1
|
Boyle LD, Akbas F, Yazıcı D, McGowan BM, Yumuk V. Pharmacotherapy for older people with obesity. Eur J Intern Med 2024; 130:33-37. [PMID: 38897877 DOI: 10.1016/j.ejim.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024]
Abstract
Rates of obesity continue to rise, including in older adults. Use of medication for obesity in the elderly has been considered controversial, due to concerns around potential progression of age-related sarcopenia and a general lack of evidence for its use in this age group. Within this review, we describe the general considerations when prescribing obesity pharmacotherapy for older adults living with obesity. We evaluate in detail the anti-obesity medications currently licenced in Europe, with emphasis on the available efficacy, safety and cardiovascular outcome data gathered from study of older people. Finally, we discuss future directions and avenues of research.
Collapse
Affiliation(s)
- Luke D Boyle
- Centre for Obesity, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| | - Feray Akbas
- Department of Internal Medicine Clinic, University of Health Sciences, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Dilek Yazıcı
- Koç University Medical School Section of Endocrinology and Metabolism, Istanbul, Turkey
| | - Barbara M McGowan
- Centre for Obesity, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Volkan Yumuk
- Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Division of Endocrinology, Metabolism, and Diabetes, Istanbul, Turkey
| |
Collapse
|
2
|
Wu S, Jia W, He H, Yin J, Xu H, He C, Zhang Q, Peng Y, Cheng R. A New Dietary Fiber Can Enhance Satiety and Reduce Postprandial Blood Glucose in Healthy Adults: A Randomized Cross-Over Trial. Nutrients 2023; 15:4569. [PMID: 37960222 PMCID: PMC10648557 DOI: 10.3390/nu15214569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Dietary fiber plays a potential role in regulating energy intake and stabilizing postprandial blood glucose levels. Soluble dietary fiber has become an important entry point for nutritional research on the regulation of satiety. METHODS this was a double-blind, randomized cross-over trial enrolling 12 healthy subjects to compare the effects of RPG (R+PolyGly) dietary fiber products (bread, powder, and capsule) and pectin administered with a standard meal on satiety, blood glucose, and serum insulin level. RESULTS Adding 3.8% RPG dietary fiber to bread significantly increased the volume, water content, hardness, and chewiness of bread compared to 3.8% pectin bread and white bread and significantly improved the sensory quality of bread. RPG bread had better appetite suppression effects at some time points than the other two groups and the best postprandial blood glucose lowering effects among the three groups. Administration of RPG capsules containing 5.6 g of RPG dietary fiber with meals improved satiety and reduced hunger compared to 6 g of RPG powder and 6 g of pectin, which had the greatest effect on suppressing appetite and reducing prospective food consumption. The peak level of serum glucagon-like peptide-1 (GLP-1) in the RPG capsule group (578.17 ± 19.93 pg/mL) was significantly higher than that in other groups at 0 min and 30 min after eating. RPG powder had the best effect in reducing postprandial blood glucose and increasing serum insulin levels; the total area under the curve (AUC) of serum insulin with RPG powder was higher than other groups (5960 ± 252.46 μU min/mL). CONCLUSION RPG dietary fiber products can improve the sensory properties of food, reduce postprandial blood glucose, and enhance satiety, especially in capsule and powder forms. Further research on the physiological effects of RPG dietary fiber is required to facilitate its use as a functional ingredient in food products.
Collapse
Affiliation(s)
- Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (W.J.)
| | - Wen Jia
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (W.J.)
| | - Huimin He
- Recovery Plus USA, New York, NY 10019, USA; (H.H.); (J.Y.); (H.X.); (C.H.)
| | - Jun Yin
- Recovery Plus USA, New York, NY 10019, USA; (H.H.); (J.Y.); (H.X.); (C.H.)
| | - Huilin Xu
- Recovery Plus USA, New York, NY 10019, USA; (H.H.); (J.Y.); (H.X.); (C.H.)
| | - Chengyuan He
- Recovery Plus USA, New York, NY 10019, USA; (H.H.); (J.Y.); (H.X.); (C.H.)
| | - Qinqiu Zhang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Q.Z.); (Y.P.)
| | - Yue Peng
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Q.Z.); (Y.P.)
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (W.J.)
| |
Collapse
|
3
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
4
|
Buch A, Marcus Y, Shefer G, Zimmet P, Stern N. Approach to Obesity in the Older Population. J Clin Endocrinol Metab 2021; 106:2788-2805. [PMID: 34406394 DOI: 10.1210/clinem/dgab359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Until recently, weight loss in older obese people was feared because of ensuing muscle loss and frailty. Facing overall increasing longevity, high rates of obesity in older individuals (age ≥ 65 years) and a growing recognition of the health and functional cost of the number of obesity years, abetted by evidence that intentional weight loss in older obese people is safe, this approach is gradually, but not unanimously, being replaced by more active principles. Lifestyle interventions that include reduced but sufficient energy intake, age-adequate protein and micronutrient intake, coupled with aerobic and resistance exercise tailored to personal limitations, can induce weight loss with improvement in frailty indices. Sustained weight loss at this age can prevent or ameliorate diabetes. More active steps are controversial. The use of weight loss medications, particularly glucagon-like peptide-1 analogs (liraglutide as the first example), provides an additional treatment tier. Its safety and cardiovascular health benefits have been convincingly shown in older obese patients with type 2 diabetes mellitus. In our opinion, this option should not be denied to obese individuals with prediabetes or other obesity-related comorbidities based on age. Finally, many reports now provide evidence that bariatric surgery can be safely performed in older people as the last treatment tier. Risk-benefit issues should be considered with extreme care and disclosed to candidates. The selection process requires good presurgical functional status, individualized consideration of the sequels of obesity, and reliance on centers that are highly experienced in the surgical procedure as well as short-term and long-term subsequent comprehensive care and support.
Collapse
Affiliation(s)
- Assaf Buch
- The Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Yonit Marcus
- The Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gabi Shefer
- The Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Paul Zimmet
- The Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Naftali Stern
- The Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
State Scientific Institution “Center for Innovative Medical Technologies of the National Academy of Sciences of Ukraine”, Kiev, Ukraine, Todurov I, Kosiukhno S, State Scientific Institution “Center for Innovative Medical Technologies of the National Academy of Sciences of Ukraine”, Kiev, Ukraine, Perekhrestenko O, State Scientific Institution “Center for Innovative Medical Technologies of the National Academy of Sciences of Ukraine”, Kiev, Ukraine, Kalashnikov O, State Scientific Institution “Center for Innovative Medical Technologies of the National Academy of Sciences of Ukraine”, Kiev, Ukraine, Potapov O, State Scientific Institution “Center for Innovative Medical Technologies of the National Academy of Sciences of Ukraine”, Kiev, Ukraine, Plehutsa О, State Scientific Institution “Center for Innovative Medical Technologies of the National Academy of Sciences of Ukraine”, Kiev, Ukraine. DYNAMICS OF GLUCAGON-LIKE PEPTIDE-1 AFTER LAPAROSCOPIC SLEEVE GASTRECTOMY IN PATIENTS WITH TYPE 2 DIABETES MELLITUS ASSOCIATIONS WITH OBESITY. FIZIOLOHICHNYĬ ZHURNAL 2021; 67:44-51. [DOI: 10.15407/fz67.04.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Laparoscopic sleeve gastrectomy (LSG) proved to be a valuable procedure for treating obesity complicated by type 2 diabetes mellitus (T2DM). The mechanism of T2DM resolution after LSG is not yet clearly defined. The objective of the study was to investigate the effect of LSG on the secretion of GLP-1 in patients with T2DM associated with obesity. Plasma GLP-1 levels were evaluated by starvation and 15, 30, 60 and 90 min after the standard carbohydrate preload for breakfast, which included 125 ml of balanced high energy Nutricia Nutridrink Protein. Evaluations were made on the eve of the procedure, for 4 days and 3 months after the operation. In 7 patients with T2DM were diagnosed for the first time, in 3 patients with diabetic history 2 years, in 1 patient – 3.5 years and in 1 patient – 10 years. Mean glycated hemoglobin before surgery was 7.7 ± 1.6%, 3 months after LSG – 5.9 ± 0.4%. The concentration of GLP-1 in 30 minutes before surgery was 6.7 ± 0.9 ng/ml. On the 4th day after LSG, the mean level of GLP-1 was 9.6 ± 0.2 ng/ml, which statistically differed from its level in the pre-operative period, and after 3 months the mean level of GLP-1 statistically increased to 13.7 ± 0.3 ng/ml. Thus LSG leads to an early and significant increase in post-prandial secretion GLP-1 in T2DM patients associated with obesity. The rapid postoperative improvement in signs of carbohydrate metabolism indicates the importance of the incretin effect LSG in the implementation of early compensation mechanisms for T2DM and explains the metabolic activity of this operation.
