1
|
Papa V, Li Pomi F, Di Gioacchino M, Mangifesta R, Borgia F, Gangemi S. Mast Cells and Microbiome in Health and Disease. FRONT BIOSCI-LANDMRK 2025; 30:26283. [PMID: 40152378 DOI: 10.31083/fbl26283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 03/29/2025]
Abstract
Inter-kingdom communication between human microbiota and mast cells (MCs), as sentinels of innate immunity, is crucial in determining health and disease. This complex signaling hub involves micro-organisms and, more importantly, their metabolic products. Gut microbiota is the host's largest symbiotic ecosystem and, under physiological conditions, it plays a vital role in mediating MCs tolerogenic priming, thus ensuring immune homeostasis across organs. Conversely, intestinal dysbiosis of various etiologies promotes MC-oriented inflammation along major body axes, including gut-skin, gut-lung, gut-liver, and gut-brain. This review of international scientific literature provides a comprehensive overview of the cross-talk under investigation. This process is a key biological event involved in disease development across clinical fields, with significant prognostic and therapeutic implications for future research.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| | - Mario Di Gioacchino
- Center of Advanced Science and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, 65121 Pescara, Italy
| | - Rocco Mangifesta
- Center of Advanced Science and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
2
|
Meerschaert KA, Chiu IM. The gut-brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2025; 22:206-221. [PMID: 39578592 DOI: 10.1038/s41575-024-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Visceral pain is a major clinical problem and one of the most common reasons patients with gastrointestinal disorders seek medical help. Peripheral sensory neurons that innervate the gut can detect noxious stimuli and send signals to the central nervous system that are perceived as pain. There is a bidirectional communication network between the gastrointestinal tract and the nervous system that mediates pain through the gut-brain axis. Sensory neurons detect mechanical and chemical stimuli within the intestinal tissues, and receive signals from immune cells, epithelial cells and the gut microbiota, which results in peripheral sensitization and visceral pain. This Review focuses on molecular communication between these non-neuronal cell types and neurons in visceral pain. These bidirectional interactions can be dysregulated during gastrointestinal diseases to exacerbate visceral pain. We outline the anatomical pathways involved in pain processing in the gut and how cell-cell communication is integrated into this gut-brain axis. Understanding how bidirectional communication between the gut and nervous system is altered during disease could provide new therapeutic targets for treating visceral pain.
Collapse
Affiliation(s)
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Hao Z, Lu Y, Hao Y, Luo Y, Wu K, Zhu C, Shi P, Zhu F, Lin Y, Zeng X. Fungal mycobiome dysbiosis in choledocholithiasis concurrent with cholangitis. J Gastroenterol 2025; 60:340-355. [PMID: 39604579 DOI: 10.1007/s00535-024-02183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The gut mycobiome might have an important influence on the pathogenesis of choledocholithiasis concurrent with cholangitis (CC). The aim of this study was to characterize the fungal mycobiome profiles, explore the correlation and equilibrium of gut interkingdom network among bacteria-fungi-metabolites triangle in CCs. METHODS In a retrospective case-control study, we recruited patients with CC (n = 25) and healthy controls (HCs) (n = 25) respectively to analyze the gut fungal dysbiosis. Metagenomic sequencing was employed to characterize the gut mycobiome profiles, and liquid chromatography/mass spectrometry (LC/MS) analysis was used to quantify the metabolites composition. RESULTS The Shannon index displayed a reduction in fungal α-diversity in CCs compared to HCs (p = 0.041), and the overall fungal composition differed significantly between two groups. The dominant 7 fungi species with the remarkable altered abundance were identified (LDA score > 3.0, p < 0.05), including CC-enriched Aspergillus_niger and CC-depleted fungi Saccharomyces_boulardii. In addition, the correlations between CC-related fungi and clinical variables in CCs were analyzed. Moreover, the increased abundance ratio of Basidiomycota-to-Ascomycota and a dense linkage of bacteria-fungi interkingdom network in CCs were demonstrated. Finally, we identified 30 markedly altered metabolites in CCs (VIP > 1.0 and p < 0.05), including low level of acetate and butyrate, and the deeper understanding on the complexity of bacteria-fungi-metabolites triangle involving bile inflammation was verified. CONCLUSION Our investigation demonstrated a distinct gut fungal dysbiosis in CCs and proposed that, beyond bacteria, the more attention should be paid to significantly potential influence of fungi and bacteria-fungi-metabolites triangle interkingdom interactions on pathogenesis of CC.
Collapse
Affiliation(s)
- Zhiyuan Hao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yiting Lu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yarong Hao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yuanyuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Kaiming Wu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Changpeng Zhu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Peimei Shi
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Feng Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
4
|
Yu RL, Weber HC. Irritable bowel syndrome, the gut microbiome, and diet. Curr Opin Endocrinol Diabetes Obes 2025:01266029-990000000-00121. [PMID: 39968682 DOI: 10.1097/med.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
PURPOSE OF REVIEW To provide an update of recent studies exploring the role of the gut microbiota and diet in the pathogenesis and treatment of irritable bowel syndrome (IBS). RECENT FINDINGS The human gut microbiome has been recognized as an important, active source of signaling molecules that explain in part the disorder of the gut brain interaction (DGBI) in IBS. Subsequent changes in the metabolome such as the production of short-chain fatty acids (SCFA) and serotonin are associated with IBS symptoms. Dietary components are recognized as important triggers of IBS symptoms and a diet low in fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) has been shown effective and safe, even when used long-term. Fecal microbiota transplantation (FMT) in IBS has not shown sustained and effective IBS symptom reduction in controlled clinical trials. SUMMARY This update elucidates recent developments in IBS as it relates to clinical trial results targeting dietary and gut microbiota interventions. The gut microbiome is metabolically active and affects the bi-directional signaling of the gut-brain axis.
Collapse
Affiliation(s)
- Rosa Lu Yu
- Boston University Chobanian & Avedisian School of Medicine
| | - H Christian Weber
- Boston University Chobanian & Avedisian School of Medicine
- VA Boston Healthcare System, Section of Gastroenterology and Hepatology, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Khosravany Z, Khodavaisy S, Olyaiee A, Sadeghi A, Nemati S, Shahrokh S, Mohammad Ali Gol S, Shojaei S, Mohammad Rahimi H, Mirjalali H. A preliminary study of the association between Blastocystis and quantification of selected yeasts in IBD and IBS patients. Front Med (Lausanne) 2025; 12:1514587. [PMID: 40018349 PMCID: PMC11865192 DOI: 10.3389/fmed.2025.1514587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/17/2025] [Indexed: 03/01/2025] Open
Abstract
Objective Irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) are gastrointestinal disorders, which can be triggered by gut microbiota dysbiosis. The development of IBS-like symptoms has been linked to the overgrowth of Candida spp. In addition, the critical role of fungi has been highlighted in the pathogenesis of IBD. This study investigated the association between Blastocystis and selected yeasts in IBS and IBD patients. Methods This investigation is a cross-sectional study from 2022 to 2024, performed on 91 participants, including 20 healthy individuals, 27 patients with IBS, and 44 IBD patients [39 with ulcerative colitis (UC; 88.63%) and 5 (11.37%) Crohn's disease (CD)], who were also categorized based on the presence of Blastocystis. Total DNA was extracted from stool samples, and the presence and quantity of yeasts including C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, C. krusei, Geotrichum candidum, Rhodotorula spp., Cryptococcus neoformans, and Saccharomyces cerevisiae were evaluated by real-time PCR. Statistical tests were used to assess significant associations between variables. Results Saccharomyces cerevisiae and C. albicans were the most prevalent yeasts in all groups. Candida tropicalis and C. neoformans were identified in neither patients nor healthy subjects. The presence/absence of C. albicans was not significantly different between patients with IBD, IBS, and the control groups. This was similar for G. candidum. However, there was a difference in the presence of S. cerevisiae among patients, although it was insignificant (p-value = 0.077). There was a significant difference in the quantity of C. albicans between IBD (880.421 ± 2140.504), IBS (10.307 ± 15.206), and controls (2875.888 ± 8383.889) (p-value = 0.020). Specifically, the source of difference was seen between IBD patients and the control group (p-value = 0.005). In addition, considering the presence of Blastocystis, a statistically significant association was seen between the number of C. albicans and the sample groups (p-value = 0.013). The quantity of C. albicans was significantly different between IBS and IBD patients. Conclusion Regarding the presence of Blastocystis, the quantity of C. albicans and S. cerevisiae was increased and decreased in the studied groups, respectively. This is a preliminary study, and eukaryote-eukaryote association in IBS and IBD patients should be considered in further studies.
Collapse
Affiliation(s)
- Zohre Khosravany
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Olyaiee
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Mohammad Ali Gol
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Shojaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Pratt ML, Plumb AN, Manjrekar A, Cardona LM, Chan CK, John JM, Sadler KE. Microbiome contributions to pain: a review of the preclinical literature. Pain 2025; 166:262-281. [PMID: 39258679 PMCID: PMC11723818 DOI: 10.1097/j.pain.0000000000003376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/28/2024] [Indexed: 09/12/2024]
Abstract
ABSTRACT Over the past 2 decades, the microbiome has received increasing attention for the role that it plays in health and disease. Historically, the gut microbiome was of particular interest to pain scientists studying nociplastic visceral pain conditions given the anatomical juxtaposition of these microorganisms and the neuroimmune networks that drive pain in such diseases. More recently, microbiomes both inside and across the surface of the body have been recognized for driving sensory symptoms in a broader set of diseases. Microbiomes have never been a more popular topic in pain research, but to date, there has not been a systematic review of the preclinical microbiome pain literature. In this article, we identified all animal studies in which both the microbiome was manipulated and pain behaviors were measured. Our analysis included 303 unique experiments across 97 articles. Microbiome manipulation methods and behavioral outcomes were recorded for each experiment so that field-wide trends could be quantified and reported. This review specifically details the animal species, injury models, behavior measures, and microbiome manipulations used in preclinical pain research. From this analysis, we were also able to conclude how manipulations of the microbiome alter pain thresholds in naïve animals and persistent pain intensity and duration in cutaneous and visceral pain models. This review summarizes by identifying existing gaps in the literature and providing recommendations for how to best plan, implement, and interpret data collected in preclinical microbiome pain experiments.
