1
|
de Borst MH. Fibroblast growth factor 23 as a risk factor for incident diabetes. Curr Opin Nephrol Hypertens 2025:00041552-990000000-00227. [PMID: 40237064 DOI: 10.1097/mnh.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
PURPOSE OF REVIEW Diabetes is a major global health concern, affecting millions and increasing morbidity and mortality. Recent research highlights fibroblast growth factor 23 (FGF23) as a potential contributor to type 2 diabetes and its cardiovascular complications. This review explores the role of FGF23 in metabolic and cardiovascular dysfunction and discusses possible therapeutic interventions. RECENT FINDINGS Deregulated FGF23 is linked to insulin resistance, pancreatic β-cell dysfunction, and systemic inflammation. Studies suggest FGF23 influences glucose metabolism via insulin signaling, oxidative stress, and inflammation. Epidemiological data indicate that elevated FGF23 levels are associated with an increased risk of type 2 diabetes and posttransplant diabetes, independent of traditional risk factors. Higher FGF23 levels have also been linked with an increased cardiovascular risk in patients with diabetes, even without chronic kidney disease. SUMMARY FGF23 is emerging as a key factor in the cardiovascular-kidney-metabolic syndrome, connecting diabetes and cardiovascular disease. While studies suggest consistent associations, causal mechanisms remain unclear. No therapies specifically target FGF23 to lower diabetes risk, but fibroblast growth factor receptor 4 (FGFR4) inhibitors show promise. Future research should examine the role of FGF23 in individuals with normal kidney function and explore whether modifying its levels could reduce diabetes and cardiovascular risk.
Collapse
Affiliation(s)
- Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Orellana AMM, Mazucanti CH, Andreotti DZ, de Sá Lima L, Kawamoto EM, Scavone C. Effects of decrease in Klotho protein expression on insulin signaling and levels of proteins related to brain energy metabolism. Eur J Pharmacol 2025; 997:177587. [PMID: 40187598 DOI: 10.1016/j.ejphar.2025.177587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Mutations in Klotho have been associated with premature ageing and cognitive dysfunction. Although highly expressed in specific regions of the brain, the actions of Klotho in the central nervous system (CNS) remain largely unknown. Here, we show that animals with a mutated hypomorphic Klotho gene have altered glycaemic regulation, suggesting higher insulin sensitivity. In the CNS, pathways related to insulin intracellular signalling were found to be up-regulated in the hippocampus, with higher activation of protein kinase B and mammalian target of rapamycin and inactivation of the transcription factors forkhead box O (FOXO)-1 and FOXO-3a. In addition, the present study showed that in the hippocampi of wild-type aged mice, where Klotho is naturally downregulated, the levels of some proteins related to energy metabolism and metabolic coupling between neurones and astrocytes, such as monocarboxylate transporter 2 and 4, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 and lactate dehydrogenase enzymes isoforms A and B were altered. These findings suggest that Klotho plays an essential role in regulating proteins and genes related to metabolic coupling in the brain.
Collapse
Affiliation(s)
- Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Wang K, Liu J. Positive association of the anti-aging protein α-Klotho with insulin resistance and its inverse L-shaped relationship with glycaemic control in the middle-aged and elderly population. Endocrine 2024; 86:143-155. [PMID: 38761344 DOI: 10.1007/s12020-024-03874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE α-Klotho has been linked to insulin resistance (IR) in basic research. However, experimental evidence is inconsistent, and there is a lack of data from human research. This study seeks to elucidate the association of α-Klotho with IR in a nationwide, multiracial population. METHODS A total of 5289 participants aged 40-79 years were included in the National Health and Nutrition Examination Survey (NHANES) spanning 2007-2016. Serum α-Klotho was measured using enzyme-linked immunosorbent assays (ELISA), and IR was evaluated by the homeostatic model assessment of insulin resistance (HOMA-IR). Weighted multivariate logistic and linear regression analysis, subgroup analysis stratified by demographic characteristics, medical condition or obesity status, and sensitivity analysis using propensity score matching (PSM) were performed. Restricted cubic splines (RCS) were performed to explore the nonlinear relationship. RESULTS In the fully adjusted logistic regression model, a significant positive association was observed between log-transformed α-Klotho and IR (OR = 3.63, 95% CI: 1.56, 8.45), particularly in males or nonobese individuals (Pinteraction < 0.05). In the linear regression model, log10(α-Klotho) was associated with fasting blood glucose (FBG, β = 1.25, 95% CI: 0.74, 1.76) and glycosylated hemoglobin (HbA1c, β = 0.49, 95% CI: 0.20, 0.77). RCS revealed an inverse L-shaped dose-response relationship of α-Klotho with FBG and HbA1c (Pnonlinear <0.05). Beyond the inflection point of log10(α-Klotho) at 2.79, β coefficients sharply rose for these glycaemic control indicators. CONCLUSION The study provides clinical evidence supporting a positive association between α-Klotho and IR. Moreover, the inverse L-shaped relationship suggests that α-Klotho should reach a certain level to predict glycaemic changes effectively.
Collapse
Affiliation(s)
- Kai Wang
- Medical School, Southeast University, Nanjing, China
| | - Jianing Liu
- Medical Faculty, Ulm University, Ulm, Germany.
| |
Collapse
|
4
|
Qiu S, Li C, Zhu J, Guo Z. Associations between the TyG index and the ɑ-Klotho protein in middle-aged and older population relevant to diabetes mellitus in NHANES 2007-2016. Lipids Health Dis 2024; 23:188. [PMID: 38907289 PMCID: PMC11191244 DOI: 10.1186/s12944-024-02172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The anti-aging protein Klotho has diverse functions in antioxidative stress and energy metabolism through several pathways. While it has been reported that α-Klotho is downregulated in patients with insulin resistance (IR), the association between Klotho and IR is complex and controversial. The triglyceride-glucose (TyG) index has provided a practical method for assessing IR. With this in mind, our study aimed to investigate the relationship between the TyG index and soluble α-Klotho protein levels in US populations, both with and without diabetes mellitus. METHODS This cross-sectional study analyzed data from middle-aged and older participants in the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016. The participants were divided into two groups based on their diabetes mellitus status: those with diabetes and those without diabetes. To evaluate the relationship between the TyG index and the concentration of the α-Klotho protein in each group, a series of survey-weighted multivariable linear regression models were employed. Furthermore, to examine the association between these two variables, multivariable-adjusted restricted cubic spline curves and subgroup analysis were generated. RESULTS The study involved 6,439 adults aged 40 years or older, with a mean age of 57.8 ± 10.9 years. Among them, 1577 (24.5%) had diabetes mellitus. A subgroup analysis indicated that the presence of diabetes significantly affected the relationship between the TyG index and the α-Klotho level. After considering all covariables, regression analysis of the participants without diabetes revealed that the α-Klotho concentration decreased by 32.35 pg/ml (95% CI: -50.07, -14.64) with each one unit increase in TyG (p < 0.001). The decline in α-Klotho levels with elevated TyG was more pronounced in the female population. In patients with diabetes mellitus, a non-linear association between the TyG index and α-Klotho was observed. There was no significant correlation observed between the two when TyG index were below 9.7. However, there was an increase in klotho levels of 106.44 pg/ml for each unit increase in TyG index above 9.7 (95% CI: 28.13, 184.74) (p = 0.008). CONCLUSION Our findings suggested that the presence of diabetes may influence the relationship between the TyG index and soluble α-Klotho. Furthermore, there seem to be sex differences in individuals without diabetes. Further studies are necessary to validate these findings.
Collapse
Affiliation(s)
- Shujuan Qiu
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Quiwen District, Weifang, 261041, Shandong, China.
| | - Chunlei Li
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Quiwen District, Weifang, 261041, Shandong, China
| | - Jinhua Zhu
- Zhucheng Nanhu Community Health Service Center, No. 2000, Tourism Road, South Lake Ecological Economic Development District, Zhucheng, 262200, Shandong, China
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Quiwen District, Weifang, 261041, Shandong, China
| |
Collapse
|
5
|
Xu Q, Wang J, Li H, Gao Y. Association between serum α-Klotho levels and osteoarthritis prevalence among middle-aged and older adults: an analysis of the NHANES 2007-2016. Rev Clin Esp 2024; 224:366-378. [PMID: 38670226 DOI: 10.1016/j.rceng.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
BACKGROUND As individuals age, the prevalence of osteoarthritis tends to increase gradually. α-Klotho is a hormone renowned for its anti-aging properties. However, the precise role of serum α-Klotho in osteoarthritis is still not fully comprehended. METHODS We conducted a cross-sectional study utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2007 to 2016. Serum α-Klotho levels were measured using an enzyme-linked immunosorbent assay (ELISA). Osteoarthritis was assessed through self-reported questionnaires. Through univariate and multivariate logistic regression analyses, smooth curve fitting, threshold effect analysis, and subgroup analyses, we delved into the potential association between them. RESULTS The study encompassed a cohort of 10,265 participants. In fully adjusted models of multivariate logistic regression analysis, we identified a negative correlation between serum ln α-Klotho and OA (OR = 0.77, 95% CI: 0.65-0.91, p = 0.003). When stratifying serum α-Klotho levels into tertiles, individuals in the highest tertile exhibited a 26% reduced risk of OA compared to those in the lowest tertile (OR = 0.84, 95% CI: 0.73-0.97, p = 0.014). Subsequent analyses indicated a linearly negative association. In subgroup analyses, we explored the relationship between serum ln α-Klotho and osteoarthritis across diverse populations, revealing the persistence of this association in the majority of subgroups. CONCLUSION Serum α-Klotho levels exhibit a significant negative linear correlation with the prevalence of osteoarthritis in middle-aged and elderly populations in the United States.
Collapse
Affiliation(s)
- Qi Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Nanyang Medical College, Nanyang, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiale Wang
- Department of Internal Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Hanzhi Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Nanyang Medical College, Nanyang, China
| | - Yuwan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Nanyang Medical College, Nanyang, China.
| |
Collapse
|
6
|
Yan L, Hu X, Wu S, Zhao S. Serum Klotho and insulin resistance: Insights from a cross-sectional analysis. Medicine (Baltimore) 2024; 103:e37971. [PMID: 38669378 PMCID: PMC11049707 DOI: 10.1097/md.0000000000037971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of diabetes has surged globally, posing significant health and economic burdens. Insulin resistance underlies the initiation and development of type 2 diabetes. Klotho is a crucial endogenous antiaging factor, associated with atherosclerotic cardiovascular diseases, cancer, neurological disorders, and renal diseases. It additionally has a function in controlling glucose metabolism and holds promise as a new therapeutic target for diabetes. However, its relationship with insulin resistance remains unclear. This study utilizes the National Health and Nutrition Examination Survey (NHANES) 2007 to 2016 data to investigate the relationship between serum Klotho concentrations and insulin resistance. In this observational study, information from the NHANES spanning 2007 to 2016 was employed. The sample consisted of 6371 participants. Weighted linear regression model and chi-square tests were utilized to assess differences in continuous and categorical variables, respectively, among groups categorized by Klotho quartiles. The relationship between Klotho and HOMA-IR (homeostatic model assessment of insulin resistance) was studied using multiple linear regression. Smooth curve fitting was used to analyze nonlinear relationships and the inflection point was determined through a 2-stage linear regression method. After adjusting for multiple confounding factors, serum Klotho levels were found to be positively correlated with insulin resistance [0.90 (0.68, 1.13)]. This correlation is nonlinear and exhibits a saturation effect, with the inflection point identified at 1.24 pg/µL. When Klotho levels are below 1.24 pg/µL, for every unit increase in Klotho, HOMA-IR increases by 1.30 units. Conversely, when Klotho levels exceed 1.24 pg/µL, there is no correlation between HOMA-IR and Klotho. Subgroup analysis reveals that the relationship between HOMA-IR and Klotho varies depending on diabetes and body mass index (BMI). This positive correlation was most prominent in the obese nondiabetic population. There is a positive correlation between serum Klotho and insulin resistance.