Collapse
|
6
|
Povysheva N, Zheng H, Rinaman L. Glucagon-like peptide 1 receptor-mediated stimulation of a GABAergic projection from the bed nucleus of the stria terminalis to the hypothalamic paraventricular nucleus. Neurobiol Stress 2021; 15:100363. [PMID: 34277897 PMCID: PMC8271176 DOI: 10.1016/j.ynstr.2021.100363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/14/2023] Open
Abstract
We previously reported that GABAergic neurons within the ventral anterior lateral bed nucleus of the stria terminalis (alBST) express glucagon-like peptide 1 receptor (GLP1R) in rats, and that virally-mediated “knock-down” of GLP1R expression in the alBST prolongs the hypothalamic-pituitary-adrenal axis response to acute stress. Given other evidence that a GABAergic projection pathway from ventral alBST serves to limit stress-induced activation of the HPA axis, we hypothesized that GLP1 signaling promotes activation of GABAergic ventral alBST neurons that project directly to the paraventricular nucleus of the hypothalamus (PVN). After PVN microinjection of fluorescent retrograde tracer followed by preparation of ex vivo rat brain slices, whole-cell patch clamp recordings were made in identified PVN-projecting neurons within the ventral alBST. Bath application of Exendin-4 (a specific GLP1R agonist) indirectly depolarized PVN-projecting neurons in the ventral alBST and adjacent hypothalamic parastrial nucleus (PS) through a network-dependent increase in excitatory synaptic inputs, coupled with a network-independent reduction in inhibitory inputs. Additional retrograde tracing experiments combined with in situ hybridization confirmed that PVN-projecting neurons within the ventral alBST/PS are GABAergic, and do not express GLP1R mRNA. Conversely, GLP1R mRNA is expressed by a subset of neurons that project into the ventral alBST and were likely contained within coronal ex vivo slices, including GABAergic neurons within the oval subnucleus of the dorsal alBST and glutamatergic neurons within the substantia innominata. Our novel findings reveal potential GLP1R-mediated mechanisms through which the alBST exerts inhibitory control over the endocrine HPA axis.
Collapse
Affiliation(s)
- Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Huiyuan Zheng
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
7
|
Holt MK, Rinaman L. The role of nucleus of the solitary tract glucagon-like peptide-1 and prolactin-releasing peptide neurons in stress: anatomy, physiology and cellular interactions. Br J Pharmacol 2021; 179:642-658. [PMID: 34050926 PMCID: PMC8820208 DOI: 10.1111/bph.15576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine, behavioural and autonomic responses to stressful stimuli are orchestrated by complex neural circuits. The caudal nucleus of the solitary tract (cNTS) in the dorsomedial hindbrain is uniquely positioned to integrate signals of both interoceptive and psychogenic stress. Within the cNTS, glucagon‐like peptide‐1 (GLP‐1) and prolactin‐releasing peptide (PrRP) neurons play crucial roles in organising neural responses to a broad range of stressors. In this review we discuss the anatomical and functional overlap between PrRP and GLP‐1 neurons. We outline their co‐activation in response to stressful stimuli and their importance as mediators of behavioural and physiological stress responses. Finally, we review evidence that PrRP neurons are downstream of GLP‐1 neurons and outline unexplored areas of the research field. Based on the current state‐of‐knowledge, PrRP and GLP‐1 neurons may be compelling targets in the treatment of stress‐related disorders.
Collapse
Affiliation(s)
- Marie K Holt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
8
|
Grieco M, Giorgi A, Gentile MC, d'Erme M, Morano S, Maras B, Filardi T. Glucagon-Like Peptide-1: A Focus on Neurodegenerative Diseases. Front Neurosci 2019; 13:1112. [PMID: 31680842 PMCID: PMC6813233 DOI: 10.3389/fnins.2019.01112] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is one of the major risk factors for cognitive dysfunction. The pathogenesis of brain impairment caused by chronic hyperglycemia is complex and includes mitochondrial dysfunction, neuroinflammation, neurotransmitters’ alteration, and vascular disease, which lead to cognitive impairment, neurodegeneration, loss of synaptic plasticity, brain aging, and dementia. Glucagon-like peptide-1 (GLP-1), a gut released hormone, is attracting attention as a possible link between metabolic and brain impairment. Several studies have shown the influence of GPL-1 on neuronal functions such as thermogenesis, blood pressure control, neurogenesis, neurodegeneration, retinal repair, and energy homeostasis. Moreover, modulation of GLP-1 activity can influence amyloid β peptide aggregation in Alzheimer’s disease (AD) and dopamine (DA) levels in Parkinson’s disease (PD). GLP-1 receptor agonists (GLP-1RAs) showed beneficial actions on brain ischemia in animal models, such as the reduction of cerebral infarct area and the improvement of neurological deficit, acting mainly through inhibition of oxidative stress, inflammation, and apoptosis. They might also exert a beneficial effect on the cognitive impairment induced by diabetes or obesity improving learning and memory by modulating synaptic plasticity. Moreover, GLP-1RAs reduced hippocampal neurodegeneration. Besides this, there are growing evidences on neuroprotective effects of these agonists in animal models of neurodegenerative diseases, regardless of diabetes. In PD animal models, GPL-1RAs were able to protect motor activity and dopaminergic neurons whereas in AD models, they seemed to improve nearly all neuropathological features and cognitive functions. Although further clinical studies of GPL-1RAs in humans are needed, they seem to be a promising therapy for diabetes-associated cognitive decline.
Collapse
Affiliation(s)
- Maddalena Grieco
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Cristina Gentile
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Susanna Morano
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Bruno Maras
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiziana Filardi
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int 2019; 128:94-105. [PMID: 31002893 PMCID: PMC7081944 DOI: 10.1016/j.neuint.2019.04.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Meal ingestion provokes the release of hormones and transmitters, which in turn regulate energy homeostasis and feeding behavior. One such hormone, glucagon-like peptide-1 (GLP-1), has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. In addition to the peripheral actions of GLP-1, this hormone is able to alter behavior through the modulation of multiple neural circuits. Recent work that focused on elucidating the mechanisms and outcomes of GLP-1 neuromodulation led to the discovery of an impressive array of GLP-1 actions. Here, we summarize the many levels at which the GLP-1 signal adapts to different systems, with the goal being to provide a background against which to guide future research.
Collapse
Affiliation(s)
- Nicholas K Smith
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2019; 33:151-167. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to regulating the ingestion and digestion of food, sensory feedback from gut to brain modifies emotional state and motivated behavior by subconsciously shaping cognitive and affective responses to events that bias behavioral choice. This focused review highlights evidence that gut-derived signals impact motivated behavior by engaging vagal afferents and central neural circuits that generally serve to limit or terminate goal-directed approach behaviors, and to initiate or maintain behavioral avoidance.