Collapse
Affiliation(s)
- McKenna L Pratt
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | | | | | | | | | | | | |
Collapse
|
7
|
Costa A, Lucarini E. Treating chronic stress and chronic pain by manipulating gut microbiota with diet: can we kill two birds with one stone? Nutr Neurosci 2025; 28:221-244. [PMID: 38889540 DOI: 10.1080/1028415x.2024.2365021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Background: Chronic stress and chronic pain are closely linked by the capacity to exacerbate each other, sharing common roots in the brain and in the gut. The strict intersection between these two neurological diseases makes important to have a therapeutic strategy aimed at preventing both to maintain mental health in patients. Diet is an modifiable lifestyle factor associated with gut-brain axis diseases and there is growing interest in its use as adjuvant to main therapies. Several evidence attest the impact of specific diets or nutrients on chronic stress-related disorders and pain with a good degree of certainty. A daily adequate intake of foods containing micronutrients such as amino acids, minerals and vitamins, as well as the reduction in the consumption of processed food products can have a positive impact on microbiota and gut health. Many nutrients are endowed of prebiotic, anti-inflammatory, immunomodulatory and neuroprotective potential which make them useful tools helping the management of chronic stress and pain in patients. Dietary regimes, as intermittent fasting or caloric restriction, are promising, although further studies are needed to optimize protocols according to patient's medical history, age and sex. Moreover, by supporting gut microbiota health with diet is possible to attenuate comorbidities such as obesity, gastrointestinal dysfunction and mood disorders, thus reducing healthcare costs related to chronic stress or pain.Objective: This review summarize the most recent evidence on the microbiota-mediated beneficial effects of macro- and micronutrients, dietary-related factors, specific nutritional regimens and dietary intervention on these pathological conditions.
Collapse
Affiliation(s)
- Alessia Costa
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
8
|
Zhao Y, Zhu S, Dong Y, Xie T, Chai Z, Gao X, Dai Y, Wang X. The Role of Gut Microbiome in Irritable Bowel Syndrome: Implications for Clinical Therapeutics. Biomolecules 2024; 14:1643. [PMID: 39766350 PMCID: PMC11674646 DOI: 10.3390/biom14121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder (FGID) characterized by chronic or recurrent gastrointestinal symptoms without organic changes, and it is also a common disorder of gut-brain interaction (DGBIs).. The symptoms of IBS not only affect the quality of life for individual patients but also place a significant burden on global healthcare systems. The lack of established and universally applicable biomarkers for IBS, along with the substantial variability in symptoms and progression, presents challenges in developing effective clinical treatments. In recent years, preclinical and clinical studies have linked the pathogenesis of IBS to alterations in the composition and function of the intestinal microbiota. Within the complex microbial community of the gut, intricate metabolic and spatial interactions occur among its members and between microbes and their hosts. Amid the multifaceted pathophysiology of IBS, the role of intestinal microenvironment factors in symptom development has become more apparent. This review aims to delve into the changes in the composition and structure of the gut microbiome in individuals with IBS. It explores how diet-mediated alterations in intestinal microbes and their byproducts play a role in regulating the pathogenesis of IBS by influencing the "brain-gut" axis, intestinal barrier function, immune responses, and more. By doing so, this review seeks to lay a theoretical foundation for advancing the development of clinical therapeutics for IBS.
Collapse
Affiliation(s)
- Yucui Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shixiao Zhu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingling Dong
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tian Xie
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiqiang Chai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
| | - Yongna Dai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
| | - Xiaoying Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
9
|
Wan Y, Su Q, Ng SC. New insights on gut microbiome and autism. Trends Mol Med 2024; 30:1100-1102. [PMID: 38987054 DOI: 10.1016/j.molmed.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that often coincides with gut dysbiosis. Studies show that alterations in gut microbiota influence brain function and could serve as diagnostic biomarkers and therapeutic targets. This forum article discusses the role of gut microbiota in ASD pathogenesis and its diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Yating Wan
- Microbiota I-Center (MagIC), Hong Kong; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Zhang M, Wu X, Gao H, Zhang L, Li Y, Li M, Zhao C, Wei P, Ou L. Chinese Herbal Medicine for Irritable Bowel Syndrome: A Perspective of Local Immune Actions. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2079-2106. [PMID: 39663262 DOI: 10.1142/s0192415x24500800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Irritable bowel syndrome (IBS) is the functional gastrointestinal disorder, characterized by abdominal pain and altered bowel habits. The interest in intestinal immune activation as a potential disease mechanism for IBS has increased exponentially in recent years. This study was designed to summarize the Chinese herbal medicine (CHM) that potentially exert protective effects against IBS through inhibition of intestinal immune activation. We detailed the current evidence that immune activation contributes to the pathology of IBS and discussed the potential mechanisms involved. Then, therapeutic effects and possible mechanisms related to immune response of herbal medicine prescriptions, extracts, and monomers were analyzed. The reasons leading to the aberrant and persistent immune activation noted in IBS are mainly associated with the increased number of mast cells, CD3[Formula: see text] T cells, and CD4[Formula: see text] T cells. The mechanisms mainly focused on the gut microbiota disorder induced alteration of the PGE2/COX2/SERT/5-HT, TLR4/MyD88/NF-κB, and BDNF/TrkB pathways. Most of the CHM alleviated IBS through interventions of intestinal immune activation via gut microbiota related to the TLR4/MyD88/NF-κB and SCF/c-kit pathways. We hope this review will provide some clues for the further development of novel candidate agents for IBS and other intestinal immune disorders.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Xu Wu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Engineering Technology Research Center of Shaanxi, Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Huanqing Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Lin Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Yao Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Chongbo Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Engineering Technology Research Center of Shaanxi, Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| |
Collapse
|
11
|
Zheng HN, Zhi YR, Su YS, Jiang JY, Zhang HZ, Cao F, Wang Y, Chi Y, Zhang Y. Dectin-1 induces TRPV1 sensitization and contributes to visceral hypersensitivity of irritable bowel syndrome in male mice. Eur J Pain 2024; 28:1811-1826. [PMID: 38953581 DOI: 10.1002/ejp.2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Visceral hypersensitivity is considered the core pathophysiological mechanism that causes abdominal pain in patients with irritable bowel syndrome (IBS). Fungal dysbiosis has been proved to contribute to visceral hypersensitivity in IBS patients. However, the underlying mechanisms for Dectin-1, a major fungal recognition receptor, in visceral hypersensitivity are poorly understood. This study aimed to explore the role of Dectin-1 in visceral hypersensitivity and elucidate the impact of Dectin-1 activity on the function of transient receptor potential vanilloid type 1 (TRPV1). METHODS Visceral hypersensitivity model was established by the intracolonic administration of 0.1 mL TNBS (130 μg/mL in 30% ethanol) in the male mice. Fluconazole and nystatin were used as fungicides. Laminarin, a Dectin-1 antagonist and gene knockout (Clec7a-/-) mice were used to interrupt the function of Dectin-1. Colorectal distension-electromyogram recording was performed to assess visceral sensitivity. Immunostaining experiment was performed to determine the localization of Dectin-1 in dorsal root ganglion (DRG) neurons. Calcium imaging study was performed to assay TRPV1-mediated calcium influx in acutely dissociated DRG neurons. RESULTS Pretreatment with fungicides, administration of laminarin or genetic deletion of Clec7a alleviated TNBS-induced visceral hypersensitivity in male mice. The expression of Dectin-1 was upregulated in the DRG and colon of TNBS-treated mice. Colocalization of Dectin-1 and TRPV1 was observed in DRG neurons. Importantly, pretreatment with curdlan, a Dectin-1 agonist, increased TRPV1-mediated calcium influx. CONCLUSIONS Dectin-1 contributes to visceral hypersensitivity in IBS or in inflammatory bowel disease in remission and activation of Dectin-1 induces TRPV1 sensitization. SIGNIFICANCE STATEMENT This work provides direct evidence for the functional regulation of TRPV1 channel by Dectin-1 activity, proposing a new mechanism underlying TRPV1 sensitization. Control of intestinal fungi might be beneficial for the treatment of refractory abdominal pain in patients with IBS or IBD in remission.
