse
|
7
|
Balzano S, Sardo A, Blasio M, Chahine TB, Dell’Anno F, Sansone C, Brunet C. Microalgal Metallothioneins and Phytochelatins and Their Potential Use in Bioremediation. Front Microbiol 2020; 11:517. [PMID: 32431671 PMCID: PMC7216689 DOI: 10.3389/fmicb.2020.00517] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023] Open
Abstract
The persistence of heavy metals (HMs) in the environment causes adverse effects to all living organisms; HMs accumulate along the food chain affecting different levels of biological organizations, from cells to tissues. HMs enter cells through transporter proteins and can bind to enzymes and nucleic acids interfering with their functioning. Strategies used by microalgae to minimize HM toxicity include the biosynthesis of metal-binding peptides that chelate metal cations inhibiting their activity. Metal-binding peptides include genetically encoded metallothioneins (MTs) and enzymatically produced phytochelatins (PCs). A number of techniques, including genetic engineering, focus on increasing the biosynthesis of MTs and PCs in microalgae. The present review reports the current knowledge on microalgal MTs and PCs and describes the state of art of their use for HM bioremediation and other putative biotechnological applications, also emphasizing on techniques aimed at increasing the cellular concentrations of MTs and PCs. In spite of the broad metabolic and chemical diversity of microalgae that are currently receiving increasing attention by biotechnological research, knowledge on MTs and PCs from these organisms is still limited to date.
Collapse
Affiliation(s)
- Sergio Balzano
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
- NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | - Martina Blasio
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | | | | | | | | |
Collapse
|
8
|
Shrestha S, Garrett SH, Sens DA, Zhou XD, Guyer R, Somji S. Characterization and determination of cadmium resistance of CD133 +/CD24 + and CD133 -/CD24 + cells isolated from the immortalized human proximal tubule cell line, RPTEC/TERT1. Toxicol Appl Pharmacol 2019; 375:5-16. [PMID: 31078587 PMCID: PMC6766375 DOI: 10.1016/j.taap.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
Abstract
Stem/progenitor cells are involved in the regeneration of the renal tubules after damage due to a toxic insult. However, the mechanism involved in the regeneration of the tubules by the stem cells is not well understood due to the lack of immortal cell lines that represent the stem/progenitor cells of the kidney. A previous study from our laboratory has shown that the immortalized cell line RPTEC/TERT1 contains two populations of cells, one co-expressing CD24 and CD133, the other expressing CD24 only. The goal of the present study was to determine if both these populations could be sorted into separate independent cultures and if so, determine their characteristic features and response to the nephrotoxicant cadmium. The results of our study show that both the populations of cells could grow as independent cultures and maintain their phenotype after extended sub-culture. The CD133+/CD24+ co-expressing cells formed multicellular spheroids (nephrospheres), a characteristic feature of stem/progenitor cells, and formed branched tubule-like structures when grown on the surface of matrigel, whereas the CD133-/CD24+ cells were unable to form these structures. The CD133+/CD24+ cells were able to grow and undergo neurogenic, adipogenic, osteogenic, and tubulogenic differentiation, whereas the CD133-/CD24+ cells expressed some of the differentiation markers but were unable to grow in some of the specialized growth media. The CD133+/ CD24+ co-expressing cells had a shorter doubling time compared to the cells that expressed only CD24, and were more resistant to the toxic effects of the heavy metal, cadmium. In conclusion, the isolation and characterization of these two cell populations form the RPTEC/TERT1 cell line will facilitate the development of studies that determine the mechanisms involved in tubular damage and regeneration particularly after a toxic insult.
Collapse
Affiliation(s)
- Swojani Shrestha
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| | - Scott H Garrett
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| | - Donald A Sens
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| | - Xu Dong Zhou
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| | - Rachel Guyer
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| | - Seema Somji
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| |
Collapse
|
9
|
Establishment of renal proximal tubule cell lines derived from the kidney of p53 knockout mice. Cytotechnology 2019; 71:45-56. [PMID: 30603921 DOI: 10.1007/s10616-018-0261-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
The human cell line HK-2 is most commonly used as a model of renal proximal tubular epithelial cells (PTECs) for various studies despite the absence or low expression of transporters characteristic of parental PTECs. In an effort to develop reliable PTEC models, several human cell lines have been newly established over the last decade. In contrast, reliable mouse PTEC models are still unavailable. In this study, we established immortalized renal cortex tubule cell lines derived from p53 knockout mice and evaluated various PTEC characteristics toward the development of reliable mouse PTEC models. Here, we focus on MuRTE61, one of 13 newly established clonal cell lines. Albumin uptake in MuRTE61 cells was verified by incubation with fluorescent dye-labeled albumin. RT-PCR confirmed the expression of efflux transporter genes characteristic of PTECs in the MuRTE61 cells. MuRTE61 cells exhibited high sensitivity to treatment with cisplatin, a nephrotoxic agent, accompanied by upregulated expression of the uptake transporter Slc22a2 gene. Furthermore, MuRTE61 cells consistently formed spheroids with a lumen and apicobasal polarity in three-dimensional Matrigel cultures. Apical brush border microvilli were also observed in the spheroids by transmission electron microscopy. These data validate that MuRTE61 can be characterized as a reliable mouse PTEC line. In future, detailed analysis of reliable mouse and human PTEC lines will provide an accurate extrapolation of results of experiments using mice and humans, and may help resolve apparent inconsistencies between mouse and human nephrotoxicity.
