1
|
Park JE, Lee T, Cho EH, Jang MA, Won D, Park B, Ki CS, Kong SY. Carrier Frequency and Incidence of MUTYH-Associated Polyposis Based on Database Analysis in East Asians and Koreans. Ann Lab Med 2025; 45:77-84. [PMID: 39497414 PMCID: PMC11609714 DOI: 10.3343/alm.2024.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/23/2024] [Accepted: 09/11/2024] [Indexed: 11/30/2024] Open
Abstract
Background MUTYH-associated polyposis is an autosomal recessive disorder associated with an increased lifetime risk of colorectal cancer and a moderately increased risk of ovarian, bladder, breast, and endometrial cancers. We analyzed the carrier frequency and estimated the incidence of MUTYH-associated polyposis in East Asian and Korean populations, for which limited data were previously available. Methods We examined 125,748 exomes from the gnomAD database, including 9,197 East Asians, and additional data from 5,305 individuals in the Korean Variant Archive and 1,722 in the Korean Reference Genome Database. All MUTYH variants were interpreted according to the American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines and the Sequence Variant Interpretation guidelines from ClinGen. Results The global carrier frequency of MUTYH-associated polyposis was 1.29%, with Europeans (non-Finnish) having the highest frequency of 1.86% and Ashkenazi Jews the lowest at 0.06%. East Asians and Koreans had a carrier frequency of 0.35% and 0.37% and an estimated incidence of 1 in 330,409 and 1 in 293,304 in Koreans, respectively, which were substantially lower than the global average of 1 in 24,160 and the European (non-Finnish) incidence of 1 in 11,520. Conclusions This was the first study to investigate the frequency of carriers of MUTYH-associated polyposis in East Asians, including specific subgroups, utilizing gnomAD and a Korean genome database. Our data provide valuable reference information for future investigations of MUTYH-associated polyposis to understand the genetic diversity and specific variants associated with this condition in East Asian populations.
Collapse
Affiliation(s)
- Jong Eun Park
- Department of Laboratory Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | | | - Eun Hye Cho
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | | | - Sun-Young Kong
- Division of Rare and Refractory Cancer, Targeted Therapy Branch of Research Institute, National Cancer Center, Goyang, Korea
- Department of Laboratory Medicine, National Cancer Center, Goyang, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang, Korea
| |
Collapse
|
2
|
Esperon P, Neffa F, Pavicic W, Spirandelli F, Alvarez K, Mullins MJ, Rossi BM, Góngora E Silva RF, Vaccaro C, Lopéz-Köstner F, Rugeles J, Valle AD, Dominguez-Valentin M. A comprehensive characterization of the spectrum of MUTYH germline pathogenic variants in Latin America. Fam Cancer 2024; 23:507-513. [PMID: 38687439 DOI: 10.1007/s10689-024-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024]
Abstract
MUTYH-Associated Polyposis (MAP) is caused by biallelic pathogenic germline variants in the MUTYH gene. However, individuals harboring monoallelic MUTYH pathogenic variants in the presence of a positive family history have been reported to have a twofold increased risk of colorectal cancer (CRC) and extra colonic cancers. Our aim was to characterize the spectrum of monoallelic and biallelic germline MUTYH pathogenic variants in Latin American patients and to describe their clinical and genetic characteristics. Patients were identified from eight high-risk genetic cancer centers of five Latin American countries. Statistical analysis was performed using the two-sided P test using the Vassarstats statistical tools. Statistical significance was set at a p value ≤ 0.05. Of the 105 unrelated patients with cancer or colorectal polyposis, 84.8% and 15.2% carried pathogenic monoallelic and biallelic MUTYH variants, respectively. The most common pathogenic variants were p.Gly396Asp and p.Tyr179Cys (55% and 23%, respectively). The mean age at first diagnosis was 48.29 years (range 31-71) and 49.90 years (range 27-87) in biallelic and monoallelic MUTYH patients, respectively. CRC was the only cancer diagnosed in patients with biallelic MUTYH pathogenic variants (75%), while breast cancer (46.1%) was more common than CRC (24.7%) in individuals with monoallelic MUTYH pathogenic variants. We reported a high frequency of European founder variants in our diverse population. Some phenotypic differences from current studies were identified, such as a higher breast cancer burden in monoallelic carriers and a complete absence of extra-colon tumors in biallelic patients.
Collapse
Affiliation(s)
- Patricia Esperon
- Hospital Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Montevideo, Uruguay.
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, Montevideo, Uruguay.
| | - Florencia Neffa
- Hospital Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Montevideo, Uruguay
| | - Walter Pavicic
- Programa de Cáncer Hereditario (Pro.Can.He.), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Hospital Italiano de Buenos Aires (HIBA), Instituto Universitario Hospital Italiano de Buenos Aires (IUHI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Karin Alvarez
- Clínica Universidad de los Andes, Chile, Programa Cáncer Heredo Familiar, Santiago, Chile
| | - María José Mullins
- Departamento de Oncología, Centro de la Mama, Programa de Asesoría Genética en Oncología, Clínica Alemana, Santiago, Chile
| | - Benedito Mauro Rossi
- Hospital Beneficência Portuguesa, São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Carlos Vaccaro
- Instituto de Medicina Traslacional e Ingenieria Biomedica (IMTIB, CONICET), Buenos Aires, Argentina
| | | | - Jorge Rugeles
- Clínica IMAT Oncomedica Auna, Monteria, Colombia
- Grupo de investigación Oncogen, GenoCOL/Upqua SAS, Bogotá, Colombia
| | - Adriana Della Valle
- Hospital Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Montevideo, Uruguay
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, 0379, Oslo, Norway
| |
Collapse
|
3
|
Demir O, Saglam KA, Yilmaz M, Apuhan T, Cebi AH, Turkyilmaz A. Secondary findings in genes related to cancer phenotypes in Turkish exome sequencing data from 2020 individuals. Am J Med Genet A 2024; 194:e63806. [PMID: 38940262 DOI: 10.1002/ajmg.a.63806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Big data generated from exome sequencing (ES) and genome sequencing (GS) analyses can be used to detect actionable and high-penetrance variants that are not directly associated with the primary diagnosis of patients but can guide their clinical follow-up and treatment. Variants that are classified as pathogenic/likely pathogenic and are clinically significant but not directly associated with the primary diagnosis of patients are defined as secondary findings (SF). The aim of this study was to examine the frequency and variant spectrum of cancer-related SF in 2020 Turkish ES data and to discuss the importance of the presence of cancer-related SF in at-risk family members in terms of genetic counseling and follow-up. A total of 2020 patients from 2020 different families were evaluated by ES. SF were detected in 28 unrelated cases (1.38%), and variants in BRCA2 (11 patients) and MLH1 (4 patients) genes were observed most frequently. A total of 21 different variants were identified, with 4 of them (c.9919_9932del and c.3653del in the BRCA2 gene, c.2002A>G in the MSH2 gene, c.26_29del in the TMEM127 gene) being novel variations. In three different families, c.1189C>T (p.Gln397*) variation in BRCA2 gene was detected, suggesting that this may be a common variant in the Turkish population. This study represents the largest cohort conducted in the Turkish population, examining the frequency and variant spectrum of cancer-related SF. With the identification of frequent variations and the detection of novel variations, the findings of this study have contributed to the variant spectrum. Genetic testing conducted in family members is presented as real-life data, showcasing the implications in terms of counseling, monitoring, and treatment through case examples.
Collapse
Affiliation(s)
- Oguzhan Demir
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Kubra Adanur Saglam
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Yilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Tuna Apuhan
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Alper Han Cebi
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
4
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
5
|
McVeigh TP, Lalloo F, Monahan KJ, Latchford A, Durkie M, Mein R, Baple EL, Hanson H. Carrier testing for partners of MUTYH variant carriers: UK Cancer Genetics Group recommendations. J Med Genet 2024; 61:813-816. [PMID: 38816194 PMCID: PMC11287623 DOI: 10.1136/jmg-2024-109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Terri Patricia McVeigh
- Cancer Genetics Unit, Royal Marsden Hospital NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Manchester University Hospitals Foundation Trust, Manchester, UK
| | - Kevin J Monahan
- St Mark's the National Bowel Hospital and Academic Institute, London, UK
- Imperial College London, London, UK
| | - Andrew Latchford
- The Polyposis Registry, St Mark's Centre for Familial Intestinal Cancer, St Mark's Hospital, London, UK
- Surgery and Cancer, Imperial College London, London, UK
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, North East and Yorkshire Genomic Laboratory Hub, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | - Emma L Baple
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Helen Hanson
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
6
|
Zaffaroni G, Mannucci A, Koskenvuo L, de Lacy B, Maffioli A, Bisseling T, Half E, Cavestro GM, Valle L, Ryan N, Aretz S, Brown K, Buttitta F, Carneiro F, Claber O, Blanco-Colino R, Collard M, Crosbie E, Cunha M, Doulias T, Fleming C, Heinrich H, Hüneburg R, Metras J, Nagtegaal I, Negoi I, Nielsen M, Pellino G, Ricciardiello L, Sagir A, Sánchez-Guillén L, Seppälä TT, Siersema P, Striebeck B, Sampson JR, Latchford A, Parc Y, Burn J, Möslein G. Updated European guidelines for clinical management of familial adenomatous polyposis (FAP), MUTYH-associated polyposis (MAP), gastric adenocarcinoma, proximal polyposis of the stomach (GAPPS) and other rare adenomatous polyposis syndromes: a joint EHTG-ESCP revision. Br J Surg 2024; 111:znae070. [PMID: 38722804 PMCID: PMC11081080 DOI: 10.1093/bjs/znae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Hereditary adenomatous polyposis syndromes, including familial adenomatous polyposis and other rare adenomatous polyposis syndromes, increase the lifetime risk of colorectal and other cancers. METHODS A team of 38 experts convened to update the 2008 European recommendations for the clinical management of patients with adenomatous polyposis syndromes. Additionally, other rare monogenic adenomatous polyposis syndromes were reviewed and added. Eighty-nine clinically relevant questions were answered after a systematic review of the existing literature with grading of the evidence according to Grading of Recommendations, Assessment, Development, and Evaluation methodology. Two levels of consensus were identified: consensus threshold (≥67% of voting guideline committee members voting either 'Strongly agree' or 'Agree' during the Delphi rounds) and high threshold (consensus ≥ 80%). RESULTS One hundred and forty statements reached a high level of consensus concerning the management of hereditary adenomatous polyposis syndromes. CONCLUSION These updated guidelines provide current, comprehensive, and evidence-based practical recommendations for the management of surveillance and treatment of familial adenomatous polyposis patients, encompassing additionally MUTYH-associated polyposis, gastric adenocarcinoma and proximal polyposis of the stomach and other recently identified polyposis syndromes based on pathogenic variants in other genes than APC or MUTYH. Due to the rarity of these diseases, patients should be managed at specialized centres.
