1
|
Zhang W, Fan Y, Ashrafizadeh M, Shi D, Sethi G, Ertas YN, Abd El-Aty A, Zhang X, Chen S, Gong P. A novel BCAT1 inhibitor bufalin sensitizes pancreatic cancer cells to chemotherapy. Genes Dis 2025; 12:101503. [PMID: 39926331 PMCID: PMC11803225 DOI: 10.1016/j.gendis.2024.101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 02/11/2025] Open
Affiliation(s)
- Wei Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yibao Fan
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Dan Shi
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, AZ1001, Baku, Azerbaijan
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Xianbin Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Si Chen
- Department of Immunology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Ding Y, Yu Y. Therapeutic potential of flavonoids in gastrointestinal cancer: Focus on signaling pathways and improvement strategies (Review). Mol Med Rep 2025; 31:109. [PMID: 40017144 DOI: 10.3892/mmr.2025.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
Flavonoids are a group of polyphenolic compounds distributed in vegetables, fruits and other plants, which have considerable antioxidant, anti‑tumor and anti‑inflammatory activities. Several types of gastrointestinal (GI) cancer are the most common malignant tumors in the world. A large number of studies have shown that flavonoids have inhibitory effects on cancer, and they are recognized as a class of potential anti‑tumor drugs. Therefore, the present review investigated the molecular mechanisms of flavonoids in the treatment of different types of GI cancer and summarized the drug delivery systems commonly used to improve their bioavailability. First, the classification of flavonoids and the therapeutic effects of various flavonoids on human diseases were briefly introduced. Then, to clarify the mechanism of action of flavonoids on different types of GI cancer in the human body, the metabolic process of flavonoids in the human body and the associated signaling pathways causing five common types of GI cancer were discussed, as well as the corresponding therapeutic targets of flavonoids. Finally, in clinical settings, flavonoids have poor water solubility, low permeability and inferior stability, which lead to low absorption efficiency in vivo. Therefore, the three most widely used drug delivery systems were summarized. Suggestions for improving the bioavailability of flavonoids and the focus of the next stage of research were also put forward.
Collapse
Affiliation(s)
- Ye Ding
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yong Yu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
3
|
Qin C, Xu C, Zhu Z, Song X, Wang X, Xu W, Zhu M. A study of the association between Helicobacter pylori infection type and pancreatic cancer risk: A systematic review and meta‑analysis. Oncol Lett 2025; 29:174. [PMID: 39975953 PMCID: PMC11837465 DOI: 10.3892/ol.2025.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Pancreatic cancer is a highly invasive malignant tumor with a complex pathogenesis that makes early diagnosis challenging. The potential association between Helicobacter pylori infection and pancreatic cancer risk has been noted; however, the available results are still highly divergent. The aim of the present study was to systematically evaluate the association between different types of H. pylori infection and pancreatic cancer risk as well as to explore the possible causes. A systematic search was conducted using the PubMed, Embase and Cochrane Library databases up to August 2023. The literature quality was evaluated using the Newcastle-Ottawa Scale. All studies that met the criteria were included in the overall meta-analysis to calculate the odds ratios (ORs) and corresponding 95% confidence intervals (CIs). In addition, subgroup analyses were performed based on factors such as diagnostic criteria for H. pylori infection, study region, type of study design and CagA status. The effect of publication bias on the quantitative synthesis results was assessed using the trim-and-fill analysis, and sensitivity analyses were used to verify the robustness of the quantitative synthesis results. A total of 17 studies involving 67,910 participants, including 64,372 controls and 3,538 patients with pancreatic cancer, were included in the present study. The overall analysis showed that no significant association was observed between H. pylori infection and pancreatic cancer risk (OR, 1.15; 95% CI, 0.93-1.41). Further subgroup analyses, which did not consider the effects of study quality, diagnostic criteria, geographical distribution and the type of study design, did not produce new findings that contradicted the results of the overall analysis. CagA+ H. pylori infection did not significantly affect the risk of pancreatic cancer (OR, 0.95; 95% CI, 0.78-1.16), whereas CagA- H. pylori infection may be a possible risk factor for pancreatic cancer (OR, 1.24; 95% CI, 1.004-1.541). The H. pylori infection did not significantly increase the risk of pancreatic cancer. However, it is noteworthy that CagA- H. pylori infection could be a potential factor that elevated the risk of pancreatic cancer.
Collapse
Affiliation(s)
- Chao Qin
- Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui 238000, P.R. China
| | - Chonghe Xu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Zhongqi Zhu
- Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui 238000, P.R. China
| | - Xixi Song
- Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui 238000, P.R. China
| | - Xin Wang
- Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui 238000, P.R. China
| | - Wei Xu
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Mei Zhu
- Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui 238000, P.R. China
| |
Collapse
|
4
|
Tan JT, Mao X, Cheng HM, Seto WK, Leung WK, Cheung KS. Aspirin is associated with lower risk of pancreatic cancer and cancer-related mortality in patients with diabetes mellitus. Gut 2025; 74:603-612. [PMID: 39746785 DOI: 10.1136/gutjnl-2024-333329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) have higher pancreatic cancer (PC) risk. While aspirin has chemopreventive effects on digestive cancers, its effect on PC among patients with T2DM is unclear. METHODS This retrospective cohort study identified newly diagnosed adult patients with T2DM in Hong Kong between 2001 and 2015 from a territory-wide healthcare registry. Exclusion criteria were history of PC, pancreatic cyst, IgG4 disease, or pancreatectomy. To address reverse causality between PC and T2DM, we excluded patients with PC diagnosed within 1 year of T2DM. We also excluded patients with less than 1 year of observation. Primary outcome was PC, and secondary outcomes were PC-related and all-cause mortality. Aspirin use was treated as time-varying variable (≥180 day-use/year) to address immortal-time bias, and multivariable Cox regression model was employed to derive adjusted HR (aHR). Propensity-score (PS) matching was used as secondary analysis. RESULTS Among 343 966 newly diagnosed patients with T2DM (median follow-up: 10.5 years; IQR: 7.7-14.5 years), 1224 (0.36%) developed PC. There were 51 151 (14.9%) deaths from any cause, and 787 (0.2%) died from PC. Aspirin use was associated with lower PC risk in both time-dependent (aHR: 0.58; 95% CI 0.49 to 0.69) and PS matching analysis (aHR: 0.61; 95% CI 0.48 to 0.77). An inverse relationship was observed with increasing dose and duration of aspirin use (P trend<0.001). Aspirin was also associated with a lower risk of PC-related mortality (aHR: 0.43; 95% CI 0.34 to 0.53) and all-cause mortality (aHR: 0.78; 95% CI 0.76 to 0.80). CONCLUSION Aspirin use may be an oncopreventive strategy to reduce PC risk in patients with T2DM. Further studies are warranted to validate the study findings.
Collapse
Affiliation(s)
- Jing Tong Tan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xianhua Mao
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ho-Ming Cheng
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wai-K Leung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Liu X, Zhang X, Zeng T, Chen Y, Ye L, Wang S, Li Y. FOSL1 drives the malignant progression of pancreatic cancer cells by regulating cell stemness, metastasis and multidrug efflux system. J Transl Med 2025; 23:268. [PMID: 40038751 DOI: 10.1186/s12967-025-06304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Targeted therapy is an effective strategy for the treatment of advanced and metastatic pancreatic cancer, one of the leading causes for cancer-related death worldwide. To address the limitations of existing targeted drugs, there is an urgently need to find novel targets and therapeutic strategies. Transcription factor FOS like 1 (FOSL1) is a potential therapeutic target for challenging pancreatic cancer, which contributes to the malignant progression and poor gnosis of pancreatic cancer. High mobility group A1 (HMGA1) is a nonhistone chromatin structural protein that contributes to malignant progression and poor prognosis of cancer. METHODS Human FOSL1 complete RNA, shRNA against FOSL1 and shRNA against HMGA1 lentiviral recombination vectors were used to overexpress FOSL1 and knock down FOSL1 and HMGA1. RNA sequencing, Q-PCR and Western blots were used to investigate the mechanism of FOSL1 in regulating the proliferation of pancreatic cancer cells. The relationship between FOSL1 and HMGA1 were analyzed by co-immunoprecipitation Mass spectrometry, Q-PCR of chromatin immunoprecipitation and Western blots. The regulation of FOSL1 and HMGA1 in the invasion and migration, stemness, and multidrug efflux system were determined by transwell assay, sphere formation assay, immunofluorescence, Q-PCR and Western blots. RESULTS We found that FOSL1 promoted the proliferation and progression of pancreatic cancer by trigging stemness, invasion and metastasis, and drug resistance. HMGA1 was a key downstream target regulated by FOSL1 at the transcriptional level and directly interacted with FOSL1. Knockdown of HMGA1 inhibited the proliferation of pancreatic cancer cells by regulating the expression of genes related to stemness, epithelial-mesenchymal transition and multidrug efflux system. Targeted inhibition of FOSL1 and HMGA1 expression significantly inhibited the proliferation of pancreatic cancer cells. CONCLUSION FOSL1 promote the malignant progression of pancreatic cancer by promoting HMGA1 expression. Targeting FOSL1 and HMGA1 in monotherapy or combination therapy is a promising strategy for the treatment of advanced and metastasis pancreatic cancer.
Collapse
Affiliation(s)
- Xiaolong Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Xueyan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Liu Ye
- Medical College of Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yulan Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
6
|
Valentini AM, Arborea G, Grassi I, Savino MT, Labarile N, Donghia R, Iacovazzi PA, Vallarelli S, Ostuni C, Lotesoriere C, Armentano R. Claudin 18.2: An attractive marker in pancreatic ductal adenocarcinoma. Oncol Lett 2025; 29:140. [PMID: 39850722 PMCID: PMC11755226 DOI: 10.3892/ol.2025.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/25/2024] [Indexed: 01/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly aggressive tumor with limited treatment options. Zolbetuximab, a monoclonal antibody against the tight junction protein Claudin 18.2 has recently been developed. At present, few and conflicting data have been reported regarding the clinical-pathological features of Claudin 18.2 expression in PDA. The present study investigated the expression of Claudin 18.2 in histological samples from PDA patients with the aim of verifying its utility as a therapeutic biomarker. Claudin 18.2 immunoreactivity was assessed by immunohistochemical staining on 70 formalin-fixed, paraffin-embedded PDA specimens (28 surgical specimens and 42 fine needle aspiration biopsies). The results obtained were associated with the clinicopathological characteristics and the survival rate of patients. Claudin 18.2 was detected only in neoplastic cells, not in normal pancreatic tissue. Claudin 18.2 was positive in 50% of samples and a higher expression was associated with well- and moderately-differentiated tumors and lymph node-negative status. The high expression of Claudin 18.2 in neoplastic tissue and absence in normal cells suggested that this protein had an attractive role in PDA as both a diagnostic and a prognostic-therapeutic marker. High expression of Claudin 18.2 in neoplastic tissue was associated with more favorable prognostic parameters and the high percentage of positive samples obtained suggests that Zolbetuximab may be suitable for a large number of patients.
Collapse
Affiliation(s)
- Anna M. Valentini
- Department of Pathology, National Institute of Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| | - Graziana Arborea
- Department of Pathology, National Institute of Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| | - Ilaria Grassi
- Department of Pathology, National Institute of Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| | - Maria Teresa Savino
- Department of Pathology, National Institute of Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| | - Nicoletta Labarile
- Department of Pathology, National Institute of Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| | - Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology, IRCCS, ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| | - Palma A. Iacovazzi
- Clinical Pathology Unit, National Institute of Gastroenterology, IRCCS, ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| | - Raffaele Armentano
- Department of Pathology, National Institute of Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte, I-70013 Bari, Italy
| |
Collapse
|
7
|
Huang XY, Chen SX, Wang ZY, Lu YS, Liu CT, Chen SZ. PIWI-interacting RNA biomarkers in gastrointestinal disease. Clin Chim Acta 2025; 569:120182. [PMID: 39920958 DOI: 10.1016/j.cca.2025.120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Detection and diagnosis of neoplastic and inflammatory gastrointestinal (GI) diseases are typically based on endoscopic and pathologic examination. In GI neoplastic diseases, diagnosis can be delayed due to the expense and invasive nature of this approach. Recently, PIWI-interacting RNAs (piRNAs), a group of small non-coding RNA molecules containing 24-31 nucleotides, have been thought to serve as biomarkers in many disease processes. For example, piRNAs are differentially expressed in GI cancer but their biologic role remains unclear. Using next-generation sequencing and microarray analyses, researchers have suggested that monitoring piRNAs could facilitate diagnosis and prognosis in GI disease. Herein, we reviewed the use of piRNAs in neoplastic, inflammatory, functional, and other diseases of the digestive system, which could shed new light on cancer screening, early detection, and personalized treatment.
