1
|
Li Y, Xiong Z, Jiang WL, Tian D, Zhou H, Hou Q, Xiao L, Zhang M, Huang L, Zhong L, Zhou L, Zeng GG. An innovative viewpoint on the existing and prospectiveness of SR-B1. Curr Probl Cardiol 2024; 49:102226. [PMID: 38040207 DOI: 10.1016/j.cpcardiol.2023.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Scavenger Receptor Class B Type 1 (SR-B1), a receptor protein expressed on the cell membrane, plays a crucial role in the metabolism and transport of cholesterol and other lipids, contributing significantly to the homeostasis of lipid levels within the body. Bibliometric analysis involves the application of mathematical and statistical methods to quantitatively analyze different types of documents. It involves the analysis of structural and temporal trends in scholarly articles, coupled with the identification of subject emphasis and variations. Through a bibliometric analysis, this study examines the historical background, current research trends, and future directions in the exploration of SR-B1. By offering insights into the research status and development of SR-B1, this paper aims to assist researchers in identifying novel pathways and areas of investigation in this field of study. Following the screening process, it can be concluded that research on SR-B1 has consistently remained a topic of significant interest over the past 17 years. Interestingly, SR-B1 has recently garnered attention in areas beyond its traditional research focus, including the field of cancer. The primary objective of this review is to provide a concise and accessible overview of the development process of SR-B1 that can help readers who are not well-versed in SR-B1 research quickly grasp its key aspects. Furthermore, this review aims to offer insights and suggestions to researchers regarding potential future research directions and areas of emphasis relating to SR-B1.
Collapse
Affiliation(s)
- Yonggui Li
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhijie Xiong
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Dandan Tian
- School of Nursing, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Haiyou Zhou
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Qin Hou
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Liang Xiao
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Mengjie Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Liubin Huang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Lianping Zhong
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Guang-Gui Zeng
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
3
|
Pang J, Raka F, Heirali AA, Shao W, Liu D, Gu J, Feng JN, Mineo C, Shaul PW, Qian X, Coburn B, Adeli K, Ling W, Jin T. Resveratrol intervention attenuates chylomicron secretion via repressing intestinal FXR-induced expression of scavenger receptor SR-B1. Nat Commun 2023; 14:2656. [PMID: 37160898 PMCID: PMC10169763 DOI: 10.1038/s41467-023-38259-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Two common features of dietary polyphenols have hampered our mechanistic understanding of their beneficial effects for decades: targeting multiple organs and extremely low bioavailability. We show here that resveratrol intervention (REV-I) in high-fat diet (HFD)-challenged male mice inhibits chylomicron secretion, associated with reduced expression of jejunal but not hepatic scavenger receptor class B type 1 (SR-B1). Intestinal mucosa-specific SR-B1-/- mice on HFD-challenge exhibit improved lipid homeostasis but show virtually no further response to REV-I. SR-B1 expression in Caco-2 cells cannot be repressed by pure resveratrol compound while fecal-microbiota transplantation from mice on REV-I suppresses jejunal SR-B1 in recipient mice. REV-I reduces fecal levels of bile acids and activity of fecal bile-salt hydrolase. In Caco-2 cells, chenodeoxycholic acid treatment stimulates both FXR and SR-B1. We conclude that gut microbiome is the primary target of REV-I, and REV-I improves lipid homeostasis at least partially via attenuating FXR-stimulated gut SR-B1 elevation.
Collapse
Affiliation(s)
- Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fitore Raka
- Department of Molecular Structure and Function Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alya Abbas Heirali
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dinghui Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jianqiu Gu
- Department of Endocrinology and Metabolism and The Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, PR China
| | - Jia Nuo Feng
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Chieko Mineo
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philip W Shaul
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Bryan Coburn
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Khosrow Adeli
- Department of Molecular Structure and Function Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Endocytosis of LXRs: Signaling in liver and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:347-375. [PMID: 36631198 DOI: 10.1016/bs.pmbts.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are among one of the major transcriptional factors that induces gene regulation in the nucleus. Liver X receptor (LXR) is a transcription factor which regulates essential lipid homeostasis in the body including fatty acid, cholesterol and phospholipid synthesis. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer is activated by either of the ligand binding on LXR or RXR. The promoter region of the gene which is targeted by LXR is bound to the response element of LXR. The activators bind to the heterodimer once the corepressor is dissociated. The cellular process such as endocytosis aids in intracellular trafficking and endosomal formation in transportation of molecules for essential signaling within the cell. LXR isotypes play a crucial role in maintaining lipid homeostasis by regulating the level of cholesterol. In the liver, the deficiency of LXRα can alter the normal physiological conditions depicting the symptoms of various cardiovascular and liver diseases. LXR can degrade low density lipoprotein receptors (LDLR) by the signaling of LXR-IDOL through endocytic trafficking in lipoprotein uptake. Various gene expressions associated with cholesterol level and lipid synthesis are regulated by LXR transcription factor. With its known diversified ligand binding, LXR is capable of regulating expression of various specific genes responsible for the progression of autoimmune diseases. The agonists and antagonists of LXR stand to be an important factor in transcription of the ABC family, essential for high density lipoprotein (HDL) formation. Endocytosis and signaling mechanism of the LXR family is broad and complex despite their involvement in cellular growth and proliferation. Here in this chapter, we aimed to emphasize the master regulation of LXR activation, regulators, and their implications in various metabolic activities especially in lipid homeostasis. Furthermore, we also briefed the significant role of LXR endocytosis in T cell immune regulation and a variety of human diseases including cardiovascular and neuroadaptive.
Collapse
|
5
|
Reboul E. Proteins involved in fat-soluble vitamin and carotenoid transport across the intestinal cells: New insights from the past decade. Prog Lipid Res 2023; 89:101208. [PMID: 36493998 DOI: 10.1016/j.plipres.2022.101208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
It is now well established that vitamins D, E, and K and carotenoids are not absorbed solely through passive diffusion. Broad-specificity membrane transporters such as SR-BI (scavenger receptor class B type I), CD36 (CD36 molecule), NPC1L1 (Niemann Pick C1-like 1) or ABCA1 (ATP-binding cassette A1) are involved in the uptake of these micronutrients from the lumen to the enterocyte cytosol and in their secretion into the bloodstream. Recently, the existence of efflux pathways from the enterocyte back to the lumen or from the bloodstream to the lumen, involving ABCB1 (P-glycoprotein/MDR1) or the ABCG5/ABCG8 complex, has also been evidenced for vitamins D and K. Surprisingly, no membrane proteins have been involved in dietary vitamin A uptake so far. After an overview of the metabolism of fat-soluble vitamins and carotenoids along the gastrointestinal tract (from the mouth to the colon where interactions with microbiota may occur), a focus is placed on the identified and candidate proteins participating in the apical uptake, intracellular transport, basolateral secretion and efflux back to the lumen of fat-soluble vitamins and carotenoids in enterocytes. This review also highlights the mechanisms that remain to be identified to fully unravel the pathways involved in fat-soluble vitamin and carotenoid intestinal absorption.
