1
|
Lim AG, Yan Chan AH. Pharmacogenomic Considerations in Antibiotic Therapy: A Pathway to Personalized Medicines with Antibiotic Use. Nurs Clin North Am 2025; 60:321-332. [PMID: 40345763 DOI: 10.1016/j.cnur.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Antibiotics have revolutionized medicine, but their use is not without challenges. The efficacy and safety of antibiotics can vary significantly among individuals due to genetic differences. Genetic variation can influence the risk of antibiotic-related adverse effects, and understanding genetics can improve our ability to identify and manage these risks. Pharmacogenomics, the study of how genes affect a person's response to drugs, is emerging as a crucial field in optimizing antibiotic therapy. Pharmacogenomic elements may have a potential role in optimizing drug therapy and reducing adverse drug reactions.
Collapse
Affiliation(s)
- Anecita Gigi Lim
- School of Nursing, The University of Auckland, Building 505 Level 2, 85 Park Road, Grafton, Auckland, New Zealand.
| | - Amy Hai Yan Chan
- School of Pharmacy, The University of Auckland, Building 505 Level 3, 85 Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
2
|
Elzagallaai AA, Abuzgaia AM, Rieder MJ. A comprehensive update on the human leukocyte antigen and idiosyncratic adverse drug reactions. Expert Opin Drug Metab Toxicol 2025; 21:551-562. [PMID: 39841586 DOI: 10.1080/17425255.2025.2455388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
INTRODUCTION Idiosyncratic adverse drug reactions (IADRs) or drug hypersensitivity reactions (DHRs) represent a major health problem because they are unpredictable and can be severe with potential life-long or even lethal consequences. Their pathophysiology is not clear but thought to be immune mediated, supported by the significant statistical association of these reactions with specific alleles of the human leukocyte antigen (HLA) gene. AREA COVERED This comprehensive update review summarizes the currently available evidence on the role of HLA gene locus in IADRs and discusses the present understanding of the pathophysiology of IADRs. We searched the available literature in PubMed and Google Scholar with no date restriction for publications on HLA and adverse drug reactions. Findings are summarized and discussed in the context of the currently available evidence. EXPERT OPINION The role of the immune system in IADRs and the role of pharmacogenetic testing in this field is evident. HLA genetic testing is very promising in the management of these reactions. Many obstacles seem to prevent pharmacogenetic testing to meet its full potential including cost and health care providers' education. Further work in needed to provide more evidence and allow widespread use of pharmacogenetic testing in the clinical practice.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Departments of Paediatrics, and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Awatif M Abuzgaia
- Departments of Paediatrics, and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael J Rieder
- Departments of Paediatrics, and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Björnsson HK, Björnsson ES. Risk factors and prediction for DILI in clinical practice. Expert Opin Drug Metab Toxicol 2025; 21:579-587. [PMID: 39957436 DOI: 10.1080/17425255.2025.2468200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/13/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION Drug-induced liver injury is an important adverse effect and can be caused by various medications, including novel therapeutic agents. The risk stratification of patients susceptible to DILI is a growing field. AREAS COVERED The current article highlights new studies on risk stratification regarding risk factors of DILI, prediction of liver injury, and predictors of severe outcomes. Studies on patient demographic and genetic risk factors are discussed, in addition to the potential role of concomitant medications that may affect the risk of DILI. EXPERT OPINION Although much is known about patient risk factors for DILI, a better combination of these factors into risk scores is needed to predict which patients are particularly susceptible. Knowledge of these risk factors might determine drug treatment in the near future, as well as the need for routine monitoring of liver tests.
Collapse
Affiliation(s)
- Helgi Kristinn Björnsson
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Einar Stefan Björnsson
- Division of Gastroenterology and Hepatology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
4
|
Bock K, Engel B, Jaeckel E, Wedemeyer H, Mederacke I, Mederacke YS. LKM Immunofluorescence Is Associated with DILI, Especially after Metamizole Intake. Dig Dis 2025:1-11. [PMID: 40159290 PMCID: PMC12060832 DOI: 10.1159/000545507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) is a rare but potentially serious clinical condition. One phenotype of DILI is termed drug-induced autoimmune like hepatitis (DI-ALH) that presents with laboratory and histological features indistinguishable from autoimmune hepatitis. Liver kidney microsomal antibodies (LKM-antibodies) are common in the diagnosis of AIH but were also described to be associated with halothane-induced DILI. Also, the antigens of anti-LKM-1 and anti-LKM-2 belong to the cytochrome P450 enzyme family that is involved in the metabolism of various drugs. Therefore, we aimed to study the impact of LKM-antibodies in the diagnostic work-up of suspected DILI in a large cohort of patients with liver injury in a tertiary care centre. METHODS We screened a large single centre hospital database and retrospectively identified 63,300 cases with liver injury as defined: AST or ALT >3 upper limit of normal (ULN) or AP or TBI >2 ULN. Of those, 82 cases with LKM immunofluorescence positivity (titre ≥1: 160) were identified, of which 64 patients fulfilled the inclusion criteria for this study. RESULTS Positive LKM immunofluorescence was associated with drug-induced autoimmune-like hepatitis (DI-ALH). Metamizole association was identified in half of the patients (n = 33, 52%). Eight patients with metamizole associated DI-ALHs required liver transplantation and 1 patient died. CONCLUSION DI-ALH, especially after metamizole administration, can be a reason for a positivity in LKM immunofluorescence tests. Metamizole DI-ALH has a high liver-related mortality.
Collapse
Affiliation(s)
- Kilian Bock
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover, Germany,
| | - Bastian Engel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover, Germany
| | - Elmar Jaeckel
- Ajmera Transplant Centre, Toronto General Hospital, UHN, University of Toronto, Toronto, Ontario, Canada
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover, Germany
| | - Ingmar Mederacke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover, Germany
| | - Young-Seon Mederacke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover, Germany
| |
Collapse
|
5
|
Kozielewicz DM, Stalke P, Skrzypek J. Drug-induced liver injury. Part I: Classification, diagnosis and treatment. Clin Exp Hepatol 2025; 11:25-33. [PMID: 40303582 PMCID: PMC12035709 DOI: 10.5114/ceh.2025.148329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/09/2024] [Indexed: 05/02/2025] Open
Abstract
Drug-induced liver injury (DILI) is a growing clinical problem. Antibiotics remain the most common cause of DILI in Europe. Their clinical spectrum is very broad, from asymptomatic to acute liver failure. Currently, DILI is categorized as hepatocellular (R ≥ 5), cholestatic (R ≤ 2) or mixed (R = 2-5) injury based on the serum alanine aminotransferase (ALT)/alkaline phosphatase (ALP) ratio. DILI is a diagnosis of exclusion and requires a wide differential diagnosis. The most important step in management is discontinuation of the drug suspected of causing liver damage. The list of specific antidotes that eliminate the effects of hepatotoxins is unfortunately very short. In symptomatic treatment, glucocorticosteroids and ursodeoxycholic acid have been used in selected cases. Liver transplantation is an optional treatment in patients with acute liver failure.
Collapse
Affiliation(s)
- Dorota M. Kozielewicz
- Department of Infectious Diseases and Hepatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
- Department of Liver Diseases, Provincial Infectious Disease Hospital of T. Browicz, Bydgoszcz, Poland
| | - Piotr Stalke
- Department of Infectious Disease, Medical University of Gdansk, Poland
| | - Julita Skrzypek
- Department of Liver Diseases, Provincial Infectious Disease Hospital of T. Browicz, Bydgoszcz, Poland
| |
Collapse
|
6
|
Maris BR, Grama A, Pop TL. Drug-Induced Liver Injury-Pharmacological Spectrum Among Children. Int J Mol Sci 2025; 26:2006. [PMID: 40076629 PMCID: PMC11901067 DOI: 10.3390/ijms26052006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Drug-induced liver injury (DILI) is one of the main causes of acute liver failure in children. Its incidence is probably underestimated, as specific diagnostic tools are currently lacking. Over 1000 known drugs cause DILI, and the list is expanding. The aim of this review is to describe DILI pathogenesis and emphasize the drugs accountable for child DILI in order to aid its recognition. Intrinsic DILI is well described in terms of mechanism, incriminated drugs, and toxic dose. Conversely, idiosyncratic DILI (iDILI) is unpredictable, occurring as a result of a particular response to drug administration, and its occurrence cannot be foreseen in clinical studies. Half of pediatric iDILI cases are linked to antibiotics, mostly amoxicillin-clavulanate, in the immune-allergic group, while autoimmune DILI is the hallmark of minocycline and nitrofurantoin. Secondly, antiepileptics are responsible for 20% of pediatric iDILI cases, children being more prone to iDILI caused by these agents than adults. A similar tendency was observed in anti-tuberculosis drugs, higher incidences being reported in children below three years old. Current data show growing cases of iDILI related to antineoplastic agents, atomoxetine, and albendazole, so that it is advisable for clinicians to maintain a high index of suspicion regarding iDILI.
Collapse
Affiliation(s)
- Bianca Raluca Maris
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (B.R.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Ahmad J, Li YJ, Phillips E, Dellinger A, Hayashi PH, Chalasani N, Fontana RJ, Kleiner DE, Barnhart HX, Hoofnagle JH. Liver Injury due to Intravenous Methylprednisolone in the Drug-Induced Liver Injury Network. Liver Int 2025; 45:e16242. [PMID: 39803998 PMCID: PMC11790010 DOI: 10.1111/liv.16242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND AND AIMS Short courses of intravenous (iv) methylprednisolone (MP) can cause drug induced liver injury (DILI). The aim of this study was to assess the clinical features and HLA associations of MP-related DILI enrolled in the US DILI Network (DILIN). METHODS DILIN cases with MP as a suspected drug were reviewed. DILIN causality scoring was assigned on a 5-point scale (definite, highly likely, probable, possible, unlikely). All cases with MP causality scores of definite, highly likely or probable were analysed. HLA data from direct sequencing were analysed. RESULTS Eleven cases of definite, highly likely, or probable MP DILI were identified. The median age was 48 years; 73% were female; median latency to onset was 30 days; 55% were jaundiced; and all had hepatocellular injury with one patient requiring transplantation. Nine of the 11 cases were in patients with multiple sclerosis (MS). Liver biopsies in 7 cases revealed mild acute hepatitis with/without cholestasis. HLA data demonstrated that HLA-DRB1*15:01, the primary HLA class II allele associated with MS was over-represented. HLA-DQB1*06:02-HLA-DQA1*01:02 which is haplotypic with the HLA-DRB1*15 haplotype was more common in the MP DILI cases compared to other DILI controls (p = 0.03) and to DILI controls exposed to MP (p = 0.04). CONCLUSION MP DILI is characterised by hepatocellular injury, short latency and generally rapid recovery. There was no independent HLA haplotype associated with MP DILI.