Collapse
Affiliation(s)
- Hao-Nan Zheng
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yu-Ru Zhi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Yang-Shuai Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin-Yan Jiang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Hao-Zhou Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Feng Cao
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yan Chi
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Ying Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| |
Collapse
|
12
|
Ma X, Li J, Li Z, Chen B, Ling Z, Feng S, Zhong Z, Peng G, Wang Y, Jiang Y, Gu Y. Analysis of fungal diversity in the feces of Arborophila rufipectus. Front Vet Sci 2024; 11:1430518. [PMID: 39469585 PMCID: PMC11514364 DOI: 10.3389/fvets.2024.1430518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Background Intestinal fungal composition plays a crucial role in modulating host health, and thus is of great significance in the conservation of endangered bird species. However, research on gut fungal composition in birds is limited. Therefore, in this study, we aimed to examine gut fungal community and potential fecal pathogen composition in wild Arborophila rufipectus. Methods Fecal samples were collected from the habitats of wild A. rufipectus and Lophura nycthemera (a widely distributed species belonging to the same family as A. rufipectus) in summer and autumn. Thereafter, RNA was collected and the internal transcribed spacer rRNA gene was sequenced via high-throughput sequencing to investigate seasonal variations in intestinal core fungi, microbial fungi, and potential pathogenic fungi. Results The gut microbiota of A. rufipectus and L. nycthemera were highly similar and mainly consisted of three phyla, Ascomycota (58.46%), Basidiomycota (28.80%), and Zygomycota (3.56%), which accounted for 90.82% of the fungal community in all the samples. Further, the predominant genera were Ascomycota_unclassified (12.24%), Fungi_unclassified (8.37%), Davidiella (5.18%), Helotiales_unclassified (2.76%), Wickerhamomyces (1.84%), and Pleosporales_unclassified (1.14%), and the potential fecal pathogens identified included Candida, Cryptococcus, Trichosporon, and Malassezia. Conclusion Our results provide evidence that the diversity of intestinal fungi in the endangered species, A. rufipectus, is similar to that in the common species, L. nycthemera, and may serve as a basis for monitoring the status of A. rufipectus and for developing conservation measures.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junshu Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiguo Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Benping Chen
- Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Zhenwen Ling
- Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Shenglin Feng
- Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaozhang Jiang
- Bioengineering Department, Sichuan Water Conservancy Vocational College, Chengdu, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Shridhar SV, Beghini F, Alexander M, Singh A, Juárez RM, Brito IL, Christakis NA. Environmental, socioeconomic, and health factors associated with gut microbiome species and strains in isolated Honduras villages. Cell Rep 2024; 43:114442. [PMID: 38968070 PMCID: PMC11290354 DOI: 10.1016/j.celrep.2024.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/27/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
Despite a growing interest in the gut microbiome of non-industrialized countries, data linking deeply sequenced microbiomes from such settings to diverse host phenotypes and situational factors remain uncommon. Using metagenomic data from a community-based cohort of 1,871 people from 19 isolated villages in the Mesoamerican highlands of western Honduras, we report associations between bacterial species and human phenotypes and factors. Among them, socioeconomic factors account for 51.44% of the total associations. Meta-analysis of species-level profiles across several datasets identified several species associated with body mass index, consistent with previous findings. Furthermore, the inclusion of strain-phylogenetic information modifies the overall relationship between the gut microbiome and the phenotypes, especially for some factors like household wealth (e.g., wealthier individuals harbor different strains of Eubacterium rectale). Our analysis suggests a role that gut microbiome surveillance can play in understanding broad features of individual and public health.
Collapse
Affiliation(s)
- Shivkumar Vishnempet Shridhar
- Yale Institute for Network Science, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Francesco Beghini
- Yale Institute for Network Science, Yale University, New Haven, CT, USA
| | - Marcus Alexander
- Yale Institute for Network Science, Yale University, New Haven, CT, USA
| | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Nicholas A Christakis
- Yale Institute for Network Science, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA; Department of Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
15
|
Fedorin MM, Livzan MA, Gaus OV, Pashkova EV. Potential role of short-chain fatty acids in irritable bowel syndrome in overweight and obese individuals. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2024:20-27. [DOI: 10.21518/ms2024-168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Due to increasing prevalence of functional diseases of the colon in obese patients, the mechanisms by which the intestinal microbiota affects the development of symptoms of irritable bowel syndrome (IBS) in the setting of metabolic activity of adipose tissue should be investigated. The quantitative and qualitative changes in the pool of synthesized short-chain fatty acids, which have a multidirectional impact on the colonic motility is one of the key mechanisms by which the intestinal microbiota affects the occurrence and features of the course of irritable bowel syndrome. But as regards the issue of whether individual short-chain fatty acids have an impact on the severity of abdominal pain and characteristics of colonic motility dysfunction, it remains a subject of discussions. The study of the mechanisms of impact of short-chain fatty acids on the development and progression of obesity deserves special attention. Increased serum and faecal short-chain fatty acid levels in obese patients can either be a result of changes in the intestinal microflora composition associated with special eating habits and lifestyle, or have an independent effect on the development of obesity in individuals due to intestinal microflora composition disorders that have been already developed. Due to special features of the course of irritable bowel syndrome associated with overweight and obesity, studying the intestinal microbiota composition and the short-chain fatty acids produced by it in this cohort of IBS patients is of particular interest. This publication has been prepared to describe and systematize the possible mechanisms of impact of short-chain fatty acids on the development of abdominal pain and impaired colonic motility in IBS patients with overweight and obesity. The literature search was conducted in the databases Embase, PubMed and Google Scholar using the keywords “irritable bowel syndrome”, “obesity”, “short-chain fatty acids”, “gut microbiota”.
Collapse
|
16
|
Liang Y, Jiang Z, Fu Y, Lu S, Miao Z, Shuai M, Liang X, Gou W, Zhang K, Shi RQ, Gao C, Shi MQ, Wang XH, Hu WS, Zheng JS. Cross-Sectional and Prospective Association of Serum 25-Hydroxyvitamin D with Gut Mycobiota during Pregnancy among Women with Gestational Diabetes. Mol Nutr Food Res 2024; 68:e2400022. [PMID: 38763911 DOI: 10.1002/mnfr.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/30/2024] [Indexed: 05/21/2024]
Abstract
SCOPE Little is known about the effect of blood vitamin D status on the gut mycobiota (i.e., fungi), a crucial component of the gut microbial ecosystem. The study aims to explore the association between 25-hydroxyvitamin D [25(OH)D] and gut mycobiota and to investigate the link between the identified mycobial features and blood glycemic traits. METHODS AND RESULTS The study examines the association between serum 25(OH)D levels and the gut mycobiota in the Westlake Precision Birth Cohort, which includes pregnant women with gestational diabetes mellitus (GDM). The study develops a genetic risk score (GRS) for 25(OH)D to validate the observational results. In both the prospective and cross-sectional analyses, the vitamin D is associated with gut mycobiota diversity. Specifically, the abundance of Saccharomyces is significantly lower in the vitamin D-sufficient group than in the vitamin D-deficient group. The GRS of 25(OH)D is inversely associated with the abundance of Saccharomyces. Moreover, the Saccharomyces is positively associated with blood glucose levels. CONCLUSION Blood vitamin D status is associated with the diversity and composition of gut mycobiota in women with GDM, which may provide new insights into the mechanistic understanding of the relationship between vitamin D levels and metabolic health.
Collapse
Affiliation(s)
- Yuhui Liang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Zengliang Jiang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yuanqing Fu
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Sha Lu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Zelei Miao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Menglei Shuai
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Xinxiu Liang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Wanglong Gou
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Ke Zhang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Rui-Qi Shi
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Chang Gao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Mei-Qi Shi
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Xu-Hong Wang
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Wen-Sheng Hu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| |
Collapse
|
17
|
El Baassiri MG, Raouf Z, Badin S, Escobosa A, Sodhi CP, Nasr IW. Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. J Neuroinflammation 2024; 21:124. [PMID: 38730498 PMCID: PMC11083845 DOI: 10.1186/s12974-024-03118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zachariah Raouf
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sarah Badin
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alejandro Escobosa
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chhinder P Sodhi
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
18
|
Thomas-Dupont P, Izaguirre-Hernández IY, Roesch-Dietlen F, Grube-Pagola P, Reyes-Huerta J, Remes-Troche JM. Prevalence of Anti- Saccharomyces Cerevisiae Antibodies (ASCA) in Patients With Irritable Bowel Syndrome (IBS). A Case-control Study. J Clin Gastroenterol 2024; 58:483-486. [PMID: 37540063 DOI: 10.1097/mcg.0000000000001896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/22/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a disorder of gut-brain interaction that affects patients' quality. Recent research has shown variations in the mycobiome of individuals with IBS, particularly involving Saccharomyces cerevisiae , and its association with dysbiosis and visceral hypersensitivity. However, the role of Anti-Saccharomyces cerevisiae antibodies (ASCA) in IBS remains unclear, despite their significance as markers of disease severity in inflammatory bowel disease. OBJECTIVE This study aimed to investigate the role of ASCA in Mexican IBS patients compared with healthy controls (HCs) and determine whether these antibodies could help differentiate between IBS patients and healthy individuals. METHODS Serum samples from 400 IBS patients and 400 HC were analyzed. ASCA IgG levels were measured using enzyme-linked immunosorbent assay (ELISA). The IBS patients were further categorized into subtypes: constipation predominant (IBS-C), diarrhea predominant (IBS-D), and mixed (IBS-M). RESULTS Among the participants, 66 IBS patients (16.5%) and 63 HC (15.75%) tested positive for ASCA IgG. No significant difference was observed in ASCA IgG levels between the 2 groups ( P value: 0.8451). The prevalence of ASCA IgG positivity was 14.5% in IBS-C, 17.8% in IBS-D, and 15.9% in IBS-M. CONCLUSION Surprisingly, a high prevalence of ASCA IgG was found in the HC group in Mexico. Furthermore, there was no significant difference in ASCA IgG levels between IBS patients and controls. These findings suggest that ASCA is not useful as a discriminatory biomarker for distinguishing IBS patients from healthy individuals and cannot serve as a surrogate marker for visceral hypersensitivity.