Collapse
Affiliation(s)
- Xin-Yi Huang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Shu-Xian Chen
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Zhen-Yu Wang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Yong-Sheng Lu
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, Esophageal Cancer Prevention and Control Research Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Su-Zuan Chen
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
8
|
Gao H, Qu L, Li M, Guan X, Zhang S, Deng X, Wang J, Xing F. Unlocking the potential of chimeric antigen receptor T cell engineering immunotherapy: Long road to achieve precise targeted therapy for hepatobiliary pancreatic cancers. Int J Biol Macromol 2025; 297:139829. [PMID: 39814310 DOI: 10.1016/j.ijbiomac.2025.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Innovative therapeutic strategies are urgently needed to address the ongoing global health concern of hepatobiliary pancreatic malignancies. This review summarizes the latest and most comprehensive research of chimeric antigen receptor (CAR-T) cell engineering immunotherapy for treating hepatobiliary pancreatic cancers. Commencing with an exploration of the distinct anatomical location and the immunosuppressive, hypoxic tumor microenvironment (TME), this review critically assesses the limitations of current CAR-T therapy in hepatobiliary pancreatic cancers and proposes corresponding solutions. Various studies aim at enhancing CAR-T cell efficacy in these cancers through improving T cell persistence, enhancing antigen specificity and reducing tumor heterogeneity, also modulating the immunosuppressive and hypoxic TME. Additionally, the review examines the application of emerging nanoparticles and biotechnologies utilized in CAR-T therapy for these cancers. The results suggest that constructing optimized CAR-T cells to overcome physical barrier, manipulating the TME to relieve immunosuppression and hypoxia, designing CAR-T combination therapies, and selecting the most suitable delivery strategies, all together could collectively enhance the safety of CAR-T engineering and advance the effectiveness of adaptive cell therapy for hepatobiliary pancreatic cancers.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianyue Qu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
9
|
Leiphrakpam PD, Chowdhury S, Zhang M, Bajaj V, Dhir M, Are C. Trends in the Global Incidence of Pancreatic Cancer and a Brief Review of its Histologic and Molecular Subtypes. J Gastrointest Cancer 2025; 56:71. [PMID: 39992560 DOI: 10.1007/s12029-025-01183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2025] [Indexed: 02/25/2025]
Abstract
The global burden of pancreatic cancer has more than doubled in recent decades. It is now the sixth leading cause of cancer-related death worldwide, with an estimated 510,922 new cases and 467,409 deaths in 2022. The incidence of the disease continues to rise annually, with projections indicating a 95.4% increase in new cases by 2050, potentially reaching a total of 998,663 new cases globally. The overall five-year survival rate for pancreatic cancer is 10% worldwide, showing only a modest improvement compared to the past decade. The rising trends in the incidence rates are likely to continue as the global population ages and access to healthcare improves. The relatively low survival rate is primarily attributed to late-stage diagnoses and the lack of an effective screening method. Currently, population-based screening for asymptomatic individuals is not recommended, highlighting the importance of identifying and monitoring individuals at high risk for pancreatic cancer. Numerous studies have highlighted the differences in the molecular pathology of pancreatic cancer, underscoring the need for continued research to better understand these differences. The silent progression of the disease, poor prognosis, lack of screening options, and the necessity to improve our comprehension of its molecular characteristics emphasize the critical need for ongoing monitoring of disease trends at the population level. This review article analyses trends in the incidence of pancreatic cancer and its histological subtypes and provides an update on its molecular subtypes.
Collapse
Affiliation(s)
- Premila Devi Leiphrakpam
- Graduate Medical Education, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanjib Chowdhury
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michelle Zhang
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Varnica Bajaj
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mashaal Dhir
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chandrakanth Are
- Graduate Medical Education, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Jiang K, Zhao Z, Yuan M, Ji H, Zhao Y, Ding H, Feng J, Zhou Y, Dai R. Examining the dietary contributions of lipids to pancreatic cancer burden (1990-2021): incidence trends and future projections. Lipids Health Dis 2025; 24:62. [PMID: 39984954 PMCID: PMC11844042 DOI: 10.1186/s12944-025-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) ranks sixth globally among cancer deaths, imposing a significant burden on healthcare systems worldwide. Although diet is known to be a major risk factor, Although diet is a well-established risk factor for PC, the precise dietary components linked to the disease remain inconclusive, with studies showing varying results across different populations and regions. This study addresses this gap through a comprehensive analysis of PC incidence trends from 1990 to 2021, with a specific focus on associations with age, dietary patterns, and socio-demographic determinants. METHODS The data utilized in this study were obtained from the 2021 Global Burden of Disease (GBD) results database, updated on May 16, 2024. Unlike traditional single-variable correlation analyses, a Bayesian generalized linear model was applied to assess the association between food intake and disease incidence during the period 1990-2021. To account for variations related to year and region, these variables were incorporated as covariates in the model, allowing for a more nuanced and comprehensive analysis of the background factors. Finally, the "BAPC" package was employed to project age-standardized incidence rates of PC through the year 2051. RESULTS The global incidence of PC increased from 3.90 per 100,000 people (95% CI: 3.69, 4.08) in 1990 to 6.44 per 100,000 (95% CI: 5.86, 6.93) in 2021. The analysis revealed significant associations between PC incidence and the intake of nuts, omega-3 fatty acids, polyunsaturated fatty acids (PUFA), trans fats, dietary sodium, and calcium. In typical countries, higher intake of nuts and PUFA was associated with a reduced incidence of PC, while trans fats were positively correlated with increased incidence. The age-standardized Bayesian Age-Period-Cohort (BAPC) prediction indicates that the incidence rates of PC will show a downward trend after 2021. CONCLUSIONS From 1990 to 2021, the global incidence of PC exhibited a rapid upward trend, suggesting an increasing global healthcare burden. The findings of this study suggest that dietary lipid intake is significantly associated with PC incidence at a global level. This finding underscores the importance of dietary fat composition, particularly in the context of pancreatic cancer prevention, suggesting that individuals should pay attention to the types and sources of fats in their diets to mitigate disease risk.
Collapse
Affiliation(s)
- Kexin Jiang
- Department of General Surgery Center, College of Medicine, The General Hospital of Western Theater Command, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- General Surgery Center, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Zhirong Zhao
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mu Yuan
- The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Hua Ji
- General Surgery Center, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Yiwen Zhao
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Hanyu Ding
- Department of General Surgery Center, College of Medicine, The General Hospital of Western Theater Command, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- General Surgery Center, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Jiajie Feng
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Yongjiang Zhou
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Ruiwu Dai
- Department of General Surgery Center, College of Medicine, The General Hospital of Western Theater Command, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- General Surgery Center, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China.
| |
Collapse
|
11
|
Wang L, Li R, Wen A, Lu Q, Wang J, Ruan X, Gamboa A, Malik N, Roland CL, Katz MHG, Lyu H, Liu H. Discovering Signature Disease Trajectories in Pancreatic Cancer and Soft-tissue Sarcoma from Longitudinal Patient Records. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.19.25322573. [PMID: 40034771 PMCID: PMC11875324 DOI: 10.1101/2025.02.19.25322573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Understanding the disease trajectories of specific diseases can provide important clinical insights. In this paper, we aimed to discover signature disease trajectories of 3 rare cancer types: pancreatic cancer, soft tissue sarcoma (STS) of the trunk and extremity (STS-TE), and STS of the abdomen and retroperitoneum (STS-AR), leveraging IQVIA Oncology Electronic Medical Record. We identified significant diagnosis pairs in patients with these cancers through matched cohort sampling, statistical computation, right-tailed binomial hypothesis test, and visualized trajectories up to 3 progressions. Results included 266 significant diagnosis pairs for pancreatic cancer, 130 for STS-TE, and 118 for STS-AR. We further found 44 2-hop (i.e., 2- progression) and 136 3-hop trajectories before pancreatic cancer, 36 2-hop and 37 3-hop trajectories before STS-TE, and 17 2-hop and 5 3-hop trajectories before STS-AR. Meanwhile, we found 54 2-hop and 129 3-hop trajectories following pancreatic cancer, 11 2-hop and 17 3- hop trajectories following STS-TE, 5 2-hop and 0 3-hop trajectories following STS-AR. Systematic validation of discovered trajectories with the UTHealth Electronic Health Records confirmed the feasibility and reliability of our method. Our result suggested that some key clinical features can potentially serve as early markers of rare cancers. This approach is generalizable to other disease types and real-world longitudinal patient records.
Collapse
|
12
|
Zhang S, You H, Fan H, Chen Y, Song H, Zhao Z, Chen Q, Wang Y, Tian Z, Wu Y, Zhou Z, Guo Y, Su B, Li X, Jia R, Fang M, Jiang C, Sun T. Transcytosis-Triggering Nanoparticles for Overcoming Stromal Barriers and Reversing Immunosuppression in Pancreatic Cancer Combinatorial Therapy. NANO LETTERS 2025; 25:2949-2959. [PMID: 39914891 DOI: 10.1021/acs.nanolett.4c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), stromal cells and matrix proteins form a dense physical barrier that, while preventing the outward spread of tumor cells, also limits the penetration of drugs and CD8+ T cells inward. Additionally, the overactivated TGF-β/SMAD signaling pathway further promotes matrix proliferation and immune suppression. Therefore, crossing the stromal barrier while preserving the integrity of the stroma, releasing drugs intratumorally, remodeling the stroma, and activating the immune system is a promising drug delivery strategy. In this work, a type of enamine N-oxides modified nanoparticle was prepared, with stearic acid-modified gemcitabine prodrug (GemC18) and pSMAD2/3 inhibitor galunisertib encapsulated. The peripheral enamine N-oxides can trigger transcytosis and then respond to hypoxia and acidic microenvironments, turning the surface charge of the nanoparticles to a positive charge and enhancing penetration. The released galunisertib inhibits the TGF-β/SMAD signaling pathway, reshapes the matrix, activates antitumor immunity, and combines with gemcitabine (Gem) to kill tumor cells.
Collapse
Affiliation(s)
- Shilin Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haoyu You
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongrui Fan
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haolin Song
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zonghua Tian
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuxing Wu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuwen Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ru Jia
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mingzhu Fang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
- Quzhou Fudan Institute, Quzhou 324003, China
| |
Collapse
|
13
|
Wang S, Zhou H, Cai K, Fan Y, Yang X, Zhang B, Wu Y. Predictive value of perioperative fasting blood glucose for post pancreatectomy diabetes mellitus in pancreatic ductal carcinoma patients. World J Surg Oncol 2025; 23:55. [PMID: 39955538 PMCID: PMC11830169 DOI: 10.1186/s12957-025-03705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND To explore the risk factors of post pancreatectomy diabetes mellitus (PPTDM)in pancreatic ductal carcinoma (PDAC) patients and the value of perioperative fasting blood glucose (FBG) level expression on the long-term survival after surgery. MATERIALS AND METHODS Between December 2015 and December 2019, a cohort of 509 patients diagnosed with PDAC and undergoing resection at our hospital was analyzed. They were stratified into two groups, Control group (Control) and study group (PPTDM), depending on the onset of postoperative diabetes mellitus. We analyzed the survival rates at 6 months, 12 months and 24 months post-operation in the two groups. We use univariate and logostic multivariate regressions to analyze the risk factors for PPTDM. ROC curve analysis was conducted to assess the diagnostic significance of perioperative FBG levels regarding patients' long-term survival rates. The Kaplan-Meier method was employed to assess the impact of both preoperative and postoperative FBG levels on the survival rates within 24 months for each patient group. RESULTS The comparison of general clinical data between the two groups shows marginal differences without statistical significance(P > 0.05); Patients in PPTDM group had significantly higher BMI, preoperative jaundice proportion, larger tumor diameter, higher TNM stage and higher proportion of distal pancreatectomy (DP), with P values of 0.023, 0.010, 0.040, 0.012 and 0.005, respectively. The levels of preoperative FBG and postoperative FBG in PPTDM patients exhibited statistically significant elevation compared to the control group (P < 0.05). There were no significant differences in surgery-related indicators between the two groups in operative time, number of dissected positive lymph nodes, total number of dissected lymph nodes, intraoperative blood loss and other related data (P > 0.05). Hospitalization duration of PPTDM patients was longer than control group (P = 0.047). PPTDM group had significantly higher expression concentrations of BUN, Cr, TG, LDL and Apo-B factors (P = 0.023, 0.024, 0.013, 0.045 and 0.017). 17 patients (5.03%) died in the PPTDM group and 4 patients (2.35%) in control group which had significantly difference (P = 0.020). In univariate and logostic multivariate regression analysis indicated tumor size, jaundice, BUN, Cr, TG, LDL, Apo-B concentrations and DP approach were significantly correlated to the risk for PPTDM (P < 0.05). ROC curve analysis results showed combining of preoperative and postoperation FBG showed the highest diagnostic efficacy, followed by postoperation FBG and preoperative FBG. The AUC areas of the three groups were 0.745, 0.623 and 0.588, respectively, and the critical values of the three groups were 9.81/9.95 mmol/L, 10.18 mmol/L and 10.23 mmol/L, respectively, with statistical significance (P < 0.05). Results were considered statistically significant if the p-value was less than 0.05. CONCLUSION PPTDM stands as a significant postoperative complication following pancreatic cancer surgery, characterized by a high incidence and severity. Several risk factors have garnered considerable attention among clinical surgeon. PPTDM may be an influential factor in postoperative prognosis of pancreatic cancer. The expression levels of preoperative and postoperative blood glucose hold diagnostic value for the long-term prognosis of pancreatic cancer patients. Early regulation and intervention by surgeons concerning perioperative FBG could potentially mitigate the risk of PPTDM.