Collapse
Affiliation(s)
- Jawad Ahmad
- Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke School of Medicine, Durham, NC
| | | | - Andrew Dellinger
- Department of Biostatistics and Bioinformatics, Duke School of Medicine, Durham, NC
| | - Paul H. Hayashi
- Food and Drug Administration, University of Michigan, Ann Arbor, MI
| | - Naga Chalasani
- Indiana University, University of Michigan, Ann Arbor, MI
| | - Robert J. Fontana
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
| | - David E. Kleiner
- Laboratory of Pathology, Intramural Division, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD
| | | | - Jay H. Hoofnagle
- Liver Disease Research Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD
| |
Collapse
|
8
|
Li K, Lauschke VM, Zhou Y. Molecular docking to investigate HLA-associated idiosyncratic drug reactions. Drug Metab Rev 2025; 57:67-90. [PMID: 39811883 DOI: 10.1080/03602532.2025.2453521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Idiosyncratic drug reactions (IDRs) pose severe threats to patient health. Unlike conventionally dose-dependent side effects, they are unpredictable and more frequently manifest as life-threatening conditions, such as severe cutaneous adverse reactions (SCARs) and drug-induced liver injury (DILI). Some HLA alleles, such as HLA-B*57:01, HLA-B*15:02, and HLA-B*58:01, are known risk factors for adverse reactions induced by multiple drugs. However, the structural basis underlying most HLA-associated adverse events remains poorly understood. This review summarizes the application of molecular docking to reveal the mechanisms of IDR-related HLA associations, covering studies using this technique to examine drug-HLA binding pockets and identify key binding residues. We provide a comprehensive overview of risk HLA alleles associated with IDRs, followed by a discussion of the utility and limitations of commonly used molecular docking tools in simulating complex molecular interactions within the HLA binding pocket. Through examples, including the binding of abacavir and flucloxacillin to HLA-B*57:01, carbamazepine to HLA-B*15:02, and allopurinol to HLA-B*58:01, we demonstrate how docking analyses can provide insights into the drug and HLA allele-specificity of adverse events. Furthermore, the use of molecular docking to screen drugs with unknown IDR liability is examined, targeting either multiple HLA variants or a single specific variant. Despite multiple challenges, molecular docking presents a promising toolkit for investigating drug-HLA interactions and understanding IDR mechanisms, with significant implications for preemptive HLA typing and safer drug development.
Collapse
Affiliation(s)
- Kejun Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Margarete Fischer-Bosch Institute of Clinical Pharmacology (IKP), Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Hammond S, Meng X, Barber J, Mosedale M, Chadwick A, Watkins PB, Naisbitt DJ. Tolvaptan safety in autosomal-dominant polycystic kidney disease; a focus on idiosyncratic drug-induced liver injury liabilities. Toxicol Sci 2025; 203:11-27. [PMID: 39495155 DOI: 10.1093/toxsci/kfae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Tolvaptan is a vasopressin V2 receptor antagonist which has proven to be an effective and mostly well-tolerated agent for the treatment of autosomal-dominant polycystic kidney disease. However, its administration is associated with rare but serious idiosyncratic liver injury, which has warranted a black box warning on the drug labels and frequent monitoring of liver blood tests in the clinic. This review outlines mechanistic investigations that have been conducted to date and constructs a working narrative as an explanation for the idiosyncratic drug-induced liver injury (IDILI) events that have occurred thus far. Potential risk factors which may contribute to individual susceptibility to DILI reactions are addressed, and key areas for future investigative/clinical development are highlighted.
Collapse
Affiliation(s)
- Sean Hammond
- Department of Pharmacology and Therapeutics, Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, United Kingdom
- ApconiX, Alderley Edge, SK10 4TG, United Kingdom
| | - Xiaoli Meng
- Department of Pharmacology and Therapeutics, Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Jane Barber
- ApconiX, Alderley Edge, SK10 4TG, United Kingdom
| | - Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States
| | - Amy Chadwick
- Department of Pharmacology and Therapeutics, Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States
| | - Dean J Naisbitt
- Department of Pharmacology and Therapeutics, Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| |
Collapse
|
10
|
Daly AK. Genetic and Genomic Approaches to the Study of Drug-Induced Liver Injury. Liver Int 2025; 45:e16191. [PMID: 39704445 DOI: 10.1111/liv.16191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
Idiosyncratic hepatotoxicity induced by prescribed drugs has been known since the early 20th century. Identifying risk factors, including genetic factors, that trigger this drug-induced liver injury (DILI) has been an important priority for many years, both to prevent drugs that cause liver injury being licensed and as a potential means of preventing at-risk patients being prescribed causative drugs. Improved methods for genomic analysis, particularly the development of genome-wide association studies, have facilitated the identification of genomic risk factors for DILI, but, to date, there are only two main examples, liver injury caused by amoxicillin-clavulanate (AC) and by flucloxacillin, where genetic risk factors causing the injury have been identified and replicated with understanding of the underlying mechanism. There has also been progress on identifying genetic risk factors for liver injury caused by other anti-infective agents, herbal remedies and nonsteroidal anti-inflammatory drugs. The majority of genetic risk factors identified to date are specific human leucocyte antigen (HLA) alleles and evidence that these alleles preferentially present self-peptides inappropriately to T cells in the liver has been obtained. Non-HLA genes also contribute to genetic susceptibility, both as co-factors in T-cell responses and, in the case of isoniazid-only, drug metabolism. Polygenic risk scores to predict DILI have been developed, both a simple score that predicts AC injury and complex scores that may be applied to DILI more generally and provide evidence that additional risk factors other than HLA genes exist.
Collapse
Affiliation(s)
- Ann K Daly
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024; 21:869-884. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
12
|
Palupi PD, Wei CY, Chou WH, Lin MR, Wan YJY, Chang WC. Dietary contributions in the genetic variation of liver fibrosis: a genome-wide association study of fibrosis-4 index in the liver fibrosis development. Cell Biosci 2024; 14:141. [PMID: 39578894 PMCID: PMC11583755 DOI: 10.1186/s13578-024-01321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The fibrosis-4 (FIB-4) index is a non-invasive method to assess the severity of liver fibrosis. The development of liver fibrosis is influenced by genetic predisposition and dietary factors. However, the modulating effect of dietary factors on the genetic susceptibility of liver fibrosis remains unclear. The study aims to investigate the role of dietary factors in modulating the genetic susceptibility of liver fibrosis. METHODS Here, we conducted a genome-wide association study (GWAS) of FIB-4 index-directed liver fibrosis risk, adjusted with diet, lifestyle factors, and hepatitis serological markers. The high (N = 1,476) and low (N = 36,735) liver fibrosis risk groups were defined with a FIB-4 > 2.67 and < 1.3, respectively. RESULTS The age-related FIB-4 variation showed subjects with a FIB-4 > 2.67 (3.8%), indicating high fibrosis risk, occurred predominantly among individuals above 60 years old. The multivariable analysis showed that tea intake is significantly associated with a reduced risk of liver fibrosis. The GWAS adjusted for sex, age, age2, dietary factors (tea and coffee consumption, vegetarian preference), lifestyle (alcohol consumption, physical activity), hepatitis serological markers (anti-HCV, HBsAg, HBeAg), and the top ten principal components indicated 25 genome-wide significant signals (p < 5 × 10- 8). Two variants (rs56293029 and rs9389269) were previously associated with the FIB-4 index in alcohol-related cirrhosis, while the 23 SNPs remaining were novel. The rs9399136 (HBS1L) is a protective variant, and rs9274407 (HLA-DQB1) is a risk variant, both contributing to liver fibrosis development. Our results showed that genetic factors play a major role in liver fibrosis, while dietary factors have minor effects on disease progression. Pathway analysis suggested the potential of immune response and hematopoietic systems function in the pathogenesis of liver disease. CONCLUSIONS The studies not only revealed the protective role of rs9399136 (HBS1L) and the risk effect of rs9274407 (HLA-DQB1) toward liver fibrosis in a Taiwanese population, but also demonstrated that individual consumption patterns, such as tea uptake, have a minor impact on liver fibrosis prevention. The pathway analysis from GWAS variants further indicated the importance of immune responses in the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Poppy Diah Palupi
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chun-Yu Wei
- Core Laboratory of Neoantigen Analysis for Personalized Cancer Vaccine, Office of R&D, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Min-Rou Lin
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Jui Yvonne Wan
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei, 11031, Taiwan.
- Integrative Research Center for Critical Care, Department of Pharmacy, Taipei Medical University-Wan-Fang Hospital, Taipei, 11696, Taiwan.
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
| |
Collapse
|
13
|
Zeng X, Li C, Liu Y, Liu W, Hu Y, Chen L, Huang X, Li Y, Hu K, Ouyang D, Rao T. HLA-B*35:01-mediated activation of emodin-specific T cells contributes to Polygonum multiflorum thunb. -induced liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118523. [PMID: 38969149 DOI: 10.1016/j.jep.2024.118523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HLA-B*35:01 has been identified as a risk allele for Polygonum multiflorum Thunb.-induced liver injury (PMLI). However, the immune mechanism underlying HLA-B*35:01-mediated PMLI remains unknown. AIM OF THE STUDY To characterize the immune mechanism of HLA-B*35:01-mediated PMLI. MATERIALS AND METHODS Components of P. multiflorum (PM) bound to the HLA-B*35:01 molecule was screened by immunoaffinity chromatography. Both wild-type mice and HLA-B*35:01 transgenic (TG) mice were treated with emodin. The levels of transaminases, histological changes and T-cell response were assessed. Splenocytes from emodin-treated mice were isolated and cultured in vitro. Phenotypes and functions of T cells were characterized upon drug restimulation using flow cytometry or ELISA. Emodin-pulsed antigen-presenting cells (APCs) or glutaraldehyde-fixed APCs were co-cultured with splenocytes from emodin-treated transgenic mice to detect their effect on T-cell activation. RESULTS Emodin, the main component of PM, could non-covalently bind to the HLA-B*35:01-peptide complexes. TG mice were more sensitive to emodin-induced immune hepatic injury, as manifested by elevated aminotransferase levels, infiltration of inflammatory cells, increased percentage of CD8+T cells and release of effector molecules in the liver. However, these effects were not observed in wild-type mice. An increase in percentage of T cells and the levels of interferon-γ, granzyme B, and perforin was detected in emodin-restimulated splenocytes from TG mice. Anti-HLA-I antibodies inhibited the secretion of these effector molecules induced by emodin. Mechanistically, emodin-pulsed APCs failed to stimulate T cells, while fixed APCs in the presence of emodin could elicit the secretion of T cell effector molecules. CONCLUSION The HLA-B*35:01-mediated CD8+ T cell reaction to emodin through the P-I mechanism may contribute to P. multiflorum-induced liver injury.
Collapse
Affiliation(s)
- Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yuwei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ying Li
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China.