Collapse
Affiliation(s)
| | | | - Federico Roesch-Dietlen
- Digestive Physiology and Motility Lab. Medical Biological Research Institute. University of Veracruz
| | - Peter Grube-Pagola
- Digestive Physiology and Motility Lab. Medical Biological Research Institute. University of Veracruz
| | - Job Reyes-Huerta
- Digestive Physiology and Motility Lab. Medical Biological Research Institute. University of Veracruz
| | - José María Remes-Troche
- Digestive Physiology and Motility Lab. Medical Biological Research Institute. University of Veracruz
| |
Collapse
|
19
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. Ascomycetes yeasts: The hidden part of human microbiome. WIREs Mech Dis 2024; 16:e1641. [PMID: 38228159 DOI: 10.1002/wsbm.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
The fungal component of the microbiota, the mycobiota, has been neglected for a long time due to its poor richness compared to bacteria. Limitations in fungal detection and taxonomic identification arise from using metagenomic approaches, often borrowed from bacteriome analyses. However, the relatively recent discoveries of the ability of fungi to modulate the host immune response and their involvement in human diseases have made mycobiota a fundamental component of the microbial communities inhabiting the human host, deserving some consideration in host-microbe interaction studies and in metagenomics. Here, we reviewed recent data on the identification of yeasts of the Ascomycota phylum across human body districts, focusing on the most representative genera, that is, Saccharomyces and Candida. Then, we explored the key factors involved in shaping the human mycobiota across the lifespan, ranging from host genetics to environment, diet, and lifestyle habits. Finally, we discussed the strengths and weaknesses of culture-dependent and independent methods for mycobiota characterization. Overall, there is still room for some improvements, especially regarding fungal-specific methodological approaches and bioinformatics challenges, which are still critical steps in mycobiota analysis, and to advance our knowledge on the role of the gut mycobiota in human health and disease. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Environmental Factors Infectious Diseases > Environmental Factors.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
20
|
Liu T, Asif IM, Chen Y, Zhang M, Li B, Wang L. The Relationship between Diet, Gut Mycobiome, and Functional Gastrointestinal Disorders: Evidence, Doubts, and Prospects. Mol Nutr Food Res 2024; 68:e2300382. [PMID: 38659179 DOI: 10.1002/mnfr.202300382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/11/2023] [Indexed: 04/26/2024]
Abstract
Gut fungi are important parts of intestinal microbes. Dietary ingredients have the potential to regulate the structure of gut fungi in different directions and modulate mycobiome composition by changing dietary patterns, which have been applied to neurological disorders. Emerging pieces of evidence have revealed the regulatory functions of gut mycobiome in gastrointestinal diseases, but the relationships between gut fungi and functional gastrointestinal disorders (FGIDs) are ignored in the past. This review discusses the impact of dietary nutrients and patterns on mycobiome, and the possible ways in which gut fungi are involved in the pathogenesis of FGIDs. Besides affecting host immunity, intestinal fungi can be involved in the pathogenesis of FGIDs by endosymbiosis or bidirectional regulation with gut bacteria as well. In addition, the Mediterranean diet may be the most appropriate dietary pattern for subjects with FGIDs. A full understanding of these associations may have important implications for the pathogenesis and treatment of FGIDs.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Yan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Meixue Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| |
Collapse
|
21
|
Kim NH, Choi HS, Lee MY, Seong H, Han NS, Hu HJ, Kim YS, Park JH. The Effects of Fermented Rice Drink With Lactiplantibacillus plantarum JSA22 in Overweight Irritable Bowel Syndrome Patients: A Randomized, Double-blind, Placebo-controlled Study. J Neurogastroenterol Motil 2024; 30:194-207. [PMID: 38576369 PMCID: PMC10999840 DOI: 10.5056/jnm23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 04/06/2024] Open
Abstract
Background/Aims This study aims to investigate the effect of a fermented rice drink with Lactiplantibacillus plantarum JSA22 on symptoms, blood tests, microbiomes, and fecal metabolites in patients with irritable bowel syndrome (IBS) who were overweight. Methods Sixty overweight (body mass index ≥ 23 kg/m2) patients aged between 20 and 65 with IBS were enrolled. Patients were divided into 2 groups and administered either a fermented rice drink or an nonfermented rice drink for a month. The symptom questionnaire, blood samples, and stool samples for microbiome and metabolite were collected before and after the month of rice drink administration. The primary efficacy variable was the subject's global assessment of IBS symptoms. Results In both groups, global IBS symptoms, including abdominal pain, bowel habit, urgency, and abdominal distension, improved significantly (P < 0.01). The abdominal bloating was more significantly improved in the fermented rice drink group than in the nonfermented rice drink group (P < 0.05). Significant changes were not observed in metabolic syndrome-related blood tests or fecal metabolites in either group. However, microbiome analysis showed significant differences in genus levels before and after consuming fermented rice drink, such as in Blautia in stool (P = 0.020) and Prevotella (P = 0.017) and Oribacterium (P = 0.018) in saliva. Conclusions The fermented rice drink with L. plantarum JSA22 showed a beneficial effect in reducing abdominal distension in IBS patients. Bacteria that reduce visceral fat accumulation increased in the stool and saliva of patients who consumed fermented rice drinks.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Sun Choi
- National Institute of Crop Science, Rural Development Administration, Suwon, Gyeonggi-do, Korea
| | - Moon Young Lee
- Digestive Diseases Research Institute, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do, Korea
| | - Hyunbin Seong
- Department of Food Science and Technology, Chungbuk National University, Cheongju, Chungcheongbuk-do, Korea
| | - Nam Soo Han
- Department of Food Science and Technology, Chungbuk National University, Cheongju, Chungcheongbuk-do, Korea
| | - Hae-Jin Hu
- Endomics, Inc, Seongnam, Gyeonggi-do, Korea
| | - Yong Sung Kim
- Digestive Diseases Research Institute, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do, Korea
- Gut & Food Healthcare Co, Ltd, Seongnam, Gyeonggi-do, Korea
| | - Jung Ho Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Maghsood AH, Kayedimajd S, Motavallihaghi S, Abedian R, Kordi S, Davoodi L, Faizi F, Soleymani E. Irritable Bowel Syndrome Associated with Blastocystis hominis or Without Relationship to It? A Case-Control Study and Minireview. Acta Parasitol 2024; 69:639-647. [PMID: 38300499 DOI: 10.1007/s11686-023-00787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Blastocystis hominis (B. hominis) is a protozoan parasite that has a worldwide distribution. Some studies have suggested a link between B. hominis and the development of irritable bowel syndrome (IBS). The objective of this study was to determine the prevalence of B. hominis in patients with IBS compared to healthy individuals. MATERIAL AND METHODS A total of 65 stool samples from patients with IBS and 65 samples from healthy individuals in northern Iran were examined. The samples were tested using various methods including direct smear, formalin ether sedimentation and culture to detect the presence of B. hominis. Additionally, polymerase chain reaction (PCR) was performed on all culture-positive isolates to confirm the results and identify the genotype. RESULTS B. hominis was detected in 15.38% of IBS patients and 9.2% of the healthy group. The culture in RPMI1640 was found to be better than the formalin ether and direct smear methods. Positive samples were confirmed using the molecular method. No significant difference was observed in the order of B. hominis infection between the two groups. CONCLUSIONS The results of our study indicate that no significant difference was observed in the order of B. hominis infection between IBS patients and healthy groups. Therefore, further study is necessary to determine the potential pathogenic effects of this parasite and its role in causing IBS.
Collapse
Affiliation(s)
- Amir Hossein Maghsood
- Department of Medical Mycology and Parasitology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | | | - Seyedmousa Motavallihaghi
- Department of Medical Mycology and Parasitology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Rohallah Abedian
- Department of Infectious Diseases, Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirafkan Kordi
- Department of Infectious Diseases, Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Lotfollah Davoodi
- Department of Infectious Diseases, Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fariba Faizi
- Department of Medical Mycology and Parasitology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Eissa Soleymani
- Department of Medical Mycology and Parasitology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran.
| |
Collapse
|
23
|
Wang K, Wang S, Chen Y, Lu X, Wang D, Zhang Y, Pan W, Zhou C, Zou D. Causal relationship between gut microbiota and risk of gastroesophageal reflux disease: a genetic correlation and bidirectional Mendelian randomization study. Front Immunol 2024; 15:1327503. [PMID: 38449873 PMCID: PMC10914956 DOI: 10.3389/fimmu.2024.1327503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background Numerous observational studies have identified a linkage between the gut microbiota and gastroesophageal reflux disease (GERD). However, a clear causative association between the gut microbiota and GERD has yet to be definitively ascertained, given the presence of confounding variables. Methods The genome-wide association study (GWAS) pertaining to the microbiome, conducted by the MiBioGen consortium and comprising 18,340 samples from 24 population-based cohorts, served as the exposure dataset. Summary-level data for GERD were obtained from a recent publicly available genome-wide association involving 78 707 GERD cases and 288 734 controls of European descent. The inverse variance-weighted (IVW) method was performed as a primary analysis, the other four methods were used as supporting analyses. Furthermore, sensitivity analyses encompassing Cochran's Q statistics, MR-Egger intercept, MR-PRESSO global test, and leave-one-out methodology were carried out to identify potential heterogeneity and horizontal pleiotropy. Ultimately, a reverse MR assessment was conducted to investigate the potential for reverse causation. Results The IVW method's findings suggested protective roles against GERD for the Family Clostridiales Vadin BB60 group (P = 0.027), Genus Lachnospiraceae UCG004 (P = 0.026), Genus Methanobrevibacter (P = 0.026), and Phylum Actinobacteria (P = 0.019). In contrast, Class Mollicutes (P = 0.037), Genus Anaerostipes (P = 0.049), and Phylum Tenericutes (P = 0.024) emerged as potential GERD risk factors. In assessing reverse causation with GERD as the exposure and gut microbiota as the outcome, the findings indicate that GERD leads to dysbiosis in 13 distinct gut microbiota classes. The MR results' reliability was confirmed by thorough assessments of heterogeneity and pleiotropy. Conclusions For the first time, the MR analysis indicates a genetic link between gut microbiota abundance changes and GERD risk. This not only substantiates the potential of intestinal microecological therapy for GERD, but also establishes a basis for advanced research into the role of intestinal microbiota in the etiology of GERD.