Collapse
Affiliation(s)
- J W Maniscalco
- Department of Psychology, University of Illinois at Chicago, Chicago, Illionois
| | - L Rinaman
- Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
11
|
Hansen CS, Frandsen CS, Fleischer J, Vistisen D, Holst JJ, Tarnow L, Knop FK, Madsbad S, Andersen HU, Dejgaard TF. Liraglutide-Induced Weight Loss May be Affected by Autonomic Regulation in Type 1 Diabetes. Front Endocrinol (Lausanne) 2019; 10:242. [PMID: 31031712 PMCID: PMC6473101 DOI: 10.3389/fendo.2019.00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/27/2019] [Indexed: 01/27/2023] Open
Abstract
The role of the autonomic nervous system in the efficacy of glucagon-like peptide-1 receptor agonists (GLP-1 RA) in patients with type 1 diabetes is unknown. We assessed the association between autonomic function and weight loss induced by the GLP-1 RA liraglutide. Methods: Lira-1 was a randomized, double-blind, placebo-controlled trial assessing the efficacy and safety of 1.8 mg liraglutide once-daily for 24 weeks in overweight patients with type 1 diabetes. Autonomic function was assessed by heart rate response to deep breathing (E/I ratio), to standing (30/15 ratio), to the Valsalva maneuver and resting heart rate variability (HRV) indices. Associations between baseline the cardiovascular autonomic neuropathy (CAN) diagnosis (> 1 pathological non-resting test) and levels of test outcomes on liraglutide-induced weight loss was assessed by linear regression models. Results: Ninety-nine patients with mean age 48 (SD 12) years, HbA1c 70 (IQR 66;75) mmol/mol and BMI of 30 (SD 3) kg/m2 were assigned to liraglutide (N = 50) or placebo (N = 49). The CAN diagnosis was not associated with weight loss. A 50% higher baseline level of the 30/15 ratio was associated with a larger weight reduction by liraglutide of -2.65 kg during the trial (95% CI: -4.60; -0.69; P = 0.009). Similar significant associations were found for several HRV indices. Conclusions: The overall CAN diagnosis was not associated with liraglutide-induced weight loss in overweight patients with type 1 diabetes. Assessed separately, better outcomes for several CAN measures were associated with higher weight loss, indicating that autonomic involvement in liraglutide-induced weight loss may exist.
Collapse
Affiliation(s)
| | | | - Jesper Fleischer
- Clinical Institute of Medicine, Aarhus University, Århus, Denmark
| | | | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lise Tarnow
- Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Filip Krag Knop
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Fremming Dejgaard
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| |
Collapse
|
12
|
Mhalhal TR, Washington MC, Newman KD, Heath JC, Sayegh AI. Combined gastrin releasing peptide-29 and glucagon like peptide-1 reduce body weight more than each individual peptide in diet-induced obese male rats. Neuropeptides 2018; 67:71-78. [PMID: 29180139 DOI: 10.1016/j.npep.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
To test the hypothesis that gastrin releasing peptide-29 (GRP-29) combined with glucagon like peptide-1 (7-36) (GLP-1 (7-36)) reduce body weight (BW) more than each of the peptides given individually, we infused the two peptides (0.5nmol/kg each) in the aorta of free feeding, diet-induced obese (DIO) male Sprague Dawley rats once daily for 25days and measured BW. We found that GRP-29 and GLP-1 reduce BW, GRP-29 reduced it more than GLP-1 and GRP-29+GLP-1 reduce BW more than each peptide given alone. This reduction was accompanied by decrease 24-hour food intake (normal rat chow), meal size (MS), duration of first meal and number of meals, and increase latency to the first meal, intermeal interval (IMI) and satiety ratio (IMI/MS, amount of food consumed per a unit of time). Furthermore, the peptides and their combination decreased 24-hour glucose levels. In conclusion, GRP-29+GLP-1 reduce BW more than each of the peptides given individually.
Collapse
Affiliation(s)
- Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; Department of Anatomy and Histology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Kayla D Newman
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - John C Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| |
Collapse
|
13
|
Lu Z, Yeung CK, Lin G, Yew DTW, Andrews PLR, Rudd JA. Centrally located GLP-1 receptors modulate gastric slow waves and cardiovascular function in ferrets consistent with the induction of nausea. Neuropeptides 2017; 65:28-36. [PMID: 28456436 DOI: 10.1016/j.npep.2017.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/09/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for the treatment of Type 2 diabetes and obesity, but can cause nausea and emesis in some patients. GLP-1 receptors are distributed widely in the brain, where they contribute to mechanisms of emesis, reduced appetite and aversion, but it is not known if these centrally located receptors also contribute to a modulation of gastric slow wave activity, which is linked causally to nausea. Our aim was to investigate the potential of the GLP-1 receptor agonist, exendin-4, administered into the 3rd ventricle to modulate emesis, feeding and gastric slow wave activity. Thermoregulation and cardiovascular parameters were also monitored, as they are disturbed during nausea. Ferrets were used as common laboratory rodents do not have an emetic reflex. A guide cannula was implanted into the 3rd ventricle for delivering a previously established dose of exendin-4 (10nmol), which had been shown to induce emesis and behaviours indicative of 'nausea'. Radiotelemetry recorded gastric myoelectric activity (GMA; slow waves), blood pressure and heart rate variability (HRV), and core temperature; food intake and behaviour were also assessed. Exendin-4 (10nmol, i.c.v.) decreased the dominant frequency of GMA, with an associated increase in the percentage of bradygastric power (lasting ~4h). Food intake was inhibited in all animals, with 63% exhibiting emesis. Exendin-4 also increased blood pressure (lasting ~24h) and heart rate (lasting ~7h), decreased HRV (lasting ~24h), and caused transient hyperthermia. None of the above parameters were emesis-dependent. The present study shows for the first time that gastric slow waves may be modulated by GLP-1 receptors in the brain through mechanisms that appear independent from emesis. Taken together with a reduction in HRV, the findings are consistent with changes associated with the occurrence of nausea in humans.
Collapse
Affiliation(s)
- Zengbing Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi-Kong Yeung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - David T W Yew
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - P L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, UK
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.; Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China..
| |
Collapse
|
14
|
Alhadeff AL, Holland RA, Zheng H, Rinaman L, Grill HJ, De Jonghe BC. Excitatory Hindbrain-Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss. J Neurosci 2017; 37:362-370. [PMID: 28077715 PMCID: PMC5242394 DOI: 10.1523/jneurosci.2714-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/04/2016] [Accepted: 11/19/2016] [Indexed: 11/21/2022] Open
Abstract
Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain-forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. SIGNIFICANCE STATEMENT Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight loss. The current data characterize the excitatory nature of neural projections activated by cisplatin in rats and reveal the necessity of specific hindbrain-forebrain projections for cisplatin-induced anorexia and weight loss. Together, these findings help to characterize the neural mechanisms mediating cisplatin-induced anorexia, advancing opportunities to develop better-tolerated chemotherapies and adjuvant therapies to prevent anorexia and concurrent nutritional deficiencies during cancer treatment.
Collapse
Affiliation(s)
| | | | - Huiyuan Zheng
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | | |
Collapse
|
15
|
Systemic administration of anorexic gut peptide hormones impairs hedonic-driven sucrose consumption in mice. Physiol Behav 2016; 171:158-164. [PMID: 28040488 DOI: 10.1016/j.physbeh.2016.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 01/01/2023]
Abstract
A number of reports suggest that gut hormones such as cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and peptide YY(3-36) (PYY3-36), which are released postprandially, suppress homeostatic food intake and result in satiety and the termination of feeding. However, it remains unclear whether these peptide hormones also suppress non-homeostatic consumption of palatable foods or fluids. To examine whether gut hormones reduce hedonically motivated sugar consumption, we assessed the effects of intraperitoneal administration of these gut hormones on the consumption of a highly palatable sucrose solution, using a mouse model we previously established for binge-like sucrose overconsumption (Yasoshima and Shimura, 2015). To reduce homeostatic hunger, chow was available at nighttime prior to testing. After a limited-access training procedure for 10days, during which access to both sucrose and chow were controlled, on the test day, control mice injected with saline consumed significantly more sucrose than during the pre-training period. In contrast, sucrose consumption on the test day in the mice injected with CCK-8 (2 and 4μg/kg), GLP-1 (500 and 1000nmol/kg), or PYY3-36 (12.5 and 25nmol/kg) was significantly less than that in saline-injected mice. In a separate cohort of mice, the higher doses of CCK-8 and GLP-1 and a greater dose of PYY3-36 (50nmol/kg) did not produce conditioned taste aversion to saccharin, suggesting that the doses of exogenous hormones in the present study do not cause aversive visceral distress. The present findings suggest that the systemic administration of these three gut hormones suppresses hedonic-driven sugar consumption due to the anorexic, but not aversive-visceral, effects of these hormones.