Collapse
|
6
|
Li H, Huang Z, Zeng F. Opuntia dillenii Haw. Polysaccharide Promotes Cholesterol Efflux in THP-1-Derived Foam Cells via the PPARγ-LXRα Signaling Pathway. Molecules 2022; 27:molecules27248639. [PMID: 36557773 PMCID: PMC9781717 DOI: 10.3390/molecules27248639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux in ameliorating atherosclerosis. Opuntia dillenii Haw. polysaccharide (ODP-Ia), the most important functional component obtained from Opuntia dillenii Haw. stem, has anti-atherosclerosis effects. Therefore, we propose that ODP-Ia could promote cholesterol efflux via the PPARγ-LXRα signaling pathway. In this study, THP-1 foam cells derived from macrophages were treated with different concentrations of ODP-Ia, GGPP (antagonist of LXRα) and GW9662 (antagonist of PPARγ), with or without 15 nmol ODP-Ia. The total cholesterol content in the cells was measured. The mRNA of ABCA1, ABCG1, PPARγ, LXRα and their protein levels in the foam cells were detected by RT−PCR and Western blot, respectively. The results showed that ODP-Ia plays a role in significantly promoting cholesterol efflux (p < 0.05) by upregulating the expression of ABCA1, ABCG1, SR-BI, PPARγ, PPARα and LXRα. Meanwhile, PPARγ and LXRα antagonists dramatically interfered the cholesterol efflux mediated by ODP-Ia (p < 0.05) and dramatically inhibited the upregulating effect of ODP-Ia on the expression of PPARγ, LXRα, ABCA1 and ABCG1 at both protein and mRNA levels (p < 0.05). In conclusion, ODP-Ia promotes cholesterol efflux in the foam cells through activating the PPARγ-LXRα signaling pathway. This bioactivity suggested that ODP-Ia may be of benefit in treating atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- School of Food Science and Engineering, Lingnan Normal University, Zhanjiang 504048, China
- Correspondence:
| | - Zhenchi Huang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Fuhua Zeng
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| |
Collapse
|
7
|
Fan Y, Qin M, Zhu J, Chen X, Luo J, Chen T, Sun J, Zhang Y, Xi Q. MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation. Crit Rev Food Sci Nutr 2022; 64:4116-4133. [PMID: 36287029 DOI: 10.1080/10408398.2022.2139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Accumulating evidence has demonstrated that diet-derived gut microbiota participates in the regulation of host metabolism and becomes the foundation for precision-based nutritional interventions and the biomarker for potential individual dietary recommendations. However, the specific mechanism of the gut microbiota-host crosstalk remains unclear. Recent studies have identified that noncoding RNAs, as important elements in the regulation of the initiation and termination of gene expression, mediate microbiota-host communication. Besides, the cross-kingdom regulation of non-host derived microRNAs also influence microbiota-host crosstalk via diet motivation. Hence, understanding the relationship between gut microbiota, miRNAs, and host metabolism is indispensable to revealing individual differences in dietary motivation and providing targeted recommendations and strategies. In this review, we first present an overview of the interaction between diet, host genetics, and gut microbiota and collected some latest research associated with microRNAs modulated gut microbiota and intestinal homeostasis. Then, specifically described the possible molecular mechanisms of microRNAs in sensing and regulating gut microbiota-host crosstalk. Lastly, summarized the prospect of microRNAs as biomarkers in disease diagnosis, and the disadvantages of microRNAs in regulating gut microbiota-host crosstalk. We speculated that microRNAs could become potential novel circulating biomarkers for personalized dietary strategies to achieve precise nutrition in future clinical research implications.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengran Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Zheng M, Guo Y, Li W, Wu M, Xu M, Shao M, He G, Liu Y. Medium Chain Triglycerides Promote the Uptake of β-Carotene in O/W Emulsions via Intestinal Transporter SR-B1 in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9377-9387. [PMID: 35861437 DOI: 10.1021/acs.jafc.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to elucidate the impacts of carrier oil types (long chain triglycerides (LCT), medium chain triglycerides (MCT), and orange oil (indigestible oil)) on the micellization and cellular uptake of β-carotene (BC) formulated in O/W emulsions, with an emphasis on the role of intestinal transporters. The micellization and cellular uptake of BC in the gastrointestinal tract were evaluated via an in vitro digestion model and a Caco-2 cell monolayer. And the interactions between lipids and intestinal transporters were monitored by nontargeted lipidomics, RT-PCR, and Western blot. The BC micellization rates followed a decreasing trend in emulsions: corn oil (69.47 ± 4.19%) > MCT (22.22 ± 0.89%) > orange oil (11.01 ± 2.86%), whereas the cellular uptake rate of BC was significantly higher in MCT emulsion (56.30 ± 20.13%) than in corn oil emulsion (14.01 ± 1.04%, p < 0.05). The knockdown of SR-B1 led to a 31.63% loss of BC cellular uptake from MCT micelles but had no effect on corn oil micelles. Lipidomics and transporter analysis revealed that TG (10:0/10:0/12:0) and TG (10:0/12:0/12:0) might be the fingerprint lipids that promoted the cellular absorption of BC-MCT micelles via stimulating the mRNA expression of SR-B1.