Collapse
Affiliation(s)
- Laisha Yan
- Department of Cardio Surgery Intensive Care Unit, Ningbo Medical Centre Li Huili Hospital, Ningbo, China
| | - Xiaoyan Hu
- Department of Cardio Surgery Intensive Care Unit, Ningbo Medical Centre Li Huili Hospital, Ningbo, China
| | - Shanshan Wu
- Department of Cardio Surgery Intensive Care Unit, Ningbo Medical Centre Li Huili Hospital, Ningbo, China
| | - Shunying Zhao
- Department of Cardio Surgery Intensive Care Unit, Ningbo Medical Centre Li Huili Hospital, Ningbo, China
| |
Collapse
|
7
|
Xiao Y, Hou Y, Zeng J, Gong Y, Ma L. Association Between the Serum α-Klotho Level and Insulin Resistance in Adults: NHANES 2007-2016. Endocr Res 2024; 49:145-153. [PMID: 38725277 DOI: 10.1080/07435800.2024.2350428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/28/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE This study aimed to investigate the relationship between serum α-Klotho levels and insulin resistance (IR), a precursor to type 2 diabetes. METHODS The study analyzed data from 4,758 adult participants in the National Health and Nutrition Examination Survey (NHANES) spanning from 2007 to 2016. The relationship between α-Klotho concentration and IR was assessed using the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and odds ratios (OR) derived from logistic regression models. RESULTS Results showed that every 1-ln increase in α-Klotho concentration raised the HOMA-IR value by 0.55 (95% confidence interval 0.35-0.74) and the odds of IR by 64% (odds ratio 1.64; 95% confidence interval 1.28-2.1). The odds of IR was 40% greater in highest tertile than in the lowest tertile. CONCLUSION The findings of this study underscore a significant correlation between increased serum α-Klotho levels and the prevalence of IR.
Collapse
Affiliation(s)
- Yuxiuzi Xiao
- Department of the First Clinical Medicine, Gannan Medical University, Ganzhou, JX, China
| | - Yuanzheng Hou
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Jing Zeng
- Department of Endocrinology, Second Medical Center, Chinese People's Liberation Army General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yanping Gong
- Department of Endocrinology, Second Medical Center, Chinese People's Liberation Army General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lichao Ma
- Department of Endocrinology, Second Medical Center, Chinese People's Liberation Army General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
8
|
Mao H, Xie Z, Huang S, Shen X, Jin S, Lin T, Yang Z. Analysis of the correlation between serum Klotho and FeNO: a cross-sectional study from NHANES (2007-2012). BMC Pulm Med 2024; 24:61. [PMID: 38287280 PMCID: PMC10823643 DOI: 10.1186/s12890-024-02864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Klotho is an anti-aging protein that has multiple functions and may play a key role in the pathogenesis and progression of chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD). Fractional Exhaled Nitric Oxide (FeNO) is a non-invasive and novel biomarker that has the advantages of being simple, fast and reproducible. It can effectively assess the degree of airway inflammation in diseases such as asthma and COPD. Despite these insights, the relationship between serum Klotho levels and FeNO has not been explored yet. METHODS Leveraging data from the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2012, we investigated the correlation between FeNO and serum Klotho levels. This association was scrutinized both as continuous variables and within quartile distributions, utilizing the Kruskal-Wallis H test. The correlation between the two variables was assessed through Spearman rank analysis. Employing survey weight-adjusted linear regression models, we gauged the strength of these associations. RESULTS This study included 6,527 participants with a median FeNO level of 14.5 parts per billion (ppb). We found that FeNO levels varied significantly across different quartiles of Klotho protein (H = 7.985, P = 0.046). We also found a significant positive correlation between serum Klotho levels and FeNO levels in the whole population (Spearman's rho = 0.029, P = 0.019). This correlation remained significant after adjusting for covariates such as age, gender, lung function, smoking status, alcohol use, BMI, cardiovascular disease (including hypertension, heart failure, coronary heart disease, and myocardial infarction), diabetes, inflammatory markers, serum vitamin D level and BUN (P < 0.05 for all). Furthermore, this correlation was stronger at the high (K3) and super high (K4) levels of Klotho than at the low (K1) and medium (K2) levels (β = 1.979 ppb and β = 1.993 ppb for K3 and K4 vs. K1, respectively; 95% CI: 0.497 ~ 2.953 and 95% CI: 0.129 ~ 2.827, respectively; P = 0.007 and P = 0.032, respectively). The β coefficient for serum Klotho was 0.002 ppb/pg/ml. CONCLUSIONS Our study illuminates a positive correlation between serum Klotho levels and FeNO. Further study is needed to verify the causality of this association and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Haiyan Mao
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China
| | - Zhenye Xie
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China
| | - Shanshan Huang
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China
| | - Xingkai Shen
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China
| | - Shaofeng Jin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China
| | - Tong Lin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China.
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, 310030, Hangzhou, China.
| |
Collapse
|
9
|
Wang Y, Ran L, Lan Q, Liao W, Wang L, Wang Y, Xiong J, Li F, Yu W, Li Y, Huang Y, He T, Wang J, Zhao J, Yang K. Imbalanced lipid homeostasis caused by membrane αKlotho deficiency contributes to the acute kidney injury to chronic kidney disease transition. Kidney Int 2023; 104:956-974. [PMID: 37673285 DOI: 10.1016/j.kint.2023.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
After acute kidney injury (AKI), renal tubular epithelial cells (RTECs) are pathologically characterized by intracellular lipid droplet (LD) accumulation, which are involved in RTEC injury and kidney fibrosis. However, its pathogenesis remains incompletely understood. The protein, αKlotho, primarily expressed in RTECs, is well known as an anti-aging hormone wielding versatile functions, and its membrane form predominantly acts as a co-receptor for fibroblast growth factor 23. Here, we discovered a connection between membrane αKlotho and intracellular LDs in RTECs. Fluorescent fatty acid (FA) pulse-chase assays showed that membrane αKlotho deficiency in RTECs, as seen in αKlotho homozygous mutated (kl/kl) mice or in mice with ischemia-reperfusion injury (IRI)-induced AKI, inhibited FA mobilization from LDs by impairing adipose triglyceride lipase (ATGL)-mediated lipolysis and lipophagy. This resulted in LD accumulation and FA underutilization. IRI-induced alterations were more striking in αKlotho deficiency. Mechanistically, membrane αKlotho deficiency promoted E3 ligase peroxin2 binding to ubiquitin-conjugating enzyme E2 D2, resulting in ubiquitin-mediated degradation of ATGL which is a common molecular basis for lipolysis and lipophagy. Overexpression of αKlotho rescued FA mobilization by preventing ATGL ubiquitination, thereby lessening LD accumulation and fibrosis after AKI. This suggests that membrane αKlotho is indispensable for the maintenance of lipid homeostasis in RTECs. Thus, our study identified αKlotho as a critical regulator of lipid turnover and homeostasis in AKI, providing a viable strategy for preventing tubular injury and the AKI-to-chronic kidney disease transition.
Collapse
Affiliation(s)
- Yue Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Ran
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qigang Lan
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaqin Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fugang Li
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenrui Yu
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Li
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ting He
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Ke Yang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
10
|
Jiang M, Tang X, Wang P, Yang L, Du R. Association between daily alcohol consumption and serum alpha klotho levels among U.S. adults over 40 years old: a cross-sectional study. BMC Public Health 2023; 23:1901. [PMID: 37784055 PMCID: PMC10544600 DOI: 10.1186/s12889-023-16830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Klotho is a hormone considered to be an anti-aging biomarker. The relationships between daily alcohol consumption and serum klotho are mainly unknown. The purpose of this study is to assess the relationship between alcohol consumption and serum alpha klotho (α-klotho) levels in the U.S. METHODS The data came from 11,558 participants aged ≥ 40 in the 2007-2016 National Health and Nutrition Examination Survey. Adults with reliable α-klotho plasma results were the target population. The self-report method was used to assess alcohol consumption. The relationship between daily alcohol intake and serum α-klotho levels was estimated using multivariable linear regression models. We also performed a stratified analysis of clinically important variables. RESULTS The mean serum α-klotho level among the 11,558 participants was 843.82 pg/mL. After full adjustment, participants with current moderate and heavy alcohol intake had lower serum α-klotho levels than those who never alcohol intake (β = - 62.64; 95% CI: - 88.86, - 36.43; P < 0.001; β = - 81.54; 95% CI: - 111.54, - 51.54; P < 0.001, respectively). Furthermore, the stratified analysis indicated that the association was insignificant in individuals with cardiovascular disease, chronic kidney disease, or cancer. CONCLUSION Daily alcohol consumption was inversely associated with serum α-klotho levels among U.S. adults over 40 years old. However, individuals with cardiovascular disease, chronic kidney disease, or cancer found no such relationship.
Collapse
Affiliation(s)
- Meihua Jiang
- Department of Nephrology, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan, Hubei, 430070, China
| | - Xiaoyan Tang
- Department of Cardiology, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan, Hubei, 430070, China
| | - Peng Wang
- Department of Radiology, Wuhan Hospital of Traditional Chinese Medicine, No. 303, Sixin Avenue, Wuhan, Hubei, 430050, China
| | - Li Yang
- Department of Ultrasound, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan, Hubei, 430070, China
| | - Rui Du
- Department of Ultrasound, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan, Hubei, 430070, China.
| |
Collapse
|
11
|
Liu Y, Chen M. Emerging role of α-Klotho in energy metabolism and cardiometabolic diseases. Diabetes Metab Syndr 2023; 17:102854. [PMID: 37722166 DOI: 10.1016/j.dsx.2023.102854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND AIM Klotho was first identified as a gene associated with aging and longevity in 1997. α-Klotho is an anti-aging protein and its role in energy metabolism, various cardiovascular diseases (CVDs), and metabolic disorders is increasingly being recognized. In this review, we aimed to outline the potential protective role and therapeutic prospects of α-Klotho in energy metabolism and cardiometabolic diseases (CMDs). METHODS We comprehensively reviewed the relevant literature in PubMed using the keywords 'Klotho', 'metabolism', 'cardiovascular', 'diabetes', 'obesity', 'metabolic syndrome', and 'nonalcoholic fatty liver disease'. RESULTS α-Klotho can be divided into membrane-bound Klotho, secreted Klotho, and the most studied circulating soluble Klotho that can act as a hormone. Klotho gene polymorphisms have been implicated in energy metabolism and CMDs. α-Klotho can inhibit insulin/insulin growth factor-1 signaling and its overexpression can lead to a 'healthy insulin resistance' and may exert beneficial effects on the regulation of glycolipid metabolism and central energy homeostasis. α-Klotho, mainly serum Klotho, has been revealed to be protective against CVDs, diabetes and its complications, obesity, and nonalcoholic fatty liver disease. Human recombinant Klotho protein/Klotho gene delivery, multiple drugs, or natural products, and exercise can increase α-Klotho expression. CONCLUSION Overall, α-Klotho has demonstrated its potential as a promising target for modulating energy metabolism and CMDs, and further research is needed to explore its utilization in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanbin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
12
|
Luthra NS, Christou DD, Clow A, Corcos DM. Targeting neuroendocrine abnormalities in Parkinson's disease with exercise. Front Neurosci 2023; 17:1228444. [PMID: 37746149 PMCID: PMC10514367 DOI: 10.3389/fnins.2023.1228444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent and complex age-related neurodegenerative condition for which there are no disease-modifying treatments currently available. The pathophysiological process underlying PD remains incompletely understood but increasing evidence points to multiple system dysfunction. Interestingly, the past decade has produced evidence that exercise not only reduces signs and symptoms of PD but is also potentially neuroprotective. Characterizing the mechanistic pathways that are triggered by exercise and lead to positive outcomes will improve understanding of how to counter disease progression and symptomatology. In this review, we highlight how exercise regulates the neuroendocrine system, whose primary role is to respond to stress, maintain homeostasis and improve resilience to aging. We focus on a group of hormones - cortisol, melatonin, insulin, klotho, and vitamin D - that have been shown to associate with various non-motor symptoms of PD, such as mood, cognition, and sleep/circadian rhythm disorder. These hormones may represent important biomarkers to track in clinical trials evaluating effects of exercise in PD with the aim of providing evidence that patients can exert some behavioral-induced control over their disease.