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China.
| |
Collapse
|
14
|
Guo K, van den Beucken T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques. Cell Biosci 2024; 14:134. [PMID: 39488681 PMCID: PMC11531151 DOI: 10.1186/s13578-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Drug-induced liver injury (DILI) refers to drug-mediated damage to the structure and function of the liver, ranging from mild elevation of liver enzymes to severe hepatic insufficiency, and in some cases, progressing to liver failure. The mechanisms and clinical symptoms of DILI are diverse due to the varying combination of drugs, making clinical treatment and prevention complex. DILI has significant public health implications and is the primary reason for post-marketing drug withdrawals. The search for reliable preclinical models and validated biomarkers to predict and investigate DILI can contribute to a more comprehensive understanding of adverse effects and drug safety. In this review, we examine the progress of research on DILI, enumerate in vitro models with potential benefits, and highlight cellular molecular perturbations that may serve as biomarkers. Additionally, we discuss omics approaches frequently used to gather comprehensive datasets on molecular events in response to drug exposure. Finally, three commonly used gene modulation techniques are described, highlighting their application in identifying causal relationships in DILI. Altogether, this review provides a thorough overview of ongoing work and approaches in the field of DILI.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
15
|
Sethi N, Khokhar M, Mathur M, Batra Y, Mohandas A, Tomo S, Rao M, Banerjee M. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Semin Liver Dis 2024; 44:430-456. [PMID: 39393795 DOI: 10.1055/s-0044-1791559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Drug-induced liver injury (DILI) continues to be a major concern in clinical practice, thus necessitating a need for novel therapeutic approaches to alleviate its impact on hepatic function. This review investigates the therapeutic potential of nutraceuticals against DILI, focusing on examining the underlying molecular mechanisms and cellular pathways. In preclinical and clinical studies, nutraceuticals, such as silymarin, curcumin, and N-acetylcysteine, have demonstrated remarkable efficacy in attenuating liver injury induced by diverse pharmaceutical agents. The molecular mechanisms underlying these hepatoprotective effects involve modulation of oxidative stress, inflammation, and apoptotic pathways. Furthermore, this review examines cellular routes affected by these nutritional components focusing on their influence on hepatocytes, Kupffer cells, and stellate cells. Key evidence highlights that autophagy modulation as well as unfolded protein response are essential cellular processes through which nutraceuticals exert their cytoprotective functions. In conclusion, nutraceuticals are emerging as promising therapeutic agents for mitigating DILI, by targeting different molecular pathways along with cell processes involved in it concurrently.
Collapse
Affiliation(s)
- Namya Sethi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Amal Mohandas
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
16
|
Toofantabrizi M, Timshina A, Dongol RM. Cefepime-Induced Mixed Hepatocellular and Cholestatic Liver Injury: A Case Report. Cureus 2024; 16:e73393. [PMID: 39659312 PMCID: PMC11631161 DOI: 10.7759/cureus.73393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Drug-induced liver injury (DILI) presents significant diagnostic challenges, particularly in patients with multiple comorbidities. We report a case involving a 72-year-old female treated with cefepime for urosepsis, who developed markedly elevated liver enzymes after two weeks of therapy. After excluding other potential causes, including viral hepatitis, ischemia, and autoimmune hepatitis, cefepime-induced mixed pattern liver injury was determined to be the likely etiology of the elevated liver enzymes. This case underscores the importance of considering DILI in the differential diagnosis and emphasizes the necessity for vigilant monitoring and early recognition, particularly in elderly patients.
Collapse
Affiliation(s)
| | - Anuj Timshina
- Internal Medicine, MedStar Franklin Square Medical Center, Baltimore, USA
| | - Raj M Dongol
- Internal Medicine, MedStar Franklin Square Medical Center, Baltimore, USA
| |
Collapse
|
17
|
Conlon C, Li YJ, Ahmad J, Barnhart H, Fontana RJ, Ghabril M, Hayashi PH, Kleiner DE, Lee WM, Navarro V, Odin JA, Phillips EJ, Stolz A, Vuppalanchi R, Halegoua-DeMarzio D, Drug-Induced Liver Injury Network (DILIN). Clinical characteristics and HLA associations of azithromycin-induced liver injury. Aliment Pharmacol Ther 2024; 60:787-795. [PMID: 38988034 PMCID: PMC11587661 DOI: 10.1111/apt.18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Azithromycin (AZ) is a widely used antibiotic. The aim of this study was to characterise the clinical features, outcomes, and HLA association in patients with drug-induced liver injury (DILI) due to AZ. METHODS The clinical characteristics of individuals with definite, highly likely, or probable AZ-DILI enrolled in the US Drug-Induced Liver Injury Network (DILIN) were reviewed. HLA typing was performed using an Illumina MiSeq platform. The allele frequency (AF) of AZ-DILI cases was compared to population controls, other DILI cases, and other antibiotic-associated DILI cases. RESULTS Thirty cases (4 definite, 14 highly likely, 12 probable) of AZ-DILI were enrolled between 2004 and 2022 with a median age of 46 years, 83% white, and 60% female. Median duration of AZ treatment was 5 days. Latency was 18.5 days. 73% were jaundiced at presentation. The injury pattern was hepatocellular in 60%, cholestatic in 27%, and mixed in 3%. Ten cases (33%) were severe or fatal; 90% of these were hepatocellular. Two patients required liver transplantation. One patient with chronic liver disease died of hepatic failure. Chronic liver injury developed in 17%, of which 80% had hepatocellular injury at onset. HLA-DQA1*03:01 was significantly more common in AZ-DILI versus population controls and amoxicillin-clavulanate DILI cases (AF: 0.29 vs. 0.11, p = 0.001 and 0.002, respectively). CONCLUSION Azithromycin therapy can lead to rapid onset of severe hepatic morbidity and mortality in adult and paediatric populations. Hepatocellular injury and younger age were associated with worse outcomes. HLA-DQA1*03:01 was significantly more common in AZ cases compared to controls.
Collapse
Affiliation(s)
- Caroline Conlon
- Thomas Jefferson University Hospital, Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Yi-Ju Li
- Duke Clinical Research Institute, Durham, NC, USA
| | - Jawad Ahmad
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Marwan Ghabril
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul H. Hayashi
- Division of Hepatology and Nutrition, Food and Drug Administration, Silver Spring, MD, USA
| | - David E. Kleiner
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William M. Lee
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Joseph A. Odin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Andrew Stolz
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Raj Vuppalanchi
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dina Halegoua-DeMarzio
- Thomas Jefferson University Hospital, Sidney Kimmel Medical College, Philadelphia, PA, USA
| | | |
Collapse
|
18
|
Molatefi R, Talebi S, Samei A, Roshanravan N, Manshouri S, Hashemi B, Ghobadi Dana V, Mosharkesh E, Bahar MA, Khajoei S, Seif F. Clues of HLAs, metabolic SNPs, and epigenetic factors in T cell-mediated drug hypersensitivity reactions. Heliyon 2024; 10:e33976. [PMID: 39100437 PMCID: PMC11296025 DOI: 10.1016/j.heliyon.2024.e33976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Drug hypersensitivities are common reactions due to immunologic responses. They are of utmost importance because they may generate severe and fatal outcomes. Some drugs may cause Adverse Drug Reactions (ADRs), such as drug hypersensitivity reactions (DHRs), which can occur due to the interaction of intact drugs or their metabolites with Human Leukocyte Antigens (HLAs) and T cell receptors (TCRs). This type develops over a period of 24-72 h after exposure and is classified as type IV of DHRs. Acute generalized exanthematic pustulosis (AGEP), Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS) are types of Severe Cutaneous Adverse Reactions (SCARs). In this review, we aim to discuss the types of ADRs, the mechanisms involved in their development, and the role of immunogenetic factors, such as HLAs in type IV DHRs, single-nucleotide polymorphisms (SNPs), and some epigenetic modifications, e.g., DNA/histone methylation in a variety of genes and their promoters which may predispose subjects to DHRs. In conclusion, development of promising novel in vitro or in vivo diagnostic and prognostic markers is essential for identifying susceptible subjects or providing treatment protocols to work up patients with drug allergies as personalized medicine.
Collapse
Affiliation(s)
- Rasol Molatefi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sedighe Talebi
- Department of Traditional Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
| | - Azam Samei
- Department of Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Manshouri
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Baran Hashemi
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Ghobadi Dana
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Erfan Mosharkesh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Ali Bahar
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sholeh Khajoei
- Clinical Research Development Center, Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Department of Photodynamic Therapy, Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| |
Collapse
|
19
|
Kim B, Kim J, Yoon SY, Cheong HS, Kwon MJ, Yeom JS, Kim HN, Joo EJ. HLA-DPB1*05:01 and HLA-A*11:01 Is Associated with Adverse Drug Reactions to Isoniazid and Rifampin for Treatment of Latent Tuberculosis Infection in South Korea. J Clin Med 2024; 13:3563. [PMID: 38930092 PMCID: PMC11204531 DOI: 10.3390/jcm13123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Screening and treating healthcare workers (HCWs) for latent tuberculosis infection (LTBI) are essential for tuberculosis (TB) infection control. Adverse drug reactions (ADRs) to anti-TB drugs present challenges to patient safety and treatment completion. Objective: This study investigated the association between human leukocyte antigen (HLA) alleles and the risk of ADRs, especially drug hypersensitivity (DHS) and hepatotoxicity, in HCWs with LTBI receiving isoniazid (INH) and rifampin (RIF) therapy. Methods: Korean HCWs with LTBI who received a 3 month INH and RIF regimen were included in this study. HLA genotyping was performed on HCWs who experienced ADRs during treatment, as well as the control group consisted of individuals who did not develop ADRs. Results: Of the 67 patients, 29 (43.2%) experienced ADRs during INH and RIF therapy. The HLA-A*11:01 allele was more frequent in patients with DHS without hepatotoxicity (DSH+/H-) compared to the control group (DHS-/H-) (4/9, 44.4% vs. 3/38, 7.9%; odd ratio [OR], 8.554; 95% confidence interval [CI], 1.415-59.869; p = 0.018). Conversely, HLA-DPB1*05:01 was associated with an increased risk of hepatotoxicity regardless of DHS (10/20, 50% vs. 5/38, 13.2%; OR, 5.323; 95% CI, 1.493-21.518; p = 0.011). In the DHS with hepatotoxicity group (DHS+/H+), HLA-DPB1*05:01 was present in a higher proportion (3/5, 60% vs. 5/38, 13.2%; OR, 8.912; 95% CI, 1.110-92.993; p = 0.037), whereas HLA-A*11:01 was not observed in this group. Conclusions: The HLA-A*11:01 allele was associated with an increased risk of DHS without hepatotoxicity, whereas the HLA-DPB1*05:01 allele was associated with an increased risk of hepatotoxicity.