Collapse
Affiliation(s)
- Mengman Zheng
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
- Department of Nutriology, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, Zhejiang 312000, China
| | - Yi Guo
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Wenyun Li
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Min Wu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Mingjing Xu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Manman Shao
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Gengsheng He
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Yuwei Liu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
9
|
Dong X, Zhu S, Liu J, Dong Z, Guan F, Xu A, Zhao J, Ge J. Ameliorating mechanism of nuciferine on high-fat diet-induced dyslipidemia and hepatic steatosis by regulating intestinal absorption and serum extracellular vesicles in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
HDL and microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:153-161. [DOI: 10.1007/978-981-19-1592-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Zembroski AS, Xiao C, Buhman KK. The Roles of Cytoplasmic Lipid Droplets in Modulating Intestinal Uptake of Dietary Fat. Annu Rev Nutr 2021; 41:79-104. [PMID: 34283920 DOI: 10.1146/annurev-nutr-110320-013657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary fat absorption is required for health but also contributes to hyperlipidemia and metabolic disease when dysregulated. One step in the process of dietary fat absorption is the formation of cytoplasmic lipid droplets (CLDs) in small intestinal enterocytes; these CLDs serve as dynamic triacylglycerol storage organelles that influence the rate at which dietary fat is absorbed. Recent studies have uncovered novel factors regulating enterocyte CLD metabolism that in turn influence the absorption of dietary fat. These include peroxisome proliferator-activated receptor α activation, compartmentalization of different lipid pools, the gut microbiome, liver X receptor and farnesoid X receptor activation, obesity, and physiological factors stimulating CLD mobilization. Understanding how enterocyte CLD metabolism is regulated is key in modulating the absorption of dietary fat in the prevention of hyperlipidemia and its associated metabolic disorders. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
12
|
Fan S, Zhang H, Wang Y, Zhao Y, Luo L, Wang H, Chen G, Xing L, Zheng P, Huang C. LXRα/β Antagonism Protects against Lipid Accumulation in the Liver but Increases Plasma Cholesterol in Rhesus Macaques. Chem Res Toxicol 2021; 34:833-838. [PMID: 33647205 DOI: 10.1021/acs.chemrestox.0c00445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in the liver and associates with obesity, hyperlipidemia, and insulin resistance. NAFLD could lead to nonalcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis, and even cancers. The development of therapy for NAFLD has been proven difficult. Emerging evidence suggests that liver X receptor (LXR) antagonist is a potential treatment for fatty liver disease. However, concerns about the cholesterol-increasing effects make it questionable for the development of LXR antagonists. Here, the overweight monkeys were fed with LXRβ-selective antagonist sophoricoside or LXRα/β dual-antagonist morin for 3 months. The morphology of punctured liver tissues was examined by H&E staining. The liver, heart, and kidney damage indices were analyzed using plasma. The blood index was assayed using complete blood samples. We show that LXRβ-selective antagonist sophoricoside and LXRα/β dual-antagonist morin alleviated lipid accumulation in the liver in overweight monkeys. The compounds resulted in higher plasma TC or LDL-c contents, increased white blood cell and lymphocyte count, and decreased neutrophile granulocyte count in the monkeys. The compounds did not alter plasma glucose, apolipoprotein A (ApoA), ApoB, ApoE, lipoprotein (a) (LPA), nonesterified fatty acid (NEFA), aspartate transaminases (AST), creatinine (CREA), urea nitrogen (UN), and creatine kinase (CK) levels. Our data suggest that LXRβ-selective and LXRα/β dual antagonism may lead to hypercholesterolemia in nonhuman primates, which calls into question the development of LXR antagonist as a therapy for NAFLD.
Collapse
Affiliation(s)
- Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiyan Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yahui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongrun Wang
- Hengshu Bio-Technology Company, Yibin HighTech Park, Yibin, Sichuan 644601, China
| | - Gen Chen
- Hengshu Bio-Technology Company, Yibin HighTech Park, Yibin, Sichuan 644601, China
| | - Lianjun Xing
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peiyong Zheng
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
13
|
Citrin KM, Fernández-Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci 2021; 1495:55-77. [PMID: 33521946 DOI: 10.1111/nyas.14566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Since many microRNAs have multiple mRNA targets, they are uniquely positioned to regulate the expression of several molecules and pathways simultaneously. For example, the multiple stages of cholesterol metabolism are heavily influenced by microRNA activity. Understanding the scope of microRNAs that control this pathway is highly relevant to diseases of perturbed cholesterol metabolism, most notably cardiovascular disease (CVD). Atherosclerosis is a common cause of CVD that involves inflammation and the accumulation of cholesterol-laden cells in the arterial wall. However, several different cell types participate in atherosclerosis, and perturbations in cholesterol homeostasis may have unique effects on the specialized functions of these various cell types. Therefore, our review discusses the current knowledge of microRNA-mediated control of cholesterol homeostasis, followed by speculation as to how these microRNA-mRNA target interactions might have distinctive effects on different cell types that participate in atherosclerosis.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Yajaira Suárez
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Zhang X, Wang K, Zhu L, Wang Q. Reverse Cholesterol Transport Pathway and Cholesterol Efflux in Diabetic Retinopathy. J Diabetes Res 2021; 2021:8746114. [PMID: 34746320 PMCID: PMC8564209 DOI: 10.1155/2021/8746114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
Cholesterol esters, synthesized from cholesterol with long-chain fatty acids, are essential components of plasma lipoproteins and cell membranes that participate in various metabolic processes in the body. Cholesterol can be excreted through the cholesterol reverse transport (RCT) pathway when excessive cholesterol is produced in the extrahepatic cells, which is regulated by the liver X receptor (LXR) and its downstream regulators ATP-binding cassette subfamily A member 1 (ABCA1) and ATP-binding cassette subfamily G member 1 (ABCG1) genes. Abnormal cholesterol metabolism is closely associated with the development of diabetic retinopathy (DR). However, the precise underlying mechanism of the RCT pathway in the pathogenesis of DR is still not fully understood. This review focused on cholesterol metabolism, with a particular emphasis on the RCT pathway and its correlation with the development of DR. Particular attention has been paid to the key regulators of the RCT pathway: LXR, ABCA1, and ABCG1 genes and their potential therapeutic targets in the management of DR.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Beijing Institute of Ophthalmology, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, China
- Beijing Retinal and Choroidal Vascular Study Group, China
| | - Kaiyue Wang
- Beijing Institute of Ophthalmology, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, China
| | - Ling Zhu
- Save Sight Institute, University of Sydney, Australia
| | - Qiyun Wang
- Beijing Institute of Ophthalmology, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, China
- Beijing Retinal and Choroidal Vascular Study Group, China
| |
Collapse
|
15
|
Yu XC, Fu Y, Bi YH, Zhang WW, Li J, Ji T, Chao Y, Meng QH, Chen Q, Ma MH, Zhang YH, Shan J, Bian HM. Alisol B 23-acetate activates ABCG5/G8 in the jejunum via the LXRα/ACAT2 pathway to relieve atherosclerosis in ovariectomized ApoE -/- mice. Aging (Albany NY) 2020; 12:25744-25766. [PMID: 33234731 PMCID: PMC7803561 DOI: 10.18632/aging.104185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Phytosterols have been shown to improve blood lipid levels and treat atherosclerosis. This research investigated the effects of phytosterol Alisol B 23-acetate (AB23A) on jejunum lipid metabolism and atherosclerosis. The results show that intragastric administration of AB23A can significantly reduce atherosclerotic plaque area and lipid accumulation in the jejunum of ovariectomized ApoE-/- mice fed a high-fat diet and can also improve the lipid mass spectra of the plasma and jejunum. In vitro studies have shown that AB23A can increase cholesterol outflow in Caco-2 cells exposed to high fat concentrations and increase the expression of ATP-binding cassette transfer proteins G5/G8 (ABCG5/G8), the liver X receptor α (LXRα). Furthermore, inhibition of LXRα can significantly eliminate the active effect of AB23A on decreasing intracellular lipid accumulation. We also confirmed that AB23A has a negative effect on Acyl-CoA cholesterol acyltransferase 2 (ACAT2) in Caco-2 cells cultured in the high concentrations of fat, and we found that AB23A further reduces ACAT2 expression in cells treated with the ACAT2 inhibitor pyripyropene or transfected with ACAT2 siRNA. In conclusion, we confirmed that AB23A can reduce the absorption of dietary lipids in the jejunum by affecting the LXRα-ACAT2-ABCG5/G8 pathway and ultimately exert an anti-atherosclerotic effect.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5/drug effects