Collapse
Affiliation(s)
- Shuai Wang
- Department of General Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Road, Yiwu, Zhejiang, 322000, China
| | - Hanshen Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Road, Yiwu, Zhejiang, 322000, China
| | - Kaili Cai
- Department of General Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Road, Yiwu, Zhejiang, 322000, China
| | - Yiqun Fan
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaohui Yang
- Department of General Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Road, Yiwu, Zhejiang, 322000, China
| | - Bo Zhang
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Yulian Wu
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, 322000, China.
| |
Collapse
|
14
|
Li J, Dai Y, Wang T, Zhang X, Du P, Dong Y, Jiao Z. Polyphenol-based pH-responsive nanoparticles enhance chemo-immunotherapy in pancreatic cancer. J Control Release 2025; 380:615-629. [PMID: 39947402 DOI: 10.1016/j.jconrel.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is challenging to treat due to its difficulty in early diagnosis, highly invasive nature, and high metastatic potential. Currently, the primary treatments for PDAC are chemotherapy and immunotherapy. However, the abundance of extracellular matrix and immunosuppressive cells in the tumor microenvironment (TME) severely impedes the effectiveness of chemotherapy and immunotherapy, promoting tumor growth and metastasis. Indoleamine 2,3-dioxygenase 1 (IDO1), an immunosuppressive tryptophan-metabolizing enzyme, is upregulated in PDAC and degrades tryptophan (Trp) into kynurenine (Kyn), which is toxic to effector T cells and induces regulatory T cells (Treg) recruitment. Herein, we propose a concise strategy to construct a biocompatible, polyphenol-based, pH-responsive nanoparticle to co-deliver docetaxel (DTX) and NLG919 (an IDO1 inhibitor) to significantly enhance chemo-immunotherapy for PDAC by remodeling the TME. The DTX/NLG919-loaded nanoparticles (FPND) effectively elicited immunogenic cell death (ICD) in PDAC cells while limiting immunosuppressive Kyn production through IDO1 inhibition. FPND triggered an effective anti-tumor immune response, characterized by increased CD8+ T cells infiltration and decreased Treg recruitment, leading to significant inhibition of subcutaneous tumor growth in KPC mice through a combination of chemotherapy and immunotherapy. Overall, FPND nanoparticles showed excellent anti-tumor efficacy as a PDAC therapeutic strategy with broad potential in precision medicine.
Collapse
Affiliation(s)
- Jieru Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Biobank of Tumors from Plateau of Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yiwei Dai
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Biobank of Tumors from Plateau of Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Tao Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Biobank of Tumors from Plateau of Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xinyu Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Biobank of Tumors from Plateau of Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Pengcheng Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yuman Dong
- Biobank of Tumors from Plateau of Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Zuoyi Jiao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Biobank of Tumors from Plateau of Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
15
|
Xu X, Long C, Li M, Shen C, Ye Q, Li Y, Li H, Cao X, Ma J. Systematic review and meta-analysis: diagnostic accuracy of exosomes in pancreatic cancer. World J Surg Oncol 2025; 23:51. [PMID: 39953585 PMCID: PMC11827209 DOI: 10.1186/s12957-025-03666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/19/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Early, non-invasive identification can generally enhance the survival rate for asymptomatic pancreatic cancer (PC). This systematic review and meta-analysis is conducted to evaluate the precision of diagnosing PC using serum and duodenal fluid exosomes. METHODS Following the guidelines of PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses), searches were conducted in the PubMed, Embase, Cochrane Library, and Web of Science databases in April 2024. A study was considered appropriate if it provided diagnostic precision and accuracy for patients with pancreatic cancer. The combined diagnostic impact was assessed by calculating the area beneath the aggregated SROC curve, and the quality of the studies included was evaluated using the QUADAS-2 checklist. All statistical evaluations and graphical representations utilized STATA 14.0. RESULTS Employing the terms "exosomes" and "pancreatic cancer" along with the search methodology, research was conducted across PubMed, Web of Science, Cochrane, and Embase databases. A total of 1202 studies were extracted from the databases, out of which nine were ultimately selected based on specific inclusion and exclusion standards. Across eight studies, exosomes were isolated from serum, while in a different one, they were taken from duodenal fluid. This document conducts subgroup analyses focusing on various types of exosome biomarkers, their origins, isolation techniques, and methods for analyzing biomarkers. Within the subset of exosome biomarker types, the group with exosomal cell surface proteoglycan exhibited the greatest combined sensitivity (0.96 (95% CI = 0.81-0.99) and specificity (0.90 (95% CI = 0.83-0.95)). Additionally, the set of exosomal cell surface proteoglycans showed the highest aggregated diagnostic ratio (215.92), combined positive likelihood ratio (9.96), area under the curve (0.93), and kombiniertes negative Likelihood-Ratio (0.05). The combined sensitivity of serum-derived exosomes stood at (0.86 (95% CI = 0.77-0.92)), the collective specificity at (0.83 (95% CI = 0.77-0.89)), the aggregate positive likelihood ratio at (5.22), the combined diagnostic ratio at (31.48), the overall area beneath the curve at (0.91), and the combined negative likelihood ratio at (0.17). Within the subgroup examination of exosome isolation techniques, ultracentrifugation emerged as the most sensitive method (0.90 (95% CI = 0.74-0.97)), the most specific method (0.89 (95% CI = 0.83-0.93)), the top positive likelihood ratio (8.35), the highest diagnostic ratio (76.48), the largest combined curve area (0.92), and the smallest negative likelihood ratio (0.11) in the aggregated data. Within the subset of biomarker analysis methods, the aggregate sensitivity via qRT-PCR was (0.84 (95% CI = 0.74-0.90)), the collective specificity (0.78 (95% CI = 0.64-0.87)), the aggregate diagnostic ratio (18.11), the aggregate area under the curve (0.88), the aggregate positive likelihood ratio (3.77), and the combined negative likelihood ratio (0.21). CONCLUSION Overall, exosomes are still valuable in the diagnosis of pancreatic cancer. In subgroup analyses, the proteoglycan found on exosomal cell surfaces is highly valuable for diagnosing pancreatic cancer. The more frequent separation method used in the nine included studies was ultracentrifugation, and it did demonstrate good data. Nonetheless, to verify their practicality and usefulness in clinical environments, a significant amount of clinical trials are still necessary.
Collapse
Affiliation(s)
- Xinyi Xu
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China
| | - Chunyue Long
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meng Li
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China
| | - Chen Shen
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China
| | - Qiuwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China
| | - Yong Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China
| | - Hongyang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China
| | - Xia Cao
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China.
| | - Jun Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China.
| |
Collapse
|
16
|
Heller M, Mann DA, Katona BW. Current Approaches of Pancreatic Cancer Surveillance in High-Risk Individuals. J Gastrointest Cancer 2025; 56:61. [PMID: 39932614 DOI: 10.1007/s12029-025-01184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2025] [Indexed: 02/14/2025]
Abstract
Currently, those recommended to undergo pancreatic cancer (PC) surveillance include appropriately aged individuals at high risk of PC due to an identifiable genetic susceptibility or those without identifiable genetic susceptibility who nonetheless have a strong family history of PC. With increases in identification of individuals at high risk for PC and increased use of PC surveillance in clinical practice, there has been increasing debate about who should undergo surveillance as well as how surveillance should be performed including use of imaging and blood-based testing. Furthermore, there is increasing interest in the outcomes of PC surveillance in high-risk individuals with some studies demonstrating that surveillance leads to downstaging of PC and improvements in survival. In this review, we summarize the current state of PC surveillance in high-risk individuals, providing an overview of the risk factors associated with PC, selection of high-risk individuals for PC surveillance, and the current, but non-uniform, recommendations for performing PC surveillance. Additionally, we review approaches to apply various imaging and blood-based tests to surveillance and the outcomes of PC surveillance.
Collapse
Affiliation(s)
- Melissa Heller
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Derek A Mann
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd., 751 South Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Song Y, Gao S, Jiang J, Zhang Y, Zhang J, Wang X, Lv L, Zhou Z, Wang J. Inhibition Effects and Mechanism Study of rAj-HRP30, a Recombinant Histidine-Rich Peptide from Apostichopus japonicus, on the Viability of Pancreatic Ductal Adenocarcinoma Cells Panc01 and Panc02. Int J Mol Sci 2025; 26:1485. [PMID: 40003950 PMCID: PMC11854995 DOI: 10.3390/ijms26041485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
rAj-HRP30 is a recombinant peptide derived from the wild-type rAj-HRP of Apostichopus japonicus through a gene-shortening mutation. It has a high histidine content (53.3% in its primary structure) and a molecular weight of 3.919 kDa, classifying it as a histidine-rich peptide. The literature reports indicate that human histidine-rich peptides exhibit antitumor activity. Previous research by our group demonstrated similar properties in rAj-HRP, the precursor of rAj-HRP30. Therefore, this study used Panc01 (human) and Panc02 (mouse) cells-highly malignant models with limited targeted therapies-to investigate the antitumor activity and mechanisms of rAj-HRP30 and evaluate its potential for pancreatic cancer treatment. This study designed a gene-shortening strategy for rAj-HRP and artificially synthesized the gene sequence of rAj-HRP30. The cDNA sequence of rAj-HRP30 was cloned into the pET23b vector, and the recombinant plasmid pET23b-HRP30 was transformed into E. coli BL21 for expression. Following IPTG induction, the recombinant peptide was purified using nickel ion affinity chromatography, yielding rAj-HRP30 with a purity exceeding 95%. rAj-HRP30 markedly inhibited the adhesion, migration, and invasion of Panc01 and Panc02 cells. It also disrupted cellular morphology and cytoskeletal structure while inducing apoptosis. These effects were dose-dependent. After confirming the in vitro anticancer activity of rAj-HRP30, this study employed Panc02 cells as a model to investigate its inhibitory mechanisms using Western blot analysis. The results revealed that rAj-HRP30 reduced FGFR1 expression in Panc02 cells and inhibited the downstream FYN and FAK signaling pathways, subsequently blocking the PI3K/AKT signaling and apoptosis pathways. In the apoptotic pathway, rAj-HRP30 was able to downregulate the expression of Bcl-2, Caspase-9, Caspase-3, Caspase-7, and PARP1 and upregulate the expression of Bax, cleaved Caspase-9, cleaved Caspase-3, cleaved Caspase-7, and cleaved-PARP1 to induce apoptosis in Panc02 cells. Furthermore, rAj-HRP30 also downregulated the expression of MMP2 and MMP9, thereby inhibiting the migration and invasion of Panc02 cells. Conclusion: rAj-HRP30 exhibits significant inhibitory effects on pancreatic ductal adenocarcinoma Panc01 and Panc02 cells in vitro. Its mechanism involves FGFR1-related signaling and apoptosis pathways. rAj-HRP30 shows promise as a therapeutic agent targeting FGFR for pancreatic cancer.
Collapse
Affiliation(s)
- Yuyao Song
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Province Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (Y.S.); (S.G.); (J.J.)
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.Z.); (X.W.)
| | - Shan Gao
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Province Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (Y.S.); (S.G.); (J.J.)
| | - Jingwei Jiang
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Province Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (Y.S.); (S.G.); (J.J.)
| | - Yuebin Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.Z.); (X.W.)
| | - Jingyu Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.Z.); (X.W.)
| | - Xiaona Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.Z.); (X.W.)
| | - Li Lv
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China;
| | - Zunchun Zhou
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Province Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (Y.S.); (S.G.); (J.J.)
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.Z.); (X.W.)
| |
Collapse
|
18
|
Mauro A, Faverio C, Brizzi L, Mazza S, Scalvini D, Alfieri D, Cappellini A, Chicco F, Ciccioli C, Delogu C, Bardone M, Gallotti A, Pagani A, Torello Viera F, Anderloni A. Multidisciplinary Therapeutic Approaches to Pancreatic Cancer According to the Resectability Status. J Clin Med 2025; 14:1167. [PMID: 40004698 PMCID: PMC11856188 DOI: 10.3390/jcm14041167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers, characterized by late diagnosis, rapid progression, and limited therapeutic options. Despite advancements, only 20% of patients are eligible for surgical resection at diagnosis, the sole curative treatment. Multidisciplinary evaluation is critical to optimize care, stratifying patients based on resectability into resectable, borderline resectable, locally advanced, and metastatic stages. Preoperative imaging, such as computed tomography (CT) and endoscopic ultrasound (EUS), remains central for staging, for vascular assessment, and tissue acquisition. Endoscopic and systemic approaches are pivotal for addressing complications like biliary obstruction and improving outcomes. Endoscopic retrograde cholangiopancreatography (ERCP) has been considered for years the gold standard for biliary drainage, although EUS-guided drainage is increasingly utilized due to its efficacy in both resectable and unresectable disease. Systemic therapies play a key role in neoadjuvant, adjuvant, and palliative settings, with ongoing trials exploring their impact on survival and resectability chance. This review highlights the evolving multidisciplinary approaches tailored to the disease stage, focusing on biliary drainage techniques, systemic therapies, and their integration into comprehensive care pathways for PDAC. The continuous refinement of these strategies offers incremental survival benefits and underscores the importance of personalized, multidisciplinary management.