Collapse
|
10
|
Lawson JS, Liu HH, Syme HM, Purcell R, Wheeler-Jones CPD, Elliott J. The cat as a naturally occurring model of renal interstitial fibrosis: Characterisation of primary feline proximal tubular epithelial cells and comparative pro-fibrotic effects of TGF-β1. PLoS One 2018; 13:e0202577. [PMID: 30138414 PMCID: PMC6107233 DOI: 10.1371/journal.pone.0202577] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is common in both geriatric cats and aging humans, and is pathologically characterised by chronic tubulointerstitial inflammation and fibrosis in both species. Cats with CKD may represent a spontaneously occurring, non-rodent animal model of human disease, however little is known of feline renal cell biology. In other species, TGF-β1 signalling in the proximal tubular epithelium is thought to play a key role in the initiation and progression of renal fibrosis. In this study, we first aimed to isolate and characterise feline proximal tubular epithelial cells (FPTEC), comparing them to human primary renal epithelial cells (HREC) and the human proximal tubular cell line HK-2. Secondly, we aimed to examine and compare the effect of human recombinant TGF-β1 on cell proliferation, pro-apoptotic signalling and genes associated with epithelial-to-mesenchymal transition (EMT) in feline and human renal epithelial cells. FPTEC were successfully isolated from cadaverous feline renal tissue, and demonstrated a marker protein expression profile identical to that of HREC and HK-2. Exposure to TGF-β1 (0-10 ng/ml) induced a concentration-dependent loss of epithelial morphology and alterations in gene expression consistent with the occurrence of partial EMT in all cell types. This was associated with transcription of downstream pro-fibrotic mediators, growth arrest in FPTEC and HREC (but not HK-2), and increased apoptotic signalling at high concentrations of TGF- β1. These effects were inhibited by the ALK5 (TGF-β1RI) antagonist SB431542 (5 μM), suggesting they are mediated via the ALK5/TGF-β1RII receptor complex. Taken together, these results suggest that TGF-β1 may be involved in epithelial cell dedifferentiation, growth arrest and apoptosis in feline CKD as in human disease, and that cats may be a useful, naturally occurring model of human CKD.
Collapse
Affiliation(s)
- Jack S. Lawson
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
- * E-mail:
| | - Hui-Hsuan Liu
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Harriet M. Syme
- Clinical Sciences and Services, The Royal Veterinary College, North Mymms, Hatfield, Herts, United Kingdom
| | - Robert Purcell
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | | | - Jonathan Elliott
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
11
|
Sabolić I, Škarica M, Ljubojević M, Breljak D, Herak-Kramberger CM, Crljen V, Ljubešić N. Expression and immunolocalization of metallothioneins MT1, MT2 and MT3 in rat nephron. J Trace Elem Med Biol 2018; 46:62-75. [PMID: 29413112 DOI: 10.1016/j.jtemb.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Rodent kidneys exhibit three isoforms of metallothioneins (MTs), MT1, MT2 and MT3, with poorly characterized localization along the nephron. Here we studied in adult male Wistar rats the renal expression of MTs mRNA by end-point RT-PCR and MT proteins by immunochemical methods The expression pattern of MT1 mRNA was cortex (CO)>outer stripe (OS)=inner stripe (IS)=inner medulla (IM), of MT2 mRNA was IM>CO>IS=OS, and of MT3 mRNA was IM>CO=OS=IM. MT1/2-antibody stained with heterogeneous intensity the cell cytoplasm and nuclei in proximal tubule (PT) and thin ascending limb, whereas MT3-antibody stained weakly the cell cytoplasm in various cortical tubules and strongly the nuclei in all nephron segments. However, the isolated nuclei exhibited an absence of MT1/2 and presence of MT3 protein. In MT1/2-positive PT cells, the intracellular staining appeared diffuse or bipolar, but the isolated brush-border, basolateral and endosomal membranes were devoid of MT1/2 proteins. In the lumen of some PT profiles, the heterogeneously sized MT1/2-rich vesicles were observed, with the limiting membrane positive for NHE3, but negative for V-ATPase, CAIV, and megalin, whereas their interior was positive for CAII and negative for cytoskeleton. They seem to be pinched off from the luminal membrane of MT1/2-rich cells, as also indicated by transmission electron microscopy. We conclude that in male rats, MTs are heterogeneously abundant in the cell cytoplasm and/or nuclei along the nephron. The MT1/2-rich vesicles in the tubule lumen may represent a source of urine MT and membranous material, whereas MT3 in nuclei may handle zink and locally-produced reactive oxygen species.
Collapse
Affiliation(s)
- Ivan Sabolić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Croatia.