Collapse
Affiliation(s)
- Kui Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Suijian Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Stantou University Medical College, Stantou, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xinchen Lu
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Danshu Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Pan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Lluansí A, Llirós M, Carreras-Torres R, Bahí A, Capdevila M, Feliu A, Vilà-Quintana L, Elias-Masiques N, Cueva E, Peries L, Torrealba L, Miquel-Cusachs JO, Sàbat M, Busquets D, López C, Delgado-Aros S, Garcia-Gil LJ, Elias I, Aldeguer X. Impact of bread diet on intestinal dysbiosis and irritable bowel syndrome symptoms in quiescent ulcerative colitis: A pilot study. PLoS One 2024; 19:e0297836. [PMID: 38363772 PMCID: PMC10871487 DOI: 10.1371/journal.pone.0297836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Gut microbiota may be involved in the presence of irritable bowel syndrome (IBS)-like symptomatology in ulcerative colitis (UC) patients in remission. Bread is an important source of dietary fiber, and a potential prebiotic. To assess the effect of a bread baked using traditional elaboration, in comparison with using modern elaboration procedures, in changing the gut microbiota and relieving IBS-like symptoms in patients with quiescent ulcerative colitis. Thirty-one UC patients in remission with IBS-like symptoms were randomly assigned to a dietary intervention with 200 g/d of either treatment or control bread for 8 weeks. Clinical symptomatology was tested using questionnaires and inflammatory parameters. Changes in fecal microbiota composition were assessed by high-throughput sequencing of the 16S rRNA gene. A decrease in IBS-like symptomatology was observed after both the treatment and control bread interventions as reductions in IBS-Symptom Severity Score values (p-value < 0.001) and presence of abdominal pain (p-value < 0.001). The treatment bread suggestively reduced the Firmicutes/Bacteroidetes ratio (p-value = 0.058). In addition, the Firmicutes/Bacteroidetes ratio seemed to be associated with improving IBS-like symptoms as suggested by a slight decrease in patient without abdominal pain (p-value = 0.059). No statistically significant differential abundances were found at any taxonomic level. The intake of a bread baked using traditional elaboration decreased the Firmicutes/Bacteroidetes ratio, which seemed to be associated with improving IBS-like symptoms in quiescent ulcerative colitis patients. These findings suggest that the traditional bread elaboration has a potential prebiotic effect improving gut health (ClinicalTrials.gov ID number of study: NCT05656391).
Collapse
Affiliation(s)
- Aleix Lluansí
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Marc Llirós
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Anna Bahí
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Montserrat Capdevila
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Anna Feliu
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Laura Vilà-Quintana
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | | | | | - Laia Peries
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Leyanira Torrealba
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Josep Oriol Miquel-Cusachs
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Míriam Sàbat
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital de Santa Caterina, Girona, Spain
| | - David Busquets
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Carmen López
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Sílvia Delgado-Aros
- Gastroenterology Scientific advisor to Elias-Boulanger S.L., Vilassar de Mar, Spain
| | - Librado Jesús Garcia-Gil
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Biology, Universitat de Girona, Girona, Spain
| | - Isidre Elias
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Xavier Aldeguer
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| |
Collapse
|
25
|
Scheithauer TPM, Montijn RC, Mieremet A. Gut microbe-host interactions in post-COVID syndrome: a debilitating or restorative partnership? Gut Microbes 2024; 16:2402544. [PMID: 39287023 PMCID: PMC11409505 DOI: 10.1080/19490976.2024.2402544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Post-COVID syndrome (PCS) patients have reported a wide range of symptoms, including fatigue, shortness of breath, and diarrhea. Particularly, the presence of gastrointestinal symptoms has led to the hypothesis that the gut microbiome is involved in the development and severity of PCS. The objective of this review is to provide an overview of the role of the gut microbiome in PCS by describing the microbial composition and microbial metabolites in COVID-19 and PCS. Moreover, host-microbe interactions via the microbiota-gut-brain (MGB) and the microbiota-gut-lung (MGL) axes are described. Furthermore, we explore the potential of therapeutically targeting the gut microbiome to support the recovery of PCS by reviewing preclinical model systems and clinical studies. Overall, current studies provide evidence that the gut microbiota is affected in PCS; however, diversity in symptoms and highly individual microbiota compositions suggest the need for personalized medicine. Gut-targeted therapies, including treatments with pre- and probiotics, have the potential to improve the quality of life of affected individuals.
Collapse
Affiliation(s)
- Torsten P M Scheithauer
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Roy C Montijn
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Arnout Mieremet
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
26
|
Verdu EF, Vanner S. The IBS bug-pain connection. Gut Microbes 2024; 16:2308956. [PMID: 38332500 PMCID: PMC10860344 DOI: 10.1080/19490976.2024.2308956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Affiliation(s)
- Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Division of gastroenterology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Stephen Vanner
- Division of gastroenterology, Department of Medicine, Queen’s University, Kingston, Canada
| |
Collapse
|
27
|
Orgler E, Baumgartner M, Duller S, Kumptisch C, Hausmann B, Moser D, Khare V, Lang M, Köcher T, Frick A, Muttenthaler M, Makristathis A, Moissl-Eichinger C, Gasche C. Archaea influence composition of endoscopically visible ileocolonic biofilms. Gut Microbes 2024; 16:2359500. [PMID: 38825783 PMCID: PMC11152093 DOI: 10.1080/19490976.2024.2359500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.
Collapse
Affiliation(s)
- Elisabeth Orgler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Department of Medicine II, University Hospital, Munich, Germany
| | - Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Stefanie Duller
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christina Kumptisch
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Bela Hausmann
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Thomas Köcher
- Metabolomics Service and Research Facility, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Adrian Frick
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Athanasios Makristathis
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| |
Collapse
|
28
|
Kreulen IAM, de Jonge WJ, van den Wijngaard RM, van Thiel IAM. Candida spp. in Human Intestinal Health and Disease: More than a Gut Feeling. Mycopathologia 2023; 188:845-862. [PMID: 37294505 PMCID: PMC10687130 DOI: 10.1007/s11046-023-00743-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Fungi are an essential part of the normal collection of intestinal microorganisms, even though their collective abundance comprises only 0.1-1% of all fecal microbes. The composition and role of the fungal population is often studied in relation to early-life microbial colonization and development of the (mucosal) immune system. The genus Candida is frequently described as one of the most abundant genera, and altered fungal compositions (including elevated abundance of Candida spp.) have been linked with intestinal diseases such as inflammatory bowel disease and irritable bowel syndrome. These studies are performed using both culture-dependent and genomic (metabarcoding) techniques. In this review, we aimed to summarize existing data on intestinal Candida spp. colonization in relation to intestinal disease and provide a brief overview of the biological and technical challenges in this field, including the recently described role of sub-species strain variation of intestinal Candida albicans. Together, the evidence for a contributing role of Candida spp. in pediatric and adult intestinal disease is quickly expanding, even though technical and biological challenges may limit full understanding of host-microbe interactions.
Collapse
Affiliation(s)
- Irini A M Kreulen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127, Bonn, Germany
| | - René M van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Isabelle A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands.
- Royal Netherlands Academy of Arts and Sciences, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.
| |
Collapse
|
29
|
Liu XY, Wu SD. Fecal microbiota transplantation for treatment of irritable bowel syndrome: Current advances and future perspectives. Shijie Huaren Xiaohua Zazhi 2023; 31:922-932. [DOI: 10.11569/wcjd.v31.i22.922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a kind of functional gastroin-testinal disorder, characterized by recurrent abdominal pain and altered bowel habits. IBS adversely affects the quality of life of patients for the lack of effective treatment. The etiology of IBS remains poorly known. Previous studies suggested a possible role of gut dysbiosis in IBS pathogenesis. Fecal microbiota transplantation (FMT), which aims to reverse the gut dysbiosis, is a promising strategy in IBS management. In this review, we summarize the role of the gut microbiota in IBS pathogenesis from different aspects. We also review recent studies on efficacy evaluation of FMT in IBS. Besides, we discuss factors affecting the efficacy of FMT, hoping to provide a reference for future IBS treatment strategies targeting the gut microbiota.
Collapse
Affiliation(s)
- Xin-Yi Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Sheng-Di Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Krishnamurthy HK, Pereira M, Bosco J, George J, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Gut commensals and their metabolites in health and disease. Front Microbiol 2023; 14:1244293. [PMID: 38029089 PMCID: PMC10666787 DOI: 10.3389/fmicb.2023.1244293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose of review This review comprehensively discusses the role of the gut microbiome and its metabolites in health and disease and sheds light on the importance of a holistic approach in assessing the gut. Recent findings The gut microbiome consisting of the bacteriome, mycobiome, archaeome, and virome has a profound effect on human health. Gut dysbiosis which is characterized by perturbations in the microbial population not only results in gastrointestinal (GI) symptoms or conditions but can also give rise to extra-GI manifestations. Gut microorganisms also produce metabolites (short-chain fatty acids, trimethylamine, hydrogen sulfide, methane, and so on) that are important for several interkingdom microbial interactions and functions. They also participate in various host metabolic processes. An alteration in the microbial species can affect their respective metabolite concentrations which can have serious health implications. Effective assessment of the gut microbiome and its metabolites is crucial as it can provide insights into one's overall health. Summary Emerging evidence highlights the role of the gut microbiome and its metabolites in health and disease. As it is implicated in GI as well as extra-GI symptoms, the gut microbiome plays a crucial role in the overall well-being of the host. Effective assessment of the gut microbiome may provide insights into one's health status leading to more holistic care.
Collapse
Affiliation(s)
| | | | - Jophi Bosco
- Vibrant America LLC., San Carlos, CA, United States
| | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States
| | | |
Collapse
|
31
|
Xu L, Li W, Ling L, Zhang Z, Cui Z, Ge J, Wang Y, Meng Q, Wang Y, Liu K, Zhou J, Zeng F, Wang J, Wu J. A Sedentary Lifestyle Changes the Composition and Predicted Functions of the Gut Bacterial and Fungal Microbiota of Subjects from the Same Company. Curr Microbiol 2023; 80:368. [PMID: 37831112 PMCID: PMC10575810 DOI: 10.1007/s00284-023-03480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
A sedentary lifestyle affects the diversity and composition of the gut microbiota, but previous studies have mainly focused on bacteria instead of fungi. Here, we compared both the fecal bacterial and fungal microbiota compositions and functions in sedentary persons and controls. Subjects from the China Railway Corporation, including 99 inspectors and 88 officials, were enrolled in our study. Fecal microbiota communities were analyzed using 16S rRNA gene sequencing for bacteria and ITS sequencing for fungi. We found that the diversity of the gut microbiota of the sedentary group was significantly lower than that of the control group (P < 0.05). The sedentary group had a higher abundance of Firmicutes, a lower abundance of Actinobacteria and Proteobacteria and a higher abundance of Ascomycota, and a lower abundance of Basidiomycota. Furthermore, functional prediction analysis of the fungal microbiota revealed more L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde, more phospholipid remodeling (phosphatidylethanolamine, yeast), and more L-tyrosine degradation I, as well as less pentose phosphate pathway (non-oxidative branch), less adenosine nucleotide biosynthesis and less L-valine biosynthesis in the sedentary group (P < 0.05). Thus, a sedentary lifestyle changes the composition and function of the gut microbiota. It may change the pentose phosphate pathway (non-oxidative branch), nucleic acid and amino acid biosynthesis and phospholipid metabolism in fungi.