Collapse
Affiliation(s)
- Bomi Kim
- Division of Infectious Diseases, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea; (B.K.); (H.S.C.)
| | - Jungok Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea;
| | - Sun-Young Yoon
- Divisions of Allergy and Pulmonology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea;
| | - Hae Suk Cheong
- Division of Infectious Diseases, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea; (B.K.); (H.S.C.)
| | - Min-Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea;
| | - Joon-Sup Yeom
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Han-Na Kim
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Eun-Jeong Joo
- Division of Infectious Diseases, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea; (B.K.); (H.S.C.)
| |
Collapse
|
20
|
Ma J, Björnsson ES, Chalasani N. Hepatotoxicity of Antibiotics and Antifungals and Their Safe Use in Hepatic Impairment. Semin Liver Dis 2024; 44:239-257. [PMID: 38740371 DOI: 10.1055/s-0044-1787062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a rare and unpredictable form of hepatotoxicity. While its clinical course is usually benign, cases leading to liver transplantation or death can occur. Based on modern prospective registries, antimicrobials including antibiotics and antifungals are frequently implicated as common causes. Amoxicillin-clavulanate ranks as the most common cause for DILI in the Western World. Although the absolute risk of hepatotoxicity of these agents is low, as their usage is quite high, it is not uncommon for practitioners to encounter liver injury following the initiation of antibiotic or antifungal therapy. In this review article, mechanisms of hepatoxicity are presented. The adverse hepatic effects of well-established antibiotic and antifungal agents are described, including their frequency, severity, and pattern of injury and their HLA risks. We also review the drug labeling and prescription guidance from regulatory bodies, with a focus on individuals with hepatic impairment.
Collapse
Affiliation(s)
- J Ma
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - E S Björnsson
- Department of Gastroenterology, Landspitali University Hospital Reykjavik, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - N Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
21
|
Teschke R, Danan G. Human Leucocyte Antigen Genetics in Idiosyncratic Drug-Induced Liver Injury with Evidence Based on the Roussel Uclaf Causality Assessment Method. MEDICINES (BASEL, SWITZERLAND) 2024; 11:9. [PMID: 38667507 PMCID: PMC11052120 DOI: 10.3390/medicines11040009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
The human leucocyte antigen (HLA) allele variability was studied in cohorts of patients with idiosyncratic drug-induced liver injury (iDILI). Some reports showed an association between HLA genetics and iDILI, proposing HLA alleles as a potential risk factor for the liver injury. However, the strength of such assumptions heavily depends on the quality of the iDILI diagnosis, calling for a thorough analysis. Using the PubMed database and Google Science, a total of 25 reports of case series or single cases were retrieved using the terms HLA genes and iDILI. It turned out that in 10/25 reports (40%), HLA genetics were determined in iDILI cases, for which no causality assessment method (CAM) was used or a non-validated tool was applied, meaning the findings were based on subjective opinion, providing disputable results and hence not scoring individual key elements. By contrast, in most iDILI reports (60%), the Roussel Uclaf Causality Assessment Method (RUCAM) was applied, which is the diagnostic algorithm preferred worldwide to assess causality in iDILI cases and represents a quantitative, objective tool that has been well validated by both internal and external DILI experts. The RUCAM provided evidence-based results concerning liver injury by 1 drug class (antituberculotics + antiretrovirals) and 19 different drugs, comprising 900 iDILI cases. Among the top-ranking drugs were amoxicillin-clavulanate (290 cases, HLA A*02:01 or HLA A*30:02), followed by flucloxacillin (255 cases, HLA B*57:01), trimethoprim-sulfamethoxazole (86 cases, HLA B*14:01 or HLA B*14:02), methimazole (40 cases, HLA C*03:02), carbamazepine (29 cases, HLA A*31:01), and nitrofurantoin (26 cases, HLA A*33:01). In conclusion, the HLA genetics in 900 idiosyncratic drug-induced liver injury cases with evidence based on the RUCAM are available for studying the mechanistic steps leading to the injury, including metabolic factors through cytochrome P450 isoforms and processes that activate the innate immune system to the adaptive immune system.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, Rue Des Ormeaux, 75020 Paris, France;
| |
Collapse
|
22
|
Cohen EB, Patwardhan M, Raheja R, Alpers DH, Andrade RJ, Avigan MI, Lewis JH, Rockey DC, Chui F, Iacob AM, Linardi CC, Regev A, Shick J, Lucena MI. Drug-Induced Liver Injury in the Elderly: Consensus Statements and Recommendations from the IQ-DILI Initiative. Drug Saf 2024; 47:301-319. [PMID: 38217833 PMCID: PMC10954848 DOI: 10.1007/s40264-023-01390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
The elderly demographic is the fastest-growing segment of the world's population and is projected to exceed 1.5 billion people by 2050. With multimorbidity, polypharmacy, susceptibility to drug-drug interactions, and frailty as distinct risk factors, elderly patients are especially vulnerable to developing potentially life-threatening safety events such as serious forms of drug-induced liver injury (DILI). It has been a longstanding shortcoming that elderly individuals are often a vulnerable population underrepresented in clinical trials. As such, an improved understanding of DILI in the elderly is a high-priority, unmet need. This challenge is underscored by recent documents put forward by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) that encourage data collection in the elderly and recommend improved practices that will facilitate a more inclusive approach. To establish what is already known about DILI in the elderly and pinpoint key gaps of knowledge in this arena, a working definition of "elderly" is required that accounts for both chronologic and biologic ages and varying states of frailty. In addition, it is critical to characterize the biological role of aging on liver function, as well as the different epidemiological factors such as polypharmacy and inappropriate prescribing that are common practices. While data may not show that elderly people are more susceptible to DILI, DILI due to specific drugs might be more common in this population. Improved characterization of DILI in the elderly may enhance diagnostic and prognostic capabilities and improve the way in which liver safety is monitored during clinical trials. This summary of the published literature provides a framework to understand and evaluate the risk of DILI in the elderly. Consensus statements and recommendations can help to optimize medical care and catalyze collaborations between academic clinicians, drug manufacturers, and regulatory scientists to enable the generation of high-quality research data relevant to the elderly population.
Collapse
Affiliation(s)
- Eric B Cohen
- Pharmacovigilance and Patient Safety, AbbVie Inc., North Chicago, IL, USA.
| | - Meenal Patwardhan
- Pharmacovigilance and Patient Safety, AbbVie Inc., North Chicago, IL, USA
| | - Ritu Raheja
- Pharmacovigilance and Patient Safety, AbbVie Inc., North Chicago, IL, USA
| | - David H Alpers
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Raul J Andrade
- Department of Medicine, IBIMA_Plataforma Bionand, University of Malaga, Malaga, Spain
| | - Mark I Avigan
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - James H Lewis
- Division of Gastroenterology, Georgetown University, Washington, D.C., USA
| | - Don C Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, SC, USA
| | - Francis Chui
- Pharmacovigilance, Gilead Sciences Inc., Foster City, CA, USA
| | - Alexandru M Iacob
- Pharmacovigilance and Patient Safety, AbbVie Inc., Ottawa, ON, Canada
| | - Camila C Linardi
- Translational Medicine, Bayer HealthCare Pharmaceuticals LLC, Whippany, NJ, USA
| | - Arie Regev
- Global Patient Safety, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jesse Shick
- Pharmacovigilance, Gilead Sciences Inc., Foster City, CA, USA
| | - M Isabel Lucena
- Department of Pharmacology and Pediatrics, IBIMA_Plataforma Bionand, University of Malaga, Malaga, Spain
| |
Collapse
|
23
|
Moreno-Torres M, Quintás G, Martínez-Sena T, Jover R, Castell JV. Exploring Individual Variability in Drug-Induced Liver Injury (DILI) Responses through Metabolomic Analysis. Int J Mol Sci 2024; 25:3003. [PMID: 38474249 DOI: 10.3390/ijms25053003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Drug-induced liver injury (DILI) is a serious adverse hepatic event presenting diagnostic and prognostic challenges. The clinical categorization of DILI into hepatocellular, cholestatic, or mixed phenotype is based on serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) values; however, this classification may not capture the full spectrum of DILI subtypes. With this aim, we explored the utility of assessing changes in the plasma metabolomic profiles of 79 DILI patients assessed by the RUCAM (Roussel Uclaf Causality Assessment Method) score to better characterize this condition and compare results obtained with the standard clinical characterization. Through the identification of various metabolites in the plasma (including free and conjugated bile acids and glycerophospholipids), and the integration of this information into predictive models, we were able to evaluate the extent of the hepatocellular or cholestatic phenotype and to assign a numeric value with the contribution of each specific DILI sub-phenotype into the patient's general condition. Additionally, our results showed that metabolomic analysis enabled the monitoring of DILI variability responses to the same drug, the transitions between sub-phenotypes during disease progression, and identified a spectrum of residual DILI metabolic features, which can be overlooked using standard clinical diagnosis during patient follow-up.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Guillermo Quintás
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Metabolomics and Bioanalysis, Leitat Technological Center (LEITAT,) 46026 Valencia, Spain
| | - Teresa Martínez-Sena
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Ramiro Jover
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José V Castell
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
Principi N, Petropulacos K, Esposito S. Genetic Variations and Antibiotic-Related Adverse Events. Pharmaceuticals (Basel) 2024; 17:331. [PMID: 38543117 PMCID: PMC10974439 DOI: 10.3390/ph17030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Antibiotic-related adverse events are common in both adults and children, and knowledge of the factors that favor the development of antibiotic-related adverse events is essential to limit their occurrence and severity. Genetics can condition the development of antibiotic-related adverse events, and the screening of patients with supposed or demonstrated specific genetic mutations may reduce drug-related adverse events. This narrative review discusses which genetic variations may influence the risk of antibiotic-related adverse events and which conclusions can be applied to clinical practice. An analysis of the literature showed that defined associations between genetic variations and specific adverse events are very few and that, at the moment, none of them have led to the implementation of a systematic screening process for patients that must be treated with a given antibiotic in order to select those at risk of specific adverse events. On the other hand, in most of the cases, more than one variation is implicated in the determination of adverse events, and this can be a limitation in planning a systematic screening. Moreover, presently, the methods used to establish whether a patient carries a "dangerous" genetic mutation require too much time and waiting for the result of the test can be deleterious for those patients urgently requiring therapy. Further studies are needed to definitively confirm which genetic variations are responsible for an increased risk of a well-defined adverse event.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
25
|
Eldredge JA, Pittet LF, Gwee A. Incidence of amoxycillin-clavulanic acid associated hepatotoxicity in an Australian children's hospital. J Antimicrob Chemother 2024; 79:589-594. [PMID: 38297994 DOI: 10.1093/jac/dkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVES Amoxycillin/clavulanic acid is the most common antimicrobial cause of drug-induced liver injury in adults. It is a less common cause of severe drug-related hepatotoxicity in children despite its frequent use. We studied the incidence, characteristics and predictive factors for amoxycillin/clavulanic acid hepatoxicity in children. DESIGN Retrospective cohort study of children who received oral or intravenous amoxycillin/clavulanic acid at a quaternary children's hospital over a 5-year period. Children were included if they had liver function tests (LFTs) determined at baseline, during and within 3 months after the treatment course. Causality was assessed using the Naranjo criteria for adverse drug reactions and Roussel Uclaf Causality Assessment Method. RESULTS Of 3271 children prescribed amoxycillin/clavulanic acid, 374 were included. Forty-nine (13%) had LFT abnormalities related to amoxycillin/clavulanic acid. Fourteen (3.6%) fulfilled Common Terminology Criteria for Adverse Events (CTCAE) grade 2 criteria with clinically significant hepatotoxicity. Age <2 years, sepsis, post-gastrointestinal surgical indications, prolonged treatment course of >7 days and higher cumulative amoxycillin (>10 g) and clavulanic acid dose (>1 g) were predictive of hepatotoxicity. The median time to resolution of LFT abnormalities was 4 weeks (range 3-7). CONCLUSIONS The incidence of amoxycillin/clavulanic acid related LFT abnormalities (CTCAE Grade 2 or above) in children was 3.6%. A prolonged treatment course >7 days, high cumulative amoxycillin (10 g) and clavulanic acid (>1 g) doses, those aged <2 years, and patients with sepsis or post-gastrointestinal surgery were predictive of a higher likelihood of abnormal LFTs. LFT monitoring should be considered in children receiving ≥7 days of treatment, particularly in those with other predisposing factors.