| | - Mario Škarica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Croatia
| | - Marija Ljubojević
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Croatia
| | - Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Croatia
| | | | - Vladiana Crljen
- Croatian Institute for Brain Research & Department of Physiology, School of Medicine, University of Zagreb, Croatia
| | - Nikola Ljubešić
- Croatian Academy of Sciences and Arts (HAZU), Zagreb, Croatia
| |
Collapse
|
12
|
Shrestha S, Somji S, Sens DA, Slusser-Nore A, Patel DH, Savage E, Garrett SH. Human renal tubular cells contain CD24/CD133 progenitor cell populations: Implications for tubular regeneration after toxicant induced damage using cadmium as a model. Toxicol Appl Pharmacol 2017; 331:116-129. [PMID: 28587817 DOI: 10.1016/j.taap.2017.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023]
Abstract
The proximal tubules of the kidney are target sites of injury by various toxicants. Cadmium (Cd+2), an environmental nephrotoxicant can cause adverse effects and overt renal damage. To decipher the mechanisms involved in nephrotoxicity, an in vitro model system is required. Mortal cultures of human proximal tubule (HPT) cells have served, as models but are difficult to acquire and do not lend themselves to stable transfection. The immortalized human proximal tubule cell line HK-2, has served as a model but it lacks vectorial active transport and shows signs of lost epithelial features. Recently a new proximal tubule cell line was developed, the RPTEC/TERT1, and the goal of this study was to determine if this cell line could serve as a model to study nephrotoxicity. Global gene expression analysis of this cell line in comparison to the HK-2 and HPT cells showed that the RPTEC/TERT1 cells had gene expression patterns similar to HPT cells when compared to the HK-2 cells. The HPT and the RPTEC/TERT1 cell line had an increased population of stem/progenitor cells co-expressing CD24 and CD133 when compared to the HK-2 cells. The level of expression of cadherins, claudins and occludin molecules was also similar between the RPTEC/TERT1 and the HPT cells. Acute exposure to Cd+2 resulted in necrosis of the RPTEC/TERT1 cells when compared to the HK-2 cells which died by apoptosis. Thus, the RPTEC/TERT1 cells are similar to HPT cells and can serve as a good model system to study mechanisms involved in toxicant induced renal damage.
Collapse
Affiliation(s)
- Swojani Shrestha
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Seema Somji
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Donald A Sens
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Andrea Slusser-Nore
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States
| | - Divyen H Patel
- Genome Explorations, Division of Compass Lab Services, 654 Jefferson Avenue, Memphis, TN 38105, United States.
| | - Evan Savage
- Genome Explorations, Division of Compass Lab Services, 654 Jefferson Avenue, Memphis, TN 38105, United States.
| | - Scott H Garrett
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| |
Collapse
|
13
|
Gomulkiewicz A, Jablonska K, Pula B, Grzegrzolka J, Borska S, Podhorska-Okolow M, Wojnar A, Rys J, Ambicka A, Ugorski M, Zabel M, Dziegiel P. Expression of metallothionein 3 in ductal breast cancer. Int J Oncol 2016; 49:2487-2497. [PMID: 27840910 DOI: 10.3892/ijo.2016.3759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/03/2016] [Indexed: 11/05/2022] Open
Abstract
Metallothionein 3 (MT-3) has the ability to regulate the growth of nerve cells, but the significance of MT-3 expression outside the central nervous system and its participation in carcinogenesis have not yet been clarified. The aim of our study was to investigate the expression of MT-3 in ductal breast cancer and to determine its relationship with well-defined clinicopathological factors in this type of tumor. The study was conducted on 134 cases of invasive ductal breast carcinoma (IDC), 42 samples of non-malignant breast tissue (NMBT), and 26 cases of mastopathy. Moreover, selected breast cancer cell lines (MCF-7, SKBR-3, MDA-MB-231, BO2) and normal human breast epithelial cells (hTERT-HME1) were used. The expression of MT-3 was examined on the protein level using immunohistochemistry and on the mRNA level using real-time PCR. It was shown that the MT-3 protein in cells of IDC and mastopathy appeared in the cytoplasm as well as in the cell nuclei. Both the cytoplasmic and nuclear expression of MT-3 was significantly lower in IDC than in the mastopathies (p<0.0001 and p<0.001). However, no significant correlation was demonstrated between the level of MT-3 protein and the studied clinicopathological factors. The mRNA expression of MT-3 in IDC was also lower than in non‑malignant breast tissue (p<0.0001). Furthermore, in the cases of IDC with lymph node metastasis, the level of MT-3 mRNA was significantly lower than in the cases without metastasis (p=0.0199). The expression of MT-3 mRNA in breast cancer cell lines was significantly lower than in the normal human breast epithelial cell line (p<0.001). These results suggest that MT-3 may play a role in the malignant transformation of breast epithelial cells and in tumor progression.
Collapse
Affiliation(s)
| | - Karolina Jablonska
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Pula
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Jedrzej Grzegrzolka
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Sylwia Borska
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Wojnar
- Department of Pathomorphology, Lower Silesian Oncology Centre, Wroclaw, Poland
| | - Janusz Rys
- Department of Tumor Pathology, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland
| | - Maciej Ugorski
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Zabel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
14
|
Ostrakhovitch EA, Song YP, Cherian MG. Basal and copper-induced expression of metallothionein isoform 1,2 and 3 genes in epithelial cancer cells: The role of tumor suppressor p53. J Trace Elem Med Biol 2016; 35:18-29. [PMID: 27049123 DOI: 10.1016/j.jtemb.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Metallothioneins (MTs) are a ubiquitous low-molecular weight, cysteine rich proteins with a high affinity for metal ions. The expression and induction of MTs have been associated with protection against DNA damage, oxidative stress, and apoptosis. Our past research had shown that p53 is an important factor in metal regulation of MTs. The present study was undertaken to explore further the interrelationship between p53 and MTs. We investigated whether silencing of p53 could affect expression pattern of basal and copper induced metallothioneins. The silencing of wild-type p53 (wt-p53) in epithelial breast cancer MCF7 cells affected the basal level of MT-2A RNA, whereas the levels of MT-1A and MT-1X RNA remained largely unchanged. The expression of MT-3 was undetectable in MCF7 with either functional or silenced p53. MCF7 cells with silenced wt-p53 failed to upregulate MT-2A in response to copper and showed a reduced sensitivity toward copper induced cell apoptotic death. Similarly in MCF7-E6 and MDA-MB-231 cells, the presence of inactive/mutated p53 halted MT-1A and MT-2A gene expression in response to copper. Constitutive expression of MT-3 RNA was detectable in the presence of mutated p53 (mtp53). Transient transfection of MDA-MB-231 cells with wt-p53 enabled copper induced upregulation of both MT-1A and MT-2A but not basal level of MT-2A, MT-1E, MT-1X and MT-3. Inactivation of p53 in HepG2 cells amplified the basal expression of studied MT isoforms, including MT-3, as well as copper-induced mRNA expression of MTs except MT-1H and MT-3. Presented data demonstrate a direct relation between p53 and MT-1A and MT-2A and they also indicate that wt-p53 might be a negative regulator of MT-3 in epithelial cancer cells.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada.