Collapse
Affiliation(s)
- Longwei Xu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Gastroenterology, School of Clinical Medicine, Peking University Ninth, Beijing, 100038, China
| | - Wenkun Li
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lu Ling
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ziran Zhang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zilu Cui
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jiang Ge
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yun Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qianlong Meng
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yadan Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Kuiliang Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jun Zhou
- Department of Clinical Research Center, Dazhou Central Hospital, Sichuan, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Sichuan, China.
| | - Jing Wang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Jing Wu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Department of Gastroenterology, School of Clinical Medicine, Peking University Ninth, Beijing, 100038, China.
- , No. 95, Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
32
|
Wang T, Liu J, Luo Y, Yu B, Kong X, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Combined effects of host genetics and diet on porcine intestinal fungi and their pathogenic genes. Front Microbiol 2023; 14:1192288. [PMID: 37822749 PMCID: PMC10563851 DOI: 10.3389/fmicb.2023.1192288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
As research on gut microbes progresses, it becomes increasingly clear that a small family of microbiota--fungi, plays a crucial role in animal health. However, little is known about the fungal composition in the pig intestine, especially after a dietary fiber diet and hybrid genetics, and the changes in host pathogenicity-associated genes they carry. The purpose of this study is to investigate the effects of diet and genetics on the diversity and structure of porcine intestinal fungi and to describe, for the first time, the host pathogenicity-related genes carried by porcine intestinal fungi. Samples of colonic contents were collected for metagenomic analysis using a 3 × 2 parsing design, where three pig breeds (Taoyuan, Duroc, and crossbred Xiangcun) were fed high or low fiber diets (n = 10). In all samples, we identified a total of 281 identifiable fungal genera, with Ascomycota and Microsporidia being the most abundant fungi. Compared to Duroc pigs, Taoyuan and Xiangcun pigs had higher fungal richness. Interestingly, the fiber diet significantly reduced the abundance of the pathogenic fungus Mucor and significantly increased the abundance of the fiber digestion-associated fungus Neocallimastix. Pathogenic fungi exert their pathogenicity through the genes they carry that are associated with host pathogenicity. Therefore, we obtained 839 pathogenicity genes carried by the spectrum of fungi in the pig intestine by comparing the PHI-base database. Our results showed that fungi in the colon of Taoyuan pigs carried the highest abundance of different classes of host pathogenicity-related genes, and the lowest in Duroc pigs. Specifically, Taoyuan pigs carried high abundance of animal pathogenicity-related genes (CaTUP1, CPAR2_106400, CaCDC35, Tfp1, CaMNT2), and CaTUP1 was the key gene for Candida pathogenicity. The intestinal fungal composition of crossbred Xiangcun pigs and the abundance of host pathogenicity-associated genes they carried exhibited a mixture of characteristics of Taoyuan and Duroc pigs. In conclusion, our results provide the first comprehensive report on the effects of dietary fiber and genetics on the composition of intestinal fungi and the host-associated pathogenicity genes they carry in pigs. These findings provide a reference for subsequent pig breeding and development of anti-pathogenic fungal drugs.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jiahao Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| |
Collapse
|
33
|
Shi Y, Li J, Cai S, Zhao H, Zhao H, Sun G, Yang Y. Proton pump inhibitors induced fungal dysbiosis in patients with gastroesophageal reflux disease. Front Cell Infect Microbiol 2023; 13:1205348. [PMID: 37662013 PMCID: PMC10469693 DOI: 10.3389/fcimb.2023.1205348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Gut mycobiota inhabits human gastrointestinal lumen and plays a role in human health and disease. We investigated the influence of proton pump inhibitors (PPIs) on gastric mucosal and fecal mycobiota in patients with gastroesophageal reflux diseases (GERD) by using Internal Transcribed Spacer 1 sequencing. A total of 65 participants were included, consisting of the healthy control (HC) group, GERD patients who did not use PPIs (nt-GERD), and GERD patients who used PPIs, which were further divided into short-term (s-PPI) and long-term PPI user (l-PPI) groups based on the duration of PPI use. The alpha diversity and beta diversity of gastric mucosal mycobiota in GERD patients with PPI use were significantly different from HCs, but there were no differences between s-PPI and l-PPI groups. LEfSe analysis identified Candida at the genus level as a biomarker for the s-PPI group when compared to the nt-GERD group. Meanwhile, Candida, Nothojafnea, Rhizodermea, Ambispora, and Saccharicola were more abundant in the l-PPI group than in the nt-GERD group. Furthermore, colonization of Candida in gastric mucosa was significantly increased after PPI treatment. However, there was no significant difference in Candida colonization between patients with endoscopic esophageal mucosal breaks and those without. There were significant differences in the fecal mycobiota composition between HCs and GERD patients regardless whether or not they used PPI. As compared to nt-GERD patient samples, there was a high abundance of Alternaria, Aspergillus, Mycenella, Exserohilum, and Clitopilus in the s-PPI group. In addition, there was a significantly higher abundance of Alternaria, Aspergillus, Podospora, Phallus, and Monographella in the l-PPI group than nt-GERD patients. In conclusion, our study indicates that dysbiosis of mycobiota was presented in GERD patients in both gastric mucosal and fecal mycobiota. PPI treatment may increase the colonization of Candida in the gastric mucosa in GERD patients.
Collapse
Affiliation(s)
- Yichao Shi
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianfeng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuntian Cai
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hong Zhao
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huijun Zhao
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
34
|
Fiorani M, Del Vecchio LE, Dargenio P, Kaitsas F, Rozera T, Porcari S, Gasbarrini A, Cammarota G, Ianiro G. Histamine-producing bacteria and their role in gastrointestinal disorders. Expert Rev Gastroenterol Hepatol 2023; 17:709-718. [PMID: 37394958 DOI: 10.1080/17474124.2023.2230865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Gut microbiota produces thousands of metabolites, which have a huge impact on the host health. Specific microbial strains are able to synthesize histamine, a molecule with a crucial role in many physiologic and pathologic mechanisms of the host. This function is mediated by the histidine decarboxylase enzyme (HDC) that converts the amino acid histidine to histamine. AREAS COVERED This review summarizes the emerging data on histamine production by gut microbiota, and the effect of bacterial-derived histamine in different clinical contexts, including cancer, irritable bowel syndrome, and other gastrointestinal and extraintestinal pathologies. This review will also outline the impact of histamine on the immune system and the effect of probiotics that can secrete histamine. Search methodology: we searched the literature on PubMed up to February 2023. EXPERT OPINION The potential of modulating gut microbiota to influence histamine production is a promising area of research, and although our knowledge of histamine-secreting bacteria is still limited, recent advances are exploring their diagnostic and therapeutical potential. Diet, probiotics, and pharmacological treatments directed to the modulation of histamine-secreting bacteria may in the future potentially be employed in the prevention and management of several gastrointestinal and extraintestinal disorders.
Collapse
Affiliation(s)
- Marcello Fiorani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Livio Enrico Del Vecchio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Pasquale Dargenio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tommaso Rozera
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
35
|
Chen X, Hu C, Yan C, Tao E, Zhu Z, Shu X, Guo R, Jiang M. Maternal separation leads to dynamic changes of visceral hypersensitivity and fecal metabolomics from childhood to adulthood. Sci Rep 2023; 13:7670. [PMID: 37169847 PMCID: PMC10175246 DOI: 10.1038/s41598-023-34792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
We assessed dynamic changes in visceral hypersensitivity and fecal metabolomics through a mouse model of irritable bowel syndrome (IBS) from childhood to adulthood. A mouse model of IBS was constructed with maternal separation (MS) in early life. Male mice aged 25, 40, and 70 days were used. Visceral sensitivity was assessed by recording the reaction between the abdominal withdrawal reflex and colorectal distension. Metabolomics was identified and quantified by liquid chromatography-tandem mass spectrometry. The visceral sensitivity of the MS group was significantly higher than that of the non-separation (NS) group in the three age groups. The top four fecal differential metabolites in the different age groups were lipids, lipid molecules, organic heterocyclic compounds, organic acids and derivatives, and benzenoids. Five identical differential metabolites were detected in the feces and ileal contents of the MS and NS groups at different ages, namely, benzamide, taurine, acetyl-L-carnitine, indole, and ethylbenzene. Taurine and hypotaurine metabolism were the most relevant pathways at P25, whereas histidine metabolism was the most relevant pathway at P40 and P70. Visceral hypersensitivity in the MS group lasted from childhood to adulthood. The different metabolites and metabolic pathways detected in MS groups of different ages provide a theoretical basis for IBS pathogenesis.