Collapse
|
16
|
Carlson J, Slavin J. Health benefits of fibre, prebiotics and probiotics: a review of intestinal health and related health claims. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2016. [DOI: 10.3920/qas2015.0791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J. Carlson
- Department of Food Science and Nutrition, University of Minnesota, Twin Cities 1334 Eckles Avenue, St. Paul, MN 55108, USA
| | - J. Slavin
- Department of Food Science and Nutrition, University of Minnesota, Twin Cities 1334 Eckles Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
17
|
Holt MK, Trapp S. The physiological role of the brain GLP-1 system in stress. ACTA ACUST UNITED AC 2016; 2:1229086. [PMID: 27722184 PMCID: PMC5043148 DOI: 10.1080/23312025.2016.1229086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) within the brain is a potent regulator of food intake and most studies have investigated the anorexic effects of central GLP-1. A range of brain regions have now been found to be involved in GLP-1 mediated anorexia, including some which are not traditionally associated with appetite regulation. However, a change in food intake can be indicative of not only reduced energy demand, but also changes in the organism’s motivation to eat following stressful stimuli. In fact, acute stress is well-known to reduce food intake. Recently, more research has focused on the role of GLP-1 in stress and the central GLP-1 system has been found to be activated in response to stressful stimuli. The source of GLP-1 within the brain, the preproglucagon (PPG) neurons, are ideally situated in the brainstem to receive and relay signals of stress and our recent data on the projection pattern of the PPG neurons to the spinal cord suggest a potential strong link with the sympathetic nervous system. We review here the role of central GLP-1 in the regulation of stress responses and discuss the potential involvement of the endogenous source of GLP-1 within the brain, the PPG neurons.
Collapse
Affiliation(s)
- Marie K Holt
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London , WC1E 6BT London , UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London , WC1E 6BT London , UK
| |
Collapse
|
18
|
Sirohi S, Schurdak JD, Seeley RJ, Benoit SC, Davis JF. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors. Physiol Behav 2016; 161:140-144. [DOI: 10.1016/j.physbeh.2016.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/21/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
|
19
|
Trapp S, Cork SC. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. Am J Physiol Regul Integr Comp Physiol 2015; 309:R795-804. [PMID: 26290108 DOI: 10.1152/ajpregu.00333.2015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/13/2015] [Indexed: 01/28/2023]
Abstract
Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation.
Collapse
Affiliation(s)
- Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Simon C Cork
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
20
|
Deng W, Qiu S, Yang G, Chen B. Exenatide once-weekly injection for the treatment of type 2 diabetes in Chinese patients: current perspectives. Ther Clin Risk Manag 2015; 11:1153-1162. [PMID: 26309403 PMCID: PMC4539087 DOI: 10.2147/tcrm.s81088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) analogs, such as exenatide, have played an important role as antidiabetic medications in the treatment of type 2 diabetes (T2DM). Like most other hypoglycemic agents, exenatide has a number of actions, including lowering blood glucose, promoting weight loss, improving insulin resistance, and protecting islet β-cells. Although GLP-1 analogs, combined with other antidiabetic medications, have excellent performance in T2DM, some side effects and imperfections limit its use in clinical practice. Since 2012, a new generation GLP-1 agent, exenatide once weekly (QW), has been available for patients with T2DM in the USA, but not as yet in the People's Republic of China. Previous data indicate that exenatide QW achieves better fasting glucose reductions than sitagliptin or exenatide twice daily, whilst appearing non-inferior to pioglitazone and achieving less reductions than insulin glargine. Exenatide QW was better at improving average postprandial glucose than sitagliptin or titrated insulin glargine, but was inferior to exenatide twice daily. Additionally exenatide QW has a better effect in terms of weight loss than other glycemic medications. Exenatide QW can also reduce blood lipids and lower blood pressure. Accordingly, exenatide QW is cost-effective, achieves good clinical outcomes, and has acceptable side effects, indicating that it has promising prospects for future use in the People's Republic of China.
Collapse
Affiliation(s)
- Wuquan Deng
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Sheng Qiu
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Gangyi Yang
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bing Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
21
|
Abstract
The gastrointestinal (GI) tract comprises a large endocrine organ that regulates not only nutrient sensing and metabolising but also satiety and energy homeostasis. More than 20 hormones secreted from the stomach, intestine, and pancreas as well as signaling mediators of the gut microbiome are involved in this process. A better understanding of how related pathways affect body weight and food intake will help us to find new strategies and drugs to treat obesity. For example, weight loss secondary to lifestyle intervention is often accompanied by unfavorable changes in multiple GI hormones, which may cause difficulties in maintaining a lower body weight status. Conversely, bariatric surgery favorably changes the hormone profile to support improved satiety and metabolic function. This partially explains stronger sustained body weight reduction resulting in better long-term results of improved metabolic functions. This review focuses on GI hormones and signaling mediators of the microbiome involved in satiety regulation and energy homeostasis and summarizes their changes following weight loss. Furthermore, the potential role of GI hormones as anti-obesity drugs is discussed.
Collapse
Affiliation(s)
- Thomas Reinehr
- Vestische Hospital for Children and Adolescents Datteln, Institute for Pediatric Endocrinology, Diabetes and Nutrition Medicine, University of Witten/Herdecke, Datteln, Germany,
| | | |
Collapse
|
22
|
Zheng H, Stornetta RL, Agassandian K, Rinaman L. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct Funct 2014; 220:3011-22. [PMID: 25012114 DOI: 10.1007/s00429-014-0841-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/02/2014] [Indexed: 01/30/2023]
Abstract
The expression of a vesicular glutamate transporter (VGLUT) suffices to assign a glutamatergic phenotype to neurons and other secretory cells. For example, intestinal L cells express VGLUT2 and secrete glutamate along with glucagon-like peptide 1 (GLP1). We hypothesized that GLP1-positive neurons within the caudal (visceral) nucleus of the solitary tract (cNST) also are glutamatergic. To test this, the axonal projections of GLP1 and other neurons within the cNST were labeled in rats via iontophoretic delivery of anterograde tracer. Dual immunofluorescence and confocal microscopy was used to visualize tracer-, GLP1-, and VGLUT2-positive fibers within brainstem, hypothalamic, and limbic forebrain nuclei that receive input from the cNST. Electron microscopy was used to confirm GLP1 and VGLUT2 immunolabeling within the same axon varicosities, and fluorescent in situ hybridization was used to examine VGLUT2 mRNA expression by GLP1-positive neurons. Most anterograde tracer-labeled fibers displayed VGLUT2-positive varicosities, providing new evidence that ascending axonal projections from the cNST are primarily glutamatergic. Virtually all GLP1-positive varicosities also were VGLUT2-positive. Electron microscopy confirmed the colocalization of GLP1 and VGLUT2 immunolabeling in axon terminals that formed asymmetric (excitatory-type) synapses with unlabeled dendrites in the hypothalamus. Finally, in situ hybridization confirmed that GLP1-positive cNST neurons express VGLUT2 mRNA. Thus, hindbrain GLP1 neurons in rats are equipped to store glutamate in synaptic vesicles, and likely co-release both glutamate and GLP1 from axon varicosities and terminals in the hypothalamus and other brain regions.
Collapse
Affiliation(s)
- H Zheng
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA, 15260, USA
| | | | | | | |
Collapse
|
23
|
Lombardo M, Bellia A, Padua E, Annino G, Guglielmi V, D'Adamo M, Iellamo F, Sbraccia P. Morning meal more efficient for fat loss in a 3-month lifestyle intervention. J Am Coll Nutr 2014; 33:198-205. [PMID: 24809437 DOI: 10.1080/07315724.2013.863169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To evaluate the effects of 2 low-calorie diets but with different distributions of calories throughout the day on weight loss and other major obesity-related metabolic parameters. METHODS We randomly assigned 42 nonsmoking homemakers (age = 46.3 ± 2.3 years, body mass index [BMI] = 35.7 ± 0.8 kg/m(2), mean ± SD) in 2 groups of 21 subjects (G1 and G2). The participants underwent a 3 month individualized Mediterranean-style diet (55% carbohydrate, 30% fat, 15% protein and fiber > 30 g), calorie (600 kcal daily deficit compared to the total energy expenditure measured by a metabolic Holter). Diets consisted of the same food and complied with cardiovascular disease prevention guidelines but differed in the distribution of calories throughout the day (G1: 70% breakfast, morning snack, lunch and 30% afternoon snack and dinner; G2: 55 breakfast, morning snack, lunch and 45% afternoon snack and dinner). Dual-energy X-ray absorptiometry was used for pre- and postintervention body composition assessment. RESULTS Thirty-six subjects completed the study (G1 = 18, G2 = 18). Both groups had significant improvements in body composition and metabolic parameters but G1 had enhanced results for weight loss (G1: -8.2 ± 3.0 kg; G2: -6.5 ± 3.4 kg; p = 0.028), waist circumference reduction (G1: -7 ± 0.6 cm; G2: -5 ± 0.3 cm; p = 0.033), and fat mass loss (G1: -6.8 ± 2.1 kg, G2: -4.5 ± 2.9 kg, p = 0.031; mean ± SD). Improvements were detected in both groups for blood pressure and blood and lipid parameters. G1 subjects showed a greater improvement in insulin sensitivity measured by homeostasis model assessment-estimated insulin resistance (G1: -1.37 ± 0.27, G2: -0.74 ± 0.12, p = 0.017). CONCLUSIONS These data suggest that a low-calorie Mediterranean diet with a higher amount of calories in the first part of the day could establish a greater reduction in fat mass and improved insulin sensitivity than a typical daily diet.