| | - Y P Song
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada
| | - M G Cherian
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada
| |
Collapse
|
15
|
Metallothionein 3 expression in normal skin and malignant skin lesions. Pathol Oncol Res 2015; 21:187-93. [PMID: 25015776 PMCID: PMC4287679 DOI: 10.1007/s12253-014-9805-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/28/2014] [Indexed: 11/13/2022]
Abstract
Metallothionein-3 (MT-3) has been shown to be expressed in several malignancies and to have an impact on patients’ survival in breast and urinary bladder cancer cases. However, its expression has not been determined in normal skin or in its malignant lesions. MT-3 expression was studied using immunohistochemistry in 17 cases of normal skin, 18 of actinic keratosis (AK), 39 of squamous cell carcinoma (SCC), and 23 of basal cell carcinoma (BCC). Low MT-3 expression was observed in normal skin epidermis with faint or no expression in the epidermis basal layer. Significantly higher MT-3 expression was noted in AK (P = 0.007) and SCC (P < 0.0001), as compared with normal skin epidermis. BCC cases were characterized by the lowest MT-3 expression of all the examined groups, which was significantly lower in comparison to normal skin epidermis, AK, and SCC (P = 0.009; P < 0.0001 and P < 0.0001, respectively). In conclusion, MT-3 may be involved in the development of SCC.
Collapse
|
16
|
Simon-Friedt BR, Wilson MJ, Blake DA, Yu H, Eriksson Y, Wickliffe JK. The RPTEC/TERT1 Cell Line as an Improved Tool for In Vitro Nephrotoxicity Assessments. Biol Trace Elem Res 2015; 166:66-71. [PMID: 25893367 PMCID: PMC4470802 DOI: 10.1007/s12011-015-0339-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
In earlier studies, we have characterized a newly developed cell line derived from the renal proximal tubule epithelial cells (RPTEC) of a healthy human male donor in order to provide an improved in vitro model with which to investigate human diseases, such as cancer, that may be promoted by toxicant exposure. The RPTEC/TERT1 cell line has been immortalized using the human telomerase reverse transcriptase (hTERT) catalytic subunit and does not exhibit chromosomal abnormalities (Evercyte Laboratories). We have previously conducted single-compound and binary mixture experiments with the common environmental carcinogens, cadmium (Cd), and benzo[a]pyrene (B[a]P). Cells exhibited cytotoxic and compound-specific responses to low concentrations of B[a]P and Cd. We detected responses after exposure consistent with what is known regarding these cells in a normal, healthy kidney including significant gene expression changes, BPDE-DNA adducts in the presence of B[a]P, and indications of oxidative stress in the presence of Cd. The RPTEC/TERT1 cell line was also amenable to co-exposure studies due to its sensitivity and compound-specific properties. Here, we review our earlier work, compare our findings with commonly used renal cell lines, and suggest directions for future experiments. We conclude that the RPTEC/TERT1 cell line can provide a useful tool for future toxicological and mixture studies.
Collapse
Affiliation(s)
- Bridget R. Simon-Friedt
- Graduate Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Mark J Wilson
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Diane A. Blake
- Graduate Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Haini Yu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Yasmin Eriksson
- Emerging Scholars Environmental Health Sciences Academy, Tulane University, Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112
| | - Jeffrey K. Wickliffe
- Graduate Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
- Emerging Scholars Environmental Health Sciences Academy, Tulane University, Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112
| |
Collapse
|
17
|
Slusser A, Bathula CS, Sens DA, Somji S, Sens MA, Zhou XD, Garrett SH. Cadherin expression, vectorial active transport, and metallothionein isoform 3 mediated EMT/MET responses in cultured primary and immortalized human proximal tubule cells. PLoS One 2015; 10:e0120132. [PMID: 25803827 PMCID: PMC4372585 DOI: 10.1371/journal.pone.0120132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells. METHODS Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells. RESULTS It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells. CONCLUSIONS The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype.
Collapse
Affiliation(s)
- Andrea Slusser
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Chandra S. Bathula
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Mary Ann Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Xu Dong Zhou
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- * E-mail:
| |
Collapse
|
18
|
Lash LH, Putt DA, Benipal B. Multigenerational study of chemically induced cytotoxicity and proliferation in cultures of human proximal tubular cells. Int J Mol Sci 2014; 15:21348-65. [PMID: 25411799 PMCID: PMC4264229 DOI: 10.3390/ijms151121348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 11/16/2022] Open
Abstract
Primary cultures of human proximal tubular (hPT) cells are a useful experimental model to study transport, metabolism, cytotoxicity, and effects on gene expression of a diverse array of drugs and environmental chemicals because they are derived directly from the in vivo human kidney. To extend the model to investigate longer-term processes, primary cultures (P0) were passaged for up to four generations (P1-P4). hPT cells retained epithelial morphology and stained positively for cytokeratins through P4, although cell growth and proliferation successively slowed with each passage. Necrotic cell death due to the model oxidants tert-butyl hydroperoxide (tBH) and methyl vinyl ketone (MVK) increased with increasing passage number, whereas that due to the selective nephrotoxicant S-(1,2-dichlorovinyl)-l-cysteine (DCVC) was modest and did not change with passage number. Mitochondrial activity was lower in P2-P4 cells than in either P0 or P1 cells. P1 and P2 cells were most sensitive to DCVC-induced apoptosis. DCVC also increased cell proliferation most prominently in P1 and P2 cells. Modest differences with respect to passage number and response to DCVC exposure were observed in expression of three key proteins (Hsp27, GADD153, p53) involved in stress response. Hence, although there are some modest differences in function with passage, these results support the use of multiple generations of hPT cells as an experimental model.