Collapse
Affiliation(s)
- Jessica A Eldredge
- Department of General Medicine, The Royal Children's Hospital Melbourne, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Laure F Pittet
- Department of Paediatrics, Faculty of Medicine, Infectious Diseases Unit, Gynaecology and Obstetrics, University of Geneva and University Hospitals of Geneva, Geneva, Switzerland
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital Melbourne, Reception Level 2, West Building, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Amanda Gwee
- Department of General Medicine, The Royal Children's Hospital Melbourne, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital Melbourne, Reception Level 2, West Building, 50 Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
26
|
Gao P, Chang C, Liang J, Du F, Zhang R. Embryonic Amoxicillin Exposure Has Limited Impact on Liver Development but Increases Susceptibility to NAFLD in Zebrafish Larvae. Int J Mol Sci 2024; 25:2744. [PMID: 38473993 DOI: 10.3390/ijms25052744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Amoxicillin is commonly used in clinical settings to target bacterial infection and is frequently prescribed during pregnancy. Investigations into its developmental toxicity and effects on disease susceptibility are not comprehensive. Our present study examined the effects of embryonic amoxicillin exposure on liver development and function, especially the effects on susceptibility to non-alcoholic fatty liver disease (NAFLD) using zebrafish as an animal model. We discovered that embryonic amoxicillin exposure did not compromise liver development, nor did it induce liver toxicity. However, co-treatment of amoxicillin and clavulanic acid diminished BESP expression, caused bile stasis and induced liver toxicity. Embryonic amoxicillin exposure resulted in elevated expression of lipid synthesis genes and exacerbated hepatic steatosis in a fructose-induced NAFLD model, indicating embryonic amoxicillin exposure increased susceptibility to NAFLD in zebrafish larvae. In summary, this research broadens our understanding of the risks of amoxicillin usage during pregnancy and provides evidence for the impact of embryonic amoxicillin exposure on disease susceptibility in offspring.
Collapse
Affiliation(s)
- Peng Gao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Cheng Chang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jieling Liang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Fen Du
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
27
|
Krantz MS, Marks ME, Phillips EJ. The clinical application of genetic testing in DILI, are we there yet? Clin Liver Dis (Hoboken) 2024; 23:e0218. [PMID: 38872778 PMCID: PMC11168851 DOI: 10.1097/cld.0000000000000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/15/2024] Open
Affiliation(s)
- Matthew S. Krantz
- Division of Allergy, Department of Medicine, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline E. Marks
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth J. Phillips
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
28
|
Guin D, Kukreti R. Drug hypersensitivity linked to genetic variations of human leukocyte antigen. Ther Drug Monit 2024:387-417. [DOI: 10.1016/b978-0-443-18649-3.00018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Principi N, Petropulacos K, Esposito S. Impact of Pharmacogenomics in Clinical Practice. Pharmaceuticals (Basel) 2023; 16:1596. [PMID: 38004461 PMCID: PMC10675377 DOI: 10.3390/ph16111596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Polymorphisms of genes encoding drug metabolizing enzymes and transporters can significantly modify pharmacokinetics, and this can be associated with significant differences in drug efficacy, safety, and tolerability. Moreover, genetic variants of some components of the immune system can explain clinically relevant drug-related adverse events. However, the implementation of drug dose individualization based on pharmacogenomics remains scarce. In this narrative review, the impact of genetic variations on the disposition, safety, and tolerability of the most commonly prescribed drugs is reported. Moreover, reasons for poor implementation of pharmacogenomics in everyday clinical settings are discussed. The literature analysis showed that knowledge of how genetic variations can modify the effectiveness, safety, and tolerability of a drug can lead to the adjustment of usually recommended drug dosages, improve effectiveness, and reduce drug-related adverse events. Despite some efforts to introduce pharmacogenomics in clinical practice, presently very few centers routinely use genetic tests as a guide for drug prescription. The education of health care professionals seems critical to keep pace with the rapidly evolving field of pharmacogenomics. Moreover, multimodal algorithms that incorporate both clinical and genetic factors in drug prescribing could significantly help in this regard. Obviously, further studies which definitively establish which genetic variations play a role in conditioning drug effectiveness and safety are needed. Many problems must be solved, but the advantages for human health fully justify all the efforts.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
30
|
Manson LEN, Delwig SJ, Drabbels JJM, Touw DJ, De Vries APJ, Roelen DL, Guchelaar HJ. Repurposing HLA genotype data of renal transplant patients to prevent severe drug hypersensitivity reactions. Front Genet 2023; 14:1289015. [PMID: 37908589 PMCID: PMC10613976 DOI: 10.3389/fgene.2023.1289015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction: Specific alleles in human leukocyte antigens (HLAs) are associated with an increased risk of developing drug hypersensitivity reactions induced by abacavir, allopurinol, carbamazepine, oxcarbazepine, phenytoin, lamotrigine, or flucloxacillin. Transplant patients are genotyped for HLA as a routine practice to match a potential donor to a recipient. This study aims to investigate the feasibility and potential impact of repurposing these HLA genotype data from kidney transplant patients to prevent drug hypersensitivity reactions. Methods: A cohort of 1347 kidney transplant recipients has been genotyped in the Leiden University Medical Center (LUMC) using next-generation sequencing (NGS). The risk alleles HLA-A*31:01, HLA-B*15:02, HLA-B*15:11, HLA-B*57:01, and HLA-B*58:01 were retrieved from the NGS data. Medical history, medication use, and allergic reactions were obtained from the patient's medical records. Carrier frequencies found were compared to a LUMC blood donor population. Results: A total of 13.1% of transplant cohort patients carried at least one of the five HLA risk alleles and therefore had an increased risk of drug-induced hypersensitivity for specific drugs. HLA-A*31:01, HLA-B*15:02, HLA-B*57:01, and HLA-B*58:01 were found in carrier frequencies of 4.61%, 1.19%, 4.46%, and 3.35% respectively. No HLA-B*15:11 carrier was found. In total nine HLA-B*57:01 carriers received flucloxacillin and seven HLA-B*58:01 carriers within our cohort received allopurinol. Discussion: Our study shows that repurposing HLA genotype data from transplantation patients for the assignment of HLA risk alleles associated with drug hypersensitivity is feasible. The use of these data by physicians while prescribing drugs or by the pharmacist when dispensing drugs holds the potential to prevent drug hypersensitivity reactions. The utility of this method was highlighted by 13.1% of the transplant cohort patients carrying an actionable HLA allele.
Collapse
Affiliation(s)
- Lisanne E. N. Manson
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Sander J. Delwig
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Jos J. M. Drabbels
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aiko P. J. De Vries
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
- Leiden Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Dave L. Roelen
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
31
|
Li QS, Francke S, Snoeys J, Thipphawong J, Romano G, Novak GP. Genome-wide association study of abnormal elevation of ALT in patients exposed to atabecestat. BMC Genomics 2023; 24:513. [PMID: 37658353 PMCID: PMC10472559 DOI: 10.1186/s12864-023-09625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Atabecestat, a potent brain penetrable BACE1 inhibitor that reduces CSF amyloid beta (Aβ), was developed as an oral treatment for Alzheimer's disease (AD). Elevated liver enzyme adverse events were reported in three studies although only one case met Hy's law criteria to predict serious hepatotoxicity. METHOD We performed a case-control genome-wide association study (GWAS) to identify genetic risk variants associated with liver enzyme elevation using 42 cases with alanine transaminase (ALT) above three times the upper limit of normal (ULN) and 141 controls below ULN. Additionally, we performed a GWAS using continuous maximal ALT/ULN (expressed as times the ULN) upon exposure to atabecestat as the outcome measure (n = 285). RESULTS No variant passed the genome-wide significance threshold (p = 5 × 10- 8) in the case-control GWAS. We identified suggestive association signals in genes (NLRP1, SCIMP, and C1QBP) implicated in the inflammatory processes. Among the genes implicated by position mapping using variants suggestively associated (p < 1 × 10- 5) with ALT elevation case-control status, gene sets involved in innate immune response (adjusted p-value = 0.05) and regulation of cytokine production (adjusted p-value = 0.04) were enriched. One genomic region in the intronic region of GABRG3 passed the genome-wide significance threshold in the continuous max(ALT/ULN) GWAS, and this variant was nominally associated with ALT elevation case status (p = 0.009). CONCLUSION The suggestive GWAS signals in the case-control GWAS analysis suggest the potential role of inflammation in atabecestat-induced liver enzyme elevation.
Collapse
Affiliation(s)
- Qingqin S Li
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA.
- JRD Data Science, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA.
| | - Stephan Francke
- Computational Science Translational Platforms, Janssen Research & Development, LLC, Spring House, PA, 19477, USA
- Pharmacogenomics & Biomarker in Clinical Development, Cary, NC, USA
| | - Jan Snoeys
- Translational Pharmacokinetics Pharmacodynamics and Investigative Toxicology, Janssen Research & Development, Beerse, Belgium
| | - John Thipphawong
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA
| | - Gary Romano
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA
- Passage Bio, Philadelphia, PA, USA
| | - Gerald P Novak
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA
| |
Collapse
|
32
|
Gu S, Rajendiran G, Forest K, Tran TC, Denny JC, Larson EA, Wilke RA. Drug-Induced Liver Injury with Commonly Used Antibiotics in the All of Us Research Program. Clin Pharmacol Ther 2023; 114:404-412. [PMID: 37150941 PMCID: PMC10484299 DOI: 10.1002/cpt.2930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Antibiotics are a known cause of idiosyncratic drug-induced liver injury (DILI). According to the Centers for Disease Control and Prevention, the five most commonly prescribed antibiotics in the United States are azithromycin, ciprofloxacin, cephalexin, amoxicillin, and amoxicillin-clavulanate. We quantified the frequency of acute DILI for these common antibiotics in the All of Us Research Program, one of the largest electronic health record (EHR)-linked research cohorts in the United States. Retrospective analyses were conducted applying a standardized phenotyping algorithm to de-identified clinical data available in the All of Us database for 318,598 study participants. Between February 1984 and December 2022, more than 30% of All of Us participants (n = 119,812 individuals) had been exposed to at least 1 of our 5 study drugs. Initial screening identified 591 potential case patients that met our preselected laboratory-based phenotyping criteria. Because DILI is a diagnosis of exclusion, we then used phenome scanning to narrow the case counts by (i) scanning all EHRs to identify all alternative diagnostic explanations for the laboratory abnormalities, and (ii) leveraging International Classification of Disease 9th revision (ICD)-9 and ICD 10th revision (ICD)-10 codes as exclusion criteria to eliminate misclassification. Our final case counts were 30 DILI cases with amoxicillin-clavulanate, 24 cases with azithromycin, 24 cases with ciprofloxacin, 22 cases with amoxicillin alone, and < 20 cases with cephalexin. These findings demonstrate that data from EHR-linked research cohorts can be efficiently mined to identify DILI cases related to the use of common antibiotics.