Collapse
Affiliation(s)
- Nijee S. Luthra
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Demetra D. Christou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Angela Clow
- Department of Psychology, School of Social Sciences, University of Westminster, London, United Kingdom
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, McCormick School of Engineering, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
Brown RL, Epel EE, Lin J, Dubal DB, Prather AA. Associations between klotho and telomere biology in high stress caregivers. Aging (Albany NY) 2023; 15:7381-7396. [PMID: 37580799 PMCID: PMC10457041 DOI: 10.18632/aging.204961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/06/2023] [Indexed: 08/16/2023]
Abstract
Aging biomarkers may be related to each other through direct co-regulation and/or through being regulated by common processes associated with chronological aging or stress. Klotho is an aging regulator that acts as a circulating hormone with critical involvement in regulating insulin signaling, phosphate homeostasis, oxidative stress, and age-related inflammatory functioning. Both klotho and telomere length are biomarkers of biological aging and decrease with age; however, the relationship between them is not well understood. Here we test the association between klotho levels and the telomere length of specific sorted immune cells among a healthy sample of mothers caregiving for a child with autism spectrum disorder (ASD; i.e., experiencing higher caregiving stress) or a child without ASD, covarying age and body mass index, in order to understand if high stress associated with caregiving for a child with an ASD may be involved in any association between these aging biomarkers. In 178 caregiving women (n = 90 high-stress mothers of children with ASD, n = 88 low-stress mothers of neurotypical children), we found that klotho levels were positively associated with telomere length in PBMCs (an effect driven by CD4+ and CD8+CD28- T cells) among high-stress mothers of children with an ASD but not among low-stress mothers of neurotypical children. There were no significant associations between klotho and telomerase activity in either group, across cell types assessed here. Our results suggest that klotho levels and telomere length may be associated through a coordinated downregulation of longevity factors occurring under higher stress caregiving conditions.
Collapse
Affiliation(s)
- Ryan L. Brown
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94107, USA
| | - Elissa E. Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94107, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94107, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute of Neurosciences, University of California, San Francisco, CA 94107, USA
| | - Aric A. Prather
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94107, USA
| |
Collapse
|
14
|
Elsurer Afsar R, Afsar B, Ikizler TA. Fibroblast Growth Factor 23 and Muscle Wasting: A Metabolic Point of View. Kidney Int Rep 2023; 8:1301-1314. [PMID: 37441473 PMCID: PMC10334408 DOI: 10.1016/j.ekir.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023] Open
Abstract
Protein energy wasting (PEW), mostly characterized by decreased body stores of protein and energy sources, particularly in the skeletal muscle compartment, is highly prevalent in patients with moderate to advanced chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is an endocrine hormone secreted from bone and has systemic actions on skeletal muscle. In CKD, FGF23 is elevated and its coreceptor α-klotho is suppressed. Multiple lines of evidence suggest that FGF23 is interconnected with various mechanisms of skeletal muscle wasting in CKD, including systemic and local inflammation, exaggerated oxidative stress, insulin resistance (IR), and abnormalities in adipocytokine metabolism. Investigation of metabolic actions of FGF23 on muscle tissue could provide new insights into metabolic and nutritional abnormalities observed in patients with CKD.
Collapse
Affiliation(s)
- Rengin Elsurer Afsar
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Nephrology, Suleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | - Baris Afsar
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Nephrology, Suleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | - Talat Alp Ikizler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt O’Brien Center for Kidney Disease, Nashville, Tennessee, USA
- Tennessee Valley Healthcare System, Nashville VA Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Luthra NS, Clow A, Corcos DM. The Interrelated Multifactorial Actions of Cortisol and Klotho: Potential Implications in the Pathogenesis of Parkinson's Disease. Brain Sci 2022; 12:1695. [PMID: 36552155 PMCID: PMC9775285 DOI: 10.3390/brainsci12121695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is complex, multilayered, and not fully understood, resulting in a lack of effective disease-modifying treatments for this prevalent neurodegenerative condition. Symptoms of PD are heterogenous, including motor impairment as well as non-motor symptoms such as depression, cognitive impairment, and circadian disruption. Aging and stress are important risk factors for PD, leading us to explore pathways that may either accelerate or protect against cellular aging and the detrimental effects of stress. Cortisol is a much-studied hormone that can disrupt mitochondrial function and increase oxidative stress and neuroinflammation, which are recognized as key underlying disease mechanisms in PD. The more recently discovered klotho protein, considered a general aging-suppressor, has a similarly wide range of actions but in the opposite direction to cortisol: promoting mitochondrial function while reducing oxidative stress and inflammation. Both hormones also converge on pathways of vitamin D metabolism and insulin resistance, also implicated to play a role in PD. Interestingly, aging, stress and PD associate with an increase in cortisol and decrease in klotho, while physical exercise and certain genetic variations lead to a decrease in cortisol response and increased klotho. Here, we review the interrelated opposite actions of cortisol and klotho in the pathogenesis of PD. Together they impact powerful and divergent mechanisms that may go on to influence PD-related symptoms. Better understanding of these hormones in PD would facilitate the design of effective interventions that can simultaneously impact the multiple systems involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Nijee S. Luthra
- Department of Neurology, University of California San Francisco, San Francisco, CA 94127, USA
| | - Angela Clow
- Department of Psychology, School of Social Sciences, University of Westminster, London W1B 2HW, UK
| | - Daniel M. Corcos
- Department of Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
16
|
Mironov N, Haque M, Atfi A, Razzaque MS. Phosphate Dysregulation and Metabolic Syndrome. Nutrients 2022; 14:4477. [PMID: 36364739 PMCID: PMC9658852 DOI: 10.3390/nu14214477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 10/05/2023] Open
Abstract
Phosphorus is one of the most abundant minerals in the human body. It is essential for almost all biochemical activities through ATP formation, intracellular signal transduction, cell membrane formation, bone mineralization, DNA and RNA synthesis, and inflammation modulation through various inflammatory cytokines. Phosphorus levels must be optimally regulated, as any deviations may lead to substantial derangements in glucose homeostasis. Clinical studies have reported that hyperphosphatemia can increase an individual's risk of developing metabolic syndrome. High phosphate burden has been shown to impair glucose metabolism by impairing pancreatic insulin secretion and increasing the risk of cardiometabolic disorders. Phosphate toxicity deserves more attention as metabolic syndrome is being seen more frequently worldwide and should be investigated further to determine the underlying mechanism of how phosphate burden may increase the cardiometabolic risk in the general population.
Collapse
Affiliation(s)
- Nikolay Mironov
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defense Health, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia
| | - Azeddine Atfi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| |
Collapse
|
17
|
Barutta F, Bellini S, Durazzo M, Gruden G. Novel Insight into the Mechanisms of the Bidirectional Relationship between Diabetes and Periodontitis. Biomedicines 2022; 10:biomedicines10010178. [PMID: 35052857 PMCID: PMC8774037 DOI: 10.3390/biomedicines10010178] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Periodontitis and diabetes are two major global health problems despite their prevalence being significantly underreported and underestimated. Both epidemiological and intervention studies show a bidirectional relationship between periodontitis and diabetes. The hypothesis of a potential causal link between the two diseases is corroborated by recent studies in experimental animals that identified mechanisms whereby periodontitis and diabetes can adversely affect each other. Herein, we will review clinical data on the existence of a two-way relationship between periodontitis and diabetes and discuss possible mechanistic interactions in both directions, focusing in particular on new data highlighting the importance of the host response. Moreover, we will address the hypothesis that trained immunity may represent the unifying mechanism explaining the intertwined association between diabetes and periodontitis. Achieving a better mechanistic insight on clustering of infectious, inflammatory, and metabolic diseases may provide new therapeutic options to reduce the risk of diabetes and diabetes-associated comorbidities.
Collapse
|
18
|
Association between Soluble α-Klotho Protein and Metabolic Syndrome in the Adult Population. Biomolecules 2022; 12:biom12010070. [PMID: 35053218 PMCID: PMC8773684 DOI: 10.3390/biom12010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Klotho protein is an anti-aging protein and plays multiple roles in ion-regulation, anti-oxidative stress, and energy metabolism through various pathways. Metabolic syndrome is a combination of multiple conditions that compose of multiple risk factors of cardiovascular disease and type 2 diabetes. Gene regulation and protein expression are discovered associated with metabolic syndrome. We aimed to figure out the correlation between Klotho protein and metabolic syndrome in generally healthy adults. A cross-sectional study of 9976 respondents ≥ 18 years old from the US National Health and Nutrition Examination Survey (2007-2012) by utilizing their soluble Klotho protein concentrations. Multivariate linear regression models were used to analyze the effect of soluble Klotho protein on the prevalence of metabolic syndrome. Soluble Klotho protein concentration was inversely correlated with the presence of metabolic syndromes (p = 0.013) and numbers of components that met the definition of metabolic syndrome (p < 0.05). The concentration of Soluble Klotho protein was negatively associated with abdominal obesity and high triglyceride (TG) in the adjusted model (p < 0.05). Soluble Klotho protein is correlated with changing metabolic syndrome components in adults, especially central obesity and high TG levels. Despite conventional function as co-factor with fibroblast growth factor-23 (FGF23) that regulates phosphate and vitamin D homeostasis, FGF23-independent soluble Klotho protein may act on multiple signal pathways in different organs and tissue in roles of anti-aging and protection from metabolic syndrome.