Collapse
Affiliation(s)
- Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | - David A Putt
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | - Bavneet Benipal
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
19
|
Slusser A, Zheng Y, Zhou XD, Somji S, Sens DA, Sens MA, Garrett SH. Metallothionein isoform 3 expression in human skin, related cancers and human skin derived cell cultures. Toxicol Lett 2014; 232:141-8. [PMID: 25290577 DOI: 10.1016/j.toxlet.2014.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 12/16/2022]
Abstract
Human skin is a well known target site of inorganic arsenic with effects ranging from hyperkeratosis to dermal malignancies. The current study characterizes the expression of a protein known to bind inorganic, As(3+), metallothionein 3 (MT-3). Expression of this protein was assessed immunohistochemically with a specific MT-3 antibody on human formalin-fixed, paraffin-embedded biopsy specimens in normal skin, squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and melanoma. Assessment in normal skin using nine normal specimens showed moderate to intense MT-3 staining in epidermal karatinocytes with staining extending into the basal cells and moderate to intense staining in melanocytes of nevi. MT-3 immunoexpression was shown to be moderate to intense in 12 of 13 of SCC, low to moderate in 8 of 10 BCC, and moderate to intense in 12 melanoma samples. MT-3 expression in cell culture models (normal human epidermal keratinocytes, normal human melanocytes, and HaCaT cells) showed only trace expression of MT-3, while exposures to the histone deacytalase inhibitor, MS-275, partially restored expression levels. These results indicate that the epidermis of human skin and resulting malignancies express high level of MT-3 and potentially impact on the known association of arsenic exposure and the development of skin disorders and related cancers.
Collapse
Affiliation(s)
- Andrea Slusser
- Department of Pathology School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Road, Grand Forks, ND 58202, United States.
| | - Yun Zheng
- Department of Pathology School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Road, Grand Forks, ND 58202, United States.
| | - Xu Dong Zhou
- Department of Pathology School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Road, Grand Forks, ND 58202, United States.
| | - Seema Somji
- Department of Pathology School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Road, Grand Forks, ND 58202, United States.
| | - Donald A Sens
- Department of Pathology School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Road, Grand Forks, ND 58202, United States.
| | - Mary Ann Sens
- Department of Pathology School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Road, Grand Forks, ND 58202, United States.
| | - Scott H Garrett
- Department of Pathology School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Road, Grand Forks, ND 58202, United States.
| |
Collapse
|
20
|
Mehus AA, Muhonen WW, Garrett SH, Somji S, Sens DA, Shabb JB. Quantitation of human metallothionein isoforms: a family of small, highly conserved, cysteine-rich proteins. Mol Cell Proteomics 2014; 13:1020-33. [PMID: 24493013 DOI: 10.1074/mcp.m113.033373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human metallothioneins (MTs) are important regulators of metal homeostasis and protectors against oxidative damage. Their altered mRNA expression has been correlated with metal toxicity and a variety of cancers. Current immunodetection methods lack the specificity to distinguish all 12 human isoforms. Each, however, can be distinguished by the mass of its acetylated, cysteine-rich, hydrophilic N-terminal tryptic peptides. These properties were exploited to develop a bottom-up MALDI-TOF/TOF-MS-based method for their simultaneous quantitation. Key features included enrichment of N-terminal acetylated peptides by strong cation exchange chromatography, optimization of C18 reversed-phase chromatography, and control of methionine oxidation. Combinations of nine isoforms were identified in seven cell lines and two tissues. Relative quantitation was accomplished by comparing peak intensities of peptides generated from pooled cytosolic proteins alkylated with ¹⁴N- or ¹⁵N-iodoacetamide. Absolute quantitation was achieved using ¹⁵N-iodoacetamide-labeled synthetic peptides as internal standards. The method was applied to the cadmium induction of MTs in human kidney HK-2 epithelial cells expressing recombinant MT-3. Seven isoforms were detected with abundances spanning almost 2 orders of magnitude and inductions up to 12-fold. The protein-to-mRNA ratio for MT-1E was one-tenth that of other MTs, suggesting isoform-specific differences in protein expression efficiency. Differential expression of MT-1G1 and MT-1G2 suggested tissue- and cell-specific alternative splicing for the MT-1G isoform. Protein expression of MT isoforms was also evaluated in human breast epithelial cancer cell lines. Estrogen-receptor-positive cell lines expressed only MT-2 and MT-1X, whereas estrogen-receptor-negative cell lines additionally expressed MT-1E. The combined expression of MT isoforms was 38-fold greater in estrogen-receptor-negative cell lines than in estrogen-receptor-positive cells. These findings demonstrate that individual human MT isoforms can be accurately quantified in cells and tissues at the protein level, complementing and expanding mRNA measurement as a means for evaluating MTs as potential biomarkers for cancers or heavy metal toxicity.