Collapse
Affiliation(s)
- Aurelio Mauro
- Gastroenterology and Endoscopy Unit, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Carlotta Faverio
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Leonardo Brizzi
- Institute of Radiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefano Mazza
- Gastroenterology and Endoscopy Unit, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Davide Scalvini
- Gastroenterology and Endoscopy Unit, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Daniele Alfieri
- Gastroenterology and Endoscopy Unit, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Alessandro Cappellini
- Gastroenterology and Endoscopy Unit, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Fabio Chicco
- Gastroenterology & Digestive Endoscopy Unit, AO Lodi, 26900 Lodi, Italy
| | - Carlo Ciccioli
- Gastroenterology and Endoscopy Unit, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, 90133 Palermo, Italy
| | - Claudia Delogu
- Gastroenterology and Endoscopy Unit, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Marco Bardone
- Gastroenterology and Endoscopy Unit, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Anna Gallotti
- Institute of Radiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Anna Pagani
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesca Torello Viera
- Gastroenterology and Endoscopy Unit, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Andrea Anderloni
- Gastroenterology and Endoscopy Unit, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
19
|
Li T, Lin C, Wang W. Global, regional, and national burden of pancreatic cancer from 1990 to 2021, its attributable risk factors, and projections to 2050: a systematic analysis of the global burden of disease study 2021. BMC Cancer 2025; 25:189. [PMID: 39901108 PMCID: PMC11789343 DOI: 10.1186/s12885-025-13597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND The incidence and mortality rates of pancreatic cancer are rising globally. This study examines global and regional trends in pancreatic cancer incidence, Disability Adjusted Life Years (DALYs), and mortality from 1990 to 2021, utilizing data from the most recent Global Burden of Disease (GBD) 2021 database. METHODS Data were sourced from the GBD database over the period from 1990 to 2021. Age-standardized rates for incidence, DALYs, and mortality were calculated per 100,000 population. We also calculated the proportion of DALYs and mortality attributable to risk factors. The Bayesian age-period-cohort model was applied to project future trends until 2050. RESULTS Between 1990 and 2021, the global incidence of pancreatic cancer increased significantly, with the number of cases rising from approximately 207,905 to 508,533 and the age-standardized incidence rate (ASIR) increasing from 5.47 to 5.96 per 100,000 population. The global burden of pancreatic cancer, measured in DALYs, rose from 5.21 million to 11.32 million. Mortality rates showed a similar upward trend, with the number of deaths increasing from around 211,613 to 505,752, and the age-standardized mortality rate (ASMR) rising from 5.655 to 5.948 per 100,000 population. Notable increases in ASIR and ASMR were observed in low-middle and low sociodemographic index regions with males experienced higher rates compared to females. Age-standardized DALYs rate (ASDR) and ASMR worldwide were attributable to tobacco smoking, high BMI, and high fasting plasma glucose. Furthermore, our projection model estimates that the ASIR and ASMR of pancreatic cancer will significantly decline, while the ASDR is anticipated to maintain a steady downward trend by 2050. CONCLUSION This study offers a comprehensive analysis of pancreatic cancer trends, providing crucial insights for public health planning and policy-making. Addressing identified risk factors and targeting high-risk populations are essential for effective strategies to reduce the global burden of pancreatic cancer.
Collapse
Affiliation(s)
- Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Lu W, Aihaiti A, Abudukeranmu P, Liu Y, Gao H. Arachidonic acid metabolism as a novel pathogenic factor in gastrointestinal cancers. Mol Cell Biochem 2025; 480:1225-1239. [PMID: 38963615 DOI: 10.1007/s11010-024-05057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Gastrointestinal (GI) cancers are a major global health burden, representing 20% of all cancer diagnoses and 22.5% of global cancer-related deaths. Their aggressive nature and resistance to treatment pose a significant challenge, with late-stage survival rates below 15% at five years. Therefore, there is an urgent need to delve deeper into the mechanisms of gastrointestinal cancer progression and optimize treatment strategies. Increasing evidence highlights the active involvement of abnormal arachidonic acid (AA) metabolism in various cancers. AA is a fatty acid mainly metabolized into diverse bioactive compounds by three enzymes: cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes. Abnormal AA metabolism and altered levels of its metabolites may play a pivotal role in the development of GI cancers. However, the underlying mechanisms remain unclear. This review highlights a unique perspective by focusing on the abnormal metabolism of AA and its involvement in GI cancers. We summarize the latest advancements in understanding AA metabolism in GI cancers, outlining changes in AA levels and their potential role in liver, colorectal, pancreatic, esophageal, gastric, and gallbladder cancers. Moreover, we also explore the potential of targeting abnormal AA metabolism for future therapies, considering the current need to explore AA metabolism in GI cancers and outlining promising avenues for further research. Ultimately, such investigations aim to improve treatment options for patients with GI cancers and pave the way for better cancer management in this area.
Collapse
Affiliation(s)
- Weiqin Lu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | | | - Yajun Liu
- Aksu First People's Hospital, Xinjiang, China
| | - Huihui Gao
- Cancer Center, Department of Hospital Infection Management and Preventive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Li P, Wang K, Song J, Chen Z, Li Y, Chen Z. THBS1 knockdown suppresses pancreatic cancer progression through JAK2/STAT3 signaling pathway. Mol Cell Probes 2025; 79:102003. [PMID: 39710065 DOI: 10.1016/j.mcp.2024.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Thrombospondin 1 (THBS1), a secreted protein, is implicated in the progression of numerous cancers, yet its specific contributions to pancreatic cancer (PC) remain underexplored. METHODS The association between THBS1 levels and prognosis in PC was investigated. Functional experiments in vitro were used to determine the cell functions of siTHBS1 through CCK8 assay for cell proliferation, Muse® Cell Analyzer for apoptosis, and transwell assay for invasion and migration. Colivelin was applied in recovery experiment to investigate the mechanism of THBS1 regulating the JAK2/STAT3 pathway in BXPC-3 cell. In addition, the LV-shTHBS1 lentivirus was used to construct subcutaneous tumors in nude mice to verify the function of THBS1 in vivo. RESULTS THBS1 expression was elevated in PC and associated with a poorer prognosis. THBS1 was highly expressed in these PC cells. siTHBS1 repressed cell growth, migration and invasiveness, while promoting apoptosis of BXPC-3 cells. THBS1 suppression also led to a decrease in the phosphorylation of JAK2 and STAT3. JAK2/STAT3 signaling activator (Colivelin) could partially reverse the biological effects. In addition, shTHBS1 can suppress the growth of implanted tumors in nude mice. CONCLUSIONS THBS1 knockdown suppressed cell proliferation, migration, and invasion while enhanced cell apoptosis through the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ping Li
- Digestive Endoscopy Center, Hainan Cancer Hospital, Haikou, Hainan, 570100, China
| | - Kaixuan Wang
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Jian Song
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, 570100, China.
| | - Zhuang Chen
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, 570100, China
| | - Yongyu Li
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, 570100, China
| | - Zhaowei Chen
- Digestive Endoscopy Center, Hainan Cancer Hospital, Haikou, Hainan, 570100, China
| |
Collapse
|
22
|
Jin D, Khan NU, Gu W, Lei H, Goel A, Chen T. Informatics strategies for early detection and risk mitigation in pancreatic cancer patients. Neoplasia 2025; 60:101129. [PMID: 39842383 PMCID: PMC11763847 DOI: 10.1016/j.neo.2025.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
This review provides a comprehensive overview of the current landscape in pancreatic cancer (PC) screening, diagnosis, and early detection. This emphasizes the need for targeted screening in high-risk groups, particularly those with familial predispositions and genetic mutations, such as BRCA1, BRCA2, and PALB2. This review highlights the sporadic nature of most PC cases and significant risk factors, including smoking, alcohol consumption, obesity, and diabetes. Advanced imaging techniques, such as Endoscopic Ultrasound (EUS) and Contrast-Enhanced Harmonic Imaging (CEH-EUS), have been discussed for their superior sensitivity in early detection. This review also explores the potential of novel biomarkers, including those found in body fluids, such as serum, plasma, urine, and bile, as well as the emerging role of liquid biopsy technologies in analyzing circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomes. AI-driven approaches, such as those employed in Project Felix and CancerSEEK, have been highlighted for their potential to enhance early detection through deep learning and biomarker discovery. This review underscores the importance of universal genetic testing and the integration of AI with traditional diagnostic methods to improve outcomes in high-risk individuals. Additionally, this review points to future directions in PC diagnostics, including next-generation imaging, molecular biomarkers, and personalized medicine, aiming to overcome current diagnostic challenges and improve survival rates. Ultimately, the review advocates the adoption of informatics and AI-driven strategies to enhance early detection, reduce morbidity, and save lives in the fight against pancreatic cancer.
Collapse
Affiliation(s)
- Di Jin
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China; Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Najeeb Ullah Khan
- Institute of Biotechnology & Genetic Engineering (Health Division), The University of Agriculture Peshawar, Peshawar, PO Box 25130, Pakistan.
| | - Wei Gu
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China; Wenzhou Medical University, Wenzhou, 325000, China.
| | - Huijun Lei
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California, USA; City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Tianhui Chen
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China.
| |
Collapse
|
23
|
Vlăduț C, Steiner C, Löhr M, Gökçe DT, Maisonneuve P, Hank T, Öhlund D, Sund M, Hoogenboom SA. High prevalence of pancreatic steatosis in pancreatic cancer patients: A meta-analysis and systematic review. Pancreatology 2025; 25:98-107. [PMID: 39706752 DOI: 10.1016/j.pan.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE In the last decade there has been increasing interest in defining pancreatic steatosis (PS) and establishing its association with pancreatic ductal adenocarcinoma (PDAC). However, no consensus guidelines have yet been published on the management of PS. In this systematic review and meta-analysis performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we investigated the association between PS and PDAC. DESIGN Medical literature between 2007 and 2023 was reviewed for eligible trials investigating the prevalence of PS in patients with PDAC. Eligible studies reporting on PS, assessed via imaging or histology, were included. The primary objective was to determine the association between PDAC and PS by comparing the prevalence of PS in individuals with- and without PDAC. Secondary, an evaluation was conducted to establish whether the method of assessment correlated with the association of PDAC and PS, and the prevalence of PDAC in individuals with PS. Measures of effect size were determined using odds ratios (ORs) and corresponding 95 % confidence intervals (95 % CI). RESULTS The systematic review identified a total of 23 studies, of which seventeen studies examined PS prevalence among PDAC patients and were included in the meta-analysis. Overall, the pooled prevalence of PS in patients with PDAC was 53.6 % (95 % CI 40.9-66.2). No significant difference in PS prevalence was observed across various diagnostic methods or geographical regions. Overall, the pooled OR for PS in patients with PDAC compared to controls was 3.23 (95 % CI 1.86-5.60). CONCLUSIONS PDAC patients have a high prevalence of PS, and they are significantly more likely to have PS compared to controls. These findings emphasize the need to prioritize a standardized approach to the diagnosis, follow-up, and treatment of PS, with future studies focusing on identifying patients who would benefit from PDAC surveillance programs.
Collapse
Affiliation(s)
- Cătălina Vlăduț
- Department of Gastroenterology, "Prof Dr Agrippa Ionescu" Clinical Emergency Hospital, 011356 Bucharest, Romania; Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | | | - Matthias Löhr
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
| | - Dilara Turan Gökçe
- Department of Gastroenterology, Ankara Bilkent City Hospital, Ankara, Turkey.
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Thomas Hank
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Daniel Öhlund
- Department of Diagnostics and Intervention (oncology) and Wallenberg Centre of Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| | - Malin Sund
- Department of Diagnostics and Intervention (surgery), Umeå University, Umeå, Sweden; Department of Surgery, University of Helsinki and Helsinki, University Hospital, Helsinki, Finland.
| | - Sanne A Hoogenboom
- Department of Gastroenterology, HagaZiekenhuis Hospital, The Hague, Netherlands.
| |
Collapse
|
24
|
Yu W, Zhou D, Meng F, Wang J, Wang B, Qiang J, Shen L, Wang M, Fang H. The global, regional burden of pancreatic cancer and its attributable risk factors from 1990 to 2021. BMC Cancer 2025; 25:186. [PMID: 39891086 PMCID: PMC11786447 DOI: 10.1186/s12885-025-13471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Pancreatic cancer is the 12th most common type of cancer, and the sixth leading cause of cancer-related mortality, worldwide. Up-to-date statistics on pancreatic cancer would provide us with a better understanding of epidemiology and identify the causative risk factors for the prevention of this disease. METHODS The degree and change patterns of exposure as well as the attributable cancer burden, including incidence, mortality, disability-adjusted life years (DALYs), and prevalence in global and regional, by sex, age, year, for pancreatic cancer, with the data extracted from the Global Burden of Diseases Study (GBD) 2021. All data analyses were conducted using linear regression analysis and the Joinpoint software (version 5.0.1). RESULTS In 2021, 508,533 new cases of pancreatic cancer have been reported; the mortality and prevalence rate increased to 5.95, and 5.12 respectively; and the global DALYs rate increased to 130.33 this year. Besides, the pancreatic cancer-associated rates of incidence, mortality, DALYs, and prevalence were higher in males than in females. In addition, these indicators in the high SDI (Sociodemographic index) region were higher than the global mean. To date, the high fasting plasma glucose remained the major risk factor that influenced the incidence, mortality, DALYs, and prevalence of pancreatic cancer, followed by tobacco and high body mass index (BMI). CONCLUSIONS Results of this study suggest that the burden of pancreatic cancer is increasing generally, therefore, more attention and measures should be taken to cope with this situation.