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 8/drug effects
- ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Caco-2 Cells
- Cholestenones/pharmacology
- Cholesterol/metabolism
- Cholesterol Esters/metabolism
- Diet, High-Fat
- Female
- Glycerophospholipids/metabolism
- Humans
- Jejunum/drug effects
- Jejunum/metabolism
- Jejunum/pathology
- Lipid Droplets/drug effects
- Lipid Droplets/metabolism
- Lipid Droplets/pathology
- Lipid Metabolism/drug effects
- Lipoproteins/drug effects
- Lipoproteins/metabolism
- Liver X Receptors/drug effects
- Liver X Receptors/metabolism
- Mice
- Mice, Knockout, ApoE
- Ovariectomy
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Sterol O-Acyltransferase/drug effects
- Sterol O-Acyltransferase/metabolism
- Triglycerides/metabolism
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
- Xi-Chao Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun-Hui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Wei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qing-Hai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Hua Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Han Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui-Min Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- National Standard Laboratory of Pharmacology of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
16
|
Piccinin E, Cariello M, Moschetta A. Lipid metabolism in colon cancer: Role of Liver X Receptor (LXR) and Stearoyl-CoA Desaturase 1 (SCD1). Mol Aspects Med 2020; 78:100933. [PMID: 33218679 DOI: 10.1016/j.mam.2020.100933] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly occurring cancers worldwide. Although several genetic alterations have been associated with CRC onset and progression, nowadays the reprogramming of cellular metabolism has been recognized as a fundamental step of the carcinogenic process. Intestinal tumor cells frequently display an aberrant activation of lipid metabolism. Indeed, to satisfy the growing needs of a continuous proliferation, cancer cells can either increase the uptake of exogenous lipids or upregulate the endogenous lipogenesis and cholesterol synthesis. Therefore, strategies aimed at limiting lipid accumulation are now under development in order to counteract malignancies. Two major players of lipids metabolism have been so far identified for their contribution to CRC development: the nuclear receptor Liver X Receptor (LXRs) and the enzyme Stearoyl-CoA Desaturase 1 (SCD1). Whereas LXR is mainly recognized for its role as a cholesterol sensor, finally promoting the loss of cellular cholesterol and whole-body homeostasis, SCD1 acts as the major regulator of new fatty acids, finely tuning the monounsaturated fatty acids (MUFA) to saturated fatty acids (SFA) ratio. Intriguingly, SCD1 is directly regulated by LXRs. Despite LXRs agonists have elicited great interest as a promising therapeutic target for cancer, LXR's ability to induce SCD1 and new fatty acids synthesis represent a major obstacle in the development of new effective treatments. Thus, further investigations are required to fully dissect the concomitant modulation of both players, to develop specific therapies aimed at blocking intestinal cancer cells proliferation, eventually counteracting CRC progression.
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Rome, Italy; National Cancer Center, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy.
| |
Collapse
|
17
|
Gil-Zamorano J, Tomé-Carneiro J, Lopez de Las Hazas MC, Del Pozo-Acebo L, Crespo MC, Gómez-Coronado D, Chapado LA, Herrera E, Latasa MJ, Ruiz-Roso MB, Castro-Camarero M, Briand O, Dávalos A. Intestinal miRNAs regulated in response to dietary lipids. Sci Rep 2020; 10:18921. [PMID: 33144601 PMCID: PMC7642330 DOI: 10.1038/s41598-020-75751-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The role of miRNAs in intestinal lipid metabolism is poorly described. The small intestine is constantly exposed to high amounts of dietary lipids, and it is under conditions of stress that the functions of miRNAs become especially pronounced. Approaches consisting in either a chronic exposure to cholesterol and triglyceride rich diets (for several days or weeks) or an acute lipid challenge were employed in the search for intestinal miRNAs with a potential role in lipid metabolism regulation. According to our results, changes in miRNA expression in response to fat ingestion are dependent on factors such as time upon exposure, gender and small intestine section. Classic and recent intestinal in vitro models (i.e. differentiated Caco-2 cells and murine organoids) partially mirror miRNA modulation in response to lipid challenges in vivo. Moreover, intestinal miRNAs might play a role in triglyceride absorption and produce changes in lipid accumulation in intestinal tissues as seen in a generated intestinal Dicer1-deletion murine model. Overall, despite some variability between the different experimental cohorts and in vitro models, results show that some miRNAs analysed here are modulated in response to dietary lipids, hence likely to participate in the regulation of lipid metabolism, and call for further research.
Collapse
Affiliation(s)
- Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - João Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM CSIC, 28049, Madrid, Spain
| | - María-Carmen Lopez de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - Lorena Del Pozo-Acebo
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - M Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM CSIC, 28049, Madrid, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain.,Centre of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Luis A Chapado
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - Emilio Herrera
- Department of Biochemistry and Chemistry, Faculties of Pharmacy and Medicine, Universidad San Pablo CEU, 28668, Madrid, Spain
| | - María-Jesús Latasa
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - María Belén Ruiz-Roso
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain
| | - Mónica Castro-Camarero
- Servicio de Cirugía Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Olivier Briand
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, 59000, France
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies Food (IMDEA Food), CEI UAM + CSIC, Carretera de Canto Blanco, 8, 28049, Madrid, Spain.
| |
Collapse
|
18
|
Ruiz-Roso MB, Gil-Zamorano J, López de Las Hazas MC, Tomé-Carneiro J, Crespo MC, Latasa MJ, Briand O, Sánchez-López D, Ortiz AI, Visioli F, Martínez JA, Dávalos A. Intestinal Lipid Metabolism Genes Regulated by miRNAs. Front Genet 2020; 11:707. [PMID: 32742270 PMCID: PMC7366872 DOI: 10.3389/fgene.2020.00707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) crucial roles in translation repression and post-transcriptional adjustments contribute to regulate intestinal lipid metabolism. Even though their actions in different metabolic tissues have been elucidated, their intestinal activity is yet unclear. We aimed to investigate intestinal miRNA-regulated lipid metabolism-related genes, by creating an intestinal-specific Dicer1 knockout (Int-Dicer1 KO) mouse model, with a depletion of microRNAs in enterocytes. The levels of 83 cholesterol and lipoprotein metabolism-related genes were assessed in the intestinal mucosa of Int-Dicer1 KO and Wild Type C57BL/6 (WT) littermates mice at baseline and 2 h after an oral lipid challenge. Among the 18 genes selected for further validation, Hmgcs2, Acat1 and Olr1 were found to be strong candidates to be modulated by miRNAs in enterocytes and intestinal organoids. Moreover, we report that intestinal miRNAs contribute to the regulation of intestinal epithelial differentiation. Twenty-nine common miRNAs found in the intestines were analyzed for their potential to target any of the three candidate genes found and validated by miRNA-transfection assays in Caco-2 cells. MiR-31-5p, miR-99b-5p, miR-200a-5p, miR-200b-5p and miR-425-5p are major regulators of these lipid metabolism-related genes. Our data provide new evidence on the potential of intestinal miRNAs as therapeutic targets in lipid metabolism-associated pathologies.