Collapse
Affiliation(s)
- Aaron A Mehus
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 Columbia Road N., Grand Forks, North Dakota 58203
| | | | | | | | | | | |
Collapse
|
21
|
Pula B, Domoslawski P, Podhorska-Okolow M, Dziegiel P. Role of metallothioneins in benign and malignant thyroid lesions. Thyroid Res 2012; 5:26. [PMID: 23273222 PMCID: PMC3544669 DOI: 10.1186/1756-6614-5-26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 01/21/2023] Open
Abstract
Recent findings in the past two decades have brought many insights into the biology of thyroid benign and malignant lesions, in particular the papillary and follicular thyroid cancers. Although, much progress have been made, thyroid cancers still pose diagnostic problems regarding differentiation of follicular lesions in relation to their aggressiveness and the treatment of advanced and undifferentiated thyroid cancers. Metallothioneins (MTs) were shown to induce cancer cells proliferation, mediate resistance to apoptosis, certain chemotherapeutics and radiotherapy. Therefore, MTs may be of utility in diagnosis and management of patients with benign and malignant lesions of the thyroid.
Collapse
Affiliation(s)
- Bartosz Pula
- Department of Histology and Embryology, Medical University in Wroclaw, Wroclaw, Poland.
| | | | | | | |
Collapse
|
22
|
Ajjimaporn A, Botsford T, Garrett SH, Sens MA, Zhou XD, Dunlevy JR, Sens DA, Somji S. ZIP8 expression in human proximal tubule cells, human urothelial cells transformed by Cd+2 and As+3 and in specimens of normal human urothelium and urothelial cancer. Cancer Cell Int 2012; 12:16. [PMID: 22550998 PMCID: PMC3390278 DOI: 10.1186/1475-2867-12-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/02/2012] [Indexed: 01/31/2023] Open
Abstract
Background ZIP8 functions endogenously as a Zn+2/HCO3- symporter that can also bring cadmium (Cd+2) into the cell. It has also been proposed that ZIP8 participates in Cd-induced testicular necrosis and renal disease. In this study real-time PCR, western analysis, immunostaining and fluorescent localization were used to define the expression of ZIP8 in human kidney, cultured human proximal tubule (HPT) cells, normal and malignant human urothelium and Cd+2 and arsenite (As+3) transformed urothelial cells. Results It was shown that in the renal system both the non-glycosylated and glycosylated form of ZIP8 was expressed in the proximal tubule cells with localization of ZIP8 to the cytoplasm and cell membrane; findings in line with previous studies on ZIP8. The studies in the bladder were the first to show that ZIP8 was expressed in normal urothelium and that ZIP8 could be localized to the paranuclear region. Studies in the UROtsa cell line confirmed a paranuclear localization of ZIP8, however addition of growth medium to the cells increased the expression of the protein in the UROtsa cells. In archival human samples of the normal urothelium, the expression of ZIP8 was variable in intensity whereas in urothelial cancers ZIP8 was expressed in 13 of 14 samples, with one high grade invasive urothelial cancer showing no expression. The expression of ZIP8 was similar in the Cd+2 and As+3 transformed UROtsa cell lines and their tumor transplants. Conclusion This is the first study which shows that ZIP8 is expressed in the normal urothelium and in bladder cancer. In addition the normal UROtsa cell line and its transformed counterparts show similar expression of ZIP8 compared to the normal urothelium and the urothelial cancers suggesting that the UROtsa cell line could serve as a model system to study the expression of ZIP8 in bladder disease.
Collapse
Affiliation(s)
- Amornpan Ajjimaporn
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Van Kerkhove E, Pennemans V, Swennen Q. Cadmium and transport of ions and substances across cell membranes and epithelia. Biometals 2010; 23:823-55. [PMID: 20582616 DOI: 10.1007/s10534-010-9357-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/14/2010] [Indexed: 12/25/2022]
Abstract
Toxic metals such as cadmium (Cd(2+)) pose serious risks to human health. However, even though the importance of Cd(2+) as environmental health hazards is now widely appreciated, the specific mechanisms by which it produces its adverse effects have yet to be fully elucidated. Cd(2+) is known to enter cells, it binds and interacts with a multitude of molecules, it may indirectly induce oxidative stress and interfere with gene expression and repair of DNA. It also interacts with transport across cell membranes and epithelia and may therefore disturb the cell's homeostasis and function. Interaction with epithelial transport, especially in the kidney and the liver, may have serious consequences in general health. A lot of research still needs to be done to understand the exact way in which Cd(2+) interferes with these transport phenomena. It is not always clear whether Cd(2+) has primary or secondary effects on cell membrane transport. In the present review we try to summarize the work that has been done up to now and to critically discuss the relevance of the experimental work in vitro with respect to the in vivo situation.