Collapse
Affiliation(s)
- Weidong Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Danyi Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fanhao Meng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jinjing Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Bo Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jianling Qiang
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Maofeng Wang
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China.
| |
Collapse
|
25
|
Tan Z, Meng Y, Wu Y, Zhen J, He H, Pu Y, Zhang J, Dong W. The burden and temporal trend of early onset pancreatic cancer based on the GBD 2021. NPJ Precis Oncol 2025; 9:32. [PMID: 39880919 PMCID: PMC11779834 DOI: 10.1038/s41698-025-00820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
In the context of the global increase in early-onset tumours, investigating the global disease burden caused by early-onset pancreatic cancer (EOPC) is imperative. Data on the burden of EOPC were obtained from the Global Burden of Disease Study 2021. A joinpoint regression model was used to analyse the temporal trend of the EOPC burden, and an age‒period‒cohort (APC) model was used to analyse the influence of age, period, and birth cohort on burden trends. Globally, the number of EOPC cases increased from 24,480 to 42,254, and the number of deaths increased from 17,193 to 26,996 between 1990 and 2021. The results of the APC model showed that the burden of EOPC increases with increasing age, whereas the variations in period and cohort effects exhibited a complex pattern across different sociodemographic index regions. Consequently, the disease burden of EOPC is increasing worldwide, highlighting the need for effective interventions.
Collapse
Affiliation(s)
- Zongbiao Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yang Meng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yanrui Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Junhai Zhen
- Department of General Practice, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, China
| | - Haodong He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yu Pu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
26
|
Su B, Fan Z, Wu J, Zhan H. Genetic association of lipid-lowering drug target genes with pancreatic cancer: a Mendelian randomization study. Sci Rep 2025; 15:3282. [PMID: 39863728 PMCID: PMC11762976 DOI: 10.1038/s41598-025-87490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Previous studies have found that dyslipidemia is a risk factor for pancreatic cancer (PC), and that lipid-lowering drugs may reduce the risk of PC. However, it is not clear whether dyslipidemia causes PC. The Mendelian randomization (MR) study aimed to investigate the causal role of lipid traits in pancreatic cancer and to assess the potential impact of lipid-lowering drug targets on pancreatic cancer. Genetic variants associated with lipid traits and variants of genes encoding lipid-lowering drug targets were extracted from the Global Lipids Genetics Consortium genome-wide association study (GWAS). Summary statistics for PC were obtained from an independent GWAS datasets. Colocalization analyses were performed to validate the robustness of the results. No significant effect of lipid-lowering drug targets on PC risk was found. Genetic mimicry of lipoprotein lipase (LPL) was potentially associated with PC risks. Significant MR associations were observed in the discovery dataset (OR 1.64 [95% CI 1.24-2.16], p = 4.48*10-4) with PC in one dataset. However, the finding was not verified in the replication dataset. Our findings do not support dyslipidemia as a causal factor for PC. Among lipid-lowering drug targets, LPL is the potential drug target in PC.
Collapse
Affiliation(s)
- Bohan Su
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jiexi Wu
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
27
|
Poenaru RC, Milanesi E, Niculae AM, Dobre AM, Vladut C, Ciocîrlan M, Balaban DV, Herlea V, Dobre M, Hinescu ME. Dysregulation of genes involved in the long-chain fatty acid transport in pancreatic ductal adenocarcinoma. World J Gastrointest Oncol 2025; 17:98409. [PMID: 39817147 PMCID: PMC11664611 DOI: 10.4251/wjgo.v17.i1.98409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression. AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell. METHODS A gene expression analysis of FASN, CD36, SLC27A1, SLC27A2, SLC27A3, SLC27A4, SLC27A5, ACSL1, and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection. The genes were considered significantly dysregulated between the groups when the p value was < 0.05 and the fold change (FC) was ≤ 0.5 and ≥ 2. RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue: SLC27A2 (FC = 5.66; P = 0.033), SLC27A3 (FC = 2.68; P = 0.040), SLC27A4 (FC = 3.13; P = 0.033), ACSL1 (FC = 4.10; P < 0.001), and ACSL3 (FC = 2.67; P = 0.012). We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors, including the anatomic location, the lymph node involvement, and the presence of metastasis. A significant difference in the expression of SLC27A3 (FC = 3.28; P = 0.040) was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes. CONCLUSION Despite the low number of patients analyzed, these preliminary results seem to be promising. Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy. Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.
Collapse
Affiliation(s)
- Radu Cristian Poenaru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Elena Milanesi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Radiobiology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Andrei Marian Niculae
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Anastasia-Maria Dobre
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Catalina Vladut
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology, Prof. Dr. Agrippa Ionescu Clinical Emergency Hospital, Bucharest 011356, Romania
| | - Mihai Ciocîrlan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology, Prof. Dr. Agrippa Ionescu Clinical Emergency Hospital, Bucharest 011356, Romania
| | - Daniel Vasile Balaban
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Vlad Herlea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Fundeni Clinical Institute, Bucharest 022258, Romania
| | - Maria Dobre
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Mihail Eugen Hinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| |
Collapse
|
28
|
Blanco Abad C, Gomila Pons P, Campos Ramírez S, Álvarez Alejandro M, Torres Ramón MI, Miramar Gallart MD, Izquierdo Álvarez S, Polo Marques E, Pazo Cid R. Hereditary Pancreatic Cancer: Advances in Genetic Testing, Early Detection Strategies, and Personalized Management. J Clin Med 2025; 14:367. [PMID: 39860372 PMCID: PMC11766428 DOI: 10.3390/jcm14020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of approximately 13% for advanced stages. While the majority of PDAC cases are sporadic, a significant subset is attributable to hereditary and familial predispositions, accounting for approximately 25% of cases. This article synthesizes recent advancements in the understanding, detection, and management of hereditary pancreatic cancer (PC). Results: Our review highlights the critical role of genetic testing (GT) in identifying high-risk individuals (HRIs), with germline pathogenic variants (PVs) found in up to 20% of hereditary PDAC cases. Since the implementation of next-generation sequencing (NGS) panels in 2014, detection capabilities have been significantly enhanced. HRIs can be included in screening programs that facilitate the early detection of PDAC. Early detection strategies, including the use of microribonucleic acid (miRNAs) signatures and novel imaging techniques like hyperpolarized 13C-magnetic resonance spectroscopy (MRS) have shown promising results. The identification of germline pathogenic variants (PVs) or mutations in homologous recombination (HR) genes plays a predictive role in the response to various treatments, prolonging patient survival. Discussion: Universal germline testing for PDAC, as recommended by the National Comprehensive Cancer Network (NCCN), is now a standard practice, facilitating the identification of at-risk individuals and enabling targeted surveillance and intervention. Multidisciplinary management, integrating genetic counseling, imaging, and gastrointestinal services, is essential for optimizing outcomes. Conclusions: Advances in genetic testing and biomarker research are transforming the landscape of hereditary PC management. Early detection and personalized treatment strategies are pivotal in improving survival rates. Ongoing multi-institutional research efforts are crucial for validating biomarkers and developing preventive measures, ultimately aiming to reduce the burden of this aggressive cancer.
Collapse
Affiliation(s)
- Carmen Blanco Abad
- Medical Oncology Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
- Aragon Institute of Health Sciences (IIS-A), 50012 Zaragoza, Spain
| | - Paula Gomila Pons
- Medical Oncology Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
- Aragon Institute of Health Sciences (IIS-A), 50012 Zaragoza, Spain
| | - Sara Campos Ramírez
- Medical Oncology Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
| | - María Álvarez Alejandro
- Aragon Institute of Health Sciences (IIS-A), 50012 Zaragoza, Spain
- Medical Oncology Department, Hospital Clinico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - María Irene Torres Ramón
- Aragon Institute of Health Sciences (IIS-A), 50012 Zaragoza, Spain
- Medical Oncology Department, Hospital Clinico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | | | - Silvia Izquierdo Álvarez
- Genetics Unit, Biochemistry Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
| | - Eduardo Polo Marques
- Medical Oncology Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
- Aragon Institute of Health Sciences (IIS-A), 50012 Zaragoza, Spain
| | - Roberto Pazo Cid
- Medical Oncology Department, Hospital Universitario Miguel Servet, 50012 Zaragoza, Spain
- Medical Oncology Department, Hospital Clinico Universitario Lozano Blesa, 50009 Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, Faculty of Medicine, Zaragoza University, 50009 Zaragoza, Spain
| |
Collapse
|
29
|
Jiang G, Wu B, Wang K, Pu X, Zhou S, Zhong X, Liu X, Wang S, Lin T. Immune-related gene SOX10 affects ferroptosis in pancreatic cancer and facilitates tumor progression by targeting CMTM7-mediated Wnt/β-catenin signaling pathway. Eur J Med Res 2025; 30:5. [PMID: 39754171 PMCID: PMC11699706 DOI: 10.1186/s40001-024-02177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVES SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study. METHODS Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches. The expression of SOX10 and CMTM7 was analyzed using quantitative real-time polymerase chain reaction and western blot. To assess cell functions, cell counting kit-8, flow cytometry, scratch test, and Transwell assays were performed. Dual-luciferase assay was performed to confirm the target-binding relationship of SOX10 and CMTM7. After knocking down SOX10 using lentiviral transfection, SOX10 action on Wnt/β-catenin pathway and ferroptosis, as well as its anti-tumor activity in tumor-bearing mice were explored. RESULTS SOX10 was significantly correlated with immune infiltrations, checkpoints, and characteristics in PC. Mechanically, SOX10 level was increased and CMTM7 was down-regulated in both PANC-1 cells and PC tissues. When SOX10 was downregulated or CMTM7 was overexpressed, it notably hindered the cells' activity, while also promoting cell apoptosis in vitro. Meanwhile, CMTM7 is regulated by SOX10 in the downstream, and its silencing significantly reversed the inhibition of sh-SOX10 on PANC-1 cells growth and Wnt/β-catenin pathway. Furthermore, overexpression of CMTM7 induced ferroptosis in PC by inhibiting the Wnt/β-catenin pathway. More interestingly, by targeting CMTM7-mediated Wnt/β-catenin signaling pathway, the knockdown of SOX10 was confirmed to induce ferroptosis in PC and suppress tumor progression in vivo. CONCLUSIONS SOX10 is deemed as an immune-related gene. Its knockdown induces ferroptosis in PC and suppresses tumor progression via CMTM7-mediated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Guixing Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Bicheng Wu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325000, China
| | - Kaikai Wang
- Department of General Surgery, The First Division Hospital of the Xinjiang Production and Construction Cops, XinJiang, Akesu, 843000, China
| | - Xiaofan Pu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Senhao Zhou
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Xin Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Xiaolong Liu
- Department of General Surgery, The First Division Hospital of the Xinjiang Production and Construction Cops, XinJiang, Akesu, 843000, China
| | - Suihan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Tianyu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
30
|
Wang X, Fan H, Ye X, Hu Y, Xiao Y, Zhang M, Xu Y, Song J, Luo Y. RNA-binding protein DAZAP1 accelerates the advancement of pancreatic cancer by inhibiting ferroptosis. Eur J Med Res 2025; 30:3. [PMID: 39754243 PMCID: PMC11699656 DOI: 10.1186/s40001-024-02261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly aggressive malignancy with a poor prognosis due to its late-stage diagnosis and limited treatment options. OBJECTIVES This study aimed to elucidate the molecular mechanisms underlying PC progression and identify potential molecular targets for its diagnosis and treatment. METHODS DAZAP1 expression in PC tissues, normal tissues and cell lines was assessed using immunohistochemistry (IHC), reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. DAZAP1 knockdown was achieved through plasmid transfection, and its effects on ferroptosis and PC progression were evaluated using RT-qPCR, western blotting, CCK-8 assays, EdU staining, Fe2+ content measurement, reactive oxygen species (ROS) detection, wound healing and Transwell migration assays. RESULTS DAZAP1 expression was significantly upregulated in PC tissues and cell lines compared to normal counterparts. DAZAP1 knockdown suppressed PC cell proliferation and induced ferroptosis, while ferroptosis inhibition reversed these effects, enhancing PC cell proliferation and metastasis. CONCLUSIONS DAZAP1 suppression promotes ferroptosis, thereby inhibiting PC cell proliferation and metastasis. These findings suggest that DAZAP1 is a potential therapeutic target for PC.