Collapse
Affiliation(s)
- Gloria Zaffaroni
- Center for Hereditary Tumors, Bethesda Hospital, Duisburg, Germany
- Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Koskenvuo
- Department of Gastroenterological Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Borja de Lacy
- Department of Gastrointestinal Surgery, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Anna Maffioli
- Faculty of Medicine and Surgery, University of Milan, Milan, Italy
- Department of General Surgery, Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Tanya Bisseling
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elizabeth Half
- Cancer Prevention and Hereditary GI Cancer Unit, Rambam Health Care Campus, Haifa, Israel
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Neil Ryan
- The College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Stefan Aretz
- Institute of Human, Genetics, Medical Faculty, University of Bonn and National Center for Hereditary Tumour Syndromes, University Hospital Bonn, Bonn, Germany
| | - Karen Brown
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Francesco Buttitta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS University Hospital of Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | - Fatima Carneiro
- Faculty of Medicine of Porto University, Centro Hospitalar Universitário de São João, Ipatimup, Porto, Portugal
| | - Oonagh Claber
- Department of Clinical Genetics, Northern Genetics Service, Newcastle upon Tyne, UK
| | - Ruth Blanco-Colino
- Department of Gastrointestinal Surgery, Vall d’Hebron University Hospital, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maxime Collard
- Department of Digestive Surgery, Hôpital Saint-Antoine, Sorbonne University, APHP, Paris, France
| | - Emma Crosbie
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Miguel Cunha
- Department of Surgery, Algarve Universitary Hospital Center, Colorectal SurgeryGroup, Portimao, Portugal
| | - Triantafyllos Doulias
- Department of Colorectal Surgery, Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Colchester, UK
- Colorectal Surgery Department, Kettering Hospital, University Hospitals of Northamptonshire, Kettering, Northamptonshire, UK
- Department of Genetics and Genome Biology, Honorary Lecturer in the Leicester Cancer Research Centre, Leicester, UK
| | - Christina Fleming
- Department of Colorectal Surgery, University Hospital Limerick, Limerick, Ireland
| | - Henriette Heinrich
- Department for Gastroenterology and Hepatology, Clarunis Universitäres Bauchzentrum, Universitätsspital Basel, Basel, Switzerland
| | - Robert Hüneburg
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- National Center for Hereditary Tumour Syndromes, University Hospital Bonn, Bonn, Germany
| | - Julie Metras
- Department of Digestive Surgery, Hôpital Saint-Antoine, Sorbonne University, APHP, Paris, France
| | - Iris Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ionut Negoi
- Department of General Surgery, Carol Davila University of Medicine and Pharmacy Bucharest, Emergency Hospital of Bucharest, Bucharest, Romania
| | - Maartje Nielsen
- Clinical Genetics Department, Leiden University Medical Center, Leiden, The Netherlands
| | - Gianluca Pellino
- Department of Gastrointestinal Surgery, Vall d’Hebron University Hospital, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS University Hospital of Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | | | - Luis Sánchez-Guillén
- Department of Gastrointestinal Surgery, Elche General University Hospital, Elche, Alicante, Spain
- Miguel Hernández University, Elche, Spain
| | - Toni T Seppälä
- Department of Gastroenterological Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Applied Tumour Genomics Research Program, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Health Technology, University of Tampere and TAYS Cancer Centre, Tampere, Finland
- iCAN Precision Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Peter Siersema
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew Latchford
- Polyposis Registry, St Mark’s Hospital, Harrow, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Yann Parc
- Department of Digestive Surgery, Hôpital Saint-Antoine, Sorbonne University, APHP, Paris, France
| | - John Burn
- Newcastle University Translational and Clinical Research Institute, Centre for Life, Newcastle upon Tyne, UK
| | - Gabriela Möslein
- Center for Hereditary Tumors, Bethesda Hospital, Duisburg, Germany
| |
Collapse
|
7
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
8
|
Takada K, Hotta K, Kishida Y, Ito S, Imai K, Ono H. Comprehensive Analysis of Early-onset Colorectal Cancer: A Review. J Anus Rectum Colon 2023; 7:241-249. [PMID: 37900694 PMCID: PMC10600264 DOI: 10.23922/jarc.2023-032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 10/31/2023] Open
Abstract
Early-onset colorectal cancer (CRC), which refers to CRC diagnosed in individuals below the age of 50 years, is a growing health concern that presents unique challenges in diagnosis, treatment, and long-term outcomes. Although approximately 70% of early-onset CRC cases are sporadic, with no apparent family history, approximately 25% have a familial component, and up to 20% may be associated with germline mutations, indicating a higher prevalence compared with the general population. Despite the progress in identifying the environmental, molecular, and genetic risk factors of early-onset CRC, the underlying causes for the global increase in its incidence remain unclear. This comprehensive review aims to provide a thorough analysis of early-onset CRC by examining the trends associated with its incidence, clinical and pathological characteristics, risk factors, molecular and genetic profiles, prognosis and screening strategies. By deepening our understanding of early-onset CRC, significant advances related to improving the outcomes and alleviating the burden of this disease on individuals, families, and healthcare systems can be achieved.
Collapse
Affiliation(s)
- Kazunori Takada
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kinichi Hotta
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Sayo Ito
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kenichiro Imai
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hiroyuki Ono
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
9
|
Okimoto K, Hirotsu Y, Arai M, Amemiya K, Akizue N, Ohta Y, Taida T, Saito K, Ohyama H, Matsumura T, Nishimura M, Matsushita K, Matsusaka K, Oyama T, Mochizuki H, Chiba T, Kato J, Ikeda J, Yokosuka O, Kato N, Omata M. Validity of pathological diagnosis for early colorectal cancer in genetic background. Cancer Med 2023; 12:8490-8498. [PMID: 36734304 PMCID: PMC10134368 DOI: 10.1002/cam4.5596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND This study aimed to investigate the validity of pathological diagnosis of early CRC (E-CRC) from the genetic background by comparing data of E-CRC to colorectal adenoma (CRA) and The Cancer Genome Atlas (TCGA) on advanced CRC (AD-CRC). METHODS TCGA data on AD-CRC were studied in silico, whereas by next-generation sequencer, DNA target sequences were performed for endoscopically obtained CRA and E-CRC samples. Immunohistochemical staining of mismatch repair genes and methylation of MLH1 was also performed. The presence of oncogenic mutation according to OncoKB for the genes of the Wnt, MAPK, and cell-cycle-signaling pathways was compared among CRA, E-CRC, and AD-CRC. RESULTS The study included 22 CRA and 30 E-CRC lesions from the Chiba University Hospital and 212 AD-CRC lesions from TCGA data. Regarding the number of lesions with driver mutations in the Wnt and cell-cycle-signaling pathways, E-CRC was comparable to AD-CRC, but was significantly greater than CRA. CRA had significantly more lesions with a driver mutation for the Wnt signaling pathway only, versus E-CRC. CONCLUSIONS In conclusion, the definition of E-CRC according to the Japanese criteria had a different genetic profile from CRA and was more similar to AD-CRC. Based on the main pathway, it seemed reasonable to classify E-CRC as adenocarcinoma. The pathological diagnosis of E-CRC according to Japanese definition seemed to be valid from a genetic point of view.
Collapse
Affiliation(s)
- Kenichiro Okimoto
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Yosuke Hirotsu
- Genome Analysis CenterYamanashi Prefectural Central HospitalKofuJapan
| | - Makoto Arai
- Department of GastroenterologyTokyo Women's Medical University Yachiyo Medical CenterYachiyoJapan
| | - Kenji Amemiya
- Genome Analysis CenterYamanashi Prefectural Central HospitalKofuJapan
| | - Naoki Akizue
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Yuki Ohta
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Takashi Taida
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Keiko Saito
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Hiroshi Ohyama
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Tomoaki Matsumura
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Motoi Nishimura
- Division of Clinical Genetics and Proteomics, Department of Laboratory MedicineChiba University HospitalChibaJapan
| | - Kazuyuki Matsushita
- Division of Clinical Genetics and Proteomics, Department of Laboratory MedicineChiba University HospitalChibaJapan
| | - Keisuke Matsusaka
- Department of Molecular Pathology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Toshio Oyama
- Department of PathologyYamanashi Central HospitalKofuJapan
| | - Hitoshi Mochizuki
- Genome Analysis CenterYamanashi Prefectural Central HospitalKofuJapan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Jun‐ichiro Ikeda
- Department of Molecular Pathology, Graduate School of MedicineChiba UniversityChibaJapan
| | | | - Naoya Kato
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Masao Omata
- Genome Analysis CenterYamanashi Prefectural Central HospitalKofuJapan
- Tokyo UniversityTokyoJapan
| |
Collapse
|
10
|
High prevalence of MUTYH associated polyposis among minority populations in Israel, due to rare founder pathogenic variants. Dig Liver Dis 2023:S1590-8658(23)00162-7. [PMID: 36740502 DOI: 10.1016/j.dld.2023.01.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autosomal recessive conditions are common in consanguineous populations. Since consanguinity is common in the Israeli Arab population, we evaluated the rate of MUTYH polyposis (MAP) among polyposis patients in this population and studied Pathogenic Variants (PVs) spectrum. METHODS We reviewed health records of all Arab and Druze polyposis patients referred for counseling during 2013-2020 who fulfilled the Israeli Genetic Society criteria for MUTYH/APC testing, in a tertiary center in Northern Israel and four additional gastro-genetic clinics in Israel. RESULTS The Northern cohort included 37 patients from 30 unrelated families; 8(26.6%) carried bi-allelic MUTYH PVs. The major variant p.Glu452del was detected in 6/8 Druze and Muslim families who shared the same haplotype. Other PVs detected in both cohorts included p.Tyr56Ter, p.His57Arg, c.849+3A>C, p.Ala357fs, and p.Tyr151Cys. Among bi-allelic carriers, 88% reported consanguinity, and 100% had positive family history for polyposis or colorectal cancer (CRC). Generally, the age of CRC was 10 years younger than reported in the general MAP population. CONCLUSIONS MAP accounted for 27% of polyposis cases in the Arab population of Northern Israel. PVs spectrum is unique, with high frequency of the founder variant p.Glu452del. Our results may inform the genetic testing strategy in the Israeli Arab population.
Collapse
|
11
|
Thompson AB, Sutcliffe EG, Arvai K, Roberts ME, Susswein LR, Marshall ML, Torene R, Postula KJV, Hruska KS, Bai S. Monoallelic MUTYH pathogenic variants ascertained via multi-gene hereditary cancer panels are not associated with colorectal, endometrial, or breast cancer. Fam Cancer 2022; 21:415-422. [PMID: 34981295 DOI: 10.1007/s10689-021-00285-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/21/2021] [Indexed: 01/27/2023]
Abstract
We aimed to determine whether monoallelic MUTYH pathogenic and likely pathogenic variants (PVs) are associated with colorectal, breast, and endometrial cancer. Cases were individuals with colorectal, female breast, or endometrial cancer who reported European ancestry alone and underwent a multi-gene hereditary cancer panel at a large reference laboratory. Controls were individuals of European (non-Finnish) descent from GnomAD with cancer cohorts removed. We performed a Fisher's exact test to generate odds ratios (ORs) with 95% confidence intervals (CI). Prevalence of single MUTYH PVs in cancer cohorts versus controls, respectively, was: colorectal cancer, 2.1% vs. 1.8% (OR 1.2, 95% CI 0.99-1.5, p = 0.064); breast cancer 1.9% vs. 1.7% (OR 1.1, 95% CI 0.96-1.3, p = 0.15); and endometrial cancer, 1.7% vs. 1.7% (OR 0.98; 95% CI 0.70-1.3, p = 0.94). Using the largest colorectal and endometrial cancer cohorts and one of the largest breast cancer cohorts from a single case-control study, we did not observe a significant difference in the prevalence of monoallelic MUTYH PVs in these cohorts compared to controls. Additionally, frequencies among cancer cohorts were consistent with the published MUTYH carrier frequency of 1-2%. These findings suggest there is no association between colorectal, endometrial, or breast cancer and MUTYH heterozygosity in individuals of European ancestry.
Collapse
Affiliation(s)
| | | | - Kevin Arvai
- GeneDx, 207 Perry Pkwy, Gaithersburg, MD, 20877, USA
- DataRobot, Boston, MA, USA
| | | | | | | | | | | | | | - Shaochun Bai
- GeneDx, 207 Perry Pkwy, Gaithersburg, MD, 20877, USA
| |
Collapse
|
12
|
Downie JM, Riaz M, Xie J, Lee M, Chan AT, Gibbs P, Orchard SG, Mahady SE, Sebra RP, Murray AM, Macrae F, Schadt E, Woods RL, McNeil JJ, Lacaze P, Gala M. Incident Cancer Risk and Signatures Among Older MUTYH Carriers: Analysis of Population-Based and Genomic Cohorts. Cancer Prev Res (Phila) 2022; 15:509-519. [PMID: 35609203 PMCID: PMC9356994 DOI: 10.1158/1940-6207.capr-22-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 02/03/2023]
Abstract
MUTYH carriers have an increased colorectal cancer risk in case-control studies, with loss of heterozygosity (LOH) as the presumed mechanism. We evaluated cancer risk among carriers in a prospective, population-based cohort of older adults. In addition, we assessed if cancers from carriers demonstrated mutational signatures (G:C>T:A transversions) associated with early LOH. We calculated incident risk of cancer and colorectal cancer among 13,131 sequenced study participants of the ASPirin in Reducing Events in the Elderly cohort, stratified by sex and adjusting for age, smoking, alcohol use, BMI, polyp history, history of cancer, and aspirin use. MUTYH carriers were identified among 13,033 participants in The Cancer Genome Atlas and International Cancer Genome Consortium, and somatic signatures of cancers were analyzed. Male MUTYH carriers demonstrated an increased risk for overall cancer incidence [multivariable HR, 1.66; 95% confidence interval (CI), 1.03-2.68; P = 0.038] driven by increased colorectal cancer incidence (multivariable HR, 3.55; 95% CI, 1.42-8.78; P = 0.007), as opposed to extracolonic cancer incidence (multivariable HR, 1.40; 95% CI, 0.81-2.44; P = 0.229). Female carriers did not demonstrate increased risk of cancer, colorectal cancer, or extracolonic cancers. Analysis of mutation signatures from cancers of MUTYH carriers revealed no significant contribution toward early mutagenesis from widespread G:C>T:A transversions among gastrointestinal epithelial cancers. Among cancers from carriers, somatic transversions associated with base-excision repair deficiency are uncommon, suggestive of diverse mechanisms of carcinogenesis in carriers compared with those who inherit biallelic MUTYH mutations. PREVENTION RELEVANCE Despite absence of loss of heterozygosity in colorectal cancers, elderly male MUTYH carriers appeared to be at increased of colorectal cancer.