Collapse
|
19
|
Wang K, Mao Y, Lu M, Liu X, Sun Y, Li Z, Li Y, Ding Y, Zhang J, Hong J, Xu D. Association between serum Klotho levels and the prevalence of diabetes among adults in the United States. Front Endocrinol (Lausanne) 2022; 13:1005553. [PMID: 36440221 PMCID: PMC9681912 DOI: 10.3389/fendo.2022.1005553] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetes is a critical contributor to the pathogenesis of cardiovascular diseases. Klotho is an anti-aging protein with cardiovascular-renal protective effects. However, the relationship between serum Klotho levels and diabetes remains poorly understood. OBJECTIVES This study aimed to investigate the relationship between serum Klotho levels and diabetes in US adults. METHODS We analyzed the cross-sectional data obtained from 13751 subjects aged 40-79 years in the National Health and Nutrition Examination Survey (NHANES) (2007-2016). Serum Klotho concentration was measured using an enzyme-linked immunosorbent assay (ELISA) and categorized into four quartiles (Q1-Q4). Multivariate logistic regression and restricted cubic spline (RCS) regression were conducted to explore the association between serum Klotho levels and the prevalence of diabetes. RESULTS As compared with quartile 1, serum Klotho levels in quartiles 2-4 yielded odds ratios (OR) (95% CI) of diabetes of 0.96 (0.80-1.15), 0.98 (0.82-1.18), and 1.25 (1.04-1.50), respectively, after covariate adjustment (P for trend = 0.018). The results implied an increased risk of diabetes. The RCS plot showed a U-shaped relationship linking serum Klotho levels with diabetes (P for nonlinearity = 0.003). CONCLUSIONS In summary, a nonlinear and positive association was found between serum Klotho levels and the prevalence of diabetes. Further study is needed to verify the causality of this association and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Kai Wang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Miao Lu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianling Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Sun
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongming Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yansong Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinzhang Ding
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Hong
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Jian Hong, ; Di Xu,
| | - Di Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Jian Hong, ; Di Xu,
| |
Collapse
|
20
|
Olejnik A, Banaszkiewicz M, Krzywonos-Zawadzka A, Bil-Lula I. The Klotho protein supports redox balance and metabolic functions of cardiomyocytes during ischemia/reperfusion injury. Cardiol J 2021; 29:836-849. [PMID: 34967938 PMCID: PMC9550321 DOI: 10.5603/cj.a2021.0174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Acute heart ischemia followed by reperfusion leads to overproduction of reactive oxygen/ /nitrogen species (ROS/RNS), disrupted expression of nitric oxide synthase (NOS) and unbalanced glucose metabolism. Klotho is a membrane-bound or soluble protein that exerts protective activity in many organs. While Klotho is produced mainly in the kidneys and brain, it has been recently proven that Klotho is expressed in the cardiomyocytes as well. This study aimed to show the influence of the Klotho protein on oxidative/nitrosative stress and metabolic function of the cardiomyocytes subjected to ischemia/reperfusion (I/R) injury. METHODS Human cardiac myocytes underwent in vitro chemical I/R (with sodium cyanide and 2-deoxyglucose), in the presence or absence of the recombinant human Klotho protein. The present study included an investigation of cell injury markers, level of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), level of oxidative/nitrosative stress and metabolic processes of the cardiomyocytes. RESULTS Administration of Klotho protein resulted in mitigation of injury, decreased level of NOX2 and NOX4, reduced generation of ROS/RNS and hydrogen peroxide (H2O2), decreased expression of inducible NOS and limited production of nitrates/nitrites in cells under I/R. Glucose uptake and lactate production in the cardiomyocytes subjected to I/R were normalized after Klotho supplementation. CONCLUSIONS The Klotho protein participates in the regulation of redox balance and supports metabolic homeostasis of the cardiomyocytes and hence, contributes to protection against I/R injury.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Marta Banaszkiewicz
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Krzywonos-Zawadzka
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
21
|
Arbel Rubinstein T, Reuveni I, Hesin A, Klein-Goldberg A, Olauson H, Larsson TE, Abraham CR, Zeldich E, Bosch A, Chillón M, Hollander KS, Shabtay-Orbach A, Vainer GW, Wolf I, Rubinek T. A Transgenic Model Reveals the Role of Klotho in Pancreatic Cancer Development and Paves the Way for New Klotho-Based Therapy. Cancers (Basel) 2021; 13:cancers13246297. [PMID: 34944918 PMCID: PMC8699737 DOI: 10.3390/cancers13246297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary We aimed to study the role of the anti-aging protein klotho and its secreted isoform, sKL, in pancreatic cancer. Three in vivo models, including a novel genetic mouse model and bioinformatics analyses, indicated klotho as a tumor suppressor in pancreatic ductal adenocarcinoma, and unveiled a unique klotho DNA hypermethylation pattern in pancreatic tumors. These results possess significant prognostic value, and further suggest that sKL may serve as a therapeutic agent for pancreatic ductal adenocarcinoma. Abstract Klotho is an anti-aging transmembrane protein, which can be shed and can function as a hormone. Accumulating data indicate that klotho is a tumor suppressor in a wide array of malignancies, and designate the subdomain KL1 as the active region of the protein towards this activity. We aimed to study the role of klotho as a tumor suppressor in pancreatic ductal adenocarcinoma (PDAC). Bioinformatics analyses of The Cancer Genome Atlas (TCGA) datasets revealed a correlation between the survival of PDAC patients, levels of klotho expression, and DNA methylation, and demonstrated a unique hypermethylation pattern of klotho in pancreatic tumors. The in vivo effects of klotho and KL1 were examined using three mouse models. Employing a novel genetic model, combining pancreatic klotho knockdown with a mutation in Kras, the lack of klotho contributed to PDAC generation and decreased mousece survival. In a xenograft model, administration of viral particles carrying sKL, a spliced klotho isoform containing the KL1 domain, inhibited pancreatic tumors. Lastly, treatment with soluble sKL prolonged survival of Pdx1-Cre; KrasG12D/+;Trp53R172H/+ (KPC) mice, a model known to recapitulate human PDAC. In conclusion, this study provides evidence that klotho is a tumor suppressor in PDAC. Furthermore, these data suggest that the levels of klotho expression and DNA methylation could have prognostic value in PDAC patients, and that administration of exogenous sKL may serve as a novel therapeutic strategy to treat PDAC.
Collapse
Affiliation(s)
- Tammi Arbel Rubinstein
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (T.A.R.); (I.R.); (A.H.); (A.K.-G.); (K.S.H.); (A.S.-O.); (I.W.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Inbal Reuveni
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (T.A.R.); (I.R.); (A.H.); (A.K.-G.); (K.S.H.); (A.S.-O.); (I.W.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Arkadi Hesin
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (T.A.R.); (I.R.); (A.H.); (A.K.-G.); (K.S.H.); (A.S.-O.); (I.W.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anat Klein-Goldberg
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (T.A.R.); (I.R.); (A.H.); (A.K.-G.); (K.S.H.); (A.S.-O.); (I.W.)
| | - Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden; (H.O.); (T.E.L.)
| | - Tobias E. Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden; (H.O.); (T.E.L.)
- Department of Nephrology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Carmela R. Abraham
- Boston University School of Medicine, Department of Biochemistry, Boston, MA 02118, USA; (C.R.A.); (E.Z.)
- Pharmacology & Experimental Therapeutics, Boston, MA 02118, USA
- Klogenix Therapeutics Inc., Boston, MA 02116, USA; (A.B.); (M.C.)
| | - Ella Zeldich
- Boston University School of Medicine, Department of Biochemistry, Boston, MA 02118, USA; (C.R.A.); (E.Z.)
- Klogenix Therapeutics Inc., Boston, MA 02116, USA; (A.B.); (M.C.)
| | - Assumpció Bosch
- Klogenix Therapeutics Inc., Boston, MA 02116, USA; (A.B.); (M.C.)
- Institut de Neurociències, Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
- Unitat Mixta UAB-VHIR, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- CIBERNED, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Chillón
- Klogenix Therapeutics Inc., Boston, MA 02116, USA; (A.B.); (M.C.)
- Institut de Neurociències, Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
- Unitat Mixta UAB-VHIR, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- ICREA, Institut Catalan Recerca Avançada, 08010 Barcelona, Spain
| | - Kenneth Samuel Hollander
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (T.A.R.); (I.R.); (A.H.); (A.K.-G.); (K.S.H.); (A.S.-O.); (I.W.)
| | - Ayelet Shabtay-Orbach
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (T.A.R.); (I.R.); (A.H.); (A.K.-G.); (K.S.H.); (A.S.-O.); (I.W.)
| | - Gilad W. Vainer
- Pathology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel;
| | - Ido Wolf
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (T.A.R.); (I.R.); (A.H.); (A.K.-G.); (K.S.H.); (A.S.-O.); (I.W.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tami Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; (T.A.R.); (I.R.); (A.H.); (A.K.-G.); (K.S.H.); (A.S.-O.); (I.W.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-527466151
| |
Collapse
|
22
|
Nathanael J, Suardana P, Vianney YM, Dwi Putra SE. The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review. Chem Biol Drug Des 2021; 99:344-361. [PMID: 34862852 DOI: 10.1111/cbdd.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus type 2 (T2D) is one of the metabolic disorders suffered by a global human being. Certain factors, such as lifestyle and heredity, can increase a person's tendency for T2D. Various genes and proteins play a role in the development of insulin resistance and ultimately diabetes in which one central protein that is discussed in this review is FoxO1. In this review, we regard FoxO1 activation as detrimental, promote high plasma glucose level, and induce insulin resistance. Indeed, many contrasting studies arise since FoxO1 is an important protein to alleviate oxidative stress and promote cell survival, for example, also by preventing hyperglycemic-induced cell death. Inter-relation to PPARG, another important protein in metabolism, is also discussed. Ultimately, we discussed contrasting approaches of targeting FoxO1 to combat diabetes mellitus by small molecules.
Collapse
Affiliation(s)
- Joshua Nathanael
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Putu Suardana
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Yoanes Maria Vianney
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Sulistyo Emantoko Dwi Putra
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| |
Collapse
|
23
|
Landry T, Shookster D, Huang H. Circulating α-klotho regulates metabolism via distinct central and peripheral mechanisms. Metabolism 2021; 121:154819. [PMID: 34153302 PMCID: PMC8277751 DOI: 10.1016/j.metabol.2021.154819] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Emerging evidence implicates the circulating α-klotho protein as a prominent regulator of energy balance and substrate metabolism, with diverse, tissue-specific functions. Despite its well-documented ubiquitous role inhibiting insulin signaling, α-klotho elicits potent antidiabetic and anti-obesogenic effects. α-Klotho facilitates insulin release and promotes β cell health in the pancreas, stimulates lipid oxidation in liver and adipose tissue, attenuates hepatic gluconeogenesis, and increases whole-body energy expenditure. The mechanisms underlying α-klotho's peripheral functions are multifaceted, including hydrolyzing transient receptor potential channels, stimulating integrin β1➔focal adhesion kinase signaling, and activating PPARα via inhibition of insulin-like growth factor receptor 1. Moreover, until recently, potential metabolic roles of α-klotho in the central nervous system remained unexplored; however, a novel α-klotho➔fibroblast growth factor receptor➔PI3kinase signaling axis in the arcuate nucleus of the hypothalamus has been identified as a critical regulator of energy balance and glucose metabolism. Overall, the role of circulating α-klotho in the regulation of metabolism is a new focus of research, but accumulating evidence identifies this protein as an encouraging therapeutic target for Type 1 and 2 Diabetes and obesity. This review analyzes the new literature investigating α-klotho-mediated regulation of metabolism and proposes impactful future directions to progress our understanding of this complex metabolic protein.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Daniel Shookster
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
24
|
Lacerda-Abreu MA, Meyer-Fernandes JR. Extracellular Inorganic Phosphate-Induced Release of Reactive Oxygen Species: Roles in Physiological Processes and Disease Development. Int J Mol Sci 2021; 22:ijms22157768. [PMID: 34360534 PMCID: PMC8346167 DOI: 10.3390/ijms22157768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient for living organisms and is maintained in equilibrium in the range of 0.8-1.4 mM Pi. Pi is a source of organic constituents for DNA, RNA, and phospholipids and is essential for ATP formation mainly through energy metabolism or cellular signalling modulators. In mitochondria isolated from the brain, liver, and heart, Pi has been shown to induce mitochondrial reactive oxygen species (ROS) release. Therefore, the purpose of this review article was to gather relevant experimental records of the production of Pi-induced reactive species, mainly ROS, to examine their essential roles in physiological processes, such as the development of bone and cartilage and the development of diseases, such as cardiovascular disease, diabetes, muscle atrophy, and male reproductive system impairment. Interestingly, in the presence of different antioxidants or inhibitors of cytoplasmic and mitochondrial Pi transporters, Pi-induced ROS production can be reversed and may be a possible pharmacological target.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
- Correspondence: (M.A.L.-A.); (J.R.M.-F.); Tel.: +55-21-3938-6781 (M.A.L.-A. & J.R.M.-F.); Fax: +55-21-2270-8647 (M.A.L.-A. & J.R.M.-F.)
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
- Correspondence: (M.A.L.-A.); (J.R.M.-F.); Tel.: +55-21-3938-6781 (M.A.L.-A. & J.R.M.-F.); Fax: +55-21-2270-8647 (M.A.L.-A. & J.R.M.-F.)
| |
Collapse
|
25
|
Donate-Correa J, Martín-Núñez E, González-Luis A, Ferri CM, Luis-Rodríguez D, Tagua VG, Mora-Fernández C, Navarro-González JF. Pathophysiological Implications of Imbalances in Fibroblast Growth Factor 23 in the Development of Diabetes. J Clin Med 2021; 10:2583. [PMID: 34208131 PMCID: PMC8230948 DOI: 10.3390/jcm10122583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Observational studies have associated the increase in fibroblast growth factor (FGF) 23 levels, the main regulator of phosphate levels, with the onset of diabetes. These studies open the debate on the plausible existence of undescribed diabetogenic mechanisms derived from chronic supraphysiological levels of FGF23, a prevalent condition in chronic kidney disease (CKD) and end-stage renal disease (ESRD) patients. These maladaptive and diabetogenic responses to FGF23 may occur at different levels, including a direct effect on the pancreatic ß cells, and an indirect effect derived from the stimulation of the synthesis of pro-inflammatory factors. Both mechanisms could be mediated by the binding of FGF23 to noncanonical receptor complexes with the subsequent overactivation of signaling pathways that leads to harmful effects. The canonical binding of FGF23 to the receptor complex formed by the receptor FGFR1c and the coreceptor αKlotho activates Ras/MAPK/ERK signaling. However, supraphysiological concentrations of FGF23 favor non-αKlotho-dependent binding of this molecule to other FGFRs, which could generate an undesired overactivation of the PLCγ/CN/NFAT pathway, as observed in cardiomyocytes and hepatocytes. Moreover, the decrease in αKlotho expression may constitute a contributing factor to the appearance of these effects by promoting the nonspecific activation of the PLCγ/CN/NFAT to the detriment of the αKlotho-dependent Ras/MAPK/ERK pathway. The description of these mechanisms would allow the development of new therapeutic targets susceptible to be modified by dietary changes or by pharmacological intervention.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Carla M. Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Desirée Luis-Rodríguez
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
26
|
von Maltzahn J. Regulation of muscle stem cell function. VITAMINS AND HORMONES 2021; 116:295-311. [PMID: 33752822 DOI: 10.1016/bs.vh.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Regeneration of skeletal muscle is a finely tuned process which is depending on muscle stem cells, a population of stem cells in skeletal muscle which is also termed satellite cells. Muscle stem cells are a prerequisite for regeneration of skeletal muscle. Of note, the muscle stem cell population is heterogeneous and subpopulations can be identified depending on gene expression or phenotypic traits. However, all muscle stem cells express the transcription factor Pax7 and their functionality is tightly controlled by intrinsic signaling pathways and extrinsic signals. The latter ones include signals form the stem cell niche as well as circulating factors such as growth factors and hormones. Among them are Wnt proteins, growth factors like IGF-1 or FGF-2 and hormones such as thyroid hormones and the anti-aging hormone Klotho. A highly orchestrated interplay between those factors and muscle stem cells is important for their full functionality and ultimately regeneration of skeletal muscle as outlined here.