Collapse
Affiliation(s)
- María Belén Ruiz-Roso
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - María Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - María Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - María Jesús Latasa
- Research Program, Innovation, Communication and Education Program, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Olivier Briand
- University of Lille, Inserm, Centre Hospitalier Universitaire (CHU) de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Daniel Sánchez-López
- University of Lille, Inserm, Centre Hospitalier Universitaire (CHU) de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Ana I Ortiz
- Servicio de Cirugía Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain.,Department of Molecular Medicine, University of Padua, Padua, Italy
| | - J Alfredo Martínez
- Department of Nutrition and Physiology, Center for Nutrition Research, University of Navarra, IDISNA Navarra, Pamplona, Spain.,Centre of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Cardiometabolic Nutrition Group, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
19
|
Meng Q, Li J, Chao Y, Bi Y, Zhang W, Zhang Y, Ji T, Fu Y, Chen Q, Zhang Q, Li Y, Bian H. β-estradiol adjusts intestinal function via ERβ and GPR30 mediated PI3K/AKT signaling activation to alleviate postmenopausal dyslipidemia. Biochem Pharmacol 2020; 180:114134. [PMID: 32628929 DOI: 10.1016/j.bcp.2020.114134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Decreases in estrogen secretion and estrogen receptor function lead to an increase in the incidence of dyslipidemia and cardiovascular disease (CVD) in postmenopausal women. We previously reported that β-estradiol has a significant regulatory effect on lipids in ApoE-/- mice with bilateral ovariectomy. In the present study, we investigated how β-estradiol regulates intestinal function via estrogen receptors to alleviate postmenopausal dyslipidemia. Ovariectomized ApoE-/- mice were treated with β-estradiol for 90 days, and we found that β-estradiol reduced TC, TG, LDL-c, IL-1β and IL-18 levels in serum and decreased lipid accumulation in the liver. β-estradiol reduced injury and inflammation in the jejunum in ovariectomized mice, and promoted the expression of tight junction-related proteins. Moreover, β-estradiol increased ERα, ERβ, GPR30 and ABCG5 protein expression, and decreased the levels of NPC1L1 and SR-B1 in the jejunum of ovariectomized mice. In Caco-2 cells incubated with cholesterol, β-estradiol up-regulated PI3K/AKT signaling, reduced cholesterol accumulation, suppressed inflammatory signaling, and increased the expression of tight junction-related proteins. ERβ or GPR30 inhibition decreased the protective effect of β-estradiol on cholesterol accumulation, tight junctions, and inflammation in cholesterol incubated Caco-2 cells, while silencing both ERβ and GPR30 completely eliminated the protective effect of β-estradiol. PI3K/AKT inhibition abolished the protective effect of β-estradiol on cholesterol accumulation, tight junction-related protein expression, and inflammation, but had no influence on ERα, ERβ or GPR30 expression in cholesterol incubated Caco-2 cells. Our results provide evidence that β-estradiol regulates intestinal function via ERβ and GPR30 mediated PI3K/AKT signaling activation to alleviate postmenopausal dyslipidemia.
Collapse
Affiliation(s)
- Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunhui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
20
|
Pharmacokinetics of T0901317 in mouse serum and tissues using a validated UFLC-IT-TOF/MS method. J Pharm Biomed Anal 2020; 189:113420. [PMID: 32593849 DOI: 10.1016/j.jpba.2020.113420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/08/2023]
Abstract
T0901317, a liver X receptors (LXRs) agonist with high-affinity, is widely used to explore the functions of LXRs in various diseases such as atherosclerosis and Alzheimer's disease. However, there is currently little information available about the pharmacokinetics (PK) behavior of T0901317. Here we established a novel ultrafast liquid chromatography-high resolution mass spectrometry method to quantify the concentration of T0901317 in serum, liver, and brain. The chromatographic separation was attained on a C18 (2.1 × 100 mm, 1.8 μm) column using acetonitrile and 0.1 % of formic acid in water as mobile phase operated in gradient elution mode. The mass detection was carried out using negative ions m/z 479.9809 and 322.0882 for T0901317 and internal standard, respectively. The proposed method was fully validated according to the FDA guidelines, and it generally provides good results in terms of linearity (r2 > 0.99), precision (RSD < 18 % and 12 % for LLOQ and other QC levels, respectively), accuracy (between 92.30 % and 108.16 %), and matrix effect (between 86.56 % and 113.81 %). We then for the first time determined and computed the PK parameters of T0901317 in mouse after intraperitoneal administration of a 20 mg/kg dosage. The peak times (Tmax) in serum, liver, and brain were 1.5, 1.5, and 4 h, respectively, while the half-lives (t1/2) were 4.9, 3.3, and 4.5 h, respectively. Taken together, our results provide a significant choice to study the PK property of T0901317, from which the design of the dosing and sampling protocols of LXRs receptor-antagonist experiments employing T0901317 can also benefit.
Collapse
|
21
|
Hiebl V, Schachner D, Ladurner A, Heiss EH, Stangl H, Dirsch VM. Caco-2 Cells for Measuring Intestinal Cholesterol Transport - Possibilities and Limitations. Biol Proced Online 2020; 22:7. [PMID: 32308567 PMCID: PMC7149936 DOI: 10.1186/s12575-020-00120-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background The human Caco-2 cell line is a common in vitro model of the intestinal epithelial barrier. As the intestine is a major interface in cholesterol turnover and represents a non-biliary pathway for cholesterol excretion, Caco-2 cells are also a valuable model for studying cholesterol homeostasis, including cholesterol uptake and efflux. Currently available protocols are, however, either sketchy or not consistent among different laboratories. Our aim was therefore to generate a collection of optimized protocols, considering the different approaches of the different laboratories and to highlight possibilities and limitations of measuring cholesterol transport with this cell line. Results We developed comprehensive and quality-controlled protocols for the cultivation of Caco-2 cells on filter inserts in a single tight monolayer. A cholesterol uptake as well as a cholesterol efflux assay is described in detail, including suitable positive controls. We further show that Caco-2 cells can be efficiently transfected for luciferase reporter gene assays in order to determine nuclear receptor activation, main transcriptional regulators of cholesterol transporters (ABCA1, ABCB1, ABCG5/8, NPC1L1). Detection of protein and mRNA levels of cholesterol transporters in cells grown on filter inserts can pose challenges for which we highlight essential steps and alternative approaches for consideration. A protocol for viability assays with cells differentiated on filter inserts is provided for the first time. Conclusions The Caco-2 cell line is widely used in the scientific community as model for the intestinal epithelium, although with highly divergent protocols. The herein provided information and protocols can be a common basis for researchers intending to use Caco-2 cells in the context of cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Verena Hiebl
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Daniel Schachner
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Herbert Stangl
- 2Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
22
|
Wang D, Huang J, Gui T, Yang Y, Feng T, Tzvetkov NT, Xu T, Gai Z, Zhou Y, Zhang J, Atanasov AG. SR-BI as a target of natural products and its significance in cancer. Semin Cancer Biol 2020; 80:18-38. [PMID: 31935456 DOI: 10.1016/j.semcancer.2019.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Scavenger receptor class B type I (SR-BI) protein is an integral membrane glycoprotein. SR-BI is emerging as a multifunctional protein, which regulates autophagy, efferocytosis, cell survival and inflammation. It is well known that SR-BI plays a critical role in lipoprotein metabolism by mediating cholesteryl esters selective uptake and the bi-directional flux of free cholesterol. Recently, SR-BI has also been identified as a potential marker for cancer diagnosis, prognosis, or even a treatment target. Natural products are a promising source for the discovery of new drug leads. Multiple natural products were identified to regulate SR-BI protein expression. There are still a number of challenges in modulating SR-BI expression in cancer and in using natural products for modulation of such protein expression. In this review, our purpose is to discuss the relationship between SR-BI protein and cancer, and the molecular mechanisms regulating SR-BI expression, as well as to provide an overview of natural products that regulate SR-BI expression.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, 318 Preston Research Building, 2200 Pierce Avenue, Nashville, Tennessee, 37232, USA
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaxin Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Tingting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China.