Collapse
Affiliation(s)
- Jonathan M. Downie
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Moeen Riaz
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Jing Xie
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Minyi Lee
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- MD-Ph.D. Program, Boston University School of Medicine, Boston, MA
| | - Andrew T. Chan
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Peter Gibbs
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Oncology, Western Health, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Suzanne G. Orchard
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Suzanne E. Mahady
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Robert P. Sebra
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anne M. Murray
- Berman Center for Outcomes and Clinical Research, Hennepin Healthcare Research Institute, Hennepin Healthcare, Minneapolis, MN, USA
| | - Finlay Macrae
- Department of Genomic Medicine; Family Cancer Clinic, Department of Medicine, Department of Pathology, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Robyn L. Woods
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - John J. McNeil
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Manish Gala
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Robinson PS, Thomas LE, Abascal F, Jung H, Harvey LMR, West HD, Olafsson S, Lee BCH, Coorens THH, Lee-Six H, Butlin L, Lander N, Truscott R, Sanders MA, Lensing SV, Buczacki SJA, Ten Hoopen R, Coleman N, Brunton-Sim R, Rushbrook S, Saeb-Parsy K, Lalloo F, Campbell PJ, Martincorena I, Sampson JR, Stratton MR. Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nat Commun 2022; 13:3949. [PMID: 35803914 PMCID: PMC9270427 DOI: 10.1038/s41467-022-31341-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/14/2022] [Indexed: 12/21/2022] Open
Abstract
Cellular DNA damage caused by reactive oxygen species is repaired by the base excision repair (BER) pathway which includes the DNA glycosylase MUTYH. Inherited biallelic MUTYH mutations cause predisposition to colorectal adenomas and carcinoma. However, the mechanistic progression from germline MUTYH mutations to MUTYH-Associated Polyposis (MAP) is incompletely understood. Here, we sequence normal tissue DNAs from 10 individuals with MAP. Somatic base substitution mutation rates in intestinal epithelial cells were elevated 2 to 4-fold in all individuals, except for one showing a 31-fold increase, and were also increased in other tissues. The increased mutation burdens were of multiple mutational signatures characterised by C > A changes. Different mutation rates and signatures between individuals are likely due to different MUTYH mutations or additional inherited mutations in other BER pathway genes. The elevated base substitution rate in normal cells likely accounts for the predisposition to neoplasia in MAP. Despite ubiquitously elevated mutation rates, individuals with MAP do not display overt evidence of premature ageing. Thus, accumulation of somatic mutations may not be sufficient to cause the global organismal functional decline of ageing.
Collapse
Affiliation(s)
- Philip S Robinson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Laura E Thomas
- Institute of Life Science, Swansea University, Swansea, SA28PP, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Hyunchul Jung
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Hannah D West
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Sigurgeir Olafsson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Bernard C H Lee
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Hereditary Gastrointestinal Cancer Genetic Diagnosis Laboratory, Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Henry Lee-Six
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Laura Butlin
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Nicola Lander
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Rebekah Truscott
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Haematology, Erasmus University Medical Centre, 3015 CN, Rotterdam, The Netherlands
| | - Stefanie V Lensing
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Simon J A Buczacki
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | | | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Simon Rushbrook
- Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford Road, Manchester, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
| |
Collapse
|
14
|
Saugstad AA, Petry N, Hajek C. Pharmacogenetic Review: Germline Genetic Variants Possessing Increased Cancer Risk With Clinically Actionable Therapeutic Relationships. Front Genet 2022; 13:857120. [PMID: 35685436 PMCID: PMC9170921 DOI: 10.3389/fgene.2022.857120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
As our understanding of genomics and genetic testing continues to advance, the personalization of medical decision making is progressing simultaneously. By carefully crafting medical care to fit the specific needs of the individual, patients can experience better long-term outcomes, reduced toxicities, and improved healthcare experiences. Genetic tests are frequently ordered to help diagnose a clinical presentation and even to guide surveillance. Through persistent investigation, studies have begun to delineate further therapeutic implications based upon unique relationships with genetic variants. In this review, a pre-emptive approach is taken to understand the existing evidence of relationships between specific genetic variants and available therapies. The review revealed an array of diverse relationships, ranging from well-documented clinical approaches to investigative findings with potential for future application. Therapeutic agents identified in the study ranged from highly specific targeted therapies to agents possessing similar risk factors as a genetic variant. Working in conjunction with national standardized treatment approaches, it is critical that physicians appropriately consider these relationships when developing personalized treatment plans for their patients.
Collapse
Affiliation(s)
- Austin A. Saugstad
- Kansas City University, College of Osteopathic Medicine, Kansas City, MO, United States
- *Correspondence: Austin A. Saugstad,
| | - Natasha Petry
- Sanford Health Imagenetics, Sioux Falls, SD, United States
- Department of Pharmacy Practice, College of Health Professions, North Dakota State University, Fargo, ND, United States
| | - Catherine Hajek
- Sanford Health Imagenetics, Sioux Falls, SD, United States
- University of South Dakota, Sanford School of Medicine, Department of Internal Medicine, Sioux Falls, SD, United States
| |
Collapse
|
15
|
Aelvoet AS, Buttitta F, Ricciardiello L, Dekker E. Management of familial adenomatous polyposis and MUTYH-associated polyposis; new insights. Best Pract Res Clin Gastroenterol 2022; 58-59:101793. [PMID: 35988966 DOI: 10.1016/j.bpg.2022.101793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) are rare inherited polyposis syndromes with a high colorectal cancer (CRC) risk. Therefore, frequent endoscopic surveillance including polypectomy of relevant premalignant lesions from a young age is warranted in patients. In FAP and less often in MAP, prophylactic colectomy is indicated followed by lifelong endoscopic surveillance of the retained rectum after (sub)total colectomy and ileal pouch after proctocolectomy to prevent CRC. No consensus is reached on the right type and timing of colectomy. As patients with FAP and MAP nowadays have an almost normal life-expectancy due to adequate treatment of colorectal polyposis, challenges in the management of FAP and MAP have shifted towards the treatment of duodenal and gastric adenomas as well as desmoid treatment in FAP. Whereas up until recently upper gastrointestinal surveillance was mostly diagnostic and patients were referred for surgery once duodenal or gastric polyposis was advanced, nowadays endoscopic treatment of premalignant lesions is widely performed. Aiming to reduce polyp burden in the colorectum as well as in the upper gastrointestinal tract, several chemopreventive agents are currently being studied.
Collapse
Affiliation(s)
- Arthur S Aelvoet
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Francesco Buttitta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy.
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy.
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Gupta N, Drogan C, Kupfer SS. How many is too many? Polyposis syndromes and what to do next. Curr Opin Gastroenterol 2022; 38:39-47. [PMID: 34839308 PMCID: PMC8648991 DOI: 10.1097/mog.0000000000000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to help providers recognize, diagnose and manage gastrointestinal (GI) polyposis syndromes. RECENT FINDINGS Intestinal polyps include a number of histological sub-types such as adenomas, serrated, hamartomas among others. Over a quarter of individuals undergoing screening colonoscopy are expected to have colonic adenomas. Although it is not uncommon for adults to have a few GI polyps in their lifetime, some individuals are found to have multiple polyps of varying histology throughout the GI tract. In these individuals, depending on polyp histology, number, location and size as well as extra-intestinal features and/or family history, a polyposis syndrome should be considered with appropriate testing and management. SUMMARY Diagnosis and management of polyposis syndromes has evolved with advent of multigene panel testing and new data on optimal surveillance strategies. Evidence-based recommendations and current practice guidelines for polyposis syndromes are reviewed here. Areas of uncertainty and future research are also highlighted.
Collapse
Affiliation(s)
- Nina Gupta
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
17
|
Barreiro RAS, Sabbaga J, Rossi BM, Achatz MIW, Bettoni F, Camargo AA, Asprino PF, A F Galante P. Monoallelic deleterious MUTYH germline variants as a driver for tumorigenesis. J Pathol 2021; 256:214-222. [PMID: 34816434 DOI: 10.1002/path.5829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 01/06/2023]
Abstract
MUTYH encodes a glycosylase involved in the base excision repair of DNA. Biallelic pathogenic germline variants in MUTYH cause an autosomal recessive condition known as MUTYH-associated adenomatous polyposis and consequently increase the risk of colorectal cancer. However, reports of increased cancer risk in individuals carrying only one defective MUTYH allele are controversial and based on studies involving few individuals. Here, we describe a comprehensive investigation of monoallelic pathogenic MUTYH germline variants in 10,389 cancer patients across 33 different tumour types and 117,000 healthy individuals. Our results indicate that monoallelic pathogenic MUTYH germline variants can lead to tumorigenesis through a mechanism of somatic loss of heterozygosity of the functional MUTYH allele in the tumour. We confirmed that the frequency of monoallelic pathogenic MUTYH germline variants is higher in individuals with cancer than in the general population, although this frequency is not homogeneous among tumour types. We also demonstrated that the MUTYH mutational signature is present only in tumours with loss of the functional allele and found that the characteristic MUTYH base substitution (C>A) increases stop-codon generation. We identified key genes that are affected during tumorigenesis. In conclusion, we propose that carriers of the monoallelic pathogenic MUTYH germline variant are at a higher risk of developing tumours, especially those with frequent loss of heterozygosity events, such as adrenal adenocarcinoma, although the overall risk is still low. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rodrigo Araujo Sequeira Barreiro
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, Brazil
| | - Jorge Sabbaga
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Benedito M Rossi
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Fabiana Bettoni
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Anamaria A Camargo
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Paula F Asprino
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| |
Collapse
|
18
|
Georgeson P, Pope BJ, Rosty C, Clendenning M, Mahmood K, Joo JE, Walker R, Hutchinson R, Preston S, Como J, Joseland S, Win AK, Macrae FA, Hopper JL, Mouradov D, Gibbs P, Sieber OM, O’Sullivan DE, Brenner DR, Gallinger S, Jenkins MA, Winship IM, Buchanan DD. Evaluating the utility of tumour mutational signatures for identifying hereditary colorectal cancer and polyposis syndrome carriers. Gut 2021; 70:2138-2149. [PMID: 33414168 PMCID: PMC8260632 DOI: 10.1136/gutjnl-2019-320462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Germline pathogenic variants (PVs) in the DNA mismatch repair (MMR) genes and in the base excision repair gene MUTYH underlie hereditary colorectal cancer (CRC) and polyposis syndromes. We evaluated the robustness and discriminatory potential of tumour mutational signatures in CRCs for identifying germline PV carriers. DESIGN Whole-exome sequencing of formalin-fixed paraffin-embedded (FFPE) CRC tissue was performed on 33 MMR germline PV carriers, 12 biallelic MUTYH germline PV carriers, 25 sporadic MLH1 methylated MMR-deficient CRCs (MMRd controls) and 160 sporadic MMR-proficient CRCs (MMRp controls) and included 498 TCGA CRC tumours. COSMIC V3 single base substitution (SBS) and indel (ID) mutational signatures were assessed for their ability to differentiate CRCs that developed in carriers from non-carriers. RESULTS The combination of mutational signatures SBS18 and SBS36 contributing >30% of a CRC's signature profile was able to discriminate biallelic MUTYH carriers from all other non-carrier control CRCs with 100% accuracy (area under the curve (AUC) 1.0). SBS18 and SBS36 were associated with specific MUTYH variants p.Gly396Asp (p=0.025) and p.Tyr179Cys (p=5×10-5), respectively. The combination of ID2 and ID7 could discriminate the 33 MMR PV carrier CRCs from the MMRp control CRCs (AUC 0.99); however, SBS and ID signatures, alone or in combination, could not provide complete discrimination (AUC 0.79) between CRCs from MMR PV carriers and sporadic MMRd controls. CONCLUSION Assessment of SBS and ID signatures can discriminate CRCs from biallelic MUTYH carriers and MMR PV carriers from non-carriers with high accuracy, demonstrating utility as a potential diagnostic and variant classification tool.