Collapse
Affiliation(s)
- Shaopeng Gu
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls SD, USA
- Sanford Imagenetics, Sioux Falls SD, USA
| | - Govarthanan Rajendiran
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls SD, USA
- Sanford Medical Center, Section of Gastroenterology/Hepatology, Sioux Falls SD, USA
| | - Kennedy Forest
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls SD, USA
| | - Tam C Tran
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua C Denny
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric A Larson
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls SD, USA
- Sanford Imagenetics, Sioux Falls SD, USA
| | - Russell A Wilke
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls SD, USA
| |
Collapse
|
33
|
Teschke R, Danan G. Advances in Idiosyncratic Drug-Induced Liver Injury Issues: New Clinical and Mechanistic Analysis Due to Roussel Uclaf Causality Assessment Method Use. Int J Mol Sci 2023; 24:10855. [PMID: 37446036 DOI: 10.3390/ijms241310855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Clinical and mechanistic considerations in idiosyncratic drug-induced liver injury (iDILI) remain challenging topics when they are derived from mere case narratives or iDILI cases without valid diagnosis. To overcome these issues, attempts should be made on pathogenetic aspects based on published clinical iDILI cases firmly diagnosed by the original RUCAM (Roussel Uclaf Causality Assessment Method) or the RUCAM version updated in 2016. Analysis of RUCAM-based iDILI cases allowed for evaluating immune and genetic data obtained from the serum and the liver of affected patients. For instance, strong evidence for immune reactions in the liver of patients with RUCAM-based iDILI was provided by the detection of serum anti-CYP 2E1 due to drugs like volatile anesthetics sevoflurane and desflurane, partially associated with the formation of trifluoroacetyl (TFA) halide as toxic intermediates that form protein adducts and may generate reactive oxygen species (ROS). This is accompanied by production of anti-TFA antibodies detected in the serum of these patients. Other RUCAM-based studies on serum ANA (anti-nuclear antibodies) and SMA (anti-smooth muscle antibodies) associated with AIDILI (autoimmune DILI) syn DIAIH (drug-induced autoimmune hepatitis) provide additional evidence of immunological reactions with monocytes as one of several promoting immune cells. In addition, in the blood plasma of patients, mediators like the cytokines IL-22, IL-22 binding protein (IL-22BP), IL-6, IL-10, IL 12p70, IL-17A, IL-23, IP-10, or chemokines such as CD206 and sCD163 were found in DILI due to anti-tuberculosis drugs as ascertained by the prospective updated RUCAM, which scored a high causality. RUCAM-based analysis also provided compelling evidence of genetic factors such as HLA (human leucocyte antigen) alleles contributing to initiate iDILI by a few drugs. In conclusion, analysis of published RUCAM-based iDILI cases provided firm evidence of immune and genetic processes involved in iDILI caused by specific drugs.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Leimenstrasse 20, D-63450 Hanau, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, Rue des Ormeaux, 75020 Paris, France
| |
Collapse
|
34
|
Nakamura R, Arakawa N, Tanaka Y, Uchiyama N, Sekine A, Mashimo Y, Tsuji K, Kagawa T, Sato K, Watanabe M, Aiso M, Hiasa Y, Takei Y, Ohira H, Ayada M, Tsukagoshi E, Maekawa K, Tohkin M, Saito Y, Takikawa H. Significant association between HLA-B*35:01 and onset of drug-induced liver injury caused by Kampo medicines in Japanese patients. Hepatol Res 2023; 53:440-449. [PMID: 36583370 DOI: 10.1111/hepr.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
AIM Drug-induced liver injury (DILI) is a severe and life-threatening immune-mediated adverse effect, occurring rarely among treated patients. We examined genomic biomarkers in the Japanese population that predict the onset of DILI after using a certain class of drugs, such as Kampo products (Japanese traditional medicines). METHODS A total of 287 patients diagnosed as DILI by hepatology specialists were recruited after written informed consent was obtained. A genome-wide association analysis and human leukocyte antigen (HLA) typing in four digits were performed. RESULTS We found a significant association (p = 9.41 × 10-10 ) of rs146644517 (G > A) with Kampo product-related DILI. As this polymorphism is located in the HLA region, we evaluated the association of HLA types and found that 12 (63.2%) of 19 Kampo-DILI patients contained HLA-B*35:01, whereas only 15.2% were positive for this HLA among healthy volunteers. The odds ratio was 9.56 (95% confidence interval 3.75-24.46; p = 2.98 × 10-6 , corrected p = 4.17 × 10-5 ), and it increased to 13.55 compared with the DILI patients not exposed to Kampo products. The individual crude drug components in the Kampo products, including Scutellaria root (ougon in Japanese), rhubarb (daiou), Gardenia fruit (sanshishi), and Glycyrrhiza (kanzou), were significantly associated with HLA-B*35:01. CONCLUSIONS HLA-B*35:01 is a genetic risk factor and a potential predictive biomarker for Kampo-induced DILI in the Japanese population.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Noriaki Arakawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoichi Tanaka
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Nahoko Uchiyama
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, Kawasaki, Japan
| | - Akihiro Sekine
- Department of Infection and Host Defense, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoichi Mashimo
- Department of Public Health, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Keiji Tsuji
- Department of Gastroenterology, Hiroshima Red Cross Hospital and Atomic Survivors Hospital, Hiroshima, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Ken Sato
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masaaki Watanabe
- Department of Gastroenterology, Kitasato University Medical Center, Kitamoto, Japan
| | - Mitsuhiko Aiso
- Department of Medicine, Higashisaitama National Hospital, Hasuda, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | | | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Minoru Ayada
- Department of Internal Medicine, Kakegawa Higashi Hospital, Kakegawa, Japan
| | - Eri Tsukagoshi
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Keiko Maekawa
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Japan
| | - Masahiro Tohkin
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Hajime Takikawa
- Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
35
|
Teschke R. Molecular Idiosyncratic Toxicology of Drugs in the Human Liver Compared with Animals: Basic Considerations. Int J Mol Sci 2023; 24:ijms24076663. [PMID: 37047633 PMCID: PMC10095090 DOI: 10.3390/ijms24076663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Drug induced liver injury (DILI) occurs in patients exposed to drugs at recommended doses that leads to idiosyncratic DILI and provides an excellent human model with well described clinical features, liver injury pattern, and diagnostic criteria, based on patients assessed for causality using RUCAM (Roussel Uclaf Causality Assessment Method) as original method of 1993 or its update of 2016. Overall, 81,856 RUCAM based DILI cases have been published until mid of 2020, allowing now for an analysis of mechanistic issues of the disease. From selected DILI cases with verified diagnosis by using RUCAM, direct evidence was provided for the involvement of the innate and adapted immune system as well as genetic HLA (Human Leucocyte Antigen) genotypes. Direct evidence for a role of hepatic immune systems was substantiated by (1) the detection of anti-CYP (Cytochrome P450) isoforms in the plasma of affected patients, in line with the observation that 65% of the drugs most implicated in DILI are metabolized by a range of CYP isoforms, (2) the DIAIH (drug induced autoimmune hepatitis), a subgroup of idiosyncratic DILI, which is characterized by high RUCAM causality gradings and the detection of plasma antibodies such as positive serum anti-nuclear antibodies (ANA) and anti-smooth muscle antibodies (ASMA), rarely also anti-mitochondrial antibodies (AMA), (3) the effective treatment with glucocorticoids in part of an unselected RUCAM based DILI group, and (4) its rare association with the immune-triggered Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) caused by a small group of drugs. Direct evidence of a genetic basis of idiosyncratic DILI was shown by the association of several HLA genotypes for DILI caused by selected drugs. Finally, animal models of idiosyncratic DILI mimicking human immune and genetic features are not available and further search likely will be unsuccessful. In essence and based on cases of DILI with verified diagnosis using RUCAM for causality evaluation, there is now substantial direct evidence that immune mechanisms and genetics can account for idiosyncratic DILI by many but not all implicated drugs, which may help understand the mechanistic background of the disease and contribute to new approaches of therapy and prevention.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Memon A, Yeboah-Korang A, Fontana RJ. Advances in the management of idiosyncratic drug-induced liver injury. Clin Liver Dis (Hoboken) 2023; 21:102-106. [PMID: 37936954 PMCID: PMC10627588 DOI: 10.1097/cld.0000000000000052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 11/09/2023] Open
Abstract
1_pff0548qKaltura.
Collapse
Affiliation(s)
- Ahmed Memon
- Division of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Amoah Yeboah-Korang
- Division of Digestive Diseases, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Robert J. Fontana
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Hosack T, Damry D, Biswas S. Drug-induced liver injury: a comprehensive review. Therap Adv Gastroenterol 2023; 16:17562848231163410. [PMID: 36968618 PMCID: PMC10031606 DOI: 10.1177/17562848231163410] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023] Open
Abstract
Drug-induced liver injury (DILI) remains a challenge in clinical practice and is
still a diagnosis of exclusion. Although it has a low incidence amongst the
general population, DILI accounts for most cases of acute liver failure with a
fatality rate of up to 50%. While multiple mechanisms of DILI have been
postulated, there is no clear causal relationship between drugs, risk factors
and mechanisms of DILI. Current best practice relies on a combination of high
clinical suspicion, thorough clinical history of risk factors and timeline, and
extensive hepatological investigations as supported by the international Roussel
Uclaf Causality Assessment Method criteria, the latter considered a key
diagnostic algorithm for DILI. This review focuses on DILI classification, risk
factors, clinical evaluation, future biomarkers and management, with the aim of
facilitating physicians to correctly identify DILI early in presentation.