Collapse
|
24
|
Punjabi M, Arnold M, Rüttimann E, Graber M, Geary N, Pacheco-López G, Langhans W. Circulating glucagon-like peptide-1 (GLP-1) inhibits eating in male rats by acting in the hindbrain and without inducing avoidance. Endocrinology 2014; 155:1690-9. [PMID: 24601880 DOI: 10.1210/en.2013-1447] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To address the neural mediation of the eating-inhibitory effect of circulating glucagon-like peptide-1 (GLP-1), we investigated the effects of 1) intra-fourth ventricular infusion of the GLP-1 receptor antagonist exendin-9 or 2) area postrema lesion on the eating-inhibitory effect of intrameal hepatic portal vein (HPV) GLP-1 infusion in adult male rats. To evaluate the physiological relevance of the observed effect we examined 3) the influence of GLP-1 on flavor acceptance in a 2-bottle conditioned flavor avoidance test, and 4) measured active GLP-1 in the HPV and vena cava (VC) in relation to a meal and in the VC after HPV GLP-1 infusion. Intrameal HPV GLP-1 infusion (1 nmol/kg body weight-5 min) specifically reduced ongoing meal size by almost 40% (P < .05). Intra-fourth ventricular exendin-9 (10 μg/rat) itself did not affect eating, but attenuated (P < .05) the satiating effect of HPV GLP-1. Area postrema lesion also blocked (P < .05) the eating-inhibitory effect of HPV GLP-1. Pairing consumption of flavored saccharin solutions with HPV GLP-1 infusion did not alter flavor acceptance, indicating that HPV GLP-1 can inhibit eating without inducing malaise. A regular chow meal transiently increased (P < .05) HPV, but not VC, plasma active GLP-1 levels, whereas HPV GLP-1 infusion caused a transient supraphysiological increase (P < .01) in VC GLP-1 concentration 3 minutes after infusion onset. The results implicate hindbrain GLP-1 receptors and the area postrema in the eating-inhibitory effect of circulating GLP-1, but question the physiological relevance of the eating-inhibitory effect of iv infused GLP-1 under our conditions.
Collapse
Affiliation(s)
- Mukesh Punjabi
- Physiology and Behavior Laboratory, Institute of Food, Nutrition, and Health, Swiss Federal Institute of Technology Zurich (ETH Zurich), 8603 Schwerzenbach, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee CY, Abizaid A. The gut-brain-axis as a target to treat stress-induced obesity. Front Endocrinol (Lausanne) 2014; 5:117. [PMID: 25101055 PMCID: PMC4102906 DOI: 10.3389/fendo.2014.00117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/03/2014] [Indexed: 12/16/2022] Open
Affiliation(s)
- Chooi Yeng Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence:
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
26
|
Abstract
Recent research has indicated that appetite-regulating hormones from the gut may have therapeutic potential. The incretin hormone, glucagon-like peptide-1 (GLP-1), appears to be involved in both peripheral and central pathways mediating satiation. Several studies have also indicated that GLP-1 levels and responses to meals may be altered in obese subjects. Clinical trial results have shown further that two GLP-1 receptor agonists (GLP-1 RAs), exenatide and liraglutide, which are approved for the treatment of hyperglycemia in patients with type 2 diabetes, also produce weight loss in overweight subjects without diabetes. Thus, GLP-1 RAs may provide a new option for pharmacological treatment of obesity.
Collapse
Affiliation(s)
- J J Holst
- Department of Biomedical Sciences, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| |
Collapse
|
27
|
Mitsuhashi Y, Nagaoka D, Bigley KE, Umeda T, Otsuji K, Bauer JE. Metabolic and Hormonal Alterations with Diacylglycerol and Low Glycemic Index Starch during Canine Weight Loss. ISRN VETERINARY SCIENCE 2012; 2012:750593. [PMID: 23762590 PMCID: PMC3671726 DOI: 10.5402/2012/750593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/27/2012] [Indexed: 01/11/2023]
Abstract
Obesity increases insulin resistance and disregulation of glucose homeostasis. This study investigated low glycemic index starch (LGIS)/diacylglycerol (DAG) diet on plasma insulin and circulating incretin hormones during canine weight loss. Obese Beagle dogs were fed one of four starch/oil combination diets (LGIS/DAG; LGIS/triacylglycerol (TAG); high glycemic index starch (HGIS)/DAG; and HGIS/TAG) for 9 weeks during the weight loss period. At weeks 1 and 8, fasting plasma insulin, glucose, nonesterified fatty acid (NEFA), glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1) were determined. Weight loss did not affect fasting insulin, glucose, and NEFA, but fasting GIP increased and GLP-1 decreased. LGIS affected postprandial insulin at both times and glucose was similar to insulin, except 60 min postprandially with DAG at week 8. NEFA lowering was less with the LGIS diets initially but not thereafter. At 60 min postprandially on week 8, GIP was significantly elevated by DAG, while GLP-1 was increased only with the HD diet. LGIS suppressed insulin and glucose responses up to 180 min postprandially at both sample times. DAG increased incretin hormones as did the DAG/HGIS combination but only at week 8. This latter finding appeared to be related to the glucose response but not to insulin at 60 min.
Collapse
Affiliation(s)
- Yuka Mitsuhashi
- Companion Animal Nutrition Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA ; Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA ; The Nutro Company, 1550 West McEwen Drive, Franklin, TN 37067, USA
| | | | | | | | | | | |
Collapse
|
28
|
Labouesse MA, Stadlbauer U, Weber E, Arnold M, Langhans W, Pacheco-López G. Vagal afferents mediate early satiation and prevent flavour avoidance learning in response to intraperitoneally infused exendin-4. J Neuroendocrinol 2012; 24:1505-16. [PMID: 22827554 DOI: 10.1111/j.1365-2826.2012.02364.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/28/2012] [Accepted: 07/21/2012] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists such as exendin-4 (Ex-4) affect eating and metabolism and are potential candidates for treating obesity and type II diabetes. In the present study, we tested whether vagal afferents mediate the eating-inhibitory and avoidance-inducing effects of Ex-4. Subdiaphragmatic vagal deafferentation (SDA) blunted the short-term (< 1 h) but not long-term eating-inhibitory effect of i.p.-infused Ex-4 (0.1 μg/kg) in rats. A dose of 1 μg/kg Ex-4 reduced 0.5, 1, 2 and 4 h cumulative food intake in SDA and sham-operated rats to a similar extent. Paradoxically, SDA but not sham rats developed a conditioned flavour avoidance (CFA) after i.p. Ex-4 (0.1 μg/kg). SDA completely blunted the induction of c-Fos expression by Ex-4 in the hypothalamic paraventricular nucleus. Ex-4, however, increased the number of c-Fos expressing cells, independent of intact vagal afferents, in the nucleus accumbens and in the central nucleus of the amygdala, the lateral external parabrachial nucleus, the caudal ventrolateral medulla and the dorsal vagal complex. These data suggest that intact vagal afferents are only necessary for the full expression of the early satiating effect of Ex-4 but not for later eating-inhibitory actions, when circulating Ex-4 might reach the brain via the circulation. Our data also dissociate the satiating and avoidance-inducing effects of the low Ex-4 dose tested under our conditions and suggest that vagal afferent signalling may protect against the development of CFA. Taken together, these findings reveal a complex role of vagal afferents in mediating the effects of GLP-1R activation on ingestive behaviour.