Collapse
Affiliation(s)
- Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Bernard J. Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Melbourne Bioinformatics, The University of Melbourne, Carlton, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Envoi Pathology, Brisbane, Queensland, Australia,University of Queensland, School of Medicine, Herston, Queensland, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Melbourne Bioinformatics, The University of Melbourne, Carlton, Victoria, Australia
| | - Jihoon E. Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Ryan Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Aung K. Win
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Finlay A. Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Dmitry Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia,Department of Medical Oncology, Western Health, Victoria, Australia
| | - Oliver M. Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dylan E. O’Sullivan
- Department of Oncology, University of Calgary, Calgary, Canada,Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Darren R. Brenner
- Department of Oncology, University of Calgary, Calgary, Canada,Department of Community Health Sciences, University of Calgary, Calgary, Canada,Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Canada
| | - Steve Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark A. Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Ingrid M. Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet 2021; 30:R206-R224. [PMID: 34329396 PMCID: PMC8490010 DOI: 10.1093/hmg/ddab208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.
Collapse
Affiliation(s)
- Alisa P Olkinuora
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi T Peltomäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
20
|
Mezina A, Philips N, Bogus Z, Erez N, Xiao R, Fan R, Olthoff KM, Reddy KR, Samadder NJ, Nielsen SM, Hatchell KE, Esplin ED, Rustgi AK, Katona BW, Hoteit MA, Nathanson KL, Wangensteen KJ. Multigene Panel Testing in Individuals With Hepatocellular Carcinoma Identifies Pathogenic Germline Variants. JCO Precis Oncol 2021; 5:PO.21.00079. [PMID: 34250406 DOI: 10.1200/po.21.00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has well-defined environmental risk factors. In addition, epidemiologic studies have suggested hereditary risk factors. The goals of this study were to determine the rate of pathogenic and likely pathogenic (P/LP) germline variants in cancer predisposition genes in patients with HCC, possible enrichment of P/LP variants in particular genes, and potential impact on clinical management. MATERIALS AND METHODS A prospective study at a tertiary medical center enrolled 217 patients with a personal history of HCC. Multigene panel testing was performed for 134 cancer predisposition genes in all patients. The rate of P/LP variants was compared with population rates. A separate retrospective cohort included 219 patients with HCC who underwent testing at a commercial laboratory. RESULTS In the prospective cohort, P/LP germline variants were identified in 25 of 217 patients with HCC (11.5%). Four patients (1.8%) had P/LP variants in the highly penetrant cancer genes BRCA2 (n = 2), MSH6 (n = 1), and PMS2 (n = 1). In addition, multiple patients had P/LP variants in FANCA (n = 5) and BRIP1 (n = 4), which were significantly enriched in HCC compared with the general population. Detection of P/LP variants led to changes in clinical management in regard to therapy selection, screening recommendations, and cascade testing of relatives. In a separate retrospective analysis of 219 patients with HCC, 30 (13.7%) were positive for P/LP variants including 13 (5.9%) with highly penetrant genes APC (n = 2), BRCA1 (n = 1), BRCA2 (n = 6), MSH2 (n = 2), or TP53 (n = 2). CONCLUSION P/LP germline variants in cancer predisposition genes were detected in 11%-14% of patients with HCC. Inherited genetics should not be overlooked in HCC as there are important implications for precision treatment, future risk of cancers, and familial cancer risk.
Collapse
Affiliation(s)
- Anya Mezina
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Neil Philips
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zoe Bogus
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Noam Erez
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ruoming Fan
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kim M Olthoff
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - K Rajender Reddy
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | | | | | | | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Bryson W Katona
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Maarouf A Hoteit
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katherine L Nathanson
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Abramson Cancer Center, University of Perelman School of Medicine, Philadelphia, PA
| | - Kirk J Wangensteen
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Abramson Cancer Center, University of Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
21
|
MUTYH is associated with hepatocarcinogenesis in a non-alcoholic steatohepatitis mouse model. Sci Rep 2021; 11:3599. [PMID: 33574380 PMCID: PMC7878918 DOI: 10.1038/s41598-021-83138-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH)-related HCC is associated with oxidative stress. However, the mechanisms underlying the development of NASH-related HCC is unclear. MUTYH is one of the enzymes that is involved in repair of oxidative DNA damage. The aim of this study was to investigate the association between MUTYH and NASH-related hepatocarcinogenesis. MUTYH wild-type (Mutyh+/+), heterozygous (Mutyh+/-), and MUTYH-null (Mutyh-/-) mice were fed a high-fat high-cholesterol (HFHC) diet or HFHC + high iron diet (20 mice per group) for 9 months. Five of 20 Mutyh-/- mice fed an HFHC + high iron diet developed liver tumors, and they developed more liver tumors than other groups (especially vs. Mutyh+/+ fed an HFHC diet, P = 0.0168). Immunohistochemical analysis revealed significantly higher accumulation of oxidative stress markers in mice fed an HFHC + high iron diet. The gene expression profiles in the non-tumorous hepatic tissues were compared between wild-type mice that developed no liver tumors and MUTYH-null mice that developed liver tumors. Gene Set Enrichment Analysis identified the involvement of the Wnt/β-catenin signaling pathway and increased expression of c-Myc in MUTYH-null liver. These findings suggest that MUTYH deficiency is associated with hepatocarcinogenesis in patients with NASH with hepatic iron accumulation.
Collapse
|
22
|
Caffrey PJ, Delaney S. Chromatin and other obstacles to base excision repair: potential roles in carcinogenesis. Mutagenesis 2021; 35:39-50. [PMID: 31612219 DOI: 10.1093/mutage/gez029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022] Open
Abstract
DNA is comprised of chemically reactive nucleobases that exist under a constant barrage from damaging agents. Failure to repair chemical modifications to these nucleobases can result in mutations that can cause various diseases, including cancer. Fortunately, the base excision repair (BER) pathway can repair modified nucleobases and prevent these deleterious mutations. However, this pathway can be hindered through several mechanisms. For instance, mutations to the enzymes in the BER pathway have been identified in cancers. Biochemical characterisation of these mutants has elucidated various mechanisms that inhibit their activity. Furthermore, the packaging of DNA into chromatin poses another obstacle to the ability of BER enzymes to function properly. Investigations of BER in the base unit of chromatin, the nucleosome core particle (NCP), have revealed that the NCP acts as a complex substrate for BER enzymes. The constituent proteins of the NCP, the histones, also have variants that can further impact the structure of the NCP and may modulate access of enzymes to the packaged DNA. These histone variants have also displayed significant clinical effects both in carcinogenesis and patient prognosis. This review focuses on the underlying molecular mechanisms that present obstacles to BER and the relationship of these obstacles to cancer. In addition, several chemotherapeutics induce DNA damage that can be repaired by the BER pathway and understanding obstacles to BER can inform how resistance and/or sensitivity to these therapies may occur. With the understanding of these molecular mechanisms, current chemotherapeutic treatment regiments may be improved, and future therapies developed.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, RI
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI
| |
Collapse
|
23
|
Fabišíková K, Hamidová O, Behulová RL, Závodná K, Priščáková P, Repiská V. Case Report: The Role of Molecular Analysis of the MUTYH Gene in Asymptomatic Individuals. Front Genet 2021; 11:590486. [PMID: 33384714 PMCID: PMC7770176 DOI: 10.3389/fgene.2020.590486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
MUTYH-associated polyposis (MAP) is a rare hereditary condition caused by the biallelic mutation in the MUTYH gene encoding MUTYH glycosylase. This enzyme is a key member of the base excision repair (BER) pathway responsible for the repair of DNA lesions formed by reactive oxygen species (ROS). We report two cases of MAP. In case 1, a 67-year-old woman who presented with a personal history of colorectal and endometrial cancer and a family history of cancer syndromes underwent multigene panel testing that revealed a germline homozygous (biallelic) pathogenic variant c.1187G > A (p.Gly396Asp) in the MUTYH gene. Subsequent sequencing analysis performed in the offspring of the proband identified all three asymptomatic offspring as carriers of this pathogenic variant. In case 2, a 40-year-old woman with a strong family history of colorectal cancer [the proband’s sister was a carrier of the pathogenic variant c.536A > G (p.Tyr179Cys) of the MUTYH gene] and renal cancer underwent sequencing analysis of the MUTYH gene. The pathogenic heterozygous (monoallelic) variant c.536A > G (p.Tyr179Cys) of the MUTYH gene was identified in the proband. We found another pathogenic variant of the MUTYH gene—heterozygous (monoallelic) mutation c.1187G > A (p.Gly396Asp) in the genome of the proband’s husband. Molecular analysis of their offspring revealed that they are compound heterozygotes for MUTYH pathogenic variants c.536A > G (p.Tyr179Cys)/c.1187G > A (p.Gly396Asp). This paper shows the importance of genetic testing of asymptomatic relatives of the proband to ensure an early surveillance and management of individuals positive for pathogenic variant (s) in the MUTYH gene.
Collapse
Affiliation(s)
- Katarína Fabišíková
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University, Bratislava, Slovakia
| | - Olívia Hamidová
- Department of Clinical Genetics, St. Elizabeth Cancer Institute, Bratislava, Slovakia
| | | | - Katarína Závodná
- Department of Clinical Genetics, St. Elizabeth Cancer Institute, Bratislava, Slovakia
| | - Petra Priščáková
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University, Bratislava, Slovakia
| | - Vanda Repiská
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
24
|
Oldfield LE, Li T, Tone A, Aronson M, Edwards M, Holter S, Quevedo R, Van de Laar E, Lerner-Ellis J, Pollett A, Clarke B, Tabori U, Gallinger S, Ferguson SE, Pugh TJ. An Integrative DNA Sequencing and Methylation Panel to Assess Mismatch Repair Deficiency. J Mol Diagn 2020; 23:242-252. [PMID: 33259954 DOI: 10.1016/j.jmoldx.2020.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Clinical testing for mismatch repair (MMR) deficiency often entails serial testing of tumor and constitutional DNA using multiple assays. To minimize cost and specimen requirements of MMR testing, we developed an integrated targeted sequencing protocol (termed MultiMMR) that tests for promoter methylation, mutations, copy number alterations, copy neutral loss of heterozygosity, and microsatellite instability from a single aliquot of DNA. Hybrid capture of DNA-sequencing libraries constructed with methylated adapters was performed on 142 samples (60 tumors and 82 constitutional samples) from 82 patients with MMR-associated colorectal, endometrial, and brain cancers as well as a synthetic DNA mix with 11 known mutations. The captured material was split to enable parallel bisulfite and conventional sequence analysis. The panel targeted microsatellite regions and 13 genes associated with MMR, hypermutation, and hereditary colorectal cancer. MultiMMR recapitulated clinical testing results in 23 of 24 cases, was able to explain MMR loss in an additional 29 of 48 patients with incomplete or inconclusive testing, and identified all 11 MMR variants within the synthetic DNA mix. Promoter methylation and microsatellite instability analysis found 95% and 97% concordance with clinical testing, respectively. We report the feasibility for amalgamation of the current stepwise and complex clinical testing workflow into an integrated test for hereditary and somatic causes of MMR deficiency.