Collapse
|
27
|
Haussler MR, Livingston S, Sabir ZL, Haussler CA, Jurutka PW. Vitamin D Receptor Mediates a Myriad of Biological Actions Dependent on Its 1,25-Dihydroxyvitamin D Ligand: Distinct Regulatory Themes Revealed by Induction of Klotho and Fibroblast Growth Factor-23. JBMR Plus 2021; 5:e10432. [PMID: 33553988 PMCID: PMC7839824 DOI: 10.1002/jbm4.10432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
The hormonal vitamin D metabolite, 1,25‐dihydroxyvitamin D [1,25(OH)2D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand‐controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D‐regulated genes. Circulating 1,25(OH)2D concentrations are governed by PTH, an inducer of renal D‐hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor‐23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop. 1,25(OH)2D/VDR–RXR acts in kidney to induce Klotho (a phosphaturic coreceptor for FGF23) to correct hyperphosphatemia, NPT2a/c to correct hypophosphatemia, and TRPV5 and CaBP28k to enhance calcium reabsorption. 1,25(OH)2D‐liganded VDR–RXR functions in osteoblasts/osteocytes by augmenting RANK‐ligand expression to paracrine signal osteoclastic bone resorption, while simultaneously inducing FGF23, SPP1, BGLP, LRP5, ANK1, ENPP1, and TNAP, and conversely repressing RUNX2 and PHEX expression, effecting localized control of mineralization to sculpt the skeleton. Herein, we document the history of 1,25(OH)2D/VDR and summarize recent advances in characterizing their physiology, biochemistry, and mechanism of action by highlighting two examples of 1,25(OH)2D/VDR molecular function. The first is VDR‐mediated primary induction of Klotho mRNA by 1,25(OH)2D in kidney via a mechanism initiated by the docking of liganded VDR–RXR on a VDRE at −35 kb in the mouse Klotho gene. In contrast, the secondary induction of FGF23 by 1,25(OH)2D in bone is proposed to involve rapid nongenomic action of 1,25(OH)2D/VDR to acutely activate PI3K, in turn signaling the induction of MZF1, a transcription factor that, in cooperation with c‐ets1‐P, binds to an enhancer element centered at −263 bp in the promoter‐proximal region of the mouse fgf23 gene. Chronically, 1,25(OH)2D‐induced osteopontin apparently potentiates MZF1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Sarah Livingston
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Zhela L Sabir
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Carol A Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Peter W Jurutka
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ.,School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| |
Collapse
|
28
|
Russell DL, Oates JC, Markiewicz M. Association Between the Anti-Aging Gene Klotho and Selected Rheumatologic Autoimmune Diseases. Am J Med Sci 2021; 361:169-175. [PMID: 33349438 PMCID: PMC9741923 DOI: 10.1016/j.amjms.2020.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/25/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Klotho long recognized for its role in anti-aging, is potentially implicated in the pathogenesis of rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis. Aging of the immune system coincides with the inability of the body to recognize self-antigens, which often leads to autoimmune responses. The role of Klotho in these autoimmune diseases should be of high interest; however, few articles have been published exploring the role of Klotho in the pathogenesis, organ involvement, or clinical manifestation of rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis. Herein, we discuss information gathered from peer-reviewed publications to describe the emerging role of Kl in these select rheumatologic autoimmune diseases.
Collapse
Affiliation(s)
| | - Jim C Oates
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina;,Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Margaret Markiewicz
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
29
|
Could α-Klotho Unlock the Key Between Depression and Dementia in the Elderly: from Animal to Human Studies. Mol Neurobiol 2021; 58:2874-2885. [PMID: 33527303 DOI: 10.1007/s12035-021-02313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
α-Klotho is known for its aging-related functions and is associated with neurodegenerative diseases, accelerated aging, premature morbidity, and mortality. Recent literature suggests that α-Klotho is also involved in the regulation of mental functions, such as cognition and psychosis. While most of studies of α-Klotho are focusing on its anti-aging functions and protective role in dementia, increasing evidence showed many shared symptoms between depression and dementia, while depression has been proposed as the preclinical stage of dementia such as Alzheimer's disease (AD). To see whether and how α-Klotho can be a key biological link between depression and dementia, in this review, we first gathered the evidence on biological distribution and function of α-Klotho in psychiatric functions from animal studies to human clinical investigations with a focus on the regulation of cognition and mood. Then, we discussed and highlighted the potential common underlying mechanisms of α-Klotho between psychiatric diseases and cognitive impairment. Finally, we hypothesized that α-Klotho might serve as a neurobiological link between depression and dementia through the regulation of oxidative stress and inflammation.
Collapse
|
30
|
Dias GP, Murphy T, Stangl D, Ahmet S, Morisse B, Nix A, Aimone LJ, Aimone JB, Kuro-O M, Gage FH, Thuret S. Intermittent fasting enhances long-term memory consolidation, adult hippocampal neurogenesis, and expression of longevity gene Klotho. Mol Psychiatry 2021; 26:6365-6379. [PMID: 34031536 PMCID: PMC8760057 DOI: 10.1038/s41380-021-01102-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
Daily calorie restriction (CR) and intermittent fasting (IF) enhance longevity and cognition but the effects and mechanisms that differentiate these two paradigms are unknown. We examined whether IF in the form of every-other-day feeding enhances cognition and adult hippocampal neurogenesis (AHN) when compared to a matched 10% daily CR intake and ad libitum conditions. After 3 months under IF, female C57BL6 mice exhibited improved long-term memory retention. IF increased the number of BrdU-labeled cells and neuroblasts in the hippocampus, and microarray analysis revealed that the longevity gene Klotho (Kl) was upregulated in the hippocampus by IF only. Furthermore, we found that downregulating Kl in human hippocampal progenitor cells led to decreased neurogenesis, whereas Kl overexpression increased neurogenesis. Finally, histological analysis of Kl knockout mice brains revealed that Kl is required for AHN, particularly in the dorsal hippocampus. These data suggest that IF is superior to 10% CR in enhancing memory and identifies Kl as a novel candidate molecule that regulates the effects of IF on cognition likely via AHN enhancement.
Collapse
Affiliation(s)
- Gisele Pereira Dias
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Tytus Murphy
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Doris Stangl
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Selda Ahmet
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Benjamin Morisse
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Alina Nix
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Lindsey J. Aimone
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA USA
| | - James B. Aimone
- grid.474520.00000000121519272Center for Computing Research, Sandia National Laboratories, Albuquerque, NM USA
| | - Makoto Kuro-O
- grid.410804.90000000123090000Division of Anti-Ageing Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Fred H. Gage
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA USA
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
31
|
Shardell M, Drew DA, Semba RD, Harris TB, Cawthon PM, Simonsick EM, Kalyani RR, Schwartz AV, Kritchevsky SB, Newman AB. Plasma Soluble αKlotho, Serum Fibroblast Growth Factor 23, and Mobility Disability in Community-Dwelling Older Adults. J Endocr Soc 2020; 4:bvz032. [PMID: 32405607 PMCID: PMC7209777 DOI: 10.1210/jendso/bvz032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
CONTEXT αKlotho is a hormone and co-receptor for fibroblast growth factor 23 (FGF23), a hormone that downregulates active vitamin D synthesis and promotes phosphate excretion. Low αKlotho and high FGF23 occur in chronic kidney disease (CKD). OBJECTIVE We aimed to assess the relationships of αKlotho and FGF23 with mobility disability in community-dwelling older adults. DESIGN AND SETTING We estimated associations of plasma-soluble αKlotho and serum FGF23 concentrations with mobility disability over 6 years. Additional analyses was stratified by CKD. PARTICIPANTS Participants included 2751 adults (25.0% with CKD), aged 71 to 80 years, from the 1998 to 1999 Health, Aging, and Body Composition Study visit. MAIN OUTCOME MEASURES Walking disability and stair climb disability were defined as self-reported "a lot of difficulty" or an inability to walk a quarter mile and climb 10 stairs, respectively. RESULTS Median (interquartile range [IQR]) serum FGF23 and plasma soluble αKlotho concentrations were 46.6 (36.7, 60.2) pg/mL and 630.4 (478.4, 816.0) pg/mL, respectively. After adjustment, higher αKlotho concentrations were associated with lower walking disability rates (Rate Ratio [RR] highest vs. lowest tertile = 0.74; 95% confidence interval l [CI] = 0.62, 0.89; P = 0.003). Higher FGF23 concentrations were associated with higher walking disability rates (RR highest vs. lowest tertile = 1.24; 95%CI = 1.03, 1.50; P = 0.005). Overall, higher αKlotho combined with lower FGF23 was associated with the lowest walking disability rates (P for interaction = 0.023). Stair climb disability findings were inconsistent. No interactions with CKD were statistically significant (P for interaction > 0.10). CONCLUSIONS Higher plasma soluble αKlotho and lower serum FGF23 concentrations were associated with lower walking disability rates in community-dwelling older adults, particularly those without CKD.
Collapse
Affiliation(s)
- Michelle Shardell
- Institute for Genome Sciences, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - David A Drew
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Richard D Semba
- Department of Ophthalmology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Science, National Institute on Aging Intramural Research Program, Bethesda, Maryland
| | - Peggy M Cawthon
- Research Institute, California Pacific Medical Center, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Eleanor M Simonsick
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, Baltimore, Maryland
| | - Rita R Kalyani
- Department of Endocrinology, Metabolism, and Diabetes, Johns Hopkins Medical Institutions, Baltimore Maryland
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University, Winston-Salem, North Carolina
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Sedighi M, Baluchnejadmojarad T, Fallah S, Moradi N, Afshin-Majd S, Roghani M. The Association Between Circulating Klotho and Dipeptidyl Peptidase-4 Activity and Inflammatory Cytokines in Elderly Patients With Alzheimer Disease. Basic Clin Neurosci 2020; 11:349-357. [PMID: 32963727 PMCID: PMC7502192 DOI: 10.32598/bcn.11.2.1747.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction: Klotho and Dipeptidyl Peptidase-4 (DPP4) are two proteins that modulate inflammatory pathways. We investigated the association between circulating klotho and DPP4 activity and their relationship with inflammatory cytokines, miR-29a, and miR-195 in Alzheimer Disease (AD). Methods: This study was conducted on 16 AD patients and 16 healthy age-matched controls. Plasma levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β, interleukin-6 (IL-6), klotho, and DPP4 were measured by enzyme-linked immunosorbent assay. Plasma expression of miR-29a and miR-195 were also measured and compared by a real-time polymerase chain reaction. Results: There was a significant increase in TNF-α (p=0.006), IL-1β (p=0.012), and IL-6 (p=0.012) levels in the AD subjects compared with controls. Also, we found a decrease in plasma levels of klotho and an increase in plasma levels of DPP4 in the AD group that was not significant compared with the controls. Lower expression of miR-29a (P=0.009) and higher expression of miR-195 (P=0.003) were observed in the AD group that was significant than controls. Further analysis showed a negative correlation between klotho and plasma levels of IL-6 (r=−0.58, p=0.01). Also, there was a positive correlation between plasma DPP4 activity and TNF-α levels (r=0.50, P=0.04) and IL-1β (r=0.62, P=0.01). Likewise, plasma klotho concentration showed a negative correlation with the age of AD subjects (r=−0.56, P=0.02). Conclusion: TNF-α, IL-1β, and IL-6 are involved in AD pathophysiology, and dysregulation of DPP4 and klotho may be associated with the inflammatory response of AD. Down-regulation of miR-29a and up-regulation of miR-195 indicated the role of miRNAs in the AD process.