Collapse
Affiliation(s)
- Emmy Van Kerkhove
- Department of Physiology, Faculty of Medicine, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building C, Diepenbeek, Belgium.
| | | | | |
Collapse
|
24
|
Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 2010; 23:897-926. [PMID: 20549307 DOI: 10.1007/s10534-010-9351-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 05/28/2010] [Indexed: 12/11/2022]
Abstract
Metallothioneins are cysteine-rich, small metal-binding proteins present in various mammalian tissues. Of the four common metallothioneins, MT-1 and MT-2 (MTs) are expressed in most tissues, MT-3 is predominantly present in brain, whereas MT-4 is restricted to the squamous epithelia. The expression of MT-1 and MT-2 in some organs exhibits sex, age, and strain differences, and inducibility with a variety of stimuli. In adult mammals, MTs have been localized largely in the cell cytoplasm, but also in lysosomes, mitochondria and nuclei. The major physiological functions of MTs include homeostasis of essential metals Zn and Cu, protection against cytotoxicity of Cd and other toxic metals, and scavenging free radicals generated in oxidative stress. The role of MTs in Cd-induced acute and chronic toxicity, particularly in liver and kidneys, is reviewed in more details. In acute toxicity, liver is the primary target, whereas in chronic toxicity, kidneys are major targets of Cd. The intracellular MTs bind Cd ions and form CdMT. In chronic intoxication, Cd stimulates de novo synthesis of MTs; it is assumed that toxicity in the cells starts when loading with Cd ions exceeds the buffering capacity of intracellular MTs. CdMT, released from the Cd-injured organs, or when applied parenterally for experimental purposes, reaches the kidneys via circulation, where it is filtered, endocytosed in the proximal tubule cells, and degraded in lysosomes. Liberated Cd can immediately affect the cell structures and functions. The resulting proteinuria and CdMT in the urine can be used as biomarkers of tubular injury.
Collapse
|
25
|
Bathula CS, Garrett SH, Zhou XD, Sens MA, Sens DA, Somji S. Cadmium, vectorial active transport, and MT-3-dependent regulation of cadherin expression in human proximal tubular cells. Toxicol Sci 2008; 102:310-8. [PMID: 18182399 DOI: 10.1093/toxsci/kfn004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies from this laboratory have implicated the expression of the third isoform of metallothionein (MT-3) in the maintenance of proximal tubular vectorial active ion transport. It was shown that HK-2 cells have no expression of MT-3 and do not form domes in culture; whereas, the human proximal tubular (HPT) cells and HK-2 cells stably transfected with MT-3 [HK-2(MT-3)] form these structures. In the present study, this association was further explored by determining the effect of MT-3 expression on the expression of the E -, P -, N -, K -, and Ksp-cadherins. It was demonstrated that the HPT cells and HK-2(MT-3) cells had significant elevations in the expression of messenger RNA and protein for the E -, P -, and Ksp-cadherins compared with that of the HK-2 cells transfected with the blank vector [HK-2(blank vector)]. In contrast, the HK-2(blank vector) cells had significantly elevated expression of N- and K-cadherin compared with both the HPT and HK-2(MT-3) cell lines. These patterns of cadherin expression provide strong evidence that MT-3 might be involved in epithelial to mesenchymal transition that is postulated to occur during several disease states and in the mesenchymal to epithelial transition that occurs during normal kidney morphogenesis. A final goal of the study was to determine if Cd(+2) exposure influenced vectorial active transport of the proximal tubular cells and if this might occur through alterations in the expression of MT-3. It was shown that exposure to Cd(+2) eliminated vectorial active transport by the proximal tubular cell lines, but that Cd(+2) exposure did not reduce the expression of the MT-3 protein. The study shows that the level of MT-3 expression in HPT cells influences transepithelial resistance and cadherin expression but does not influence the Cd(+2)-induced loss of vectorial active transport.
Collapse
Affiliation(s)
- Chandra S Bathula
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wang Q, Lu Y, Morris ME. Monocarboxylate transporter (MCT) mediates the transport of gamma-hydroxybutyrate in human kidney HK-2 cells. Pharm Res 2007; 24:1067-78. [PMID: 17377745 DOI: 10.1007/s11095-006-9228-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 12/22/2006] [Indexed: 11/25/2022]
Abstract
PURPOSE Previous studies in our laboratory have suggested that GHB may undergo renal reabsorption mediated by monocarboxylic acid transporters (MCT). The objectives of this study were to characterize the renal transport of GHB using HK-2 cells and the role of MCT in the renal transport of GHB. MATERIALS AND METHODS Western blot was used to detect the protein expression of MCT1, 2, and 4. Cellular uptake and directional flux studies were conducted to investigate the transport of GHB and L-lactate. RNA interference assay was used to investigate the involvement of MCT isoforms in the transport of GHB. RESULTS MCT1, 2 and 4 were present in HK-2 cells. The cellular uptake of L-lactate and GHB exhibited pH- and concentration-dependence (L-lactate: K (m) of 6.5 +/- 1.1 mM and V (max) of 340 +/- 60 nmol mg(-1)min(-1); GHB: K (m) of 2.07 +/- 0.79 mM, V (max) of 27.6 +/- 9.3 nmol mg(-1)min(-1), and a diffusional clearance of 0.54 +/- 0.15 microl mg(-1)min(-1)), but not sodium-dependence. alpha-Cyano-4-hydroxycinnamate (CHC) competitively inhibited the uptake of GHB and L-lactate with inhibition constants (K (i)) of 0.28 +/- 0.1 mM, and 0.19 +/- 0.03 mM, respectively. Using small-interference RNA (siRNA) for MCT1, the protein expression of MCT1 and the uptake of L-lactate and GHB were significantly decreased. The siRNA treatment of MCT2 in HK-2 cells inhibited the uptake of GHB by 17%, and the siRNA treatment of MCT4 demonstrated no inhibition of GHB uptake. GHB exhibited a directional flux across HK-2 monolayer from apical to basal chambers in the presence of a pH gradient of pH 6.0 to pH 7.4. CONCLUSION These data suggest that MCT1 represents an important transporter for GHB transport in renal tubule cells, responsible for the reabsorption of GHB in the kidney.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 517 Hochstetter Hall, Amherst, New York 14260, USA