Collapse
Affiliation(s)
- Leslie E Oldfield
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tiantian Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alicia Tone
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Spring Holter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rene Quevedo
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Emily Van de Laar
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Jordan Lerner-Ellis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Aaron Pollett
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Blaise Clarke
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Uri Tabori
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sarah E Ferguson
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
[Gastrointestinal polyposis syndromes]. Internist (Berl) 2020; 62:133-144. [PMID: 33237439 DOI: 10.1007/s00108-020-00903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Gastrointestinal polyposis syndromes are the second most common cause of hereditary colorectal carcinomas after Lynch syndrome (hereditary non-polyposis colon cancer, HNPCC). The detection of a causal germline mutation in an affected family member serves for differential diagnosis, assessment of the recurrence risk and predictive testing of healthy individuals at risk. OBJECTIVES The present article aims to provide an overview of the differential diagnosis of different gastrointestinal polyposis syndromes based on the endoscopic findings, polyp histology, extraintestinal phenotype and molecular genetic diagnostics. MATERIALS AND METHODS The present article is based on a literature search on gastrointestinal polyposis syndromes. RESULTS In addition to familial adenomatous polyposis (FAP), there are further subtypes of adenomatous polyposis that can often only be distinguished by the detection of a causative germline mutation and are sometimes associated with different extracolonic manifestations. In hamartomatous polyposis syndromes, the clinical overlaps often cause differential diagnostic problems. Serratated polyposis syndrome is possibly the most frequent polyposis syndrome, although its cause is currently largely unexplained. CONCLUSIONS Early detection and correct classification of polyposis is crucial for adequate prevention and therapy. Access to multidisciplinary expert centres is useful for the care of families.
Collapse
|
26
|
Patel R, McGinty P, Cuthill V, Hawkins M, Moorghen M, Clark SK, Latchford A. MUTYH-associated polyposis - colorectal phenotype and management. Colorectal Dis 2020; 22:1271-1278. [PMID: 32307808 DOI: 10.1111/codi.15078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
AIM The aim was to determine the presentation, management and outcomes of MUTYH-associated polyposis (MAP). METHOD A prospectively maintained database was used to identify patients with MAP. Demographic data and data on germline mutation, surgical management, histopathology of tumours and endoscopic surveillance were collected. RESULTS In all, 134 patients with MAP were identified. The majority presented symptomatically (n = 83). Sixty-eight patients developed cancer (seven synchronous, 12 metachronous). The median age at diagnosis of first colorectal cancer was 47 years (range 33-74 years). Cancers occurred in the context of a few adenomas (< 10). The majority of patients (n = 108) had surgery as the first line management. One patient received palliative care. Twenty-five patients had endoscopic surveillance as first line management; no cancers occurred in this group. Patients who had segmental resection and postoperative surveillance still appeared to be at risk of metachronous cancer (5/30, 17%). CONCLUSIONS MUTYH testing should be considered even in the context of cancers occurring with fewer than 10 adenomas. In cases of primary colorectal cancers, extended surgery should be considered if patients do not have access to high quality endoscopic surveillance postoperatively. For some patients, endoscopic therapy is an appropriate and safe option in expert hands.
Collapse
Affiliation(s)
- R Patel
- Polyposis Registry, St Mark's Hospital, Harrow, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| | - P McGinty
- Polyposis Registry, St Mark's Hospital, Harrow, UK
| | - V Cuthill
- Polyposis Registry, St Mark's Hospital, Harrow, UK
| | - M Hawkins
- Polyposis Registry, St Mark's Hospital, Harrow, UK
| | - M Moorghen
- Polyposis Registry, St Mark's Hospital, Harrow, UK
| | - S K Clark
- Polyposis Registry, St Mark's Hospital, Harrow, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| | - A Latchford
- Polyposis Registry, St Mark's Hospital, Harrow, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
27
|
Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol 2020; 11:428-449. [PMID: 32821650 PMCID: PMC7407923 DOI: 10.5306/wjco.v11.i7.428] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
MUTYH is a base excision repair enzyme, it plays a crucial role in the correction of DNA errors from guanine oxidation and may be considered a cell protective factor. In humans it is an adenine DNA glycosylase that removes adenine misincorporated in 7,8-dihydro-8-oxoguanine (8-oxoG) pairs, inducing G:C to T:A transversions. MUTYH functionally cooperates with OGG1 that eliminates 8-oxodG derived from excessive reactive oxygen species production. MUTYH mutations have been linked to MUTYH associated polyposis syndrome (MAP), an autosomal recessive disorder characterized by multiple colorectal adenomas. MAP patients show a greatly increased lifetime risk for gastrointestinal cancers. The cancer risk in mono-allelic carriers associated with one MUTYH mutant allele is controversial and it remains to be clarified whether the altered functions of this protein may have a pathophysiological involvement in other diseases besides familial gastrointestinal diseases. This review evaluates the role of MUTYH, focusing on current studies of human neoplastic and non-neoplastic diseases different to colon polyposis and colorectal cancer. This will provide novel insights into the understanding of the molecular basis underlying MUTYH-related pathogenesis. Furthermore, we describe the association between MUTYH single nucleotide polymorphisms (SNPs) and different cancer and non-cancer diseases. We address the utility to increase our knowledge regarding MUTYH in the light of recent advances in the literature with the aim of a better understanding of the potential for identifying new therapeutic targets. Considering the multiple functions and interactions of MUTYH protein, its involvement in pathologies based on oxidative stress damage could be hypothesized. Although the development of extraintestinal cancer in MUTYH heterozygotes is not completely defined, the risk for malignancies of the duodenum, ovary, and bladder is also increased as well as the onset of benign and malignant endocrine tumors. The presence of MUTYH pathogenic variants is an independent predictor of poor prognosis in sporadic gastric cancer and in salivary gland secretory carcinoma, while its inhibition has been shown to reduce the survival of pancreatic ductal adenocarcinoma cells. Furthermore, some MUTYH SNPs have been associated with lung, hepatocellular and cervical cancer risk. An additional role of MUTYH seems to contribute to the prevention of numerous other disorders with an inflammatory/degenerative basis, including neurological and ocular diseases. Finally, it is interesting to note that MUTYH could be a new therapeutic target and future studies will shed light on its specific functions in the prevention of diseases and in the improvement of the chemo-sensitivity of cancer cells.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Via Consolare Valeria 98125, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| |
Collapse
|
28
|
Jalkh N, Mehawej C, Chouery E. Actionable Exomic Secondary Findings in 280 Lebanese Participants. Front Genet 2020; 11:208. [PMID: 32231684 PMCID: PMC7083077 DOI: 10.3389/fgene.2020.00208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
The expanded use of NGS tests in genetic diagnosis enables the massive generation of data related to each individual, among which some findings are of medical value. Over the last three and a half years, 280 unrelated Lebanese patients, presenting a wide spectrum of genetic disorders were referred to our center for genetic evaluation by WES. Molecular diagnosis was established in 56% of the cases, as was previously reported. The current study evaluates secondary findings in these patients in 59 genes, linked to conditions mostly responsive to medical interventions, as per the ACMG guidelines. Our analysis allowed us to detect 19 pathogenic/likely pathogenic variants in 24 individuals from our cohort. Dominant actionable variants were found in 17 individuals representing 6% of the studied population. Genes associated with dominant cardiac diseases were the most frequently mutated: variants were found in 2.1% of our cohort. Genetic predisposition to cancer syndromes was observed in 1.07% of the cases. In parallel to dominant disease alleles, our analysis identified a recessive pathogenic disease allele in 2.5% of the individuals included in this study. Of interest, some variants were detected in different patients from our cohort thus urging the study of their prevalence in our population and the implementation, when needed, of specific genetic testing in the neonatal screening panel. In conclusion, here we report the first study estimating the actionable pathogenic variant load in the Lebanese population. Communicating current findings to the patients will enable them to benefit from a multi-disciplinary approach. Furthermore, tailoring the ACMG guidelines to the population is suggested, especially in highly consanguineous populations where the information related to recessive alleles might be highly beneficial to patients and their families.
Collapse
Affiliation(s)
- Nadine Jalkh
- Unité de Génétique Médicale, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Cybel Mehawej
- Unité de Génétique Médicale, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Eliane Chouery
- Unité de Génétique Médicale, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
29
|
Monahan KJ, Bradshaw N, Dolwani S, Desouza B, Dunlop MG, East JE, Ilyas M, Kaur A, Lalloo F, Latchford A, Rutter MD, Tomlinson I, Thomas HJW, Hill J. Guidelines for the management of hereditary colorectal cancer from the British Society of Gastroenterology (BSG)/Association of Coloproctology of Great Britain and Ireland (ACPGBI)/United Kingdom Cancer Genetics Group (UKCGG). Gut 2020; 69:411-444. [PMID: 31780574 PMCID: PMC7034349 DOI: 10.1136/gutjnl-2019-319915] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Heritable factors account for approximately 35% of colorectal cancer (CRC) risk, and almost 30% of the population in the UK have a family history of CRC. The quantification of an individual's lifetime risk of gastrointestinal cancer may incorporate clinical and molecular data, and depends on accurate phenotypic assessment and genetic diagnosis. In turn this may facilitate targeted risk-reducing interventions, including endoscopic surveillance, preventative surgery and chemoprophylaxis, which provide opportunities for cancer prevention. This guideline is an update from the 2010 British Society of Gastroenterology/Association of Coloproctology of Great Britain and Ireland (BSG/ACPGBI) guidelines for colorectal screening and surveillance in moderate and high-risk groups; however, this guideline is concerned specifically with people who have increased lifetime risk of CRC due to hereditary factors, including those with Lynch syndrome, polyposis or a family history of CRC. On this occasion we invited the UK Cancer Genetics Group (UKCGG), a subgroup within the British Society of Genetic Medicine (BSGM), as a partner to BSG and ACPGBI in the multidisciplinary guideline development process. We also invited external review through the Delphi process by members of the public as well as the steering committees of the European Hereditary Tumour Group (EHTG) and the European Society of Gastrointestinal Endoscopy (ESGE). A systematic review of 10 189 publications was undertaken to develop 67 evidence and expert opinion-based recommendations for the management of hereditary CRC risk. Ten research recommendations are also prioritised to inform clinical management of people at hereditary CRC risk.
Collapse
Affiliation(s)
- Kevin J Monahan
- Family Cancer Clinic, St Mark's Hospital, London, UK
- Faculty of Medicine, Imperial College, London, UK
| | - Nicola Bradshaw
- Clinical Genetics, West of Scotland Genetics Services, Glasgow, Glasgow, UK
| | - Sunil Dolwani
- Gastroenterology, Cardiff and Vale NHS Trust, Cardiff, UK
| | - Bianca Desouza
- Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Mohammad Ilyas
- Faculty of Medicine & Health Sciences, Nottingham University, Nottingham, UK
| | - Asha Kaur
- Head of Policy and Campaigns, Bowel Cancer UK, London, UK
| | - Fiona Lalloo
- Genetic Medicine, Central Manchester University Hospitals Foundation Trust, Manchester, UK
| | | | - Matthew D Rutter
- Gastroenterology, University Hospital of North Tees, Stockton-on-Tees, UK
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Ian Tomlinson
- Nuffield Department of Clinical Medicine, Wellcome Trust Centre for Human Genetics, Birmingham, UK
- Cancer Research Centre, University of Edinburgh, Edinburgh, UK
| | - Huw J W Thomas
- Family Cancer Clinic, St Mark's Hospital, London, UK
- Faculty of Medicine, Imperial College, London, UK
| | - James Hill
- Genetic Medicine, Central Manchester University Hospitals Foundation Trust, Manchester, UK
| |
Collapse
|
30
|
McVeigh ÚM, McVeigh TP, Curran C, Miller N, Morris DW, Kerin MJ. Diagnostic yield of a custom-designed multi-gene cancer panel in Irish patients with breast cancer. Ir J Med Sci 2020; 189:849-864. [PMID: 32008151 DOI: 10.1007/s11845-020-02174-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Breast cancer is genetically heterogeneous, and parellel multi-gene sequencing is the most cost- and time-efficient manner to investigate breast cancer predisposition. Numerous multi-gene panels (MGPs) are commercially available, but many include genes with weak/unproven associaton with breast cancer, or with predisposition to cancer of other types. This study investigates the utility of a custom-designed multi-gene panel in an Irish cohort with breast cancer. METHODS A custom panel comprising 83 genes offered by 19 clinical "breast cancer predisposition" MGPs was designed and applied to germline DNA from 91 patients with breast cancer and 77 unaffected ethnicially matched controls. Variants were identified and classified using a custom pipeline. RESULTS Nineteen loss-of-function (LOF) and 334 missense variants were identified. After removing common and/or benign variants, 15 LOF and 30 missense variants were analysed. Variants in known breast cancer susceptibility genes were identified, including in BRCA1 and ATM in cases, and in NF1 and CHEK2 in controls. Most variants identified were in genes associated with predisposition to cancers other than breast cancer (BRIP1, RAD50, MUTYH, and mismatch repair genes), or in genes with unknown or unproven association with cancer. CONCLUSION Using multi-gene panels enables rapid, cost-effective identification of individuals with high-risk cancer predisposition syndromes. However, this approach also leads to an increased amount of uncertain results. Clinical management of individuals with particular genetic variants in the absence of a matching phenotype/family history is challenging. Further population and functional evidence is required to fully elucidate the clinical relevance of variants in genes of uncertain significance.