Collapse
Affiliation(s)
- Mohsen Sedighi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tourandokht Baluchnejadmojarad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nariman Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Siamak Afshin-Majd
- Neurophysiology Research Center, Shahed University, Tehran, Iran.,Department of Neurology, School of Medicine, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
33
|
Cheikhi A, Barchowsky A, Sahu A, Shinde SN, Pius A, Clemens ZJ, Li H, Kennedy CA, Hoeck JD, Franti M, Ambrosio F. Klotho: An Elephant in Aging Research. J Gerontol A Biol Sci Med Sci 2020; 74:1031-1042. [PMID: 30843026 DOI: 10.1093/gerona/glz061] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
The year 2017 marked the 20th anniversary of the first publication describing Klotho. This single protein was and is remarkable in that its absence in mice conferred an accelerated aging, or progeroid, phenotype with a dramatically shortened life span. On the other hand, genetic overexpression extended both health span and life span by an impressive 30%. Not only has Klotho deficiency been linked to a number of debilitating age-related illnesses but many subsequent reports have lent credence to the idea that Klotho can compress the period of morbidity and extend the life span of both model organisms and humans. This suggests that Klotho functions as an integrator of organ systems, making it both a promising tool for advancing our understanding of the biology of aging and an intriguing target for interventional studies. In this review, we highlight advances in our understanding of Klotho as well as key challenges that have somewhat limited our view, and thus translational potential, of this potent protein.
Collapse
Affiliation(s)
- Amin Cheikhi
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh.,Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh.,Department of Pharmacology and Chemical Biology, University of Pittsburgh
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh.,Department of Environmental and Occupational Health, University of Pittsburgh
| | - Sunita N Shinde
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Abish Pius
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Zachary J Clemens
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Hua Li
- Department of Biotherapeutics Discovery, Research Division, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Charles A Kennedy
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Joerg D Hoeck
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Michael Franti
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh.,Department of Environmental and Occupational Health, University of Pittsburgh.,Department of Bioengineering, University of Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Brown RB. Diabetes, Diabetic Complications, and Phosphate Toxicity: A Scoping Review. Curr Diabetes Rev 2020; 16:674-689. [PMID: 31686640 DOI: 10.2174/1573399815666191104113236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
This article presents a scoping review and synthesis of research findings investigating the toxic cellular accumulation of dysregulated inorganic phosphate-phosphate toxicity-as a pathophysiological determinant of diabetes and diabetic complications. Phosphorus, an essential micronutrient, is closely linked to the cellular metabolism of glucose for energy production, and serum inorganic phosphate is often transported into cells along with glucose during insulin therapy. Mitochondrial dysfunction and apoptosis, endoplasmic reticulum stress, neuronal degeneration, and pancreatic cancer are associated with dysregulated levels of phosphate in diabetes. Ectopic calcification involving deposition of calcium-phosphate crystals is prevalent throughout diabetic complications, including vascular calcification, nephropathy, retinopathy, and bone disorders. A low-glycemic, low-phosphate dietary intervention is proposed for further investigations in the treatment and prevention of diabetes and related diabetic pathologies.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
35
|
Rao Z, Zheng L, Huang H, Feng Y, Shi R. α-Klotho Expression in Mouse Tissues Following Acute Exhaustive Exercise. Front Physiol 2019; 10:1498. [PMID: 31920703 PMCID: PMC6919267 DOI: 10.3389/fphys.2019.01498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
α-Klotho, a multifunctional protein, has been demonstrated to protect tissues from injury via anti-oxidation and anti-inflammatory effects. The expression of α-klotho is regulated by several physiological and pathological factors, including acute inflammatory stress, oxidative stress, hypertension, and chronic renal failure. Exhaustive exercise has been reported to result in tissue damage, which is induced by inflammation, oxidative stress, and energy metabolism disturbance. However, little is known about the effects of exhaustive exercise on the expression of α-klotho in various tissues. To determine the effects, the treadmill exhaustion test in mice was performed and the mice were sacrificed at different time points following exhaustive exercise. Our results confirmed that the full-length (130 kDa) and shorter-form (65 kDa) α-klotho were primarily expressed in the kidneys. Moreover, we found that, except for the kidneys and brain, other tissues primarily expressed the shorter-form α-klotho, including liver, which was in contrast to previous reports. Furthermore, the shorter-form α-klotho was decreased immediately following the acute exhaustive exercise and was then restored to the pre-exercise level or even higher levels in the next few days. Our results indicate that α-klotho may play a key role in the body exhaustion and recovery following exhaustive exercise.
Collapse
Affiliation(s)
- Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Department of Kinesiology and Physiology, East Carolina University, Greenville, NC, United States
| | - Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu Huang
- Department of Kinesiology and Physiology, East Carolina University, Greenville, NC, United States
| | - Yu Feng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Rengfei Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
36
|
Hasannejad M, Samsamshariat SZ, Esmaili A, Jahanian-Najafabadi A. Klotho induces insulin resistance possibly through interference with GLUT4 translocation and activation of Akt, GSK3β, and PFKfβ3 in 3T3-L1 adipocyte cells. Res Pharm Sci 2019; 14:369-377. [PMID: 31516514 PMCID: PMC6714116 DOI: 10.4103/1735-5362.263627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Klotho is considered as an anti-aging factor inducing insulin resistance and involved in type 2 diabetes. However, mechanisms by which klotho induces insulin resistance remain to be understood. Thus, in this study, we aimed to evaluate possible interference points of klotho with insulin signaling pathways in 3T3-L1 adipocyte cells by focusing on phosphorylation levels of Akt, GSK3β, PFK-fβ3, and GLUT4 translocation. Differentiation of 3T3-L1 cells to the adipocyte-like cells were performed using specific differentiation kit and confirmed by mRNA expression assay of PPARγ using qRT-PCR, and Sudan black staining of lipid droplets. Then cells were co-treated with klotho and insulin. Expression and translocation of GLUT4 mRNA were evaluated using qRT-PCR and Alexa flour 488 conjugated GLUT4 antibody, respectively. P-Akt/Akt, p-GSK3β/GSK3β, and p-PFKfβ3/PFKfβ3 ratios were determined in insulin and klotho/insulin treated cells using western blot. Our result indicated that GLUT4 expression were decreased to 0.72 ± 0.16 fold in insulin treated cells, however it was calculated 1.12 ± 0.25 fold in klotho/insulin treated cells. In addition, klotho prevented GLUT4 membrane translocation by 27.2% in comparison with insulin-treated cells (P < 0.05). Interestingly, in insulin/klotho co-treated cells, phospho-levels of Akt, GSK3β, and PFKfβ3 proteins was decreased to 2.34 ± 0.14, 2.29 ± 0.63, and 1.95 ± 0.37 fold in comparison with the insulin cells, (P < 0.05). In conclusion, our study indicated that klotho induces insulin resistance in adipocytes possibly through prevention of GLUT4 translocation, and interfere with phosphorylation of Akt, GSK3β, and PFKf3β intracellular signaling mediators by insulin.
Collapse
Affiliation(s)
- Mohamad Hasannejad
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Seyed Ziaaldin Samsamshariat
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Armita Esmaili
- Department of Pathology, Mehrgan hospital, Kerman University of Medical Sciences and Health services, Kerman, I.R. Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
37
|
Neyra JA, Moe OW, Pastor J, Gianella F, Sidhu SS, Sarnak MJ, Ix JH, Drew DA. Performance of soluble Klotho assays in clinical samples of kidney disease. Clin Kidney J 2019; 13:235-244. [PMID: 32297879 PMCID: PMC7147321 DOI: 10.1093/ckj/sfz085] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background Soluble Klotho has multiple systemic salutary effects. In animals, both acute and chronic kidney disease models display systemic Klotho deficiency. As such, there is considerable interest in investigating soluble Klotho as a biomarker in patients with different types and severity of kidney diseases. Unfortunately, there remains uncertainty regarding the best method to measure soluble Klotho in human serum samples. Methods Using human serum samples obtained from several clinical cohorts with a wide range of kidney function, we measured soluble Klotho using a commercial enzyme-linked immunosorbent assay (ELISA) as well as with an immunoprecipitation-immunoblot (IP-IB) assay utilizing a synthetic antibody with high affinity and specificity for Klotho. Recovery of spiking with a known amount of exogenous Klotho was tested. A subset of samples was analyzed with and without the addition of a protease inhibitor cocktail at the time of collection or after the first freeze-thaw cycle to determine if these maneuvers influenced performance. Results The IP-IB assay was superior to the ELISA at recovery of exogenous Klotho (81-115% versus 60-81%) across the spectrum of kidney function. Klotho measurements by IP-IB were highly correlated with estimated glomerular filtration rate (eGFR) (R = 0.80, P < 0.001) in comparison with the commercial ELISA, which exhibited minimal correlation with eGFR (R = 0.18, P = 0.12). Use of a protease inhibitor cocktail neither improved nor impaired performance of the IP-IB assay; however, subsequent freeze-thaw cycle resulted in a significant reduction in Klotho recovery and dissipated the correlation between Klotho levels and eGFR. With the ELISA, the use of protease inhibitor cocktail resulted in an increase in intrasubject variability. Conclusions The IP-IB assay is preferable to the commercial ELISA to measure soluble Klotho concentrations in never-thawed serum samples of humans with varying severity of kidney disease. However, due to the labor-intensive nature of the IP-IB assay, further research is needed to secure an assay suitable for high-throughput work.