Collapse
Affiliation(s)
| | - Djamil Damry
- Department of Gastroenterology &
Hepatology, Stoke Mandeville Hospital, Buckinghamshire Health NHS Trust,
Aylesbury, Buckinghamshire, UK
| | - Sujata Biswas
- Department of Gastroenterology &
Hepatology, Stoke Mandeville Hospital, Buckinghamshire Health NHS Trust,
Aylesbury, Buckinghamshire, UK
| |
Collapse
|
38
|
Nicoletti P, Dellinger A, Li YJ, Barnhart HX, Chalasani N, Fontana RJ, Odin JA, Serrano J, Stolz A, Etheridge AS, Innocenti F, Govaere O, Grove JI, Stephens C, Aithal GP, Andrade RJ, Bjornsson ES, Daly AK, Lucena MI, Watkins PB. Identification of Reduced ERAP2 Expression and a Novel HLA Allele as Components of a Risk Score for Susceptibility to Liver Injury Due to Amoxicillin-Clavulanate. Gastroenterology 2023; 164:454-466. [PMID: 36496055 PMCID: PMC9974860 DOI: 10.1053/j.gastro.2022.11.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Drug-induced liver injury (DILI) due to amoxicillin-clavulanate (AC) has been associated with HLA-A∗02:01, HLA-DRB1∗15:01, and rs2476601, a missense variant in PTPN22. The aim of this study was to identify novel risk factors for AC-DILI and to construct a genetic risk score (GRS). METHODS Transcriptome-wide association study and genome-wide association study analyses were performed on 444 AC-DILI cases and 10,397 population-based controls of European descent. Associations were confirmed in a validation cohort (n = 133 cases and 17,836 population-based controls). Discovery and validation AC-DILI cases were also compared with 1358 and 403 non-AC-DILI cases. RESULTS Transcriptome-wide association study revealed a significant association of AC-DILI risk with reduced liver expression of ERAP2 (P = 3.7 × 10-7), coding for an aminopeptidase involved in antigen presentation. The lead eQTL single nucleotide polymorphism, rs1363907 (G), was associated with AC-DILI risk in the discovery (odds ratio [OR], 1.68; 95% CI, 1.23-1.66; P = 1.7 × 10-7) and validation cohorts (OR, 1.2; 95% CI, 1.04-2.05; P = .03), following a recessive model. We also identified HLA-B∗15:18 as a novel AC-DILI risk factor in both discovery (OR, 4.19; 95% CI, 2.09-8.36; P = 4.9 × 10-5) and validation (OR, 7.78; 95% CI, 2.75-21.99; P = .0001) cohorts. GRS, incorporating rs1363907, rs2476601, HLA-B∗15:18, HLA-A∗02:01, and HLA-DRB1∗15:01, was highly predictive of AC-DILI risk when cases were analyzed against both general population and non-AC-DILI control cohorts. GRS was the most significant predictor in a regression model containing known AC-DILI clinical risk characteristics and significantly improved the predictive model. CONCLUSIONS We identified novel associations of AC-DILI risk with ERAP2 low expression and with HLA-B∗15:18. GRS based on the 5 risk variants may assist AC-DILI causality assessment and risk management.
Collapse
Affiliation(s)
- Paola Nicoletti
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Andrew Dellinger
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Yi Ju Li
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina; Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Huiman X Barnhart
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina; Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Joseph A Odin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jose Serrano
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Andrew Stolz
- University of Southern California, Los Angeles, California
| | - Amy S Etheridge
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Federico Innocenti
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Olivier Govaere
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane I Grove
- Nottingham Digestive Diseases Centre and National Institute for Health Research Nottingham Biomedical Research Centre at the Nottingham University Hospital National Health Service Trust, Nottingham, United Kingdom; University of Nottingham, Nottingham, United Kingdom
| | - Camilla Stephens
- Servicios de Digestivo y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA_Plataforma Bionand), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre and National Institute for Health Research Nottingham Biomedical Research Centre at the Nottingham University Hospital National Health Service Trust, Nottingham, United Kingdom; University of Nottingham, Nottingham, United Kingdom
| | - Raul J Andrade
- Servicios de Digestivo y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA_Plataforma Bionand), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Einar S Bjornsson
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ann K Daly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - M Isabel Lucena
- Servicios de Digestivo y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA_Plataforma Bionand), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paul B Watkins
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; University of North Carolina Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
39
|
Fontana RJ, Liou I, Reuben A, Suzuki A, Fiel MI, Lee W, Navarro V. AASLD practice guidance on drug, herbal, and dietary supplement-induced liver injury. Hepatology 2023; 77:1036-1065. [PMID: 35899384 PMCID: PMC9936988 DOI: 10.1002/hep.32689] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Robert J. Fontana
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Iris Liou
- University of Washington, Seattle, Washington, USA
| | - Adrian Reuben
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - M. Isabel Fiel
- Department of Pathology, Mount Sinai School of Medicine, New York City, New York, USA
| | - William Lee
- Division of Gastroenterology, University of Texas Southwestern, Dallas, Texas, USA
| | - Victor Navarro
- Department of Medicine, Einstein Healthcare Network, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Relevance of Pharmacogenomics to the Safe Use of Antimicrobials. Antibiotics (Basel) 2023; 12:antibiotics12030425. [PMID: 36978292 PMCID: PMC10044203 DOI: 10.3390/antibiotics12030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
There has been widespread implementation of pharmacogenomic testing to inform drug prescribing in medical specialties such as oncology and cardiology. Progress in using pharmacogenomic tests when prescribing antimicrobials has been more limited, though a relatively large number of pharmacogenomic studies on aspects such as idiosyncratic adverse drug reactions have now been performed for this drug class. Currently, there are recommendations in place from either National Regulatory Agencies and/or specialist Pharmacogenomics Advisory Groups concerning genotyping for specific variants in MT-RNR1 and CYP2C19 before prescribing aminoglycosides and voriconazole, respectively. Numerous additional pharmacogenomic associations have been reported concerning antimicrobial-related idiosyncratic adverse drug reactions, particularly involving specific HLA alleles, but, to date, the cost-effectiveness of genotyping prior to prescription has not been confirmed. Polygenic risk score determination has been investigated to a more limited extent but currently suffers from important limitations. Despite limited progress to date, the future widespread adoption of preemptive genotyping and genome sequencing may provide pharmacogenomic data to prescribers that can be used to inform prescribing and increase the safe use of antimicrobials.
Collapse
|
41
|
Plasma Sphingoid Base Profiles of Patients Diagnosed with Intrinsic or Idiosyncratic Drug-induced Liver Injury. Int J Mol Sci 2023; 24:ijms24033013. [PMID: 36769329 PMCID: PMC9917723 DOI: 10.3390/ijms24033013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Sphingolipids are exceptionally diverse, comprising hundreds of unique species. The bulk of circulating sphingolipids are synthesized in the liver, thereby plasma sphingolipid profiles represent reliable surrogates of hepatic sphingolipid metabolism and content. As changes in plasma sphingolipid content have been associated to exposure to drugs inducing hepatotoxicity both in vitro and in rodents, in the present study the translatability of the preclinical data was assessed by analyzing the plasma of patients with suspected drug-induced liver injury (DILI) and control subjects. DILI patients, whether intrinsic or idiosyncratic cases, had no alterations in total sphingoid base levels and profile composition compared to controls, whereby cardiovascular disease (CVD) was a confounding factor. Upon exclusion of CVD individuals, elevation of 1-deoxysphingosine (1-deoxySO) in the DILI group emerged. Notably, 1-deoxySO values did not correlate with ALT values. While 1-deoxySO was elevated in all DILI cases, only intrinsic DILI cases concomitantly displayed reduction of select shorter chain sphingoid bases. Significant perturbation of the sphingolipid metabolism observed in this small exploratory clinical study is discussed and put into context, in the consideration that sphingolipids might contribute to the onset and progression of DILI, and that circulating sphingoid bases may function as mechanistic markers to study DILI pathophysiology.
Collapse
|
42
|
Chalasani N, Li YJ, Dellinger A, Navarro V, Bonkovsky H, Fontana RJ, Gu J, Barnhart H, Phillips E, Lammert C, Schwantes-An TH, Nicoletti P, Kleiner DE, Hoofnagle JH. Clinical features, outcomes, and HLA risk factors associated with nitrofurantoin-induced liver injury. J Hepatol 2023; 78:293-300. [PMID: 36152763 PMCID: PMC9852026 DOI: 10.1016/j.jhep.2022.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Nitrofurantoin (NTF) is widely used for the treatment (short-term) and prevention (long-term) of urinary tract infections. We aimed to describe the clinical characteristics, outcomes, and HLA risk factors for NTF-induced liver injury (NTF-DILI) among individuals enrolled in the Drug Induced Liver Injury Network (DILIN). METHODS Seventy-eight individuals with definite, highly likely, or probable NTF-DILI were enrolled into DILIN studies between 2004-2020. HLA alleles were compared between NTF-DILI and three control groups: population (n = 14,001), idiopathic autoimmune hepatitis (n = 231), and non-NTF DILI (n = 661). RESULTS Liver injury was hepatocellular in 69% and icteric in 55%. AST > ALT was more common in the 44 long-exposure (≥1 year) NTF-DILI cases than in the 18 short (≤7 days) and 16 intermediate (>7 to <365 days) exposure cases (73% vs. 33% vs. 50%, respectively, p = 0.018), as was ANA or SMA positivity (91% vs. 44% vs. 50%, respectively, p <0.001), and corticosteroid use (61% vs. 27% vs. 44%, respectively, p = 0.06). In long-term NTF-DILI, bridging fibrosis, nodularity or cirrhosis, or clinical and imaging evidence for cirrhosis were present in 38%, with massive or sub-massive necrosis in 20%. No one in the short-term exposure group died or underwent transplantation, whereas 7 (12%) patients from the other groups died or underwent transplantation. After covariate adjustments, HLA-DRB1∗11:04 was significantly more frequent in NTF-DILI compared to population controls (odds ratio [OR] 4.29, p = 1.15 × 10-4), idiopathic autoimmune hepatitis (OR 11.77, p = 7.76 × 10-5), and non-NTF DILI (OR 3.34, p = 0.003). CONCLUSION NTF-DILI can result in parenchymal necrosis, bridging fibrosis, cirrhosis, and death or liver transplantation, especially with long-term exposure, and is associated with HLA-DRB1∗11:04. To mitigate against serious liver injury associated with NTF, regulators should revise the prescribing information and consider other mitigation strategies. IMPACT AND IMPLICATIONS Nitrofurantoin is a recognized cause of drug-induced liver injury (DILI). In this study consisting of a large cohort of well-phenotyped individuals with nitrofurantoin-induced liver injury, two distinct patterns of liver injury were identified: liver injury associated with short-term exposure, which is generally self-limiting, and liver injury associated with long-term exposure, which can lead to advanced fibrosis, cirrhosis and liver failure. HLA DRB1∗11:04 is a risk factor for liver injury due to long-term nitrofurantoin exposure. Our findings are important for regulators as well as physicians prescribing and pharmacists dispensing nitrofurantoin.