Collapse
Affiliation(s)
- Xiaolong Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
- Department of Pediatrics, The First People's Hospital of Jiashan, Jiashan, 314100, China
| | - Chenmin Hu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Chenxi Yan
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Enfu Tao
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Zhenya Zhu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Rui Guo
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.
| |
Collapse
|
36
|
Ivanova M, Bottiglieri L, Sajjadi E, Venetis K, Fusco N. Malignancies in Patients with Celiac Disease: Diagnostic Challenges and Molecular Advances. Genes (Basel) 2023; 14:376. [PMID: 36833303 PMCID: PMC9956047 DOI: 10.3390/genes14020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Celiac disease (CD) is a multiorgan autoimmune disorder of the chronic intestinal disease group characterized by duodenal inflammation in genetically predisposed individuals, precipitated by gluten ingestion. The pathogenesis of celiac disease is now widely studied, overcoming the limits of the purely autoimmune concept and explaining its hereditability. The genomic profiling of this condition has led to the discovery of numerous genes involved in interleukin signaling and immune-related pathways. The spectrum of disease manifestations is not limited to the gastrointestinal tract, and a significant number of studies have considered the possible association between CD and neoplasms. Patients with CD are found to be at increased risk of developing malignancies, with a particular predisposition of certain types of intestinal cancer, lymphomas, and oropharyngeal cancers. This can be partially explained by common cancer hallmarks present in these patients. The study of gut microbiota, microRNAs, and DNA methylation is evolving to find the any possible missing links between CD and cancer incidence in these patients. However, the literature is extremely mixed and, therefore, our understanding of the biological interplay between CD and cancer remains limited, with significant implications in terms of clinical management and screening protocols. In this review article, we seek to provide a comprehensive overview of the genomics, epigenomics, and transcriptomics data on CD and its relation to the most frequent types of neoplasms that may occur in these patients.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Luca Bottiglieri
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
37
|
van Thiel I, de Jonge W, van den Wijngaard R. Fungal feelings in the irritable bowel syndrome: the intestinal mycobiome and abdominal pain. Gut Microbes 2023; 15:2168992. [PMID: 36723172 PMCID: PMC9897793 DOI: 10.1080/19490976.2023.2168992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the gut microbiota consists of bacteria, viruses, and fungi, most publications addressing the microbiota-gut-brain axis in irritable bowel syndrome (IBS) have a sole focus on bacteria. This may relate to the relatively low presence of fungi and viruses as compared to bacteria. Yet, in the field of inflammatory bowel disease research, the publication of several papers addressing the role of the intestinal mycobiome now suggested that these low numbers do not necessarily translate to irrelevance. In this review, we discuss the available clinical and preclinical IBS mycobiome data, and speculate how these recent findings may relate to earlier observations in IBS. By surveying literature from the broader mycobiome research field, we identified questions open to future IBS-oriented investigations.
Collapse
Affiliation(s)
- Iam van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Wj de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Rm van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,CONTACT RM van den Wijngaard Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Meibergdreef 69-71, Amsterdam1105 BK, The Netherlands
| |
Collapse
|
38
|
Shin A, Kashyap PC. Multi-omics for biomarker approaches in the diagnostic evaluation and management of abdominal pain and irritable bowel syndrome: what lies ahead. Gut Microbes 2023; 15:2195792. [PMID: 37009874 PMCID: PMC10072066 DOI: 10.1080/19490976.2023.2195792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
Reliable biomarkers for common disorders of gut-brain interaction characterized by abdominal pain, including irritable bowel syndrome (IBS), are critically needed to enhance care and develop individualized therapies. The dynamic and heterogeneous nature of the pathophysiological mechanisms that underlie visceral hypersensitivity have challenged successful biomarker development. Consequently, effective therapies for pain in IBS are lacking. However, recent advances in modern omics technologies offer new opportunities to acquire deep biological insights into mechanisms of pain and nociception. Newer methods for large-scale data integration of complementary omics approaches have further expanded our ability to build a holistic understanding of complex biological networks and their co-contributions to abdominal pain. Here, we review the mechanisms of visceral hypersensitivity, focusing on IBS. We discuss candidate biomarkers for pain in IBS identified through single omics studies and summarize emerging multi-omics approaches for developing novel biomarkers that may transform clinical care for patients with IBS and abdominal pain.
Collapse
Affiliation(s)
- Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Purna C. Kashyap
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
39
|
Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. THE LANCET. MICROBE 2022; 3:e969-e983. [PMID: 36182668 DOI: 10.1016/s2666-5247(22)00203-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
The gut mycobiome (fungi) is a small but crucial component of the gut microbiome in humans. Intestinal fungi regulate host homoeostasis, pathophysiological and physiological processes, and the assembly of the co-residing gut bacterial microbiome. Over the past decade, accumulating studies have characterised the gut mycobiome in health and several pathological conditions. We review the compositional and functional diversity of the gut mycobiome in healthy populations from birth to adulthood. We describe factors influencing the gut mycobiome and the roles of intestinal fungi-especially Candida and Saccharomyces spp-in diseases and therapies with a particular focus on their synergism with the gut bacterial microbiome and host immunity. Finally, we discuss the underappreciated effects of gut fungi in clinical implications, and highlight future microbiome-based therapies that harness the tripartite relationship among the gut mycobiome, bacterial microbiome, and host immunity, aiming to restore a core gut mycobiome and microbiome and to improve clinical efficacy.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Dominik Aschenbrenner
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland
| | - Ji Youn Yoo
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yatsen University, Sun Yat-sen University, Guangzhou, China; Laboratory Animals Centre, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China.
| |
Collapse
|
40
|
Hang L, Wang E, Feng Y, Zhou Y, Meng Y, Jiang F, Yuan J. Metagenomics and metabolomics analysis to investigate the effect of Shugan decoction on intestinal microbiota in irritable bowel syndrome rats. Front Microbiol 2022; 13:1024822. [PMID: 36478867 PMCID: PMC9719954 DOI: 10.3389/fmicb.2022.1024822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND The effect of Shugan Decoction (SGD) on intestinal motility and visceral hypersensitivity in Water avoid stress (WAS)-induced diarrhea predominant irritable bowel syndrome (IBS-D) model rats has been confirmed. However, the mechanisms of its action involved in the treatment of IBS-D need to be further studied. Intestinal microbiota plays an important role in maintaining intestinal homeostasis and normal physiological function. Changes in the intestinal microbiota and its metabolites are thought to participate in the pathophysiological process of IBS. AIM This study aimed to analyze the influence of SGD on intestinal microbiota and fecal metabolites in IBS-D rats by multiple omics techniques, including metagenomic sequencing and metabolomics. METHODS We measured the intestinal motility and visceral sensitivity of three groups of rats by fecal pellets output and colorectal distension (CRD) experiment. In addition, metagenome sequencing analysis was performed to explore the changes in the number and types of intestinal microbiota in IBS-D model rats after SGD treatment. Finally, we also used untargeted metabolomic sequencing to screen the metabolites and metabolic pathways closely related to the therapeutic effect of SGD. RESULTS We found that compared with the rats in the control group, the fecal pellets output of the rats in the WAS group increased and the visceral sensitivity threshold was decreased (P < 0.05). Compared with the rats in the WAS group, the fecal pellets output of the SGD group was significantly decreased, and the visceral sensitivity threshold increased (P < 0.05). Besides, compared with the rats in the WAS group, the relative abundance of Bacteroidetes increased in SGD group, while that of Firmicutes decreased at the phylum level, and at the species level, the relative abundance of Bacteroides sp. CAG:714, Lactobacillus reuteri and Bacteroides Barnesiae in SGD group increased, but that of bacterium D42-87 decreased. In addition, compared with the WAS group, several metabolic pathways were significantly changed in SGD group, including Taurine and hypotaurine metabolism, Purine metabolism, Sulfur metabolism, ABC transporters, Arginine and proline metabolism and Bile secretion. CONCLUSION SGD can regulate specific intestinal microbiota and some metabolic pathways, which may explain its effect of alleviating visceral hypersensitivity and abnormal intestinal motility in WAS-induced IBS-D rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Feng Y, Hang L, Zhou Y, Jiang FR, Yuan JY. Gut microbiota plays a role in irritable bowel syndrome by regulating 5-HT metabolism. Shijie Huaren Xiaohua Zazhi 2022; 30:941-949. [DOI: 10.11569/wcjd.v30.i21.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder. Brain-gut-microbiota axis dysfunction is an important pathogenic factor for IBS, in which neurotransmitters and gut microbes play key roles. The gastrointestinal tract contains large amounts of serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter that has been strongly linked to IBS-related symptoms. More than 90% of serotonin is synthesized in the gut by enterochromaffin cells (ECs), and certain intestinal flora can affect the occurrence and development of IBS by regulating 5-HT and its metabolism. In this review, we will discuss the role of gut microbiota in IBS by regulating 5-HT.
Collapse
Affiliation(s)
- Ya Feng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Hang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Feng-Ru Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian-Ye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
42
|
Camilleri M, Zhernakova A, Bozzarelli I, D'Amato M. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol 2022; 19:689-702. [PMID: 35948782 DOI: 10.1038/s41575-022-00662-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 12/19/2022]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and probably involves genetic predisposition and the effect of environmental factors. Unlike other gastrointestinal diseases with a heritable component, genetic research in IBS has been scarce and mostly characterized by small underpowered studies, leading to inconclusive results. The availability of genomic and health-related data from large international cohorts and population-based biobanks offers unprecedented opportunities for long-awaited, well-powered genetic studies in IBS. This Review focuses on the latest advances that provide compelling evidence for the importance of genes involved in the digestion of carbohydrates, ion channel function, neurotransmitters and their receptors, neuronal pathways and the control of gut motility. These discoveries have generated novel information that might be further refined for the identification of predisposed individuals and selection of management strategies for patients. This Review presents a conceptual framework, the advantages and potential limitations of modern genetic research in IBS, and a summary of available evidence.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain. .,Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
43
|
Aguilera-Lizarraga J. Gut reactions: emerging mechanisms of abdominal pain from food intake. Am J Physiol Gastrointest Liver Physiol 2022; 323:G401-G409. [PMID: 36126222 DOI: 10.1152/ajpgi.00173.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abdominal pain, which is a form of visceral pain, is a highly prevalent symptom worldwide frequently occurring following food ingestion. Its pathophysiology is complex, and many factors, including intestinal environmental cues, the immune system, or the molecular composition of foods, can influence the development of postprandial abdominal pain. Because of the poor efficacy of drug treatments, current strategies are often limited to the exclusion of culprit food(s) from the diet. However, there are two important limitations to this approach. First, patients suffering from food-induced abdominal pain usually recognize several food items as the cause of their gastrointestinal symptoms. Second, not all offending foods can always be identified by these patients. Newly identified mechanisms involving neuroimmune interactions and their communication with the intestinal microbiota shed light on the development of new therapeutic strategies. In this Mini-Review, these novel mechanisms and relevance of such findings are highlighted.