Collapse
Affiliation(s)
- Xinqing Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Shengli Street, Xingqing District, Ningxia Hui Autonomous Region 804, Yinchuan City, 753400, China
| | - Hao Fan
- School of Clinical Medicine, Ningxia Medical University, Yinchuan City, China
| | - Xiaoping Ye
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Shengli Street, Xingqing District, Ningxia Hui Autonomous Region 804, Yinchuan City, 753400, China
| | - Yu Hu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan City, China
| | - Yan Xiao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan City, China
| | - Ming Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan City, China
| | - Yonghui Xu
- Department of Pathology, Ningxia Medical University, Yinchuan City, China
| | - Jianjun Song
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Shengli Street, Xingqing District, Ningxia Hui Autonomous Region 804, Yinchuan City, 753400, China
| | - Yongyun Luo
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Shengli Street, Xingqing District, Ningxia Hui Autonomous Region 804, Yinchuan City, 753400, China.
| |
Collapse
|
31
|
Hu X, Wang Y, Zhang S, Gu X, Zhang X, Li L. LncRNA HOXA10-AS as a novel biomarker and therapeutic target in human cancers. Front Mol Biosci 2025; 11:1520498. [PMID: 39830983 PMCID: PMC11738949 DOI: 10.3389/fmolb.2024.1520498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial regulatory molecules that participate in numerous cellular development processes, and they have gathered much interest recently. HOXA10 antisense RNA (HOXA10-AS, also known as HOXA-AS4) is a novel lncRNA that was identified to be dysregulated in some prevalent malignancies. In this review, the clinical significance of HOXA10-AS for the prognosis of various cancers is analyzed. In addition, the major advances in our understanding of the cellular biological functions and mechanisms of HOXA10-AS in different human cancers are summarized. These cancers include esophageal carcinoma (ESCA), gastric cancer (GC), glioma, laryngeal squamous cell carcinoma (LSCC), acute myeloid leukemia (AML), lung adenocarcinoma (LUAD), nasopharyngeal carcinoma (NPC), oral squamous cell carcinoma (OSCC), and pancreatic cancer. We also note that the aberrant expression of HOXA10-AS promotes malignant progression through various underlying mechanisms. In conclusion, HOXA10-AS is expected to serve as an ideal clinical biomarker and an effective cancer therapy target.
Collapse
Affiliation(s)
- Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Yong Wang
- Shandong Provincial Engineering Research Center for Bacterial Oncolysis and Cell Treatment, Jinan, Shandong, China
| | - Sijia Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaosi Gu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Lianlian Li
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
32
|
Hasani F, Masrour M, Khamaki S, Jazi K, Hosseini S, Heidarpour H, Namazee M. Diagnostic and Prognostic Accuracy of MiRNAs in Pancreatic Cancer: A Systematic Review and Meta-Analysis. J Cell Mol Med 2025; 29:e70337. [PMID: 39855897 PMCID: PMC11761000 DOI: 10.1111/jcmm.70337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Pancreatic cancer (PC) remains a significant contributor to global cancer mortality, with limited effective diagnostic and prognostic tools. MicroRNAs (miRNAs) have emerged as promising biomarkers for PC diagnosis and prognosis. A comprehensive literature search was conducted in PubMed, Web of Science, and Scopus. Studies reporting sensitivity, specificity or area under the curve (AUC) for miRNAs in PC diagnosis, as well as hazard ratios (HRs) for survival evaluations, were included. Data extraction and quality assessment followed PRISMA guidelines. Meta-analyses were conducted using appropriate statistical methods. The protocol is registered in PROSPERO. Diagnostic analysis included 290 evaluations, revealing an overall AUC of 0.8226 for PC diagnosis. Subgroup analyses showed varying accuracies, with blood and tissue specimens yielding higher AUC values. Promising miRNAs with AUC values above 0.8 included miR-320, miR-1290, miR-93, miR-25, miR-451, miR-20, miR-21, miR-223 and miR-122. Prognostic analysis encompassed 46 studies, indicating significant associations between miRNA expression and overall survival (OS) and progression-free survival (PFS). The combined HR for studies reporting OS HRs higher than one was 1.7613 (95% CI: 1.5394-2.0152, p < 0.0001; I2 = 81.7%). Notable miRNAs with prognostic significance included miR-10, miR-21 and miR-221. Studies reporting OS HRs less than one had a pooled HR of 0.6805 (95% CI: 0.5862-0.7901, p < 0.0001; I2 = 65.4%). MiRNAs hold promise as diagnostic and prognostic biomarkers for PC. Blood and tissue specimens offer superior diagnostic accuracy, and several miRNAs show potential for predicting patient outcomes.
Collapse
Affiliation(s)
- Fatemeh Hasani
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Mahdi Masrour
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Sina Khamaki
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Kimia Jazi
- Student Research Committee, Faculty of MedicineQom University of Medical SciencesQomIran
| | - Saba Hosseini
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Hadiseh Heidarpour
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Mehrad Namazee
- School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
33
|
Lai X, Cheng D, Xu H, Wang J, Lv X, Yao H, Li L, Wu J, Ye S, Li Z. Phase I Trial of Upamostat Combined With Gemcitabine in Locally Unresectable or Metastatic Pancreatic Cancer: Safety and Preliminary Efficacy Assessment. Cancer Med 2025; 14:e70550. [PMID: 39739976 DOI: 10.1002/cam4.70550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
AIM This study aimed to determine the maximum tolerated dose (MTD) of the urokinase plasminogen activator (uPA) inhibitor upamostat (LH011) in combination with gemcitabine for locally advanced unresectable or metastatic pancreatic cancer. METHOD Seventeen patients were enrolled and received escalating doses of oral LH011 (100, 200, 400, or 600 mg) daily alongside 1000 mg/m2 of gemcitabine. Safety profiles, tumor response (including response rate and progression-free survival), pharmacokinetics, and changes in CA199 and D-dimer levels were assessed. RESULTS During the study period (Day0-Day49), no patients achieved partial response. Stable disease (SD) was observed in 12 patients (70.6%), while four patients (23.5%) experienced progressive disease (PD). One patient withdrew due to a serious adverse event (SAE) on D47. Pharmacokinetic analysis revealed a dose-related increase in LH011 and its metabolite WX-UK1 exposure from 100 to 400 mg but not in the 600 mg group. Hematological toxicity, mainly attributable to gemcitabine, was the predominant grade 3 or 4 adverse event, with additional occurrences of loss of appetite, rash, and interstitial lung disease. Sinus bradycardia possibly linked to LH011 rather than gemcitabine was noted. The MTD was not reached. CONCLUSION Combining LH011 at doses ranging from 100 to 600 mg with gemcitabine every 21 days demonstrated manageable safety and tolerability. However, tumor response did not significantly differ among the dose groups, suggesting the need for further investigation. TRIAL REGISTRATION NCT05329597.
Collapse
Affiliation(s)
- Xiuping Lai
- Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Cheng
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huixin Xu
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingshu Wang
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaozhi Lv
- Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Herui Yao
- Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liuning Li
- Department of Medical Oncology, GuangDong Province Hospital of Chinese Medicine, the Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, China
| | - Junyan Wu
- Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suiwen Ye
- Phase I Clinical Trial Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihua Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Yuan Q, Sun J, Hong Z, Shang D. Determining a robust prognostic biomarker for 804 patients with pancreatic cancer using a machine learning computational framework. Int J Surg 2025; 111:1561-1563. [PMID: 39166940 PMCID: PMC11745771 DOI: 10.1097/js9.0000000000002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Affiliation(s)
| | | | - Zhijun Hong
- First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Dong Shang
- First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
35
|
Xiang Y, Zhou R, Yang Y, Bai H, Liang F, Wang H, Wang X. A Novel circ_0075829/miR-326/GOT1 ceRNA Crosstalk Regulates the Malignant Phenotypes and Drug Sensitivity of Gemcitabine-Resistant Pancreatic Cancer Cells. J Biochem Mol Toxicol 2025; 39:e70089. [PMID: 39692397 DOI: 10.1002/jbt.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Although gemcitabine (GEM) is the cornerstone of the treatment of pancreatic cancer (PC), GEM resistance frequently arises. Circular RNA (circRNA) circ_0075829 is highly expressed in PC. However, whether circ_0075829 contributes to GEM resistance of PC is largely unknown. To generate GEM-resistant PC cells (BxPC-3/GR and SW1990/GR), we exposed GEM-sensitive PC cells to GEM. Circ_0075829, microRNA (miR)-326, and glutamic-oxaloacetic transaminase 1 (GOT1) were quantified by a qRT-PCR or western blot method. Cell survival and viability were gauged by MTS assay. Cell proliferation, apoptosis, invasion, and migration were assessed by EdU, flow cytometry, transwell, and wound-healing assays, respectively. Dual-luciferase reporter assays were used to verify the relationship between miR-326 and circ_0075829 or GOT1. Mouse xenografts were performed to evaluate the role of circ_0075829 in vivo. Our data showed that circ_0075829 was upregulated in GEM-resistant PC tissues and cells. Knockdown of circ_0075829 impeded the proliferation, invasion, migration, and glutamine metabolism, and promoted cell apoptosis and GEM sensitivity of GEM-resistant PC cells. Moreover, circ_0075829 silencing suppressed the tumorigenicity of SW1990/GR cells and sensitized them to the cytotoxic effect of GME in vivo. Mechanistically, circ_0075829 bound miR-326 and exerted regulatory effects by affecting miR-326 expression. GOT1 was a direct miR-326 target and a key downstream effector of miR-326. Furthermore, circ_0075829 modulated GOT1 expression via miR-326. Our findings establish a novel regulatory network, the circ_0075829/miR-326/GOT1 competing endogenous RNA (ceRNA) crosstalk, in the regulation of GEM resistance in PC.
Collapse
MESH Headings
- Gemcitabine
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Humans
- Drug Resistance, Neoplasm/genetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Cell Line, Tumor
- Animals
- Mice
- Aspartate Aminotransferase, Cytoplasmic/genetics
- Aspartate Aminotransferase, Cytoplasmic/metabolism
- Mice, Nude
- Mice, Inbred BALB C
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Antimetabolites, Antineoplastic/pharmacology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Neoplasm/biosynthesis
- Female
- Xenograft Model Antitumor Assays
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Yongjia Xiang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Rubing Zhou
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Yang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Hao Bai
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Fan Liang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Hongmei Wang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Xia Wang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
36
|
Birrer M, Saad B, Drews S, Pradella C, Flaifel M, Charitakis E, Ortlieb N, Haberstroh A, Ochs V, Taha-Mehlitz S, Burri E, Heigl A, Frey DM, Cattin PC, Honaker MD, Taha A, Rosenberg R. Radiofrequency ablation (RFA) in unresectable pancreatic adenocarcinoma: meta-analysis & systematic review. Surg Endosc 2025; 39:141-152. [PMID: 39658672 PMCID: PMC11666652 DOI: 10.1007/s00464-024-11450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Pancreatic adenocarcinoma remains a challenging malignancy with a poor prognosis. Radiofrequency ablation (RFA) has emerged as a potential treatment for unresectable pancreatic adenocarcinoma (UPAC) aimed at improving survival and quality of life. This meta-analysis and systematic review evaluates the outcomes of RFA in UPAC. METHODS A comprehensive search was conducted in MEDLINE, Embase, Scopus, and Cochrane Central databases from inception to October 2023. Studies included patients over 18 years with UAPC undergoing RFA. Survival rates and complication rates were assessed as primary outcomes. Data were pooled using random-effects models, and heterogeneity was assessed with I2 statistics. ROBINS-I tool was used for quality assessment. RESULTS Nine studies encompassing 265 patients met the inclusion criteria. The mean age was 64.5 years, with 42.5% female participants. Survival analysis showed that at 30 days post-RFA, the mortality rate was 3.3%. At 6 months, the mortality rate was 20.9%, increasing to 50.4% at 12 months. At 24 months, the mortality rate was 61.9%. The pooled mean survival period at 12 and 24 months was 9.18 months and 14.26 months, respectively. Overall, 78.4% of patients died during the follow-up period, with an overall mean survival period of 12.27 months. The most common were intra-abdominal (10.1%), pancreatic (9.8%), and hepatobiliary (6.7%) complications. CONCLUSIONS RFA shows potential in the management of unresectable pancreatic adenocarcinoma, with a manageable safety profile. However, the high heterogeneity and risk of bias in available studies highlight the need for well-designed randomized controlled trials to confirm these findings and establish standardized protocols.
Collapse
Affiliation(s)
- Mathias Birrer
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Baraa Saad
- School of Medicine, St George's University of London, London, UK
| | - Susanne Drews
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Charlotte Pradella
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Mariana Flaifel
- School of Medicine, St George's University of London, London, UK
| | | | | | - Amanda Haberstroh
- Laupus Health Sciences Library, East Carolina University, Greenville, NC, USA
| | - Vincent Ochs
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | - Stephanie Taha-Mehlitz
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Emanuel Burri
- Department of Gastroenterology and Hepatology, Medical University Clinic, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Andres Heigl
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Daniel M Frey
- Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Surgery, Klinik-Impuls, Zurich, Switzerland
| | - Philippe C Cattin
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | - Michael D Honaker
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Anas Taha
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland.
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland.