Collapse
Affiliation(s)
- Naga Chalasani
- Indiana University School of Medicine & Indiana University Health, Indianapolis, Indiana, USA.
| | - Yi-Ju Li
- Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Jiezhun Gu
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Huiman Barnhart
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | | | - Craig Lammert
- Indiana University School of Medicine & Indiana University Health, Indianapolis, Indiana, USA
| | - Tae-Hwi Schwantes-An
- Indiana University School of Medicine & Indiana University Health, Indianapolis, Indiana, USA
| | | | - David E Kleiner
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jay H Hoofnagle
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Abstract
Inter-individual variability in drug response, be it efficacy or safety, is common and likely to become an increasing problem globally given the growing elderly population requiring treatment. Reasons for this inter-individual variability include genomic factors, an area of study called pharmacogenomics. With genotyping technologies now widely available and decreasing in cost, implementing pharmacogenomics into clinical practice - widely regarded as one of the initial steps in mainstreaming genomic medicine - is currently a focus in many countries worldwide. However, major challenges of implementation lie at the point of delivery into health-care systems, including the modification of current clinical pathways coupled with a massive knowledge gap in pharmacogenomics in the health-care workforce. Pharmacogenomics can also be used in a broader sense for drug discovery and development, with increasing evidence suggesting that genomically defined targets have an increased success rate during clinical development.
Collapse
|
44
|
Floreani A, Bizzaro D, Shalaby S, Taliani G, Burra P. Sex disparity and drug-induced liver injury. Dig Liver Dis 2023; 55:21-28. [PMID: 35843842 DOI: 10.1016/j.dld.2022.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 12/31/2022]
Abstract
Drug-induced liver injury (DILI) is a potentially serious clinical condition that remains a major problem for patients, physicians and those involved in the development of new drugs. Population and hospital-based studies have reported incidences of DILI varying from 1.4 to 19.1/100.000. Overall, females have a 1.5- to 1.7-fold greater risk of developing adverse drug reactions and the female/male ratio increases after the age of 49 years, suggesting a clear susceptibility of DILI after menopause. Sex differences in pharmacokinetics and pharmacodynamic, sex-specific hormonal effects or interaction with signalling molecules that can influence drug efficacy and safety and differences in abnormal immune response following drug exposure are the main probable causes of the higher vulnerability observed among female patients. A novel phenotype of autoimmune-mediated DILI following the use of check-point inhibitors in oncology and haematology has been recently described. Finally, there have been increasing reports of DILI associated with use of herbal and dietary supplements that is more frequently reported in women.
Collapse
Affiliation(s)
- A Floreani
- Scientific Consultant Scientific Institute for Research, Hospitalization and Healthcare, Negrar, Verona, Italy; Senior Scholar, University of Padova, Padova, Italy.
| | - D Bizzaro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - S Shalaby
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - G Taliani
- Department of Infectious and Tropical Diseases, La Sapienza University of Rome, Rome, Italy
| | - P Burra
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | |
Collapse
|
45
|
Vuppalanchi R, Ghabril M. Review article: clinical assessment of suspected drug-induced liver injury and its management. Aliment Pharmacol Ther 2022; 56:1516-1531. [PMID: 36282208 DOI: 10.1111/apt.17246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 09/25/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND Idisyncratic drug-induced liver injury (DILI) is a rare instance of liver injury after exposure to an otherwise safe drug or herbal or dietary supplement. DILI can be associated with significant morbidity and mortality. Furthermore, it is an important consideration in drug development due to safety concerns. AIMS AND METHODS To highlight pearls and pitfalls to aid clinicians in diagnosing DILI and surmising the management options. We also share the best practices from personal insights developed from decades long participation in the causality assessment committee meetings of the DILI Network. RESULTS DILI lacks a diagnostic test and is currently diagnosed through a process of exclusion of competing aetiologies of liver injury. This requires a high degree of suspicion to consider the possibility of DILI, skill in ruling out the obvious and less obvious competing liver insults, and an understanding of the expected phenotypes of DILI. The facets of DILI cover multiple aspects, including the latency, liver injury pattern, course of injury, and associated autoimmune or immuno-allergic features. Care for patients with DILI is geared towards stopping the offending drug and symptom management that include the use of corticosteroids in select cases. CONCLUSION The diagnosis of DILI is challenging and is primarily made through a carefully crafted patient interview, temporal relationship with the implicated drug or supplement, and exclusion of competing aetiology. LiverTox is a useful resource for clinicians to review the literature and recognise the likelihood of the implicated agent in causing DILI.
Collapse
Affiliation(s)
- Raj Vuppalanchi
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marwan Ghabril
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
46
|
Khan DA, Banerji A, Blumenthal KG, Phillips EJ, Solensky R, White AA, Bernstein JA, Chu DK, Ellis AK, Golden DBK, Greenhawt MJ, Horner CC, Ledford D, Lieberman JA, Oppenheimer J, Rank MA, Shaker MS, Stukus DR, Wallace D, Wang J, Khan DA, Golden DBK, Shaker M, Stukus DR, Khan DA, Banerji A, Blumenthal KG, Phillips EJ, Solensky R, White AA, Bernstein JA, Chu DK, Ellis AK, Golden DBK, Greenhawt MJ, Horner CC, Ledford D, Lieberman JA, Oppenheimer J, Rank MA, Shaker MS, Stukus DR, Wallace D, Wang J. Drug allergy: A 2022 practice parameter update. J Allergy Clin Immunol 2022; 150:1333-1393. [PMID: 36122788 DOI: 10.1016/j.jaci.2022.08.028] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Affiliation(s)
- David A Khan
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Aleena Banerji
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Kimberly G Blumenthal
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Roland Solensky
- Corvallis Clinic, Oregon State University/Oregon Health Science University College of Pharmacy, Corvallis, Ore
| | - Andrew A White
- Department of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Immunology, Allergy Section, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Derek K Chu
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada
| | - Anne K Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - David B K Golden
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Matthew J Greenhawt
- Food Challenge and Research Unit Section of Allergy and Immunology, Children's Hospital Colorado University of Colorado School of Medicine, Aurora, Colo
| | - Caroline C Horner
- Department of Pediatrics, Division of Allergy Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo
| | - Dennis Ledford
- Division of Allergy and Immunology, Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, Fla; James A. Haley Veterans Affairs Hospital, Tampa, Fla
| | - Jay A Lieberman
- Division of Allergy and Immunology, The University of Tennessee Health Science Center, Memphis, Tenn
| | - John Oppenheimer
- Division of Allergy, Rutgers New Jersey Medical School, Rutgers, NJ
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic in Arizona, Scottsdale, Ariz
| | - Marcus S Shaker
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - David R Stukus
- Division of Allergy and Immunology, Nationwide Children's Hospital, Columbus, Ohio; The Ohio State University College of Medicine, Columbus, Ohio
| | - Dana Wallace
- Nova Southeastern Allopathic Medical School, Fort Lauderdale, Fla
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, The Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
48
|
Di Zeo-Sánchez DE, Segovia-Zafra A, Matilla-Cabello G, Pinazo-Bandera JM, Andrade RJ, Lucena MI, Villanueva-Paz M. Modeling drug-induced liver injury: current status and future prospects. Expert Opin Drug Metab Toxicol 2022; 18:555-573. [DOI: 10.1080/17425255.2022.2122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Gonzalo Matilla-Cabello
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - José M. Pinazo-Bandera
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- Plataforma ISCIII de Ensayos Clínicos. UICEC-IBIMA, 29071, Malaga, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
49
|
Fu L, Qian Y, Shang Z, Sun X, Kong X, Gao Y. Antibiotics enhancing drug-induced liver injury assessed for causality using Roussel Uclaf Causality Assessment Method: Emerging role of gut microbiota dysbiosis. Front Med (Lausanne) 2022; 9:972518. [PMID: 36160154 PMCID: PMC9500153 DOI: 10.3389/fmed.2022.972518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is a disease that remains difficult to predict and prevent from a clinical perspective, as its occurrence is hard to fully explain by the traditional mechanisms. In recent years, the risk of the DILI for microbiota dysbiosis has been recognized as a multifactorial process. Amoxicillin-clavulanate is the most commonly implicated drug in DILI worldwide with high causality gradings based on the use of RUCAM in different populations. Antibiotics directly affect the structure and diversity of gut microbiota (GM) and changes in metabolites. The depletion of probiotics after antibiotics interference can reduce the efficacy of hepatoprotective agents, also manifesting as liver injury. Follow-up with liver function examination is essential during the administration of drugs that affect intestinal microorganisms and their metabolic activities, such as antibiotics, especially in patients on a high-fat diet. In the meantime, altering the GM to reconstruct the hepatotoxicity of drugs by exhausting harmful bacteria and supplementing with probiotics/prebiotics are potential therapeutic approaches. This review will provide an overview of the current evidence between gut microbiota and DILI events, and discuss the potential mechanisms of gut microbiota-mediated drug interactions. Finally, this review also provides insights into the "double-edged sword" effect of antibiotics treatment against DILI and the potential prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Lihong Fu
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
- Institute of Infection Diseases, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yihan Qian
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
- Institute of Infection Diseases, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| |
Collapse
|
50
|
Huang J, Zhang Z, Hao C, Qiu Y, Tan R, Liu J, Wang X, Yang W, Qu H. Identifying Drug-Induced Liver Injury Associated With Inflammation-Drug and Drug-Drug Interactions in Pharmacologic Treatments for COVID-19 by Bioinformatics and System Biology Analyses: The Role of Pregnane X Receptor. Front Pharmacol 2022; 13:804189. [PMID: 35979235 PMCID: PMC9377275 DOI: 10.3389/fphar.2022.804189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Of the patients infected with coronavirus disease 2019 (COVID-19), approximately 14–53% developed liver injury resulting in poor outcomes. Drug-induced liver injury (DILI) is the primary cause of liver injury in COVID-19 patients. In this study, we elucidated liver injury mechanism induced by drugs of pharmacologic treatments against SARS-CoV-2 (DPTS) using bioinformatics and systems biology. Totally, 1209 genes directly related to 216 DPTS (DPTSGs) were genes encoding pharmacokinetics and therapeutic targets of DPTS and enriched in the pathways related to drug metabolism of CYP450s, pregnane X receptor (PXR), and COVID-19 adverse outcome. A network, constructed by 110 candidate targets which were the shared part of DPTSGs and 445 DILI targets, identified 49 key targets and four Molecular Complex Detection clusters. Enrichment results revealed that the 4 clusters were related to inflammatory responses, CYP450s regulated by PXR, NRF2-regualted oxidative stress, and HLA-related adaptive immunity respectively. In cluster 1, IL6, IL1B, TNF, and CCL2 of the top ten key targets were enriched in COVID-19 adverse outcomes pathway, indicating the exacerbation of COVID-19 inflammation on DILI. PXR-CYP3A4 expression of cluster 2 caused DILI through inflammation-drug interaction and drug-drug interactions among pharmaco-immunomodulatory agents, including tocilizumab, glucocorticoids (dexamethasone, methylprednisolone, and hydrocortisone), and ritonavir. NRF2 of cluster 3 and HLA targets of cluster four promoted DILI, being related to ritonavir/glucocorticoids and clavulanate/vancomycin. This study showed the pivotal role of PXR associated with inflammation-drug and drug-drug interactions on DILI and highlighted the cautious clinical decision-making for pharmacotherapy to avoid DILI in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaokang Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuzhen Qiu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Hongping Qu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| |
Collapse
|