Collapse
Affiliation(s)
- Úna M McVeigh
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland.
| | - Terri P McVeigh
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Catherine Curran
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Nicola Miller
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Derek W Morris
- Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Micheal J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
31
|
Kdissa A, Brusgaard K, Ksiaa M, Golli L, Hallara O, Ousager LB, Manoubi W, Seghaier RB, Adala L, Halleb Y, Saad A, Hmila F, Gribaa M. c.1227_1228dupGG (p.Glu410Glyfs), a frequent variant in Tunisian patients with MUTYH associated polyposis. Cancer Genet 2019; 240:45-53. [PMID: 31739127 DOI: 10.1016/j.cancergen.2019.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 09/25/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Familial adenomatous polyposis (FAP) is an autosomal dominant-inherited disease caused by germline variants in the APC gene. It is characterized by the development of hundreds to thousands of adenomatous polyps in colon and rectum. Recently, biallelic germline variants in the base excision repair (BER) gene: MUTYH have been identified in patients with attenuated FAP and/or negative APC result. It can be responsible for an autosomal recessive inherited colorectal cancer syndrome (MAP syndrome: MUTYH-associated polyposis). OBJECTIVE The aim of this study was to evaluate germline variants of MUTYH gene in Tunisian patients with attenuated FAP. METHODS thirteen unrelated patients from Tunisia with attenuated FAP were screened for MUTYH germline variants. Direct sequencing was performed to identify point variants in this gene. RESULTS A Biallelic MUTYH germline variant were found in all patients and showed an attenuated polyposis phenotype almost of them without extra-colic manifestations: The known pathogenic frameshift variant c.1227_1228dupGG (p. Glu410Glyfs) was found, in homozygous state, in 13 index patients. CONCLUSION Patients with attenuated familial adenomatous polyposis (<=100) and no obvious vertical transmission of the disease should be considered for MUTYH gene testing.
Collapse
Affiliation(s)
- Ameni Kdissa
- Cytogenetic, Molecular Genetics and Human Reproduction Biology - FARHAT HACHED University Hospital, Sousse, Tunisia.
| | - Klaus Brusgaard
- Amplexa Genetics A/S, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Medical Genetics, Near East University, Nicosia, Northern Cyprus
| | - Mahdi Ksiaa
- Department of gastroenterology, Sahloul University Hospital, Sousse, Tunisia
| | - Lamia Golli
- Private cabinet of gastroenterology, Sousse, Tunisia
| | - Olfa Hallara
- Department of gastroenterology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | | | - Wiem Manoubi
- Cytogenetic, Molecular Genetics and Human Reproduction Biology - FARHAT HACHED University Hospital, Sousse, Tunisia
| | - Rihab Ben Seghaier
- Cytogenetic, Molecular Genetics and Human Reproduction Biology - FARHAT HACHED University Hospital, Sousse, Tunisia
| | - Labiba Adala
- Cytogenetic, Molecular Genetics and Human Reproduction Biology - FARHAT HACHED University Hospital, Sousse, Tunisia
| | - Yosra Halleb
- Cytogenetic, Molecular Genetics and Human Reproduction Biology - FARHAT HACHED University Hospital, Sousse, Tunisia
| | - Ali Saad
- Cytogenetic, Molecular Genetics and Human Reproduction Biology - FARHAT HACHED University Hospital, Sousse, Tunisia
| | - Fahmi Hmila
- Department of General Surgery, Farhat Hached, University Hospital, Sousse, Tunisia
| | - Moez Gribaa
- Cytogenetic, Molecular Genetics and Human Reproduction Biology - FARHAT HACHED University Hospital, Sousse, Tunisia
| |
Collapse
|
32
|
DeLeonardis K, Hogan L, Cannistra SA, Rangachari D, Tung N. When Should Tumor Genomic Profiling Prompt Consideration of Germline Testing? J Oncol Pract 2019; 15:465-473. [DOI: 10.1200/jop.19.00201] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Somatic genomic testing is rapidly becoming an integral part of care for patients with metastatic cancer. Extrapolation of these results beyond personalized cancer therapy is a skill being demanded of practicing oncologists without prior specialty in genetics. Up to 12% of tumor genomic profiling reports will reveal a germline pathogenic variant. Recognition of these germline variants is essential not only for optimal care of the patient with cancer but also to initiate cascade genetic testing in at-risk family members who also may carry the familial mutation. This article provides a concise and methodical, evidence-based strategy to guide oncology providers about how to identify genes associated with an inherited predisposition for cancer, determine the pathogenicity of variants reported within those genes, and understand the likelihood that these variants are of germline origin in a particular patient with cancer. Case examples are provided to illustrate clinical scenarios and facilitate application of the proposed approach.
Collapse
Affiliation(s)
| | - Lauren Hogan
- Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | - Nadine Tung
- Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
33
|
Sutcliffe EG, Bartenbaker Thompson A, Stettner AR, Marshall ML, Roberts ME, Susswein LR, Wang Y, Klein RT, Hruska KS, Solomon BD. Multi-gene panel testing confirms phenotypic variability in MUTYH-Associated Polyposis. Fam Cancer 2019; 18:203-209. [PMID: 30604180 DOI: 10.1007/s10689-018-00116-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biallelic pathogenic variants (PVs) in MUTYH cause MUTYH-Associated Polyposis (MAP), which displays phenotypic overlap with other hereditary colorectal cancer (CRC) syndromes including Familial Adenomatous Polyposis (FAP) and Lynch syndrome. We report the phenotypic spectrum of MAP in the context of multi-gene hereditary cancer panel testing. Genetic testing results and clinical histories were reviewed for individuals with biallelic MUTYH PVs detected by panel testing at a single commercial molecular diagnostic laboratory. Biallelic MUTYH PVs were identified in 82 individuals (representing 0.2% of tested individuals) with most (75/82; 91.5%) reporting a personal history of CRC and/or polyps. Ten percent (6/61) of individuals reporting polyp number reported fewer than 10 polyps and therefore did not meet current MAP testing criteria. Extracolonic cancers (21/82; 25.6%), multiple primaries (19/82; 23.2%), Lynch-like (17/82; 20.7%) and FAP-like phenotypes (16/82; 19.5%) were observed, including individuals with mismatch repair-deficient tumors (3/82; 3.7%), sebaceous neoplasms (2/82; 2.4%), or congenital hypertrophy of the retinal pigment epithelium (CHRPE) (2/82; 2.4%). We report what is to our knowledge the first cohort of individuals with MAP identified by panel testing. The phenotypic spectrum of MAP observed in this cohort aligns with the published literature. In addition to standard indications for MUTYH testing, our data provide evidence to support consideration of MAP in the differential diagnosis for some individuals with fewer than 10 polyps, depending on other personal and/or family history, as well as for individuals suspected to have Lynch syndrome or FAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Wang
- GeneDx, 207 Perry Parkway, Gaithersburg, MD, 20877, USA
| | | | | | | |
Collapse
|
34
|
Fulk K, LaDuca H, Black MH, Qian D, Tian Y, Yussuf A, Espenschied C, Jasperson K. Monoallelic MUTYH carrier status is not associated with increased breast cancer risk in a multigene panel cohort. Fam Cancer 2019; 18:197-201. [PMID: 30582135 DOI: 10.1007/s10689-018-00114-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whether monoallelic MUTYH mutations increase female breast cancer risk remains controversial. This study aimed to determine if monoallelic MUTYH mutations are associated with increased breast cancer risk in women undergoing multigene panel testing (MGPT). The prevalence of monoallelic MUTYH mutations was compared between Non-Hispanic white female breast cancer cases (n = 30,456) and cancer-free controls (n = 12,289), all of whom underwent MGPT that included MUTYH. We tested breast cancer associations with MUTYH alleles using Fisher's exact test, followed by multivariate logistic regression adjusted for age at testing and MGPT type ordered. Frequencies of the two most common MUTYH founder mutations, p.G396D and p.Y179C, were compared independently between the breast cancer cases and MGPT controls, as well as the healthy UK10K control population (n = 2640). Comparing cases to MGPT controls, no association was observed between female breast cancer and any monoallelic MUTYH carrier status (OR 0.86-1.36, p = 0.21-0.96). Similarly, comparisons to UK10K controls revealed no significant increase in breast cancer risk associated with p.G396D (OR 1.20, p = 0.44) or p.Y179C (OR 1.71, p = 0.24). This study did not find a significant increase in breast cancer risk associated with monoallelic MUTYH mutations.
Collapse
Affiliation(s)
- Kelly Fulk
- Ambry Genetics, 92656, Aliso Viejo, CA, USA.
| | | | | | - Dajun Qian
- Ambry Genetics, 92656, Aliso Viejo, CA, USA
| | - Yuan Tian
- Ambry Genetics, 92656, Aliso Viejo, CA, USA
| | | | - Carin Espenschied
- Ambry Genetics, 92656, Aliso Viejo, CA, USA
- Guardant Health, 94063, Redwood City, CA, USA
| | | |
Collapse
|
35
|
Volkov NM, Yanus GA, Ivantsov AO, Moiseenko FV, Matorina OG, Bizin IV, Moiseyenko VM, Imyanitov EN. Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer. Invest New Drugs 2019; 38:894-898. [PMID: 31377904 DOI: 10.1007/s10637-019-00842-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Colorectal carcinomas (CRCs) caused by hereditary biallelic MUTYH gene mutations are characterized by elevated mutation load and high lymphocyte infiltration. Given that these tumor features are associated with the response to immune checkpoint inhibitors, we administered nivolumab to a CRC patient who carried two inactive MUTYH alleles (p.Y179C and p.G396D) and previously experienced failure of chemotherapy. This experimental treatment resulted in a pronounced tumor response. We further compared tumor lymphocyte infiltration in MUTYH-associated (n = 3), high-level microsatellite instability (MSI-H, n = 8) and microsatellite stable (MSS, n = 6) CRCs. Both MUTYH-driven and MSI-H CRCs showed noticeably higher lymphocyte densities than those of microsatellite stable tumors; this difference reached the level of statistical significance for the comparison of central areas of the tumors (p = 0.02 and 0.03, respectively) but not for the invasive tumor margins. Although MUTYH-associated tumors are exceptionally rare among unselected CRC cases, their share in CRC patients with somatic KRAS p.G12C substitution approaches 5-25%. These observations provide a rationale for further evaluation of the efficacy of the immune checkpoint blockade in MUTYH-driven CRC.