Collapse
Affiliation(s)
- M A Labouesse
- Physiology and Behaviour Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | | | | | | | | | | |
Collapse
|
29
|
Effect of the GLP-1 analog liraglutide on satiation and gastric sensorimotor function during nutrient-drink ingestion. Int J Obes (Lond) 2012; 37:693-8. [PMID: 22846777 DOI: 10.1038/ijo.2012.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND/AIM Liraglutide, a glucagon-like peptide-1 analog, induces weight loss. We investigated whether liraglutide affects gastric accommodation and satiation by measuring the intragastric pressure (IGP) during nutrient-drink consumption and using the barostat technique. METHODS Ten healthy volunteers (HVs) were tested after placebo, 0.3, 0.6 or 1.2 mg liraglutide administration. IGP was studied during intragastric nutrient-drink (1.5 kcal ml(-1)) infusion (60 ml min(-1)), while the HVs scored their satiation on a graded scale until maximal satiation. In a separate session, isobaric distentions were performed using the barostat with stepwise increments of 2 mm Hg starting from minimal distending pressure, although HVs scored their perception; gastric volume was monitored 30 min before and until 60 min after ingestion of 200 ml of nutrient drink. Data are presented as mean±s.e.m. comparisons were performed with ANOVA (P<0.05 was significant). RESULTS During nutrient-drink infusion, IGP decreased with 4.1±0.7, 3.0±0.4, 2.1±0.3 and 2.6±0.4 mm Hg (placebo, 0.3, 0.6 and 1.2 mg liraglutide, respectively; P<0.05). The maximum-tolerated volume was not different, except after treatment with 1.2 mg liraglutide (695±135 ml) compared with placebo (1008±197 ml; P<0.05); however, 1.2 mg liraglutide induced nausea in all volunteers. In the barostat study, liraglutide did not affect the perception or compliance, but significantly decreased gastric accommodation to the meal (168±27 vs 78.8±36.4 ml after treatment with placebo and 0.6 mg liraglutide, respectively; P<0.05). CONCLUSION Although no effect on perception, compliance or satiation was observed, liraglutide inhibited gastric accommodation. Whether this effect is involved in the anorectic effect of liraglutide remains to be determined.
Collapse
|
30
|
Hsieh YL, Yao HT, Cheng RS, Chiang MT. Chitosan Reduces Plasma Adipocytokines and Lipid Accumulation in Liver and Adipose Tissues and Ameliorates Insulin Resistance in Diabetic Rats. J Med Food 2012; 15:453-60. [DOI: 10.1089/jmf.2011.1882] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Yu-Lin Hsieh
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ron-Shan Cheng
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
31
|
Giacco R, Della Pepa G, Luongo D, Riccardi G. Whole grain intake in relation to body weight: from epidemiological evidence to clinical trials. Nutr Metab Cardiovasc Dis 2011; 21:901-908. [PMID: 22036468 DOI: 10.1016/j.numecd.2011.07.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 10/15/2022]
Abstract
This viewpoint aims to 1) review the available scientific literature on the relationship between whole grain consumption and body weight regulation; 2) evaluate the potential mechanisms whereby whole grain intake may help reduce overweight and 3) try to understand why epidemiological studies and clinical trials provide diverging results on this topic. All the prospective epidemiological studies demonstrate that a higher intake of whole grains is associated with lower BMI and body weight gain. However, these results do not clarify whether whole grain consumption is simply a marker of a healthier lifestyle or a factor favoring "per se" lower body weight. Habitual whole grain consumption seems to cause lower body weight by multiple mechanisms such as lower energy density of whole grain based products, lower glycemic index, fermentation of non digestible carbohydrates (satiety signals) and finally by modulating intestinal microflora. In contrast with epidemiological evidence, the results of few clinical trials do not confirm that a whole grain low-calorie diet is more effective in reducing body weight than a refined cereal diet, but their results may have been affected by small sample size or short duration of the intervention. Therefore, further intervention studies with adequate methodology are needed to clarify this question. For the time being, whole grain consumption can be recommended as one of the features of the diet that may help control body weight but also because is associated with a lower risk to develop type 2 diabetes, cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- R Giacco
- CNR-Institute of Food Science, Via Roma 64, 83100 Avellino, Italy.
| | | | | | | |
Collapse
|
32
|
Lensu S, Tiittanen P, Lindén J, Tuomisto J, Pohjanvirta R. Effects of a single exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on macro- and microstructures of feeding and drinking in two differently TCDD-sensitive rat strains. Pharmacol Biochem Behav 2011; 99:487-99. [DOI: 10.1016/j.pbb.2011.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 11/25/2022]
|
33
|
Abstract
The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.
Collapse
|
34
|
Rotondo A, Amato A, Lentini L, Baldassano S, Mulè F. Glucagon-like peptide-1 relaxes gastric antrum through nitric oxide in mice. Peptides 2011; 32:60-4. [PMID: 20933560 DOI: 10.1016/j.peptides.2010.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 02/07/2023]
Abstract
Glucagon-like-peptide-1 (GLP-1) is a proglucagon-derived peptide expressed in the intestinal enteroendocrine-L cells and released after meal ingestion. GLP-1 reduces postprandial glycemia not only by its hormonal effects, but also by its inhibitory effects on gastrointestinal motility. Recently, we showed that GLP-1 acts in the enteric nervous system of mouse intestine. Therefore our working hypothesis was that GLP-1 may have also a direct influence on the gastric mechanical activity since the major part of experimental studies about its involvement in the regulation of gastric motility have been conducted in in vivo conditions. The purposes of this study were (i) to examine exogenous GLP-1 effects on mouse gastric mechanical activity using isolated whole stomach; (ii) to clarify the regional activity of GLP-1 using circular muscular strips from gastric fundus or antrum; (iii) to analyze the mechanism of action underlying the observed effects; (iv) to verify regional differences of GLP-1 receptors (GLP-1R) expression by RT-PCR. In the whole stomach GLP-1 caused concentration-dependent relaxation significantly anatagonized by exendin (9-39), an antagonist of GLP-1R and abolished by tetrodotoxin (TTX) or N(ω)-nitro-l-arginine methyl ester (l-NAME), inhibitor of nitric oxide (NO) synthase. GLP-1 was without any effect in fundic strips, but it induced concentration-dependent relaxation in carbachol-precontracted antral strips. The effect was abolished by TTX or l-NAME. RT-PCR analysis revealed a higher expression of GLP-1R mRNA in antrum than in fundus. These results suggest that exogenous GLP-1 is able to reduce mouse gastric motility by acting peripherally in the antral region, through neural NO release.
Collapse
Affiliation(s)
- Alessandra Rotondo
- Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo, 90128 Palermo, Italy
| | | | | | | | | |
Collapse
|
35
|
Pereira MA, Erickson E, McKee P, Schrankler K, Raatz SK, Lytle LA, Pellegrini AD. Breakfast frequency and quality may affect glycemia and appetite in adults and children. J Nutr 2011; 141:163-8. [PMID: 21123469 PMCID: PMC3001239 DOI: 10.3945/jn.109.114405] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Observational studies of breakfast frequency in children and adults suggest an inverse (protective) association between the frequency of eating breakfast and the risk for obesity and chronic diseases such as type 2 diabetes. More prospective studies with stronger designs are needed, as are experimental studies on this topic. In addition, above and beyond breakfast frequency, the roles of dietary quality and composition need to be studied in the context of eating or skipping breakfast. Experimental studies are also necessary to rigorously test causality and biological mechanisms. Therefore, we conducted 2 pilot experimental studies to examine some of the effects of breakfast skipping and breakfast composition on blood glucose and appetite in children and adults. Our results suggest that breakfast frequency and quality may be related in causal ways to appetite controls and blood sugar control, supporting the hypothesis that the breakfast meal and its quality may have important causal implications for the risk of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Mark A Pereira
- Division of Epidemiology and Community Health, School of Public Health, Minneapolis, MN 55454, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Glucagon-like peptide 1 and the brain: central actions-central sources? Auton Neurosci 2010; 161:14-9. [PMID: 20951098 DOI: 10.1016/j.autneu.2010.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 09/23/2010] [Indexed: 01/20/2023]
Abstract
Glucagon-like peptide 1(GLP-1) is both an incretin released postprandially from the gut and a neuropeptide produced by select brainstem neurons. Its principal role is in the control of metabolic and cardiovascular functions, acting both in the periphery and within the central nervous system (CNS). Specifically, GLP-1 functions that involve the CNS include the suppression of food intake, the regulation of glucose homeostasis and the modulation of heart rate and blood pressure. Thus far, relatively little is known about the exact interplay between gut-derived and neuronally-produced GLP-1. This is partially due to the difficulty of identifying and targeting GLP-1 producing cells in vitro. This obstacle has recently been overcome by the generation of transgenic mice with fluorescently-tagged GLP-1 cells (mGLU-YFP mice). This review revisits what has been discovered about the central actions of GLP-1 during the past decade and puts it into context of the emerging findings from the mGLU-YFP mice.