Collapse
Affiliation(s)
- Javier Aguilera-Lizarraga
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Jiang W, Wu J, Zhu S, Xin L, Yu C, Shen Z. The Role of Short Chain Fatty Acids in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2022; 28:540-548. [PMID: 36250361 PMCID: PMC9577580 DOI: 10.5056/jnm22093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is characterized by abdominal pain and disordered bowel habits. The etiology of IBS is multifactorial, including abnormal gut-brain interactions, visceral hypersensitivity, altered colon motility, and psychological factors. Recent studies have shown that the intestinal microbiota and its metabolites short chain fatty acids (SCFAs) may be involved in the pathogenesis of IBS. SCFAs play an important role in the pathophysiology of IBS. We discuss the underlying mechanisms of action of SCFAs in intestinal inflammation and immunity, intestinal barrier integrity, motility, and the microbiota-gut-brain axis. Limited to previous studies, further studies are required to investigate the mechanisms of action of SCFAs in IBS and provide more precise therapeutic strategies for IBS.
Collapse
Affiliation(s)
- Wenxi Jiang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiali Wu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shefeng Zhu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linying Xin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Chen HJ, Bischoff A, Galley JD, Peck L, Bailey MT, Gur TL. Discrete role for maternal stress and gut microbes in shaping maternal and offspring immunity. Neurobiol Stress 2022; 21:100480. [PMID: 36532381 PMCID: PMC9755033 DOI: 10.1016/j.ynstr.2022.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023] Open
Abstract
Psychosocial stress is prevalent during pregnancy, and is associated with immune dysfunction, both for the mother and the child. The gut microbiome has been implicated as a potential mechanism by which stress during pregnancy can impact both maternal and offspring immune function; however, the complex interplay between the gut microbiome and the immune system is not well-understood. Here, we leverage a model of antimicrobial-mediated gut microbiome reduction, in combination with a well-established model of maternal restraint stress, to investigate the independent effects of and interaction between maternal stress and the gut microbiome in shaping maternal and offspring immunity. First, we confirmed that the antimicrobial treatment reduced maternal gut bacterial load and altered fecal alpha and beta diversity, with a reduction in commensal microbes and an increase in the relative abundance of rare taxa. Prenatal stress also disrupted the gut microbiome, according to measures of both alpha and beta diversity. Furthermore, prenatal stress and antimicrobials independently induced systemic and gastrointestinal immune suppression in the dam with a concomitant increase in circulating corticosterone. While stress increased neutrophils in the maternal circulation, lymphoid cells and monocytes were not impacted by either stress or antimicrobial treatment. Although the fetal immune compartment was largely spared, stress increased circulating neutrophils and CD8 T cells, and antibiotics increased neutrophils and reduced T cells in the adult offspring. Altogether, these data indicate similar, but discrete, roles for maternal stress and gut microbes in influencing maternal and offspring immune function.
Collapse
Affiliation(s)
- Helen J. Chen
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Allison Bischoff
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey D. Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lauren Peck
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA,The Ohio State University College of Medicine, Columbus, OH, USA
| | - Michael T. Bailey
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA,Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Tamar L. Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA,Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Corresponding author. 120A Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| |
Collapse
|
46
|
Gut Non-Bacterial Microbiota: Emerging Link to Irritable Bowel Syndrome. Toxins (Basel) 2022; 14:toxins14090596. [PMID: 36136534 PMCID: PMC9503233 DOI: 10.3390/toxins14090596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
As a common functional gastrointestinal disorder, irritable bowel syndrome (IBS) significantly affects personal health and imposes a substantial economic burden on society, but the current understanding of its occurrence and treatment is still inadequate. Emerging evidence suggests that IBS is associated with gut microbial dysbiosis, but most studies focus on the bacteria and neglect other communities of the microbiota, including fungi, viruses, archaea, and other parasitic microorganisms. This review summarizes the latest findings that link the nonbacterial microbiota with IBS. IBS patients show less fungal and viral diversity but some alterations in mycobiome, virome, and archaeome, such as an increased abundance of Candida albicans. Moreover, fungi and methanogens can aid in diagnosis. Fungi are related to distinct IBS symptoms and induce immune responses, intestinal barrier disruption, and visceral hypersensitivity via specific receptors, cells, and metabolites. Novel therapeutic methods for IBS include fungicides, inhibitors targeting fungal pathogenic pathways, probiotic fungi, prebiotics, and fecal microbiota transplantation. Additionally, viruses, methanogens, and parasitic microorganisms are also involved in the pathophysiology and treatment. Therefore, the gut nonbacterial microbiota is involved in the pathogenesis of IBS, which provides a novel perspective on the noninvasive diagnosis and precise treatment of this disease.
Collapse
|
47
|
Hosseini K, Ahangari H, Chapeland-leclerc F, Ruprich-Robert G, Tarhriz V, Dilmaghani A. Role of Fungal Infections in Carcinogenesis and Cancer Development: A Literature Review. Adv Pharm Bull 2022; 12:747-756. [PMID: 36415634 PMCID: PMC9675916 DOI: 10.34172/apb.2022.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 06/11/2024] Open
Abstract
Cancer is a serious debilitating disease and one of the most common causes of death. In recent decades the high risk of various cancers enforced scientists to discover novel prevention and treatment methods to diminish the mortality of this terrifying disease. Accordingly, its prevention can be possible in near future. Based on epidemiological evidence, there is a clear link between pathogenic fungal infections and cancer development. This association is often seen in people with weakened immune systems such as the elderly and people with acquired immunodeficiency (AIDS). Carcinoma in these people is first seen chronically and then acutely. Although the different genetic and environmental risk factors are involved in carcinogenesis, one of the most important risk factors is fungal species and infections associating with cancers etiology. Now it is known that microbial infection is responsible for initiating 2.2 million new cancer cases. In this way, many recent studies have focused on investigating the role and mechanism of fungal infections in diverse cancers occurrence. This review provides a comprehensive framework of the latest clinical findings and the association of fungal infections with versatile cancers including esophageal, gastric, colorectal, lung, cervical, skin, and ovarian cancer.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Florence Chapeland-leclerc
- Université de Paris, Faculté des Sciences, Laboratoire Interdiciplinaire des Energies de Demain (LIED), UMR 8236 CNRS, F-75013, Paris, France
| | - Gwenael Ruprich-Robert
- Université de Paris, Faculté des Sciences, Laboratoire Interdiciplinaire des Energies de Demain (LIED), UMR 8236 CNRS, F-75013, Paris, France
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Bio-Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azita Dilmaghani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Hasler WL, Grabauskas G, Singh P, Owyang C. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome. Neurogastroenterol Motil 2022; 34:e14339. [PMID: 35315179 PMCID: PMC9286860 DOI: 10.1111/nmo.14339] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Abnormalities of mast cell structure or function may play prominent roles in irritable bowel syndrome (IBS) symptom genesis. Mast cells show close apposition to sensory nerves and release bioactive substances in response to varied stimuli including infection, stress, and other neuroendocrine factors. Most studies focus on patients who develop IBS after enteric infection or who report diarrhea-predominant symptoms. Three topics underlying IBS pathogenesis have been emphasized in recent investigations. Visceral hypersensitivity to luminal stimulation is found in most IBS patients and may contribute to abdominal pain. Mast cell dysfunction also may disrupt epithelial barrier function which alters mucosal permeability potentially leading to altered bowel function and pain. Mast cell products including histamine, proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability defects, especially with diarrhea-predominant IBS. Recent experimental evidence indicates that the pronociceptive effects of histamine and proteases are mediated by the generation of prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal bacterial translocation may activate mast cells to elicit inflammatory responses underlying some of these pathogenic effects. Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) have shown modest benefits in IBS. Future investigations will seek to define patient subsets with greater potential to respond to therapies that address visceral hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast cell dysfunction in IBS.
Collapse
Affiliation(s)
- William L. Hasler
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Gintautas Grabauskas
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Prashant Singh
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Chung Owyang
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| |
Collapse
|
49
|
Mycobiota composition and changes across pregnancy in patients with gestational diabetes mellitus (GDM). Sci Rep 2022; 12:9192. [PMID: 35654937 PMCID: PMC9163055 DOI: 10.1038/s41598-022-13438-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
The gut mycobiota has never been studied either during pregnancy or in patients with gestational diabetes (GDM). This study aimed to analyze the fecal mycobiota of GDM patients during the second (T2) and third (T3) trimester of pregnancy and to compare it with the mycobiota of pregnant normoglycemic women (controls). Forty-one GDM patients and 121 normoglycemic women were studied. GDM mycobiota was composed almost exclusively by the Ascomycota phylum; Basidiomicota accounted for 43% of the relative frequency of the controls. Kluyveromyces (p < 0.001), Metschnikowia (p < 0.001), and Pichia (p < 0.001) showed a significantly higher frequency in GDM patients, while Saccharomyces (p = 0.019), were more prevalent in controls. From T2 to T3, a reduction in fungal alpha diversity was found in GDM patients, with an increase of the relative frequency of Candida, and the reduction of some pro-inflammatory taxa. Many associations between fungi and foods and nutrients were detected. Finally, several fungi and bacteria showed competition or co-occurrence. Patients with GDM showed a predominance of fungal taxa with potential inflammatory effects when compared to normoglycemic pregnant women, with a marked shift in their mycobiota during pregnancy, and complex bacteria-fungi interactions.
Collapse
|
50
|
Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol 2022; 7:472-484. [DOI: 10.1016/s2468-1253(21)00303-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
|