Collapse
Affiliation(s)
| | - Grigoriy A Yanus
- N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia.,St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia
| | | | | | | | - Ilya V Bizin
- N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| | | | - Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia. .,St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia.
| |
Collapse
|
36
|
Neben CL, Zimmer AD, Stedden W, van den Akker J, O'Connor R, Chan RC, Chen E, Tan Z, Leon A, Ji J, Topper S, Zhou AY. Multi-Gene Panel Testing of 23,179 Individuals for Hereditary Cancer Risk Identifies Pathogenic Variant Carriers Missed by Current Genetic Testing Guidelines. J Mol Diagn 2019; 21:646-657. [PMID: 31201024 DOI: 10.1016/j.jmoldx.2019.03.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/21/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022] Open
Abstract
Recent advancements in next-generation sequencing have greatly expanded the use of multi-gene panel testing for hereditary cancer risk. Although genetic testing helps guide clinical diagnosis and management, testing recommendations are based on personal and family history of cancer and ethnicity, and many carriers are being missed. Herein, we report the results from 23,179 individuals who were referred for 30-gene next-generation sequencing panel testing for hereditary cancer risk, independent of current testing guidelines-38.7% of individuals would not have met National Comprehensive Cancer Network criteria for genetic testing. We identified a total of 2811 pathogenic variants in 2698 individuals for an overall pathogenic frequency of 11.6% (9.1%, excluding common low-penetrance alleles). Among individuals of Ashkenazi Jewish descent, three-quarters of pathogenic variants were outside of the three common BRCA1 and BRCA2 founder alleles. Across all ethnic groups, pathogenic variants in BRCA1 and BRCA2 occurred most frequently, but the contribution of pathogenic variants in other genes on the panel varied. Finally, we found that 21.7% of individuals with pathogenic variants in genes with well-established genetic testing recommendations did not meet corresponding National Comprehensive Cancer Network criteria. Taken together, the results indicate that more individuals are at genetic risk for hereditary cancer than are identified by current testing guidelines and/or use of single-gene or single-site testing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elaine Chen
- Color Genomics, Inc., Burlingame, California
| | - Zheng Tan
- Color Genomics, Inc., Burlingame, California
| | | | - Jack Ji
- Color Genomics, Inc., Burlingame, California
| | | | | |
Collapse
|
37
|
de Mesquita GHA, Carvalho BJ, de Almeida Medeiros KA, Nii F, Martines DR, Pipek LZ, Jardim YJ, Waisberg DR, Obara MT, Sitnik R, Meyer A, Mangueira CLP. Intussusception reveals MUTYH-associated polyposis syndrome and colorectal cancer: a case report. BMC Cancer 2019; 19:324. [PMID: 30953464 PMCID: PMC6451307 DOI: 10.1186/s12885-019-5505-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We are reporting a rare case of MUTYH-associated polyposis, a colorectal cancer hereditary syndrome, diagnosticated after an intussusception. Colorectal cancer is an important cause of cancer related mortality that can be manifested by an intussusception, a rare occurrence in adults and almost always related to tumors. Approximately 5% of colorectal cancers can be attributed to syndromes known to cause hereditary colorectal cancer, such as MUTYH-associated polyposis, autosomal genetic syndrome associated with this disease. CASE PRESENTATION We present the case of a 44 years old male, that sought medical consultation with a complaint of abdominal discomfort, that after five days changed its characteristics. The patient was sent to the emergency department were a CT-scan revealed intestinal sub-occlusion by ileocolic invagination. Right colectomy was carried out. The anatomic-pathological examination revealed a moderately differentiated mucinous adenocarcinoma and multiples sessile polyps, which led to the suspicion of a genetic syndrome. In the genetics analysis two mutations were observed in the MUTYH gene, and MUTYH-associated polyposis was diagnosticated. CONCLUSION This case demonstrates the importance of meticulous analysis of the patient examinations results to identify possible discrete alterations that can lead to improved understanding of disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniel Reis Waisberg
- Departamento de Gastroenterologia, Hospital das Clínicas, HCFMUSP, São Paulo, Brazil
| | | | | | - Alberto Meyer
- Departamento de Gastroenterologia, Hospital das Clínicas, HCFMUSP, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | |
Collapse
|
38
|
Abstract
OBJECTIVES To review the most common hereditary colorectal cancer syndromes with known associated mutated genes, associated cancer risks, and current screening and prevention current. DATA SOURCES Online search of PubMed, EBSCOhost, and Medline, review of the literature for each syndrome described. CONCLUSION Hereditary colon cancer accounts for approximately 10% of all colorectal cancers in the United States. There are multiple hereditary colorectal cancer syndromes known with respective associated genetic mutations, cancer risks, and screening and prevention recommendations. IMPLICATIONS FOR NURSING PRACTICE Nurses at all levels of practice need to be knowledgeable about the various hereditary colorectal cancer syndromes to guide appropriate referral to a genetics professional and to provide appropriate care to these high-risk individuals.
Collapse
|
39
|
Rizzolo P, Silvestri V, Bucalo A, Zelli V, Valentini V, Catucci I, Zanna I, Masala G, Bianchi S, Spinelli AM, Tommasi S, Tibiletti MG, Russo A, Varesco L, Coppa A, Calistri D, Cortesi L, Viel A, Bonanni B, Azzollini J, Manoukian S, Montagna M, Radice P, Palli D, Peterlongo P, Ottini L. Contribution of MUTYH Variants to Male Breast Cancer Risk: Results From a Multicenter Study in Italy. Front Oncol 2018; 8:583. [PMID: 30564557 PMCID: PMC6288482 DOI: 10.3389/fonc.2018.00583] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Inherited mutations in BRCA1, and, mainly, BRCA2 genes are associated with increased risk of male breast cancer (MBC). Mutations in PALB2 and CHEK2 genes may also increase MBC risk. Overall, these genes are functionally linked to DNA repair pathways, highlighting the central role of genome maintenance in MBC genetic predisposition. MUTYH is a DNA repair gene whose biallelic germline variants cause MUTYH-associated polyposis (MAP) syndrome. Monoallelic MUTYH variants have been reported in families with both colorectal and breast cancer and there is some evidence on increased breast cancer risk in women with monoallelic variants. In this study, we aimed to investigate whether MUTYH germline variants may contribute to MBC susceptibility. To this aim, we screened the entire coding region of MUTYH in 503 BRCA1/2 mutation negative MBC cases by multigene panel analysis. Moreover, we genotyped selected variants, including p.Tyr179Cys, p.Gly396Asp, p.Arg245His, p.Gly264Trpfs*7, and p.Gln338His, in a total of 560 MBC cases and 1,540 male controls. Biallelic MUTYH pathogenic variants (p.Tyr179Cys/p.Arg241Trp) were identified in one MBC patient with phenotypic manifestation of adenomatous polyposis. Monoallelic pathogenic variants were identified in 14 (2.5%) MBC patients, in particular, p.Tyr179Cys was detected in seven cases, p.Gly396Asp in five cases, p.Arg245His and p.Gly264Trpfs*7 in one case each. The majority of MBC cases with MUTYH pathogenic variants had family history of cancer including breast, colorectal, and gastric cancers. In the case-control study, an association between the variant p.Tyr179Cys and increased MBC risk emerged by multivariate analysis [odds ratio (OR) = 4.54; 95% confidence interval (CI): 1.17-17.58; p = 0.028]. Overall, our study suggests that MUTYH pathogenic variants may have a role in MBC and, in particular, the p.Tyr179Cys variant may be a low/moderate penetrance risk allele for MBC. Moreover, our results suggest that MBC may be part of the tumor spectrum associated with MAP syndrome, with implication in the clinical management of patients and their relatives. Large-scale collaborative studies are needed to validate these findings.
Collapse
Affiliation(s)
- Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Zelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Irene Catucci
- Genome Diagnostics Program, IFOM - The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Ines Zanna
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | | | - Stefania Tommasi
- Molecular Genetics Laboratory, Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Maria Grazia Tibiletti
- Dipartimento di Patologia, ASST Settelaghi and Centro di Ricerca per lo studio dei tumori eredo-familiari, Università dell'Insubria, Varese, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | | | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Calistri
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | - Laura Cortesi
- Department of Oncology and Haematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Viel
- Unità di Oncogenetica e Oncogenomica Funzionale, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Jacopo Azzollini
- Unità di Genetica Medica, Dipartimento di Oncologia Medica ed Ematologia, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Siranoush Manoukian
- Unità di Genetica Medica, Dipartimento di Oncologia Medica ed Ematologia, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Paolo Radice
- Unità di Ricerca Medicina Predittiva: Basi molecolari Rischio genetico e Test genetici, Dipartimento di Ricerca, Fondazione IRCCS Istituto Nazionale Tumori (INT), Milan, Italy
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
40
|
Abstract
A complex DNA repair machinery has evolved to protect genomic integrity in the face of a myriad of DNA damage sources. When DNA repair fails, this damage can lead to carcinogenesis and tumor genomic instability. Indeed, many heritable cancer predisposition syndromes are attributable to germline defects in DNA repair pathways. On the other hand, these defects may also portend particular vulnerabilities of the cancer and may be exploited therapeutically. Most recently this has been demonstrated in the case of mismatch repair-deficient cancers, in which the immune checkpoint inhibitors have been demonstrated to be highly active. This observation has paved the way for further research investigating other sources of genomic instability that may serve as biomarkers to select patients for immunotherapy.
Collapse
|
41
|
McDonnell KJ, Chemler JA, Bartels PL, O'Brien E, Marvin ML, Ortega J, Stern RH, Raskin L, Li GM, Sherman DH, Barton JK, Gruber SB. A human MUTYH variant linking colonic polyposis to redox degradation of the [4Fe4S] 2+ cluster. Nat Chem 2018; 10:873-880. [PMID: 29915346 PMCID: PMC6060025 DOI: 10.1038/s41557-018-0068-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 04/20/2018] [Indexed: 12/26/2022]
Abstract
The human DNA repair enzyme MUTYH excises mispaired adenine residues in oxidized DNA. Homozygous MUTYH mutations underlie the autosomal, recessive cancer syndrome MUTYH-associated polyposis. We report a MUTYH variant, p.C306W (c.918C>G), with a tryptophan residue in place of native cysteine, that ligates the [4Fe4S] cluster in a patient with colonic polyposis and family history of early age colon cancer. In bacterial MutY, the [4Fe4S] cluster is redox active, allowing rapid localization to target lesions by long-range, DNA-mediated signalling. In the current study, using DNA electrochemistry, we determine that wild-type MUTYH is similarly redox-active, but MUTYH C306W undergoes rapid oxidative degradation of its cluster to [3Fe4S]+, with loss of redox signalling. In MUTYH C306W, oxidative cluster degradation leads to decreased DNA binding and enzyme function. This study confirms redox activity in eukaryotic DNA repair proteins and establishes MUTYH C306W as a pathogenic variant, highlighting the essential role of redox signalling by the [4Fe4S] cluster.