Collapse
Affiliation(s)
- Javier A Neyra
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA.,Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Johanne Pastor
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fabiola Gianella
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Mark J Sarnak
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - David A Drew
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
38
|
Olejnik A, Franczak A, Krzywonos-Zawadzka A, Kałużna-Oleksy M, Bil-Lula I. The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5171945. [PMID: 30671457 PMCID: PMC6323445 DOI: 10.1155/2018/5171945] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022]
Abstract
Klotho is a membrane-bound or soluble antiaging protein, whose protective activity is essential for a proper function of many organs. In 1997, an accidental insertion of a transgene led to creation of transgenic mice with several age-related disorders. In Klotho-deficient mice, the inherited phenotypes closely resemble human aging, while in an animal model of Klotho overexpression, the lifespan is extended. Klotho protein is detected mainly in the kidneys and brain. It is a coreceptor for fibroblast growth factor and hence is involved in maintaining endocrine system homeostasis. Furthermore, an inhibition of insulin/insulin-like growth factor-1 signaling pathway by Klotho regulates oxidative stress and reduces cell death. The association between serum Klotho and the classic risk factors, as well as the clinical history of cardiovascular disease, was also shown. There are a lot of evidences that Klotho deficiency correlates with the occurrence and development of coronary artery disease, atherosclerosis, myocardial infarction, and left ventricular hypertrophy. Therefore, an involvement of Klotho in the signaling pathways and in regulation of a proper cell metabolism could be a crucial factor in the cardiac and vascular protection. It is also well established that Klotho protein enhances the antioxidative response via augmented production of superoxide dismutase and reduced generation of reactive oxygen species. Recent studies have proven an expression of Klotho in cardiomyocytes and its increased expression in stress-related heart injury. Thus, the antioxidative and antiapoptotic activity of Klotho could be considered as the novel protective factor in cardiovascular disease and heart injury.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Aleksandra Franczak
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Krzywonos-Zawadzka
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marta Kałużna-Oleksy
- Department of Cardiology, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
39
|
Zhang L, Liu T. Clinical implication of alterations in serum Klotho levels in patients with type 2 diabetes mellitus and its associated complications. J Diabetes Complications 2018; 32:922-930. [PMID: 30042059 DOI: 10.1016/j.jdiacomp.2018.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 02/05/2023]
Abstract
AIM To investigate the clinical significance of serum α-Klotho and β-Klotho levels in patients with type 2 diabetes mellitus (T2DM) and its associated complications. METHODS Serum α-Klotho and β-Klotho levels were measured using an ELISA kit in 817 individuals, including 127 with T2DM, 106 with diabetic nephropathy, 99 with diabetic retinopathy, 108 with diabetic neuropathy, 102 with diabetic foot disease, 135 with T2DM and more than one complication and 140 healthy controls. RESULTS Both α-Klotho and β-Klotho levels were significantly decreased in the T2DM group and the groups with associated complications compared with the levels in control group. The differences between the T2DM group and the T2DM with complications groups were not significant, except between the diabetic nephropathy group and the other diabetic complications groups. In addition, α-Klotho and β-Klotho levels were negatively correlated with serum fructosamine and HbA1c but were not associated with serum glucose in the model including all participants. Moreover, decreases in α-Klotho and β-Klotho levels in the high glucose-exposed cell culture model, which was dependent on glucose exposure time, were confirmed. CONCLUSIONS Levels of α-Klotho and β-Klotho were downregulated in patients in the T2DM and complications groups. Our findings indicate that serum Klotho levels were associated with the development of T2DM, and long-term control of blood glucose will be beneficial in ameliorating changes to α-Klotho and β-Klotho levels in patients with T2DM and complications.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Tianming Liu
- Department of Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| |
Collapse
|
40
|
Ahrens HE, Huettemeister J, Schmidt M, Kaether C, von Maltzahn J. Klotho expression is a prerequisite for proper muscle stem cell function and regeneration of skeletal muscle. Skelet Muscle 2018; 8:20. [PMID: 29973273 PMCID: PMC6030782 DOI: 10.1186/s13395-018-0166-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/21/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Klotho is a well-known anti-aging hormone, which serves as a suppressor of aging through a variety of mechanisms. Aging of skeletal muscle is concomitant with a decrease in muscle stem cell function resulting in impaired regeneration. METHODS Here we investigate the functional role of the anti-aging hormone Klotho for muscle stem cell function after cardiotoxin-induced injury of skeletal muscle using a klotho hypomorphic mouse line, which is characterized by a premature aging phenotype. Furthermore, we perform floating single myofiber cultures with their adjacent muscle stem cells to investigate the interplay between canonical Wnt signaling and Klotho function. RESULTS We demonstrate that muscle stem cell numbers are significantly decreased in klotho hypomorphic mice. Furthermore, we show that muscle stem cell function is also severely impaired upon loss of klotho expression, in culture and during regeneration in vivo. Moreover, we demonstrate that addition of recombinant Klotho protein inhibits aberrant excessive Wnt signaling in aged muscle stem cells thereby restoring their functionality. CONCLUSIONS The anti-aging hormone Klotho counteracts aberrant canonical Wnt signaling in muscle stem cells and might be one of the naturally occurring inhibitors of canonical Wnt signaling in skeletal muscle.
Collapse
Affiliation(s)
- Hellen E Ahrens
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Judith Huettemeister
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745, Jena, Germany.,Present address: Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manuel Schmidt
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christoph Kaether
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Julia von Maltzahn
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
| |
Collapse
|
41
|
Pako J, Bikov A, Barta I, Matsueda H, Puskas R, Galffy G, Kerpel-Fronius A, Antus B, Horvath I. Assessment of the circulating klotho protein in lung cancer patients. Pathol Oncol Res 2018; 26:233-238. [PMID: 29948618 DOI: 10.1007/s12253-018-0441-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/30/2018] [Indexed: 12/26/2022]
Abstract
The anti-aging factor, klotho has been identified as a tumor suppressor in various human cancers, including lung cancer. In vitro studies provided evidence that klotho expression influences the characteristics of lung cancer cells, however, in vivo results are lacking. The aim of our study was to evaluate whether circulating klotho protein might serve as a potential biomarker of lung cancer. Blood samples were taken from 45 newly diagnosed lung cancer patients (31 NSCLC, 14 SCLC) and 43 control subjects. Plasma klotho concentration was measured using ELISA. No difference in plasma klotho values was detected between patients and control subjects (366.3 (257.9-486.8) vs. 383.5 (304.6-489.7) pg/ml respectively (median (IQR)); p > 0.05). Plasma klotho levels in patients with distant metastasis did not differ from less advanced stage disease (354.2 (306.9-433.3 vs. 328.5 (242.5-419.7) pg/ml, p > 0.05). In contrast, analyzed with one-way ANOVA, significant difference (p = 0.04) was found between the examined histological types of lung cancer: adenocarcinoma (353 (329.4-438.5) pg/ml), squamous cell carcinoma (308 (209.6-348.1) pg/ml) and small cell lung cancer (388.8 (289.9-495.4) pg/ml). However, Tukey's post hoc test did not reveal significant difference between any pairs of histological groups. There was no difference between any histological subtype and health either. Our results suggest that circulating klotho protein cannot be considered as a biomarker for lung cancer. Further studies are warranted in order to examine the relationship between klotho expression in lung tissue and circulating levels of the protein, and to explore its mechanism of action in lung cancer.
Collapse
Affiliation(s)
- Judit Pako
- National Koranyi Institute of Pulmonology, Piheno ut 1, Budapest, 1121, Hungary.
| | - Andras Bikov
- Department of Pulmonology, Semmelweis University, Dios arok utca 1/c, Budapest, 1125, Hungary
| | - Imre Barta
- National Koranyi Institute of Pulmonology, Piheno ut 1, Budapest, 1121, Hungary
| | - Hideyo Matsueda
- Saitama Medical University Medical Center, 1981 Kamoda, Kawagoe-shi, Saitama, Japan
| | - Rita Puskas
- Department of Pulmonology, Semmelweis University, Dios arok utca 1/c, Budapest, 1125, Hungary
| | - Gabriella Galffy
- Department of Pulmonology, Semmelweis University, Dios arok utca 1/c, Budapest, 1125, Hungary
| | - Anna Kerpel-Fronius
- National Koranyi Institute of Pulmonology, Piheno ut 1, Budapest, 1121, Hungary
| | - Balazs Antus
- National Koranyi Institute of Pulmonology, Piheno ut 1, Budapest, 1121, Hungary
| | - Ildiko Horvath
- National Koranyi Institute of Pulmonology, Piheno ut 1, Budapest, 1121, Hungary
| |
Collapse
|
42
|
Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J Nutr Biochem 2018; 58:90-101. [PMID: 29886193 DOI: 10.1016/j.jnutbio.2018.04.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/22/2018] [Accepted: 04/22/2018] [Indexed: 12/19/2022]
Abstract
Obesity-associated insulin resistance (IR) is a major risk factor for developing type 2 diabetes and an array of other metabolic disorders. In particular, hepatic IR contributes to the increase in hepatic glucose production and consequently the development of fasting hyperglycemia. In this study, we explored whether kaempferol, a flavonoid isolated from Gink go biloba, is able to regulate hepatic gluconeogenesis and blood glucose homeostasis in high-fat diet-fed obese mice and further explored the underlying mechanism by which it elicits such effects. Oral administration of kaempferol (50 mg/kg/day), which is the human equivalent dose of 240 mg/day for an average 60 kg human, significantly improved blood glucose control in obese mice, which was associated with reduced hepatic glucose production and improved whole-body insulin sensitivity without altering body weight gain, food consumption or adiposity. In addition, kaempferol treatment increased Akt and hexokinase activity, but decreased pyruvate carboxylase (PC) and glucose-6 phosphatase activity in the liver without altering their protein expression. Consistently, kaempferol decreased PC activity and suppressed gluconeogenesis in HepG2 cells as well as primary hepatocytes isolated from the livers of obese mice. Furthermore, we found that kaempferol is a direct inhibitor of PC. These findings suggest that kaempferol may be a naturally occurring antidiabetic compound that acts by suppressing glucose production and improving insulin sensitivity. Kaempferol suppression of hepatic gluconeogenesis is due to its direct inhibitory action on the enzymatic activity of PC.
Collapse
|
43
|
Chen B, Liang Y, Chen L, Wei Y, Li Y, Zhao W, Wu J. Overexpression of Klotho Inhibits HELF Fibroblasts SASP-related Protumoral Effects on Non-small Cell Lung Cancer Cells. J Cancer 2018; 9:1248-1258. [PMID: 29675106 PMCID: PMC5907673 DOI: 10.7150/jca.23967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Lung cancer (LC) is the most common cause of death from cancer worldwide, and it is also a closely aging-related disease. Klotho, a new anti-aging gene, has been proven to play a critical role in regulating aging and the development of age-related diseases including LC. However, whether Klotho is a key link between aging and LC is still unknown. Here we report that Klotho can indirectly inhibit LC growth and development through regulating senescence-associated secretory phenotype (SASP). We found that senescent lung fibroblasts (SLF) can promote production of IL-6 and IL-8, which can be effectively inhibited by overexpressing Klotho. Using conditioned medium (CM) derived from SLF to culture LC cells, the LC cells show obvious increase of viability and migration rates, significant increase expression of p-STAT3 and α-SMA, and decrease expression of P53 and E-cadherin. However, using CM derived from SLF overexpressed Klotho to culture LC cells, all above results are nearly completely reversed. Thus, these results suggest that Klotho can regulate SLF extracellular release of IL-6 and IL-8, which can influence STAT3 activation, P53 expression and epithelial-mesenchymal transition (EMT) of LC cells, finally inhibiting LC cells growth and migration indirectly.
Collapse
Affiliation(s)
- Bo Chen
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yan Liang
- Department of General Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218, USA
| | - Yunyan Wei
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yue Li
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Weihong Zhao
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jianqing Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
44
|
Hasegawa Y, Hayashi K, Takemoto Y, Cheng C, Takane K, Lin B, Komohara Y, Kim-Mitsuyama S. DPP-4 inhibition with linagliptin ameliorates the progression of premature aging in klotho-/- mice. Cardiovasc Diabetol 2017; 16:154. [PMID: 29195509 PMCID: PMC5709858 DOI: 10.1186/s12933-017-0639-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/25/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The potential of anti-aging effect of DPP-4 inhibitors is unknown. This study was performed to determine whether linagliptin, a DPP-4 inhibitor, could protect against premature aging in klotho-/- mice. METHODS Klotho-/- mice exhibit multiple phenotypes resembling human premature aging, including extremely shortened life span, cognitive impairment, hippocampal neurodegeneration, hair loss, muscle atrophy, hypoglycemia, etc. To investigate the effect of linagliptin on these aging-related phenotypes, male klotho-/- mice were divided into two groups: (1) control group fed the standard diet, and (2) linagliptin group fed the standard diet containing linagliptin. Treatment with linagliptin was performed for 4 weeks. The effect of linagliptin on the above mentioned aging-related phenotypes was examined. RESULTS Body weight of klotho-/- mice was greater in linagliptin group than in control group (11.1 ± 0.3 vs 9.9 ± 0.3 g; P < 0.01), which was associated with greater gastrocnemius muscle weight (P < 0.01) and greater kidney weight (P < 0.05) in linagliptin group. Thus, linagliptin significantly prevented body weight loss in klotho-/- mice. Survival rate of klotho-/- mice was greater in linagliptin group (93%) compared to control group (67%), although the difference did not reach statistical significance (P = 0.08). None of linagliptin-treated klotho-/- mice had alopecia during the treatment (P < 0.05 vs control klotho-/- mice). Latency of klotho-/- mice in passive avoidance test was larger in linagliptin group than in control group (P < 0.05), indicating the amelioration of cognitive impairment by linagliptin. Cerebral blood flow of klotho-/- mice was larger in linagliptin group than in control group (P < 0.01), being associated with greater cerebral phospho-eNOS levels (P < 0.05) in linagliptin group. Neuronal cell number in hippocampal CA1 region was greater in linagliptin group than in control group (P < 0.05). Linagliptin group had greater cerebral phospho-Akt (P < 0.05) and phospho-CREB (P < 0.05) than control group. Thus, linagliptin ameliorated brain aging in klotho-/- mice. The degree of hypoglycemia in klotho-/- mice was less in linagliptin group than in control group, as estimated by the findings of OGTT. CONCLUSIONS Out work provided the evidence that DPP-4 inhibition with linagliptin slowed the progression of premature aging in klotho-/- mice, and provided a novel insight into the potential role of DPP-4 in the mechanism of premature aging.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Pharmacology and Molecular Therapeutics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto-Shi, Kumamoto-ken, 8608556, Japan
| | - Kenyu Hayashi
- Department of Pharmacology and Molecular Therapeutics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto-Shi, Kumamoto-ken, 8608556, Japan
| | - Yushin Takemoto
- Department of Pharmacology and Molecular Therapeutics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto-Shi, Kumamoto-ken, 8608556, Japan
| | - Cao Cheng
- Department of Pharmacology and Molecular Therapeutics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto-Shi, Kumamoto-ken, 8608556, Japan
| | - Koki Takane
- Department of Pharmacology and Molecular Therapeutics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto-Shi, Kumamoto-ken, 8608556, Japan
| | - Bowen Lin
- Department of Pharmacology and Molecular Therapeutics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto-Shi, Kumamoto-ken, 8608556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shokei Kim-Mitsuyama
- Department of Pharmacology and Molecular Therapeutics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto-Shi, Kumamoto-ken, 8608556, Japan.