| | - Jingjie Zhang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China.
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzębiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
23
|
Pu S, Wu X, Yang X, Zhang Y, Dai Y, Zhang Y, Wu X, Liu Y, Cui X, Jin H, Cao J, Li R, Cai J, Cao Q, Hu L, Gao Y. The Therapeutic Role of Xenobiotic Nuclear Receptors Against Metabolic Syndrome. Curr Drug Metab 2019; 20:15-22. [PMID: 29886826 DOI: 10.2174/1389200219666180611083155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/05/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes, with an increased prevalence and various progressive complications, has become a significant global health challenge. The concrete mechanisms responsible for the development of diabetes still remain incompletely unknown, although substantial researches have been conducted to search for the effective therapeutic targets. This review aims to reveal the novel roles of Xenobiotic Nuclear Receptors (XNRs), including the Peroxisome Proliferator-Activated Receptor (PPAR), the Farnesoid X Receptor (FXR), the Liver X Receptor (LXR), the Pregnane X Receptor (PXR) and the Constitutive Androstane Receptor (CAR), in the development of diabetes and provide potential strategies for research and treatment of metabolic diseases. METHODS We retrieved a large number of original data about these five XNRs and organized to focus on their recently discovered functions in diabetes and its complications. RESULTS Increasing evidences have suggested that PPAR, FXR, LXR ,PXR and CAR are involved in the development of diabetes and its complications through different mechanisms, including the regulation of glucose and lipid metabolism, insulin and inflammation response and related others. CONCLUSION PPAR, FXR, LXR, PXR, and CAR, as the receptors for numerous natural or synthetic compounds, may be the most effective therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Shuqi Pu
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojie Wu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Yunzhan Zhang
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunkai Dai
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueling Zhang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Xiaoting Wu
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Yan Liu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiaona Cui
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Haiyong Jin
- Department of Otolaryngology, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhong Cao
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruliu Li
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhong Cai
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qizhi Cao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Ling Hu
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Postprandial Circulating miRNAs in Response to a Dietary Fat Challenge. Nutrients 2019; 11:nu11061326. [PMID: 31200481 PMCID: PMC6627817 DOI: 10.3390/nu11061326] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
Postprandial lipemia has many physiopathological effects, some of which increase the risk of cardiovascular disease. MicroRNAs (miRNAs) can be found in almost all biological fluids, but their postprandial kinetics are poorly described. We aimed to profile circulating miRNAs in response to a fat challenge. In total, 641 circulating miRNAs were assessed by real-time PCR in plasmas from mice two hours after lipid gavage. Mice with intestine-specific loss of Dicer were screened to identify potential miRNAs released by the intestine. A total of 68 miRNAs were selected for further validation. Ten circulating miRNAs were finally validated as responsive to postprandial lipemia, including miR-206-3p, miR-543-3p, miR-466c-5p, miR-27b-5p, miR-409-3p, miR-340-3p, miR-1941-3p, miR-10a-3p, miR-125a-3p, and miR-468-3p. Analysis of their possible tissues of origin/target showed an enrichment of selected miRNAs in liver, intestine, brain, or skeletal muscle. miR-206, miR-27b-5p, and miR-409-3p were validated in healthy humans. Analysis of their predicted target genes revealed their potential involvement in insulin/insulin like growth factor (insulin/IGF), angiogenesis, cholecystokinin B receptor signaling pathway (CCKR), inflammation or Wnt pathways for mice, and in platelet derived growth factor (PDGF) and CCKR signaling pathways for humans. Therefore, the current study shows that certain miRNAs are released in the circulation in response to fatty meals, proposing them as potential novel therapeutic targets of lipid metabolism.
Collapse
|
25
|
Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomed Pharmacother 2019; 113:108778. [DOI: 10.1016/j.biopha.2019.108778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
|
26
|
Desmarchelier C, Landrier JF, Borel P. Genetic factors involved in the bioavailability of tomato carotenoids. Curr Opin Clin Nutr Metab Care 2018; 21:489-497. [PMID: 30277929 DOI: 10.1097/mco.0000000000000515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW To provide an update on the genetic factors recently associated with the interindividual variability of tomato carotenoid bioavailability. RECENT FINDINGS Several clinical studies have demonstrated that the main carotenoids found in tomatoes (lycopene, phytoene, phytofluene, β-carotene, lutein) all display relatively large interindividual variabilities of their bioavailability, with coefficients of variations more than 70%. The bioavailability of the parent molecules, and the blood/tissue appearance of their metabolites, is modulated by numerous proteins, involved in intestinal absorption and metabolism, blood lipoprotein transport or tissue uptake. Several single nucleotide polymorphisms (SNPs) have been associated with the interindividual variability of lycopene, lutein and β-carotene bioavailability, with six genes consistently shared between the three carotenoids, and in particular one SNP in ELOVL fatty acid elongase 2. The effects of the genetic variants taken separately are relatively low, that is each variant is usually associated with only a few percentage of the variability but multivariate analyses suggest that the additive effect of several genetic variants can explain a significant fraction of tomato carotenoid bioavailability. SUMMARY Additional studies are needed to improve our knowledge of the genetic determinants of tomato carotenoid bioavailability but progress in this field could one day allow nutritionists to provide more personalized dietary recommendations.
Collapse
|
27
|
Reboul E. Vitamin E intestinal absorption: Regulation of membrane transport across the enterocyte. IUBMB Life 2018; 71:416-423. [PMID: 30308094 DOI: 10.1002/iub.1955] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022]
Abstract
Vitamin E is an essential molecule for our development and health. It has long been thought that it was absorbed and transported through cellular membranes by a passive diffusion process. However, data obtained during the past 15 years showed that its absorption is actually mediated, at least in part, by cholesterol membrane transporters including the scavenger receptor class B type I (SR-BI), CD36 molecule (CD36), NPC1-like transporter 1 (NPC1L1), and ATP-binding cassettes A1 and G1 (ABCA1 and ABCG1). This review focuses on the absorption process of vitamin E across the enterocyte. A special attention is given to the regulation of this process, including the possible competition with other fat-soluble micronutrients, and the modulation of transporter expressions. Overall, recent results noticeably increased the comprehension of vitamin E intestinal transport, but additional investigations are still required to fully appreciate the mechanisms governing vitamin E bioavailability. © 2018 IUBMB Life, 71(4):416-423, 2019.