| | | | | |
Collapse
|
27
|
Somji S, Garrett SH, Sens MA, Sens DA. The unique N-terminal sequence of metallothionein-3 is required to regulate the choice between apoptotic or necrotic cell death of human proximal tubule cells exposed to Cd+2. Toxicol Sci 2005; 90:369-76. [PMID: 16387743 DOI: 10.1093/toxsci/kfj089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This laboratory has shown that MT-3 expression determines the choice between apoptotic or necrotic cell death in Cd(+2)-exposed human proximal tubule cells. Human proximal tubule cells that express MT-3 undergo necrosis when exposed to Cd(+2), while cells that have no basal expression of MT-3 undergo apoptotic cell death. It was also shown that cells which express MT-3 were more sensitive to Cd(+2)-induced cell death than those having no basal expression. In the present study, site directed mutagenesis was used to determine if the unique N-terminal sequence of MT-3 was required for these activities regarding toxicity and cell death. The results demonstrated that HK-2 cells stably transfected with MT-3 that had been modified by converting the 2 prolines at amino acid positions 7 and 9 to threonines was no longer active in promoting necrotic cell death at lower levels of Cd(+2) exposure. This was shown in comparison to cells containing the wild type MT-3 sequence and blank vector controls as regards the % of DAPI-stained fragmented nuclei, DNA laddering, LDH release, caspase-9, and caspase-3 activation. This study demonstrates that the unique N-terminal sequence of MT-3 is required to elicit an effect on the mechanism of Cd(+2)-induced death of the proximal tubule cell. This is the identical sequence that has been shown to be responsible for the growth inhibitory activity of MT-3 in the neural system.
Collapse
Affiliation(s)
- Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | | | | | | |
Collapse
|
28
|
Garrett SH, Park S, Sens MA, Somji S, Singh RK, Namburi VBRK, Sens DA. Expression of metallothoinein isoform 3 is restricted at the post-transcriptional level in human bladder epithelial cells. Toxicol Sci 2005; 87:66-74. [PMID: 15958653 DOI: 10.1093/toxsci/kfi231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study was designed to define the effect that overexpression of MT-3 would have on a cell culture model of bladder urothelium. Stable and inducible transfection was used to achieve overexpression of the MT-3 gene in the UROtsa cell line. When the UROtsa cells were stably transfected with the MT-3 coding sequence, there was highly elevated expression of MT-3 mRNA, but no MT-3 protein. An inducible vector showed that low basal levels of MT-3 mRNA and protein could be produced, but that induction only increased MT-3 mRNA and not protein. The clones expressing low basal levels of MT-3 protein also had reduced growth rates compared to control cells. Site directed mutagenesis was used to produce an MT-3 coding sequence where the prolines in positions 7 and 9 were converted to threonines. When this altered MT-3 was stably transfected into the UROtsa cells, the cells were able to accumulate the mutated form of the MT-3 protein. These studies show that MT-3 protein expression is inhibited by post-transcriptional control in the urothelial cell. Modifying the MT-3 protein to resemble the MT-1 isoform removes this component of post-transcriptional control and allows accumulation of the mutated MT-3 protein. The altered sequence involved in post-transcriptional control of MT-3 protein expression is the same sequence implicated in the neuronal growth inhibitory activity associated specifically with the MT-3 isoform of the MT gene family.
Collapse
Affiliation(s)
- Scott H Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Blakey GL, Laszik ZG. Laser-assisted microdissection of the kidney: fundamentals and applications. J Mol Histol 2005; 35:581-7. [PMID: 15614611 DOI: 10.1007/s10735-004-2195-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laser-assisted microdissection (LAM) permits the procurement of relatively pure cell populations from histological sections. When applied to the kidney, LAM combined with molecular biological techniques has expanded our understanding of renal biology and pathology. Both frozen and fixed renal tissues can be microdissected. However, sample type and tissue processing can influence the quality of molecular data generated. Data analysis may also be complicated by relative variations in gene expression levels. Importantly, preliminary studies have shown that molecular data obtained following LAM on the kidney can offer new diagnostic and prognostic information. Thus, LAM and molecular markers may eventually become incorporated into the routine kidney biopsy examination.
Collapse
Affiliation(s)
- Gregory L Blakey
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | |
Collapse
|
30
|
Kowolik CM, Liang S, Yu Y, Yee JK. Cre-mediated reversible immortalization of human renal proximal tubular epithelial cells. Oncogene 2004; 23:5950-7. [PMID: 15208689 DOI: 10.1038/sj.onc.1207801] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary human renal proximal tubule epithelial cells (RPTECs) are of limited use for basic research and for clinical applications due to their limited lifespan in culture. Here we used two lentivirus vectors carrying the human telomerase (hTERT) and the SV40T antigen (Tag) flanked by loxP sites to reversibly immortalize RPTECs. Transduced RPTEC clones continued to proliferate while retaining biochemical and functional characteristics of primary cells. The clones exhibited contact-inhibited, anchorage- and growth factor-dependent growth and did not form tumors in nude mice, suggesting that the cells were not transformed. Transient Cre expression in these cells led to efficient proviral deletion, upregulation of some renal specific activities, and decreased growth rates. Ultimately, the cells underwent replicative senescence, indicating intact cell cycle control. Thus, reversible immortalization allows the expansion of human RPTECs, leading to large production of RPTECs that retain most tissue-specific properties.
Collapse
Affiliation(s)
- Claudia M Kowolik
- Department of Virology, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|