Collapse
|
37
|
Baumgartner I, Pacheco-López G, Rüttimann EB, Arnold M, Asarian L, Langhans W, Geary N, Hillebrand JJG. Hepatic-portal vein infusions of glucagon-like peptide-1 reduce meal size and increase c-Fos expression in the nucleus tractus solitarii, area postrema and central nucleus of the amygdala in rats. J Neuroendocrinol 2010; 22:557-63. [PMID: 20298455 DOI: 10.1111/j.1365-2826.2010.01995.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We recently reported that brief, remotely controlled intrameal hepatic-portal vein infusions of glucagon-like peptide-1 (GLP-1) reduced spontaneous meal size in rats. To investigate the neurobehavioural correlates of this effect, we equipped male Sprague-Dawley rats with hepatic-portal vein catheters and assessed (i) the effect on eating of remotely triggered infusions of GLP-1 (1 nmol/kg, 5 min) or vehicle during the first nocturnal meal after 3 h of food deprivation and (ii) the effect of identical infusions performed at dark onset on c-Fos expression in several brain areas involved in the control of eating. GLP-1 reduced (P < 0.05) the size of the first nocturnal meal and increased its satiety ratio. Also, GLP-1 increased (P < 0.05) the number of c-Fos-expressing cells in the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala, but not in the arcuate or paraventricular hypothalamic nuclei. These data suggest that the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala play a role in the eating-inhibitory actions of GLP-1 infused into the hepatic-portal vein; it remains to be established whether activation of these brain nuclei reflect satiation, aversion, or both.
Collapse
Affiliation(s)
- I Baumgartner
- Physiology and Behaviour Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
McIntosh CHS, Widenmaier S, Kim SJ. Pleiotropic actions of the incretin hormones. VITAMINS AND HORMONES 2010; 84:21-79. [PMID: 21094896 DOI: 10.1016/b978-0-12-381517-0.00002-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The insulin secretory response to a meal results largely from glucose stimulation of the pancreatic islets and both direct and indirect (autonomic) glucose-dependent stimulation by incretin hormones released from the gastrointestinal tract. Two incretins, Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have so far been identified. Localization of the cognate G protein-coupled receptors for GIP and GLP-1 revealed that they are present in numerous tissues in addition to the endocrine pancreas, including the gastrointestinal, cardiovascular, central nervous and autonomic nervous systems (ANSs), adipose tissue, and bone. At these sites, the incretin hormones exert a range of pleiotropic effects, many of which contribute to the integration of processes involved in the regulation of food intake, and nutrient and mineral processing and storage. From detailed studies at the cellular and molecular level, it is also evident that both incretin hormones act via multiple signal transduction pathways that regulate both acute and long-term cell function. Here, we provide an overview of current knowledge relating to the physiological roles of GIP and GLP-1, with specific emphasis on their modes of action on islet hormone secretion, β-cell proliferation and survival, central and autonomic neuronal function, gastrointestinal motility, and glucose and lipid metabolism. However, it is emphasized that despite intensive research on the various body systems, in many cases there is uncertainty as to the pathways by which the incretins mediate their pleiotropic effects and only a rudimentary understanding of the underlying cellular mechanisms involved, and these are challenges for the future.
Collapse
Affiliation(s)
- Christopher H S McIntosh
- Department of Cellular & Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
39
|
Slavin JL, Savarino V, Paredes-Diaz A, Fotopoulos G. A Review of the Role of Soluble Fiber in Health with Specific Reference to Wheat Dextrin. J Int Med Res 2009; 37:1-17. [DOI: 10.1177/147323000903700101] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dietary fiber is widely recognized to have a beneficial role in overall health, but only at adequate levels (25 − 38 g/day for healthy adults). Wheat dextrin in particular is a soluble fiber that can easily be added to the diet and is widely used in the food industry. There is some debate about whether increased intake of soluble fibers leads to health benefits. This paper reviews the evidence regarding the physiological effects and potential health benefits of the addition of soluble dietary fibers, with specific reference to wheat dextrin, based on a search of PubMed. The evidence suggests that soluble fibers help to regulate the digestive system, may increase micronutrient absorption, stabilize blood glucose and lower serum lipids, may prevent several gastrointestinal disorders, and have an accepted role in the prevention of cardiovascular disease. It is concluded that supplementation with soluble fibers (e.g. wheat dextrin) may be useful in individuals at risk of a lower than recommended dietary fiber intake.
Collapse
Affiliation(s)
- JL Slavin
- Department of Food Science and Nutrition, University of Minnesota, St Paul, Minnesota, USA
| | - V Savarino
- Department of Internal Medicine, Gastroenterology Unit, Genoa, Italy
| | | | | |
Collapse
|
40
|
Girard J. The incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: Incretins: Concept and physiological functions. DIABETES & METABOLISM 2008; 34:550-9. [DOI: 10.1016/j.diabet.2008.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 09/01/2008] [Indexed: 12/25/2022]
|
41
|
Gautier JF, Choukem SP, Girard J. Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. DIABETES & METABOLISM 2008; 34 Suppl 2:S65-72. [PMID: 18640588 DOI: 10.1016/s1262-3636(08)73397-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Incretin hormones are defined as intestinal hormones released in response to nutrient ingestion, which potentiate the glucose-induced insulin response. In humans, the incretin effect is mainly caused by two peptide hormones, glucose-dependent insulin releasing polypeptide (GIP), and glucagon-like peptide-1 (GLP-1). GIP is secreted by K cells from the upper small intestine while GLP-1 is mainly produced in the enteroendocrine L cells located in the distal intestine. Their effect is mediated through their binding with specific receptors, though part of their biological action may also involve neural modulation. GIP and GLP-1 are both rapidly degraded into inactive metabolites by the enzyme dipeptidyl-peptidase-IV (DPP-IV). In addition to its effects on insulin secretion, GLP-1 exerts other significant actions, including stimulation of insulin biosynthesis, inhibition of glucagon secretion, inhibition of gastric emptying and acid secretion, reduction of food intake, and trophic effects on the pancreas. As the insulinotropic action of GLP-1 is preserved in type 2 diabetic patients, this peptide was likely to be developed as a therapeutic agent for this disease.