Collapse
|
28
|
Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight. Antioxidants (Basel) 2017; 6:antiox6040095. [PMID: 29165370 PMCID: PMC5745505 DOI: 10.3390/antiox6040095] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/06/2023] Open
Abstract
Vitamin E is an essential fat-soluble micronutrient whose effects on human health can be attributed to both antioxidant and non-antioxidant properties. A growing number of studies aim to promote vitamin E bioavailability in foods. It is thus of major interest to gain deeper insight into the mechanisms of vitamin E absorption, which remain only partly understood. It was long assumed that vitamin E was absorbed by passive diffusion, but recent data has shown that this process is actually far more complex than previously thought. This review describes the fate of vitamin E in the human gastrointestinal lumen during digestion and focuses on the proteins involved in the intestinal membrane and cellular transport of vitamin E across the enterocyte. Special attention is also given to the factors modulating both vitamin E micellarization and absorption. Although these latest results significantly improve our understanding of vitamin E intestinal absorption, further studies are still needed to decipher the molecular mechanisms driving this multifaceted process.
Collapse
|
29
|
Gu M, Zhang Y, Liu C, Wang D, Feng L, Fan S, Yang B, Tong Q, Ji G, Huang C. Morin, a novel liver X receptor α/β dual antagonist, has potent therapeutic efficacy for nonalcoholic fatty liver diseases. Br J Pharmacol 2017. [PMID: 28646531 DOI: 10.1111/bph.13933] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Morin is a natural occurring flavonoid in many dietary plants and has a wide range of beneficial effects on metabolism; however, the mechanism underlying its action remains elusive. EXPERIMENTAL APPROACH A reporter assay and the time-resolved FRET assay were used to identify morin as a dual antagonist of liver X receptor (LXR)-α and -β. Morin (100 mg. 100 g-1 diet) was administered to high-fat diet-induced obese or LXRβ-/- mice. The pharmacological effects and mechanism of action of morin were evaluated by Western blot and RT-PCR analyses. KEY RESULTS From the in vitro assays, morin was shown to be a dual antagonist of LXRα and LXRβ. In vivo, morin blunted the development of liver hepatic steatosis, reduced body weight gains, lowered triglyceride levels and improved glucose and insulin tolerance in mice fed a high-fat diet. Mechanistically, morin inhibited 3T3-L1 adipocyte differentiation and lipid formation in human hepatic HepG2 cells and suppressed the mRNA expression of genes downstream of LXR. Consistently, the effects of morin on metabolic disorders were attenuated in LXRβ-/- mice. CONCLUSION AND IMPLICATIONS Our data reveal that morin is a dual antagonist of LXRα and LXRβ and suggest that morin may alleviate hepatic steatosis and other associated metabolic disorders via the suppression of LXR signalling and, therefore, shows promise as a novel therapy or nutraceutical for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Chuhe Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongshan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Brown Foundation Institute of Molecular Medicine and Program in Neuroscience, Graduate School of Biological Sciences, University of Texas McGovern Medical School, Houston, TX, USA
| | - Baican Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine and Program in Neuroscience, Graduate School of Biological Sciences, University of Texas McGovern Medical School, Houston, TX, USA
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Paalvast Y, de Boer JF, Groen AK. Developments in intestinal cholesterol transport and triglyceride absorption. Curr Opin Lipidol 2017; 28:248-254. [PMID: 28338522 DOI: 10.1097/mol.0000000000000415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW To discuss recent advances in research focused on intestinal lipid handling. RECENT FINDINGS An important strategy in reducing atherosclerosis and risk of cardiovascular events is to increase the rate of reverse cholesterol transport, including its final step; cholesterol excretion from the body. The rate of removal is determined by a complex interplay between the factors involved in regulation of intestinal cholesterol absorption. One of these factors is a process known as transintestinal cholesterol excretion. This pathway comprises transport of cholesterol directly from the blood, through the enterocyte, into the intestinal lumen. In humans, this pathway accounts for 35% of cholesterol excretion in the feces. Mechanistic studies in mice revealed that, activation of the bile acid receptor farnesoid X receptor increases cholesterol removal via the transintestinal cholesterol excretion pathway as well as decreases plasma cholesterol and triglyceride providing an interesting target for treatment of dyslipidemia in humans. The physical chemical properties of bile acids are under control of farnesoid X receptor and determine intestinal cholesterol and triglyceride solubilization as well as absorption, providing a direct link between these two important factors in the pathogenesis of cardiovascular disease. Besides bile acids, intestinal phospholipids are important for luminal lipid solubilization. Interestingly, phospholipid remodeling through LPCAT3 was shown to be pivotal for uptake of fatty acids by enterocytes, which may provide a mechanistic handle for therapeutic intervention. SUMMARY The importance of the intestine in control of cholesterol and triglyceride homeostasis is increasingly recognized. Recently, novel factors involved in regulation of cholesterol excretion and intestinal triglyceride and fatty acid uptake have been reported and are discussed in this short review.
Collapse
Affiliation(s)
- Yared Paalvast
- aDepartment of Pediatrics bDepartment of Laboratory Medicine, University of Groningen, University Medical Center Groningen cDepartment of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
31
|
Benítez-Santana T, Hugo SE, Schlegel A. Role of Intestinal LXRα in Regulating Post-prandial Lipid Excursion and Diet-Induced Hypercholesterolemia and Hepatic Lipid Accumulation. Front Physiol 2017; 8:280. [PMID: 28536535 PMCID: PMC5422522 DOI: 10.3389/fphys.2017.00280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
Post-prandial hyperlipidemia has emerged as a cardiovascular risk factor with limited therapeutic options. The Liver X receptors (Lxrs) are nuclear hormone receptors that regulate cholesterol elimination. Knowledge of their role in regulating the absorption and handling of dietary fats is incomplete. The purpose of this study was to determine the role of intestinal Lxrα in post-prandial intestinal lipid transport. Using Lxrα knockout (nr1h3−/−) and intestine-limited Lxrα over-expressing [Tg(fabp2a:EGFP-nr1h3)] zebrafish strains, we measured post-prandial lipid excursion with live imaging in larvae and physiological methods in adults. We also conducted a long-term high-cholesterol dietary challenge in adults to examine the chronic effect of modulating nr1h3 gene dose on the development of hypercholesterolemia and hepatic lipid accumulation. Over-expression of Lxrα in the intestine delays the transport of ingested lipids in larvae, while deletion of Lxrα increases the rate of lipid transport. Pre-treating wildtype larvae with the liver-sparing Lxr agonist hyodeoxycholic acid also delayed the rate of intestinal lipid transport in larvae. In adult males, deletion of Lxrα accelerates intestinal transport of ingested lipids. Adult females showed higher plasma Lipoprotein lipase (Lpl) activity compared to males, and lower post-gavage blood triacylglycerol (TAG) excursion. Despite the sexually dimorphic effect on acute intestinal lipid handling, Tg(fabp2a:EGFP-nr1h3) adults of both sexes are protected from high cholesterol diet (HCD)-induced hepatic lipid accumulation, while nr1h3−/− mutants are sensitive to the effects of HCD challenge. These data indicate that intestinal Lxr activity dampens the pace of intestinal lipid transport cell-autonomously. Selective activation of intestinal Lxrα holds therapeutic promise.