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Robert Rosenberg
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
37
|
Acimovic I, Gabrielová V, Martínková S, Eid M, Vlažný J, Moravčík P, Hlavsa J, Moráň L, Cakmakci RC, Staňo P, Procházka V, Kala Z, Trnka J, Vaňhara P. Ex-Vivo 3D Cellular Models of Pancreatic Ductal Adenocarcinoma: From Embryonic Development to Precision Oncology. Pancreas 2025; 54:e57-e71. [PMID: 39074056 DOI: 10.1097/mpa.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
Collapse
Affiliation(s)
- Ivana Acimovic
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Viktorie Gabrielová
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | - Michal Eid
- Departments of Internal Medicine, Hematology and Oncology
| | | | - Petr Moravčík
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Hlavsa
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | | | - Riza Can Cakmakci
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Peter Staňo
- Departments of Internal Medicine, Hematology and Oncology
| | - Vladimír Procházka
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Zdeněk Kala
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | | |
Collapse
|
38
|
Michael NL, Krell RW. Pancreatic cancer: a haystack of needles. J Gastrointest Oncol 2024; 15:2743-2744. [PMID: 39816012 PMCID: PMC11732364 DOI: 10.21037/jgo-24-697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025] Open
Affiliation(s)
- Nicholas L Michael
- Surgical Oncology Division, Department of General Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Robert W Krell
- Surgical Oncology Division, Department of General Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
39
|
Ma Y, Liu E, Fan H, Li C, Huang P, Cui M, Wang Z, Zhou J, Chen K. RBM47 promotes cell proliferation and immune evasion by upregulating PDIA6: a novel mechanism of pancreatic cancer progression. J Transl Med 2024; 22:1164. [PMID: 39741300 DOI: 10.1186/s12967-024-05970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a lethal malignancy characterized by poor prognosis and high mortality. We found the highly expressed RNA-binding motif protein 47 (RBM47) in PC progression. The RBM47 expression was negatively correlated with natural killer (NK) cell infiltrate in PC. Moreover, RBM47 was predicted to bind to the 3'-UTR region of Protein Disulfide Isomerase Family A Member 6 (PDIA6), an oncogene of the development of PC. Therefore, we supposed that RBM47 might affect PC progression by regulating PDIA6. METHODS Bioinformatics analysis was performed to screen the candidate gene affecting PC progression using public databases. Loss- and gain-of-function effects of RBM47 on cell proliferation, tumor growth, and immune evasion were determined by CCK-8, EdU incorporation, colony formation assays, the xenogeneic tumor model, and co-culture system of PC and NK-92 cells. RBM47-RNA immunoprecipitation (RIP) followed by PCR and dual luciferase reporter assay were used to detect whether RBM47 could interact with the PDIA6 mRNA and how RBM47 would regulate the transcriptional activity of PDIA6, respectively. Simultaneous overexpression of PDIA6 in RBM47 knockdown PC cells was conducted to clarify whether PDIA6 would mediated effects of RBM47. Given the important role of cellular metabolism in cells proliferation and immune evasion, PC cells with RBM47 knockdown were subjected to metabolomics analysis to further investigate how RBM47 regulate PC progression. RESULTS RBM47 overexpression drove PC progression by promoting cell proliferation and xenografted tumor growth. Consistently, our results showed that RBM47 overexpression weakened sensitivity of PC cells to cytotoxic NK cells. However, RBM47 knockdown exhibited the opposite effects on proliferation and immune evasion of PC cells. RBM47 was able to bind to the 3'-UTR region of PDIA6, maintained PDIA6 mRNA stability, and increased the PDIA6 expression in PC cells. Rescue experiments supported that PDIA6 overexpression reversed the suppressing effects of RBM47 knockdown on cell proliferation and immune evasion. RBM47 knockdown significantly changed metabolites of PC cells. CONCLUSIONS In summary, our findings demonstrate that RBM47 contributes to PC progression, which might be mediated by the upregulated PDIA6 expression and the altered cellular metabolites in PC cells, offering a potential therapeutic target for PC treatment.
Collapse
Affiliation(s)
- Yihui Ma
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Huijie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenfei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Pei Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Meiying Cui
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Jing Zhou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
40
|
Chen S, He Z, Cai K, Zhang Y, Zhu H, Pang C, Zhang J, Wang D, Xu X. TRIM59/RBPJ positive feedback circuit confers gemcitabine resistance in pancreatic cancer by activating the Notch signaling pathway. Cell Death Dis 2024; 15:932. [PMID: 39725730 DOI: 10.1038/s41419-024-07324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignant tumors that lacks effective treatment, and gemcitabine-based chemoresistance occurs frequently. Therefore, new therapeutic strategies for PC are urgently needed. Tripartite motif containing 59 (TRIM59) plays an important role in breast and lung cancer chemoresistance. However, the association between TRIM59 and gemcitabine resistance in PC remains unclear. We identified TRIM59 as an innovative E3 ubiquitin ligase that activated Notch signaling in PC. TRIM59 levels were increased in PC and positively correlated with poor prognosis and gemcitabine resistance in PC patients. TRIM59 facilitated gemcitabine resistance in PC cells in vitro and in vivo. TRIM59 interacted with recombination signal binding protein for immunoglobulin kappa J region (RBPJ) and stabilized it by promoting K63-linked ubiquitination. RBPJ transcriptionally upregulated TRIM59 expression, forming a positive feedback loop with TRIM59. We identified a novel TRIM59 inhibitor, catechin, and confirmed that it sensitized PC cells to gemcitabine. TRIM59 conferred gemcitabine resistance in PC by promoting RBPJ K63-linked ubiquitination, followed by activating Notch signaling. Therefore, our study provides a promising target for gemcitabine sensitization in PC treatment.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, 518000, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Kun Cai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Department of Gastrointestinal Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Yan Zhang
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Hongyan Zhu
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Chong Pang
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Jiaqi Zhang
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Dong Wang
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Xundi Xu
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China.
| |
Collapse
|
41
|
Xu D, Wu H, Tian M, Liu Q, Zhu Y, Zhang H, Zhang X, Shen H. Isolinderalactone suppresses pancreatic ductal adenocarcinoma by activating p38 MAPK to promote DDIT3 expression and trigger endoplasmic reticulum stress. Int Immunopharmacol 2024; 143:113497. [PMID: 39486185 DOI: 10.1016/j.intimp.2024.113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, and its incidence rate is increasing. PDAC patients are prone to acquired chemotherapy resistance, necessitating the development of novel drugs to provide alternative treatment options. In recent years, traditional folk medicine and its active ingredients have garnered increasing attention for their effectiveness in treating tumors. Here, we discovered that isolinderalactone (ILL), a sesquiterpenoid compound extracted from the traditional Chinese medicine Lindera aggregata (Sims) Kosterm., possesses anti-PDAC pharmacological activity. Our results revealed that ILL decreased the proliferative capacity of PDAC cells in a time- and dose-dependent manner. The migration and invasion abilities of tumor cells were significantly suppressed due to the inhibition of epithelial-to-mesenchymal transition (EMT). Additionally, the cell cycle was arrested in the G2/M phase, leading to apoptosis, and inhibiting inflammatory responses. Mechanistically, bioinformatics analysis of molecular expression changes combined with in vivo and in vitro experiments demonstrated that ILL induces persistent ER stress by activating p38 MAPK signaling pathway, thus promoting the expression of DDIT3, and ultimately suppressing progression-related cell behaviors. Animal experiments confirmed that ILL also inhibited PDAC development in vivo with minimal toxicity. In summary, our study identified ILL as a potential therapeutic compound for PDAC treatment.
Collapse
Affiliation(s)
- Dongchao Xu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Hao Wu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Mengyao Tian
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Yuanling Zhu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China.
| | - Hongzhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
42
|
Sousa P, Silva L, Câmara JS, Guedes de Pinho P, Perestrelo R. Integrating OMICS-based platforms and analytical tools for diagnosis and management of pancreatic cancer: a review. Mol Omics 2024. [PMID: 39714229 DOI: 10.1039/d4mo00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cancer remains the second leading cause of death worldwide, surpassed only by cardiovascular disease. From the different types of cancer, pancreatic cancer (PaC) has one of the lowest survival rates, with a survival rate of about 20% after the first year of diagnosis and about 8% after 5 years. The lack of highly sensitive and specific biomarkers, together with the absence of symptoms in the early stages, determines a late diagnosis, which is associated with a decrease in the effectiveness of medical intervention, regardless of its nature - surgery and/or chemotherapy. This review provides an updated overview of recent studies combining multi-OMICs approaches (e.g., proteomics, metabolomics) with analytical tools, highlighting the synergy between high-throughput molecular data generation and precise analytical tools such as LC-MS, GC-MS and MALDI-TOF MS. This combination significantly improves the detection, quantification and identification of biomolecules in complex biological systems and represents the latest advances in understanding PaC management and the search for effective diagnostic tools. Large-scale data analysis coupled with bioinformatics tools enables the identification of specific genetic mutations, gene expression patterns, pathways, networks, protein modifications and metabolic signatures associated with PaC pathogenesis, progression and treatment response through the integration of multi-OMICs data.
Collapse
Affiliation(s)
- Patrícia Sousa
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Laurentina Silva
- Hospital Dr Nélio Mendonça, SESARAM, EPERAM - Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, 9004-514 Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
43
|
Seyithanoglu D, Durak G, Keles E, Medetalibeyoglu A, Hong Z, Zhang Z, Taktak YB, Cebeci T, Tiwari P, Velichko YS, Yazici C, Tirkes T, Miller FH, Keswani RN, Spampinato C, Wallace MB, Bagci U. Advances for Managing Pancreatic Cystic Lesions: Integrating Imaging and AI Innovations. Cancers (Basel) 2024; 16:4268. [PMID: 39766167 PMCID: PMC11674829 DOI: 10.3390/cancers16244268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Pancreatic cystic lesions (PCLs) represent a spectrum of non-neoplasms and neoplasms with varying malignant potential, posing significant challenges in diagnosis and management. While some PCLs are precursors to pancreatic cancer, others remain benign, necessitating accurate differentiation for optimal patient care. Conventional approaches to PCL management rely heavily on radiographic imaging, and endoscopic ultrasound (EUS) guided fine-needle aspiration (FNA), coupled with clinical and biochemical data. However, the observer-dependent nature of image interpretation and the complex morphology of PCLs can lead to diagnostic uncertainty and variability in patient management strategies. This review critically evaluates current PCL diagnosis and surveillance practices, showing features of the different lesions and highlighting the potential limitations of conventional methods. We then explore the potential of artificial intelligence (AI) to transform PCL management. AI-driven strategies, including deep learning algorithms for automated pancreas and lesion segmentation, and radiomics for analyzing heterogeneity, can improve diagnostic accuracy and risk stratification. These advanced techniques can provide more objective and reproducible assessments, aiding clinicians in decision-making regarding follow-up intervals and surgical interventions. Early results suggest that AI-driven methods can significantly improve patient outcomes by enabling earlier detection of high-risk lesions and reducing unnecessary procedures for benign cysts. Finally, this review emphasizes that AI-driven approaches could potentially reshape the landscape of PCL management, ultimately leading to improved pancreatic cancer prevention.
Collapse
Affiliation(s)
- Deniz Seyithanoglu
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
- Istanbul Faculty of Medicine, Istanbul University, Istanbul 38000, Turkey; (Y.B.T.); (T.C.)
| | - Gorkem Durak
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Elif Keles
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Alpay Medetalibeyoglu
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
- Istanbul Faculty of Medicine, Istanbul University, Istanbul 38000, Turkey; (Y.B.T.); (T.C.)
| | - Ziliang Hong
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Zheyuan Zhang
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Yavuz B. Taktak
- Istanbul Faculty of Medicine, Istanbul University, Istanbul 38000, Turkey; (Y.B.T.); (T.C.)
| | - Timurhan Cebeci
- Istanbul Faculty of Medicine, Istanbul University, Istanbul 38000, Turkey; (Y.B.T.); (T.C.)
| | - Pallavi Tiwari
- Department of Radiology, BME, University of Wisconsin-Madison, Madison, WI 53707, USA;
- William S. Middleton Memorial Veterans Affairs (VA) Healthcare, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Yuri S. Velichko
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Cemal Yazici
- Department of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60611, USA;
| | - Temel Tirkes
- Department of Radiology, Indiana University, Indianapolis, IN 46202, USA;
| | - Frank H. Miller
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Rajesh N. Keswani
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Concetto Spampinato
- Department of Electrical, Electronics and Computer Engineering, University of Catania, 95124 Catania, Italy;
| | - Michael B. Wallace
- Department of Gastroenterology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Ulas Bagci
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| |
Collapse
|
44
|
Lv K, He T. Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:70. [PMID: 39680287 PMCID: PMC11649616 DOI: 10.1186/s43556-024-00233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Cancer, characterized by its immune evasion, active metabolism, and heightened proliferation, comprises both stroma and cells. Although the research has always focused on parenchymal cells, the non-parenchymal components must not be overlooked. Targeting cancer parenchymal cells has proven to be a formidable challenge, yielding limited success on a broad scale. The tumor microenvironment(TME), a critical niche for cancer cell survival, presents a novel way for cancer treatment. Cancer-associated fibroblast (CAF), as a main component of TME, is a dynamically evolving, dual-functioning stromal cell. Furthermore, their biological activities span the entire spectrum of tumor development, metastasis, drug resistance, and prognosis. A thorough understanding of CAFs functions and therapeutic advances holds significant clinical implications. In this review, we underscore the heterogeneity of CAFs by elaborating on their origins, types and function. Most importantly, by elucidating the direct or indirect crosstalk between CAFs and immune cells, the extracellular matrix, and cancer cells, we emphasize the tumorigenicity of CAFs in cancer. Finally, we highlight the challenges encountered in the exploration of CAFs and list targeted therapies for CAF, which have implications for clinical treatment.