| |
Collapse
|
45
|
Drew DA, Katz R, Kritchevsky S, Ix J, Shlipak M, Gutiérrez OM, Newman A, Hoofnagle A, Fried L, Semba RD, Sarnak M. Association between Soluble Klotho and Change in Kidney Function: The Health Aging and Body Composition Study. J Am Soc Nephrol 2017; 28:1859-1866. [PMID: 28104822 PMCID: PMC5461794 DOI: 10.1681/asn.2016080828] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/10/2016] [Indexed: 11/03/2022] Open
Abstract
CKD appears to be a condition of soluble klotho deficiency. Despite known associations between low soluble klotho levels and conditions that promote kidney damage, such as oxidative stress and fibrosis, little information exists regarding the longitudinal association between soluble klotho levels and change in kidney function. We assayed serum soluble α-klotho in 2496 participants within the Health Aging and Body Composition study, a cohort of older adults. The associations between soluble klotho levels and decline in kidney function (relative decline: eGFR decline ≥30%; absolute decline: eGFR decline >3 ml/min per year) and incident CKD (incident eGFR <60 ml/min per 1.73 m2 and >1 ml/min per year decline) were evaluated. We adjusted models for demographics, baseline eGFR, urine albumin-to-creatinine ratio, comorbidity, and measures of mineral metabolism. Among participants, the mean (SD) age was 75 (3) years, 52% were women, and 38% were black. Median (25th, 75th percentiles) klotho level was 630 (477, 817) pg/ml. In fully adjusted models, each two-fold higher level of klotho associated with lower odds of decline in kidney function (odds ratio, 0.78 [95% confidence interval, 0.66 to 0.93] for 30% decline in eGFR, and 0.85 [95% confidence interval, 0.73 to 0.98] for >3 ml/min per year decline in eGFR), but not of incident CKD (incident rate ratio, 0.90 [95% confidence interval, 0.78 to 1.04]). Overall, a higher soluble klotho level independently associated with a lower risk of decline in kidney function. Future studies should attempt to replicate these results in other cohorts and evaluate the underlying mechanism.
Collapse
Affiliation(s)
- David A Drew
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Boston, Massachusetts;
| | - Ronit Katz
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington
| | - Stephen Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Joachim Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA and Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Michael Shlipak
- Kidney Health Research Collaborative, San Francisco VA Medical Center and University of California, San Francisco, San Francisco, California; Departments of
| | - Orlando M Gutiérrez
- Medicine and
- Epidemiology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Anne Newman
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Andy Hoofnagle
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington
| | - Linda Fried
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington
- Renal Section, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania and
| | - Richard D Semba
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mark Sarnak
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
46
|
Simvastatin enhances the hippocampal klotho in a rat model of streptozotocin-induced cognitive decline. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:87-94. [PMID: 27687042 DOI: 10.1016/j.pnpbp.2016.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
Brain oxidative status is a crucial factor in the development of sporadic Alzheimer's disease (AD). Klotho, an anti-aging protein, diminishes oxidative stress by the induction of manganese superoxide dismutase (MnSOD). Thus, the substances that increase klotho expression could be considered as a potential treatment for Alzheimer's disease when the oxidative imbalance is present. Statins are suggested to up-regulate klotho expression. We examined the effect of simvastatin (5mg/kg, daily for 3weeks) on hippocampal klotho and MnSOD expression in the cognitive declined animal model induced by intracerebroventricular (ICV)-streptozotocin (STZ) administration. Cognitive assessment was performed by the Morris Water Maze (MWM) test. The results indicated that mean escape latency and distance were prolonged in the ICV-STZ group compared with the control group. The expression of klotho and MnSOD were also down regulated in the hippocampus. Furthermore, improved spatial performance was observed in simvastatin-treated animals. This effect could be related to increase in oxidative stress tolerance as evidenced by klotho and MnSOD up-regulation. Our current study indicates that klotho upregulation may be a neuroprotective mechanism of simvastatin against cognitive decline in AD.
Collapse
|
47
|
Nguyen TT, Quan X, Xu S, Das R, Cha SK, Kong ID, Shong M, Wollheim CB, Park KS. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion. FASEB J 2016; 30:3979-3988. [PMID: 27565711 DOI: 10.1096/fj.201600455rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/08/2016] [Indexed: 01/20/2023]
Abstract
Elevated plasma levels of inorganic phosphate (Pi) are harmful, causing, among other complications, vascular calcification and defective insulin secretion. The underlying molecular mechanisms of these complications remain poorly understood. We demonstrated the role of Pi transport across the plasmalemma on Pi toxicity in INS-1E rat clonal β cells and rat pancreatic islet cells. Type III sodium-phosphate cotransporters (NaPis) are the predominant Pi transporters expressed in insulin-secreting cells. Transcript and protein levels of sodium-dependent phosphate transporter 1 and 2 (PiT-1 and -2), isotypes of type III NaPi, were up-regulated by high-Pi incubation. In patch-clamp experiments, extracellular Pi elicited a Na+-dependent, inwardly rectifying current, which was markedly reduced under acidic extracellular conditions. Cellular uptake of Pi elicited cytosolic alkalinization; intriguingly, this pH change facilitated Pi transport into the mitochondrial matrix. Increased mitochondrial Pi uptake accelerated superoxide generation, mitochondrial permeability transition (mPT), and endoplasmic reticulum stress-mediated translational attenuation, leading to reduced insulin content and impaired glucose-stimulated insulin secretion. Silencing of PiT-1/2 prevented Pi-induced superoxide generation and mPT, and restored insulin secretion. We propose that Pi transport across the plasma membrane and consequent cytosolic alkalinization could be a therapeutic target for protection from Pi toxicity in insulin-secreting cells, as well as in other cell types.-Nguyen, T. T., Quan, X., Xu, S., Das, R., Cha, S.-K., Kong, I. D., Shong, M., Wollheim, C. B., Park, K.-S. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion.
Collapse
Affiliation(s)
- Tuyet Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Korea.,Department of Physiology, Tan-Tao University College of Medicine, Long An, Vietnam
| | - Xianglan Quan
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Shanhua Xu
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Ranjan Das
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Seung-Kuy Cha
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Korea.,Mitohormesis Translational Research Center, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - In Deok Kong
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea; and
| | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Korea; .,Mitohormesis Translational Research Center, Wonju College of Medicine, Yonsei University, Wonju, Korea
| |
Collapse
|
48
|
Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol 2016; 48:1657-66. [PMID: 27215557 DOI: 10.1007/s11255-016-1325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
The Klotho gene displays an extremely shortened life span with loss of function missense mutations leading to premature multiple organ failure, thus resembling human premature aging syndromes. The transmembrane form of Klotho protein functions as an obligatory co-receptor for FGF23. Klotho and FGF23 are crucial components for the regulation of vitamin D metabolism and subsequently blood phosphate levels. The secreted Klotho protein has multiple regulatory functions, including effects on electrolyte homeostasis, on growth factor pathways as well as on oxidative stress, which are currently the object of extensive research. Klotho protein deficiency is observed in many experimental and clinical disease models. Genetic polymorphisms such as the G-395A polymorphism in the promoter region of the Klotho gene have been associated with the development of essential hypertension. The kidneys are the primary site of Klotho production, and renal Klotho is decreased in CKD, followed by a reduction in plasma Klotho. Klotho deficiency has been both associated with progression of CKD as well as with its cardinal systemic manifestations, including cardiovascular disease. Thus, Klotho has been suggested both as a risk biomarker for early detection of CKD and additionally as a potential therapeutic tool in the future.
Collapse
Affiliation(s)
- Rigas G Kalaitzidis
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.
| | - Anila Duni
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | | |
Collapse
|
49
|
Abstract
Alpha-Klotho (αKlotho) protein is encoded by the gene, Klotho, and functions as a coreceptor for endocrine fibroblast growth factor-23. The extracellular domain of αKlotho is cleaved by secretases and released into the circulation where it is called soluble αKlotho. Soluble αKlotho in the circulation starts to decline in chronic kidney disease (CKD) stage 2 and urinary αKlotho in even earlier CKD stage 1. Therefore soluble αKlotho is an early and sensitive marker of decline in kidney function. Preclinical data from numerous animal experiments support αKlotho deficiency as a pathogenic factor for CKD progression and extrarenal CKD complications including cardiac and vascular disease, hyperparathyroidism, and disturbed mineral metabolism. αKlotho deficiency induces cell senescence and renders cells susceptible to apoptosis induced by a variety of cellular insults including oxidative stress. αKlotho deficiency also leads to defective autophagy and angiogenesis and promotes fibrosis in the kidney and heart. Most importantly, prevention of αKlotho decline, upregulation of endogenous αKlotho production, or direct supplementation of soluble αKlotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiac function and morphometry, and alleviation of vascular calcification in CKD. Therefore in rodents, αKlotho is not only a diagnostic and prognostic marker for CKD but the enhancement of endogenous or supplement of exogenous αKlotho are promising therapeutic strategies to prevent, retard, and decrease the comorbidity burden of CKD.
Collapse
Affiliation(s)
- J A Neyra
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M C Hu
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
50
|
Rubinek T, Modan-Moses D. Klotho and the Growth Hormone/Insulin-Like Growth Factor 1 Axis: Novel Insights into Complex Interactions. VITAMINS AND HORMONES 2016; 101:85-118. [PMID: 27125739 DOI: 10.1016/bs.vh.2016.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is pivotal for many metabolic functions, including proper development and growth of bones, skeletal muscles, and adipose tissue. Defects in the axis' activity during childhood result in growth abnormalities, while increased secretion of GH from the pituitary results in acromegaly. In order to keep narrow physiologic concentration, GH and IGF-1 secretion and activity are tightly regulated by hypothalamic, pituitary, endocrine, paracrine, and autocrine factors. Klotho was first discovered as an aging-suppressor gene. Mice that do not express klotho die prematurely with multiple symptoms of aging, several of them are also characteristic of decreased GH/IGF-1 axis activity. Klotho is highly expressed in the brain, the kidney, and parathyroid and pituitary glands, but can also serve as a circulating hormone by its shedding, forming soluble klotho that can be detected in blood, cerebrospinal fluid, and urine. Several lines of evidence suggest an association between klotho levels and activity of the GH/IGF-1 axis: the GH-secreting cells in the anterior pituitary of klotho-deficient mice are hypotrophic; klotho levels are altered in subjects with pathologies of the GH/IGF-1 axis; and accumulating data indicate that klotho is a direct regulator of GH secretion. Thus, klotho seems to be a new player in the intricate regulation of the GH/IGF-1 axis.
Collapse
Affiliation(s)
- T Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - D Modan-Moses
- The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|