Collapse
Affiliation(s)
- Tibiábin Benítez-Santana
- University of Utah Molecular Medicine Program, School of Medicine, University of UtahSalt Lake City, UT, USA.,Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, School of Medicine, University of UtahSalt Lake City, UT, USA
| | - Sarah E Hugo
- University of Utah Molecular Medicine Program, School of Medicine, University of UtahSalt Lake City, UT, USA.,Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, School of Medicine, University of UtahSalt Lake City, UT, USA
| | - Amnon Schlegel
- University of Utah Molecular Medicine Program, School of Medicine, University of UtahSalt Lake City, UT, USA.,Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, School of Medicine, University of UtahSalt Lake City, UT, USA.,Department of Biochemistry, School of Medicine, University of UtahSalt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, College of Health, University of UtahSalt Lake City, UT, USA
| |
Collapse
|
32
|
Dugardin C, Briand O, Touche V, Schonewille M, Moreau F, Le May C, Groen AK, Staels B, Lestavel S. Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia. Acta Diabetol 2017; 54:191-199. [PMID: 27796655 DOI: 10.1007/s00592-016-0936-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
AIMS The dyslipidemia associated with type 2 diabetes is a major risk factor for the development of atherosclerosis. Trans-intestinal cholesterol excretion (TICE) has recently been shown to contribute, together with the classical hepatobiliary route, to fecal cholesterol excretion and cholesterol homeostasis. The aim of this study was to develop an in vitro cell model to investigate enterocyte-related processes of TICE. METHODS Differentiated Caco-2/TC7 cells were grown on transwells and incubated basolaterally (blood side) with human plasma and apically (luminal side) with lipid micelles. Radioactive and fluorescent cholesterol tracers were used to investigate cholesterol uptake at the basolateral membrane, intracellular distribution and apical excretion. RESULTS Our results show that cholesterol is taken up at the basolateral membrane, accumulates intracellularly as lipid droplets and undergoes a cholesterol acceptor-facilitated and progressive excretion through the apical membrane of enterocytes. The overall process is abolished at 4 °C, suggesting a biologically active phenomenon. Moreover, this trans-enterocytic retrograde cholesterol transport displays some TICE features like modulation by PCSK9 and an ABCB1 inhibitor. Finally, we highlight the involvement of microtubules in the transport of plasma cholesterol from basolateral to apical pole of enterocytes. CONCLUSIONS The human Caco-2/TC7 cell line appears a good in vitro model to investigate the enterocytic molecular mechanisms of TICE, which may help to identify intestinal molecular targets to enhance reverse cholesterol transport and fight against dyslipidemia.
Collapse
Affiliation(s)
- Camille Dugardin
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Univ. Lille, 59000, Lille, France
| | - Olivier Briand
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Univ. Lille, 59000, Lille, France
| | - Véronique Touche
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Univ. Lille, 59000, Lille, France
| | - Marleen Schonewille
- University Medical Center Groningen, Department of Pediatrics, University of Groningen, Groningen, The Netherlands
| | | | - Cédric Le May
- INSERM, UMR 1087, CNRS UMR 6291, 44000, Nantes, France
| | - Albert K Groen
- University Medical Center Groningen, Department of Pediatrics, University of Groningen, Groningen, The Netherlands
- Academic Medical Center, Amsterdam, The Netherlands
| | - Bart Staels
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Univ. Lille, 59000, Lille, France.
| | - Sophie Lestavel
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Univ. Lille, 59000, Lille, France
| |
Collapse
|
33
|
Fermented green tea extract exhibits hypolipidaemic effects through the inhibition of pancreatic lipase and promotion of energy expenditure. Br J Nutr 2017; 117:177-186. [PMID: 28132656 DOI: 10.1017/s0007114516004621] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperlipidaemia is a major cause of atherosclerosis and related CVD and can be prevented with natural substances. Previously, we reported that a novel Bacillus-fermented green tea (FGT) exerts anti-obesity and hypolipidaemic effects. This study further investigated the hypotriglyceridaemic and anti-obesogenic effects of FGT and its underlying mechanisms. FGT effectively inhibited pancreatic lipase activity in vitro (IC50, 0·48 mg/ml) and ameliorated postprandial lipaemia in rats (26 % reduction with 500 mg/kg FGT). In hypertriglyceridaemic hamsters, FGT administration significantly reduced plasma TAG levels. In mice, FGT administration (500 mg/kg) for 2 weeks augmented energy expenditure by 22 % through the induction of plasma serotonin, a neurotransmitter that modulates energy expenditure and mRNA expressions of lipid metabolism genes in peripheral tissues. Analysis of the gut microbiota showed that FGT reduced the proportion of the phylum Firmicutes in hamsters, which could further contribute to its anti-obesity effects. Collectively, these data demonstrate that FGT decreases plasma TAG levels via multiple mechanisms including inhibition of pancreatic lipase, augmentation of energy expenditure, induction of serotonin secretion and alteration of gut microbiota. These results suggest that FGT may be a useful natural agent for preventing hypertriglyceridaemia and obesity.
Collapse
|
34
|
Guillemot-Legris O, Mutemberezi V, Muccioli GG. Oxysterols in Metabolic Syndrome: From Bystander Molecules to Bioactive Lipids. Trends Mol Med 2016; 22:594-614. [PMID: 27286741 DOI: 10.1016/j.molmed.2016.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Oxysterols are cholesterol metabolites now considered bona fide bioactive lipids. Recent studies have identified new receptors for oxysterols involved in immune and inflammatory processes, hence reviving their appeal. Through multiple receptors, oxysterols are involved in numerous metabolic and inflammatory processes, thus emerging as key mediators in metabolic syndrome. This syndrome is characterized by complex interactions between inflammation and a dysregulated metabolism. Presently, the use of synthetic ligands and genetic models has facilitated a better understanding of the roles of oxysterols in metabolism, but also raised interesting questions. We discuss recent findings on the absolute levels of oxysterols in tissues, their newly identified targets, and the mechanistic studies emphasizing their importance in metabolic disease, as there is a pressing need to further comprehend these intriguing bioactive lipids.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium.
| |
Collapse
|