Collapse
Affiliation(s)
- Keke Lv
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Tianlin He
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
45
|
Harne PS, Harne V, Wray C, Thosani N. Endoscopic innovations in diagnosis and management of pancreatic cancer: a narrative review and future directions. Therap Adv Gastroenterol 2024; 17:17562848241297434. [PMID: 39664230 PMCID: PMC11632891 DOI: 10.1177/17562848241297434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/15/2024] [Indexed: 12/13/2024] Open
Abstract
Pancreatic cancer serves as the third leading cause of cancer-associated morbidity and mortality in the United States, with a 5-year survival rate of only 12% with an expected increase in incidence and mortality in the coming years. Pancreatic ductal adenocarcinomas constitute most pancreatic malignancies. Certain genetic syndromes, including Lynch syndrome, hereditary breast and ovarian cancer syndrome, hereditary pancreatitis, familial adenomatous polyposis, Peutz-Jeghers syndrome, familial pancreatic cancer mutation, and ataxia telangiectasia, confer a significantly higher risk. Screening for pancreatic malignancies currently targets patients with germline mutations or those with significant family history. Screening the general population is not currently viable owing to overall low incidence and lack of specific tests. Endoscopic ultrasound (EUS) and its applied advances are increasingly being used for surveillance, diagnosis, and management of pancreatic malignancies and have now become an indispensable tool in their management. For patients with risk factors, EUS in combination with magnetic resonance imaging/magnetic resonance cholangiopancreatography is used for screening. The role of endoscopic modalities has been expanding with the increased utilization of endoscopic retrograde cholangiopancreatography, EUS-directed therapies include EUS-guided fine-needle aspiration and EUS-fine-needle biopsy (FNB). EUS combined with FNB has the highest specificity and sensitivity for detecting pancreatic cancer amongst available modalities. Studies also recognize that artificial intelligence assisted EUS in the early detection of pancreatic cancer. At the same time, surgical resection has been historically considered the only curative treatment for pancreatic cancer, over 80% of patients present with unresectable disease. We also discuss EUS-guided therapies of physicochemicals (radiofrequency ablation, brachytherapy, and intratumor chemotherapy), biological agents (gene therapies and oncolytic viruses), and immunotherapy. We aim to perform a detailed review of the current burden, risk factors, role of screening, diagnosis, and endoscopic advances in the treatment modalities available for pancreatic cancer.
Collapse
Affiliation(s)
- Prateek Suresh Harne
- Division of Gastroenterology, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Vaishali Harne
- Division of Pediatric Gastroenterology, The University of Texas
- Health Science Center and McGovern School of Medicine, Houston, TX, USA
| | - Curtis Wray
- Department of Surgery, The University of Texas Health Science Center and McGovern School of Medicine, Houston, TX, USA
| | - Nirav Thosani
- Department of Surgery and Interventional Gastroenterology, The University of Texas
- Health Science Center and McGovern School of Medicine, Houston, TX, USA
| |
Collapse
|
46
|
Zhao J, Yu B, Li L, Guo S, Sha X, Ru W, Du GQ, Xue JY. Outer Membrane Vesicle-Cancer Hybrid Membrane Coating Indocyanine Green Nanoparticles for Enhancing Photothermal Therapy Efficacy in Tumors. ACS Biomater Sci Eng 2024; 10:7619-7631. [PMID: 39585170 DOI: 10.1021/acsbiomaterials.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cell membrane-coated nanomaterials are increasingly recognized as effective in cancer treatment due to their unique benefits. This study introduces a novel hybrid membrane coating nanoparticle, termed cancer cell membrane (CCM)-outer membrane vesicle (OMV)@Lip-indocyanine green (ICG), which combines CCMs with bacterial OMV to encapsulate ICG-loaded liposomes. Comprehensive analyses were conducted to assess its physical and chemical properties as well as its functionality. Demonstrating targeted delivery capabilities and good biocompatibility, CCM-OMV@Lip-ICG nanoparticles showed promising photothermal and immunotherapeutic effects in tumor models. By inducing hyperthermia-induced tumor therapy and bolstering antitumor immunity, CCM-OMV@Lip-ICG nanoparticles exhibit a synergistic therapeutic effect, providing a new perspective for the management of cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Guangdong Cardiovascular Institution, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Bo Yu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin 150028, China
| | - Lujing Li
- Department of Ultrasound, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Sihua Guo
- Guangdong Cardiovascular Institution, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xuan Sha
- Guangdong Cardiovascular Institution, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Waner Ru
- Guangdong Cardiovascular Institution, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- College of Medicine, Shantou University, Shantou 515041, China
| | - Guo-Qing Du
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jing-Yi Xue
- Guangdong Cardiovascular Institution, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
47
|
Nair ST, Abhi C, Kamalasanan K, Pavithran K, Unni AR, Sithara MS, Sarma M, Mangalanandan TS. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Mol Pharm 2024; 21:5960-5988. [PMID: 39561094 DOI: 10.1021/acs.molpharmaceut.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Tumor heterogeneity poses a significant challenge in cancer therapy. To address this, we analyze pharmacotherapeutic challenges by categorizing them into static and dynamic barriers, reframing these challenges to improve drug delivery, efficacy, and the development of controlled-release nanomedicines (CRNMs). This pathophysiology-driven approach facilitates the design of novel therapeutics tailored to overcome obstacles in pancreatic ductal adenocarcinoma (PDAC) using nanotechnology. Advanced biomaterials in nanodrug delivery systems offer innovative solutions by combining controlled release, stimuli sensitivity, and smart design strategies. CRNMs are engineered to modulate spatiotemporal signaling and control drug release in PDAC, where resistance to conventional therapies is particularly high. This review explores pharmacokinetic considerations for nanomedicine design, RNA interference (RNAi) for stromal modulation, and the development of targeted nanomedicine strategies. Additionally, we highlight the limitations of current animal models in capturing the complexities of PDAC and discuss notable clinical failures, such as PEGylated hyaluronidase (Phase III HALO 109-301 trial) and evofosfamide (TH-302) with gemcitabine (MAESTRO trial), underscoring the need for improved models and treatment strategies. By targeting pathways like Notch and Hedgehog and incorporating stimuli-sensitive and pathway-modulating agents, CRNMs offer a promising avenue to enhance drug penetration and efficacy, reshaping the paradigm of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - C Abhi
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ashok R Unni
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M S Sithara
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T S Mangalanandan
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
48
|
Gros L, Yip R, Zhu Y, Li P, Paksashvili N, Sun Q, Yankelevitz DF, Henschke CI. GI cancer mortality in participants in low dose CT screening for lung cancer with a focus on pancreatic cancer. Sci Rep 2024; 14:29851. [PMID: 39617764 PMCID: PMC11609297 DOI: 10.1038/s41598-024-76322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Lung cancer, the leading cause of cancer deaths globally, has better survival rates with early detection. Annual low-dose CT (LDCT) screenings are recommended for high-risk individuals due to age and smoking. These individuals are also at risk for other cancers. Our study explores gastrointestinal (GI) cancer mortality in lung cancer screening participants and the potential of LDCT screenings to detect pancreatic cancer. We utilized data from a prospective multi-institutional cohort study, the International Early Lung Cancer Action Project (I-ELCAP). We analyzed GI cancer deaths among participants in New York State (1992-2010), exploring demographics and GI cancer distribution. Radiologists retrospectively reviewed pancreatic cancer cases within 24 months post-LDCT, comparing findings with original reports. Among 10,150 participants, 189 died from GI cancers; mean age 75, mostly male smokers. Pancreatic cancer (41.8%) led, followed by esophageal (17.5%) and colon cancer (16.9%). Median time between baseline LDCT and death was 116 months (9.7 years). 82/189 (43.4%) participants died within 5 years of their last LDCT screening, with pancreatic cancer again prominent (45.1%). In 79 pancreatic cancer deaths, 17.7% occurred within 24 months post-LDCT. A re-review identified previously undetected pancreatic findings, with 4 out of 14 participants (28.6%) showing abnormalities. This underscores the potential of lung cancer screening programs to provide insights beyond lung health. This study of over 10,000 participants in a lung cancer screening program reveals that they are at risk for GI cancer deaths, particularly pancreatic cancer. Re-reviews of LDCT scans revealed previously undocumented pancreatic findings in a third of participants who died from pancreatic cancer, underscoring the need to identify, document, and follow up on these findings.
Collapse
Affiliation(s)
- Louis Gros
- Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Rowena Yip
- Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Yeqing Zhu
- Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Pengfei Li
- Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Natela Paksashvili
- Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Qi Sun
- Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - David F Yankelevitz
- Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Claudia I Henschke
- Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
49
|
Yamaguchi N, Wu YG, Ravetch E, Takahashi M, Khan AG, Hayashi A, Mei W, Hsu D, Umeda S, de Stanchina E, Lorenz IC, Iacobuzio-Donahue CA, Tavazoie SF. A Targetable Secreted Neural Protein Drives Pancreatic Cancer Metastatic Colonization and HIF1α Nuclear Retention. Cancer Discov 2024; 14:2489-2508. [PMID: 39028915 PMCID: PMC11611693 DOI: 10.1158/2159-8290.cd-23-1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia-inducible factor-1α (HIF1α) nuclear retention and function. NPTX1 is overexpressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1α hypoxic response in PDAC. Significance: We identified the NPTX1-AMIGO2 axis as a regulatory mechanism upstream of HIF1α-driven hypoxia response that promotes PDAC liver metastasis. Therapeutic NPTX1 targeting outperformed a common chemotherapy regimen in inhibiting liver metastasis and suppressed primary tumor growth in preclinical models, revealing a novel therapeutic strategy targeting hypoxic response in PDAC.
Collapse
Affiliation(s)
- Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Y Gloria Wu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Ethan Ravetch
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Mai Takahashi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Abdul G. Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Akimasa Hayashi
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Dennis Hsu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Shigeaki Umeda
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ivo C. Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | | | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
50
|
Hu P, Dou R, Qi Z, Liu G, Su Y. YAP1 Overexpression Enhances the Aerobic Glycolysis Process via Suppression of EGLN2 in Pancreatic Ductal Adenocarcinoma. J Gene Med 2024; 26:e70006. [PMID: 39647834 PMCID: PMC11625500 DOI: 10.1002/jgm.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/12/2024] [Accepted: 11/01/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases and has remarkably high mortality rates. In recent years, altered metabolism has been shown to contribute to the maintenance of pancreatic cancer malignancies. However, the molecular mechanism underlying glucose metabolism reprogramming remains elusive. The aim of this study was to elucidate the role of Yes-associated protein (YAP1), an important effector of the Hippo pathway, in the regulation of aerobic glycolysis in pancreatic cancer. Moreover, the contributions of YAP1 and its associated glycolytic enzymes to prognosis were assessed via The Cancer Genome Atlas (TCGA) dataset. METHODS YAP1 expression was silenced by short hairpin RNA (shRNA), and its effects on glycolytic activity and mitochondrial respiration were analysed via Agilent Seahorse XF Analysers. The effects of YAP1 on hypoxia-inducible factor-1α (HIF-1α) and its transcriptional activity on glycolytic genes were examined via shRNA-mediated silencing of YAP1. The underlying mechanism by which YAP1 controls the HIF-1α protein level was analysed by exploring the interaction between YAP1 and egg-laying-defective nine family (EGLN) members, which are well-established regulators of the HIF-1α protein level. Finally, the effects of YAP1, EGLN and glycolytic genes on prognosis were analysed via TCGA dataset. RESULTS We found that silencing YAP1 expression inhibited anabolic glycolysis in pancreatic cancer cells. YAP1 was demonstrated to regulate the HIF-1α protein level, transcriptional activity and the expression of HIF-1α-targeted glycolytic genes. In-depth analysis demonstrated that EGLN2, a modulator of the HIF-1α protein level, was a direct target of YAP1. Low EGLN2 expression was associated with a poor prognosis. By analysing TCGA dataset and performing immunohistochemical staining, we demonstrated that YAP1 expression was negatively correlated with EGLN2 expression at the mRNA level and protein levels. CONCLUSIONS The present study demonstrated that YAP1 positively regulates aerobic glycolysis by inhibiting EGLN2 expression, which results in an increased HIF-1α protein level and transcriptional activity. YAP1 was positively regulated and significantly correlated with HIF-1α-targeted glycolytic genes, including glucose transporter type 1(GLUT1), hexokinase2 (HK2) and lactate dehydrogenase A (LDHA). Elevated YAP1 expression and concomitant downregulation of EGLN2 contributed to poor survival in patients with pancreatic cancer. Our results suggest that YAP1 may be a promising predictive marker and treatment target for human pancreatic cancer.
Collapse
MESH Headings
- Humans
- YAP-Signaling Proteins/metabolism
- YAP-Signaling Proteins/genetics
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/mortality
- Glycolysis
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/mortality
- Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
- Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
- Prognosis
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
Collapse
Affiliation(s)
- Pengfei Hu
- Department of General SurgeryHuadong Hospital Affiliated to Fudan University, Fudan UniversityShanghaiChina
| | - Ruohan Dou
- Department of AnesthesiologyHuadong Hospital Affiliated to Fudan University, Fudan UniversityShanghaiChina
| | - Zihao Qi
- Department of General Pancreatic Surgery, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Guanya Liu
- Department of General SurgeryHuadong Hospital Affiliated to Fudan University, Fudan UniversityShanghaiChina
| | - Yuantao Su
- Department of General SurgeryHuadong Hospital Affiliated to Fudan University, Fudan UniversityShanghaiChina
| |
Collapse
|