Collapse
Affiliation(s)
- Kevin J McDonnell
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Joseph A Chemler
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Phillip L Bartels
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Elizabeth O'Brien
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Monica L Marvin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph H Stern
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Departments of Medicinal Chemistry, Chemistry and Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Stephen B Gruber
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Jenkins MA, Win AK, Templeton AS, Angelakos MS, Buchanan DD, Cotterchio M, Figueiredo JC, Thibodeau SN, Baron JA, Potter JD, Hopper JL, Casey G, Gallinger S, Le Marchand L, Lindor NM, Newcomb PA, Haile RW. Cohort Profile: The Colon Cancer Family Registry Cohort (CCFRC). Int J Epidemiol 2018; 47:387-388i. [PMID: 29490034 PMCID: PMC5913593 DOI: 10.1093/ije/dyy006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/19/2017] [Accepted: 01/15/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Mark A Jenkins
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Genetic Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Allyson S Templeton
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Maggie S Angelakos
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Genetic Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
- Colorectal Oncogenomics Group, University of Melbourne, Parkville, VIC, Australia
| | | | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, and Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Robert W Haile
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
43
|
Yanus G, Akhapkina T, Ivantsov A, Preobrazhenskaya E, Aleksakhina S, Bizin I, Sokolenko A, Mitiushkina N, Kuligina E, Suspitsin E, Venina A, Holmatov M, Zaitseva O, Yatsuk O, Pashkov D, Belyaev A, Togo A, Imyanitov E, Iyevleva A. Spectrum of APC and MUTYH germ-line mutations in Russian patients with colorectal malignancies. Clin Genet 2018; 93:1015-1021. [DOI: 10.1111/cge.13228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Affiliation(s)
- G.A. Yanus
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
- St.-Petersburg Pediatric Medical University, Department of Medical Genetics; St.-Petersburg 194100 Russia
| | - T.A. Akhapkina
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
- St.-Petersburg Pediatric Medical University, Department of Medical Genetics; St.-Petersburg 194100 Russia
| | - A.O. Ivantsov
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
- St.-Petersburg Pediatric Medical University, Department of Medical Genetics; St.-Petersburg 194100 Russia
| | - E.V. Preobrazhenskaya
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
- St.-Petersburg Pediatric Medical University, Department of Medical Genetics; St.-Petersburg 194100 Russia
| | - S.N. Aleksakhina
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
| | - I.V. Bizin
- Peter the Great St.-Petersburg Polytechnic University, Department of Bioinformatics; St.-Petersburg 195251 Russia
| | - A.P. Sokolenko
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
- St.-Petersburg Pediatric Medical University, Department of Medical Genetics; St.-Petersburg 194100 Russia
| | - N.V. Mitiushkina
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
| | - E.Sh. Kuligina
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
| | - E.N. Suspitsin
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
- St.-Petersburg Pediatric Medical University, Department of Medical Genetics; St.-Petersburg 194100 Russia
| | - A.R. Venina
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
| | - M.M. Holmatov
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
- St.-Petersburg Pediatric Medical University, Department of Medical Genetics; St.-Petersburg 194100 Russia
| | - O.A. Zaitseva
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
| | - O.S. Yatsuk
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
| | - D.V. Pashkov
- S.M. Kirov Military Medical Academy, Department of Surgery; St.-Petersburg 194044 Russia
| | - A.M. Belyaev
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
- S.M. Kirov Military Medical Academy, Department of Surgery; St.-Petersburg 194044 Russia
| | - A.V. Togo
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
| | - E.N. Imyanitov
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
- St.-Petersburg Pediatric Medical University, Department of Medical Genetics; St.-Petersburg 194100 Russia
- I.I. Mechnikov North-Western Medical University, Department of Oncology; St.-Petersburg 191015 Russia
- St.-Petersburg State University, Faculty of Medicine, Department of Oncology; St.-Petersburg 199034 Russia
| | - A.G. Iyevleva
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology; St.-Petersburg 197758 Russia
- St.-Petersburg Pediatric Medical University, Department of Medical Genetics; St.-Petersburg 194100 Russia
| |
Collapse
|
44
|
Characteristics of MUTYH variants in Japanese colorectal polyposis patients. Int J Clin Oncol 2018; 23:497-503. [PMID: 29330641 DOI: 10.1007/s10147-017-1234-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The base excision repair gene MUTYH is the causative gene of colorectal polyposis syndrome, which is an autosomal recessive disorder associated with a high risk of colorectal cancer. Since few studies have investigated the genotype-phenotype association in Japanese patients with MUTYH variants, the aim of this study was to clarify the clinicopathological findings in Japanese patients with MUTYH gene variants who were detected by screening causative genes associated with hereditary colorectal polyposis. METHODS After obtaining informed consent, genetic testing was performed using target enrichment sequencing of 26 genes, including MUTYH. RESULTS Of the 31 Japanese patients with suspected hereditary colorectal polyposis, eight MUTYH variants were detected in five patients. MUTYH hotspot variants known for Caucasians, namely p.G396D and p.Y179D, were not among the detected variants.Of five patients, two with biallelic MUTYH variants were diagnosed with MUTYH-associated polyposis, while two others had monoallelic MUTYH variants. One patient had the p.P18L and p.G25D variants on the same allele; however, supportive data for considering these two variants 'pathogenic' were lacking. CONCLUSIONS Two patients with biallelic MUTYH variants and two others with monoallelic MUTYH variants were identified among Japanese colorectal polyposis patients. Hotspot variants of the MUTYH gene for Caucasians were not hotspots for Japanese patients.
Collapse
|
45
|
Li CG, Jin P, Yang L, Zang WC, Kang Q, Li N, He Y, Xu J, Zhang C, Wang X, Sheng JQ. Germline mutations in patients with multiple colorectal polyps in China. J Gastroenterol Hepatol 2017; 32:1723-1729. [PMID: 28251689 DOI: 10.1111/jgh.13776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/12/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Multiple colorectal polyps are relevant in hereditary colorectal cancer (CRC) syndromes, which are thought to be caused by multiple events including germline mutations. This study was aimed to characterize germline mutations in Chinese patients with multiple colorectal polyps. METHODS Patients with > 10 colorectal polyps at the Department of Gastroenterology of the PLA Army General Hospital were enrolled from January 2014 to December 2015. These patients were divided into the high-risk, moderate-risk, and mild-risk groups. White blood cell samples were collected, and DNA was extracted to sequence a panel of 19 genes previously associated with CRC by next-generation sequencing. RESULTS A total of 96 patients were enrolled in the study. Pathogenic germline mutations were found in 24 (24/33, 72.73%), nine (9/24, 37.5%), and three patients (3/39, 7.7%) in the high-risk, moderate-risk, and mild-risk groups, respectively. Based on the results given, we suggested a strategy about gene sequencing test for the patients with multiple polyps, and the sensitivity and specificity of the screening strategy were 97% and 57%, respectively. Four of eight patients with MUTYH pathogenic germline mutations had the c.A934-2G monoallelic germline mutation, whereas three of eight patients had the C55T MUTYH germline mutation. Concurrent pathogenic germline mutations in APC and MUTYH were also observed. CONCLUSIONS A genetic screening strategy comprising 19 genes was effective to screen for hereditary CRC syndromes in patients with multiple colorectal polyps. The MUTYH germline mutation hotspots in Chinese patients may be different from those in Caucasian patients.
Collapse
Affiliation(s)
- Chen-Guang Li
- The Third Military Medical University, Chongqing, China.,Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Peng Jin
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Lang Yang
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Wan-Chun Zang
- Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Qian Kang
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Na Li
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Yuqi He
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Junfeng Xu
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Chen Zhang
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Xin Wang
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Jian-Qiu Sheng
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| |
Collapse
|
46
|
The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Inherited Polyposis Syndromes. Dis Colon Rectum 2017; 60:881-894. [PMID: 28796726 PMCID: PMC5701653 DOI: 10.1097/dcr.0000000000000912] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Li FF, Zhao ZX, Yan P, Wang S, Liu Z, Zhang Q, Zhang XN, Sun CH, Wang XS, Wang GY, Liu SL. Different effection of p.1125Val>Ala and rs11954856 in APC on Wnt signaling pathway. Oncotarget 2017; 8:70854-70864. [PMID: 29050326 PMCID: PMC5642601 DOI: 10.18632/oncotarget.20106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common and fatal forms of solid tumors worldwide and more than two thirds of CRC and adenomas patients have APC gene mutations. APC is a key regulator in the Wnt/β-catenin signaling pathway but its roles in CRC remains to be elucidated. In this study, we compared APC genes between CRC patients and controls to determine possible associations of nucleotide changes in the APC gene with the pathways involved in CRC pathogenesis. All participants received physical and enteroscopic examinations. The APC gene was sequenced for 300 Chinese Han CRC patients and 411 normal controls, and the expression levels of genes in the signaling pathway were analyzed using Western Blotting. Statistical analyses were conducted using SPSS (version 19.0) software. We found that rs11954856 in the APC gene was associated with colorectal cancer and could increase the expression levels of APC, β-catenin, TCF7L1, TCF7L2 and LEF1 genes in the pathway in the CRC patients, demonstrating the involvement of APC in the pathological processes leading to CRC.
Collapse
Affiliation(s)
- Fei-Feng Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Zhi-Xun Zhao
- Department of Colorectal Surgery of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng Yan
- Department of Colorectal Surgery of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Song Wang
- Department of Colorectal Surgery of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zheng Liu
- Department of Colorectal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Zhang
- Department of Antibiotics, Heilongjiang Province Food and Drug Inspection Testing Institute, Harbin, China
| | - Xiao-Ning Zhang
- Department of Antibiotics, Heilongjiang Province Food and Drug Inspection Testing Institute, Harbin, China
| | - Chang-Hao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xi-Shan Wang
- Department of Colorectal Surgery of the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Colorectal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gui-Yu Wang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Colorectal Surgery of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
48
|
O'Leary E, Iacoboni D, Holle J, Michalski ST, Esplin ED, Yang S, Ouyang K. Expanded Gene Panel Use for Women With Breast Cancer: Identification and Intervention Beyond Breast Cancer Risk. Ann Surg Oncol 2017; 24:3060-3066. [PMID: 28766213 PMCID: PMC5594040 DOI: 10.1245/s10434-017-5963-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 12/12/2022]
Abstract
Background Clinicians ordering multi-gene next-generation sequencing panels for hereditary breast cancer risk have a variety of test panel options. Many panels include lesser known breast cancer genes or genes associated with other cancers. The authors hypothesized that using broader gene panels increases the identification of clinically significant findings, some relevant and others incidental to the testing indication. They examined clinician ordering patterns and compared the yield of pathogenic or likely pathogenic (P/LP) variants in non-BRCA genes of female breast cancer patients. Methods This study analyzed de-identified personal and family histories in 1085 breast cancer cases with P/LP multi-gene panel findings in non-BRCA cancer genes and sorted them into three groups by the panel used for testing: group A (breast cancer genes only), group B (commonly assessed cancers: breast, gynecologic, and gastrointestinal), and group C (a more expanded set of tumors). The frequency of P/LP variants in genes with established management guidelines was compared and evaluated for consistency with personal and family histories. Results This study identified 1131 P/LP variants and compared variants in clinically actionable genes for breast and non-breast cancers. Overall, 91.5% of these variants were in genes with management guidelines. Nearly 12% were unrelated to personal or family history. Conclusion Broader panels were used for 85.6% of our cohort (groups B and C). Although pathogenic variants in non-BRCA genes are reportedly rare, the study found that most were in clinically actionable genes. Expanded panel testing improved the identification of hereditary cancer risk. Small, breast-limited panels may miss clinically relevant findings in genes associated with other heritable cancers. Electronic supplementary material The online version of this article (doi:10.1245/s10434-017-5963-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin O'Leary
- , 1400 16th Street, San Francisco, CA, 94103, USA.
| | | | | | | | | | - Shan Yang
- , 1400 16th Street, San Francisco, CA, 94103, USA
| | - Karen Ouyang
- , 1400 16th Street, San Francisco, CA, 94103, USA
| |
Collapse
|
49
|
Adenomatous Polyposis Syndromes: Familial Adenomatous Polyposis and MutYH-Associated Polyposis. CURRENT COLORECTAL CANCER REPORTS 2017. [DOI: 10.1007/s11888-017-0379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Boiteux S, Coste F, Castaing B. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med 2017; 107:179-201. [PMID: 27903453 DOI: 10.1016/j.freeradbiomed.2016.11.042] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 01/23/2023]
Abstract
Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases. In prokaryotic and eukaryotic cells, 8-oxoG is primarily repaired by the base excision repair pathway (BER) initiated by a DNA N-glycosylase, Fpg and OGG1, respectively. In Escherichia coli, Fpg cooperates with MutY and MutT to prevent 8-oxoG-induced mutations, the "GO-repair system". In Saccharomyces cerevisiae, OGG1 cooperates with nucleotide excision repair (NER), mismatch repair (MMR), post-replication repair (PRR) and DNA polymerase η to prevent mutagenesis. Human and mouse cells mobilize all these pathways using OGG1, MUTYH (MutY-homolog also known as MYH), MTH1 (MutT-homolog also known as NUDT1), NER, MMR, NEILs and DNA polymerases η and λ, to prevent 8-oxoG-induced mutations. In fact, mice deficient in both OGG1 and MUTYH develop cancer in different organs at adult age, which points to the critical impact of 8-oxoG repair on genetic stability in mammals. In this review, we will focus on Fpg and OGG1 proteins, their biochemical and structural properties as well as their biological roles. Other DNA N-glycosylases able to release 8-oxoG from damaged DNA in various organisms will be discussed. Finally, we will report on the role of OGG1 in human disease and the possible use of 8-oxoG DNA N-glycosylases as therapeutic targets.
Collapse
Affiliation(s)
- Serge Boiteux
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| | - Franck Coste
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| |
Collapse
|