Collapse
Affiliation(s)
- J-F Gautier
- Service de Diabétologie et d'Endocrinologie et INSERM CIC9504, Hôpital Saint-Louis, 101, avenue Claude Vellefaux, 75010 Paris, France.
| | | | | |
Collapse
|
42
|
Timlin MT, Pereira MA. Breakfast Frequency and Quality in the Etiology of Adult Obesity and Chronic Diseases. Nutr Rev 2008. [DOI: 10.1111/j.1753-4887.2007.tb00304.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Tang-Christensen M, Cowley MA. GLP-1 analogs: satiety without malaise? Am J Physiol Regul Integr Comp Physiol 2007; 293:R981-2. [PMID: 17596320 DOI: 10.1152/ajpregu.00449.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mads Tang-Christensen
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
44
|
Abstract
The glucoincretins, glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), are intestinal peptides secreted in response to glucose or lipid intake. Data on isolated intestinal tissues, dietary treatments and knockout mice strongly suggest that GIP and GLP-1 secretion requires glucose and lipid metabolism by intestinal cells. However, incretin secretion can also be induced by non-digestible carbohydrates and involves the autonomic nervous system and endocrine factors such as GIP itself and cholecystokinin. The classical pharmacological approach and the recent use of knockout mice for the incretin receptors have shown that a remarkable feature of incretins is the ability to stimulate insulin secretion in the presence of hyperglycaemia only, hence avoiding any hypoglycaemic episode. This important role is the basis of ongoing clinical trials using GLP-1 analogues. Since most of the data concern GLP-1, we will focus on this incretin. In addition, GLP-1 is involved in glucose sensing by the autonomic nervous system of the hepato-portal vein controlling muscle glucose utilization and indirectly insulin secretion. GLP-1 has been shown to decrease glucagon secretion, food intake and gastric emptying, preventing excessive hyperglycaemia and overfeeding. Another remarkable feature of GLP-1 is its secretion by the brain. Recently, elegant data showed that cerebral GLP-1 is involved in cognition and memory. Experiments using knockout mice suggest that the lack of the GIP receptor prevents diet-induced obesity. Consequently, macronutrients controlling intestinal glucose and lipid metabolism would control incretin secretion and would consequently be beneficial for health. The control of incretin secretion represents a major goal for new therapeutic as well as nutrition strategies for treating and/or reducing the risk of hyperglycaemic syndromes, excessive body weight and thus improvement of well-being.
Collapse
Affiliation(s)
- Rémy Burcelin
- UMR 5018 CNRS-UPS and IFR 31, Rangueil Hospital, Toulouse, France.
| |
Collapse
|
45
|
Woods SC, Lutz TA, Geary N, Langhans W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc Lond B Biol Sci 2006; 361:1219-35. [PMID: 16815800 PMCID: PMC1642707 DOI: 10.1098/rstb.2006.1858] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The control of food intake and body weight by the brain relies upon the detection and integration of signals reflecting energy stores and fluxes, and their interaction with many different inputs related to food palatability and gastrointestinal handling as well as social, emotional, circadian, habitual and other situational factors. This review focuses upon the role of hormones secreted by the endocrine pancreas: hormones, which individually and collectively influence food intake, with an emphasis upon insulin, glucagon and amylin. Insulin and amylin are co-secreted by B-cells and provide a signal that reflects both circulating energy in the form of glucose and stored energy in the form of visceral adipose tissue. Insulin acts directly at the liver to suppress the synthesis and secretion of glucose, and some plasma insulin is transported into the brain and especially the mediobasal hypothalamus where it elicits a net catabolic response, particularly reduced food intake and loss of body weight. Amylin reduces meal size by stimulating neurons in the hindbrain, and there is evidence that amylin additionally functions as an adiposity signal controlling body weight as well as meal size. Glucagon is secreted from A-cells and increases glucose secretion from the liver. Glucagon acts in the liver to reduce meal size, the signal being relayed to the brain via the vagus nerves. To summarize, hormones of the endocrine pancreas are collectively at the crossroads of many aspects of energy homeostasis. Glucagon and amylin act in the short term to reduce meal size, and insulin sensitizes the brain to short-term meal-generated satiety signals; and insulin and perhaps amylin as well act over longer intervals to modulate the amount of fat maintained and defended by the brain. Hormones of the endocrine pancreas interact with receptors at many points along the gut-brain axis, from the liver to the sensory vagus nerve to the hindbrain to the hypothalamus; and their signals are conveyed both neurally and humorally. Finally, their actions include gastrointestinal and metabolic as well as behavioural effects.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry, University of Cincinnati, OH 45237 USA.
| | | | | | | |
Collapse
|
46
|
O'Connor AM, Pola S, Ward BM, Fillmore D, Buchanan KD, Kirwan JP. The gastroenteroinsular response to glucose ingestion during postexercise recovery. Am J Physiol Endocrinol Metab 2006; 290:E1155-61. [PMID: 16403776 DOI: 10.1152/ajpendo.00500.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study examined gastrointestinal hormone and peptide responses when glucose was ingested after prolonged exercise. Six endurance-trained male athletes ran on a treadmill for 2 h at 60% VO2 max. Immediately after the run, the athletes consumed 75 g of glucose in 250 ml of water (ExGLU) or flavored water as a placebo control (ExPL). On a separate visit, the athletes rested for 2 h and then consumed glucose (ConGLU). During the first 60 min of recovery from exercise alone (ExPL), plasma vasoactive intestinal peptide (VIP), gastrin, and glucagon-like peptide-1 (GLP-1) all increased significantly, whereas glucose, insulin, and gastric inhibitory polypeptide (GIP) were unchanged from the immediate postexercise value. When glucose was ingested after exercise (ExGLU), glucose, insulin, VIP, gastrin, GLP-1, and GIP were all increased (P < 0.01). However, when glucose was ingested after resting for 2 h (ConGLU), VIP levels were unaffected, although glucose, insulin, gastrin, GLP-1, and GIP levels increased (P < 0.05). The plasma glucose response was greater (P < 0.03) and the plasma insulin response lower (P < 0.004) during ExGLU compared with ConGLU. There was a significantly higher (P < 0.01) VIP response during the initial period of recovery in ExGLU than there was with both ExPL and ConGLU. Plasma VIP showed a modest negative correlation with circulating glucose (r = -0.35, P < 0.03) and insulin (r = -0.37, P < 0.03) during the ExGLU recovery period. In summary, when glucose is ingested after prolonged exercise, there is mild insulin resistance and a corresponding rapid transitory increase in plasma VIP. These data suggest that VIP may play an important glucoregulatory role when glucose is ingested during the immediate postexercise recovery period.
Collapse
Affiliation(s)
- Aine M O'Connor
- Division of of Metabolism and Endocrinology, School of Medicine, The Queen's University of Belfast, N. Ireland
| | | | | | | | | | | |
Collapse
|
47
|
Aja S, Ewing C, Lin J, Hyun J, Moran TH. Blockade of central GLP-1 receptors prevents CART-induced hypophagia and brain c-Fos expression. Peptides 2006; 27:157-64. [PMID: 16154233 DOI: 10.1016/j.peptides.2005.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 07/08/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Central administration of both CART and GLP-1 reduces feeding and increases c-Fos in brain areas associated with food intake. To determine whether aspects of CART's effects were mediated through GLP-1's action, we examined whether the GLP-1 receptor antagonist des-His1-Glu9-exendin-4 (EX) blocked CART-induced feeding inhibition, and c-Fos activation. An i.c.v. dose of 100 microg EX blocked the feeding inhibitory action of 1 microg of CART i.c.v. and prevented CART-induced c-Fos expression at multiple hindbrain and hypothalamic sites. These data suggest that i.c.v. CART administration activates a central release of GLP-1 to inhibit feeding and produce widespread neural activation.
Collapse
Affiliation(s)
- Susan Aja
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
OBJECTIVE This review provides an update of recent studies of dietary fiber and weight and includes a discussion of potential mechanisms of how dietary fiber can aid weight loss and weight maintenance. METHODS Human studies published on dietary fiber and body weight were reviewed and summarized. Dietary fiber content of popular low-carbohydrate diets were calculated and are presented. RESULTS Epidemiologic support that dietary fiber intake prevents obesity is strong. Fiber intake is inversely associated with body weight and body fat. In addition, fiber intake is inversely associated with body mass index at all levels of fat intake after adjusting for confounding factors. Results from intervention studies are more mixed, although the addition of dietary fiber generally decreases food intake and, hence, body weight. Many mechanisms have been suggested for how dietary fiber aids in weight management, including promoting satiation, decreasing absorption of macronutrients, and altering secretion of gut hormones. CONCLUSION The average fiber intake of adults in the United States is less than half recommended levels and is lower still among those who follow currently popular low-carbohydrate diets, such as Atkins and South Beach. Increasing consumption of dietary fiber with fruits, vegetables, whole grains, and legumes across the life cycle is a critical step in stemming the epidemic of obesity found in developed countries. The addition of functional fiber to weight-loss diets should also be considered as a tool to improve success.
Collapse
Affiliation(s)
- Joanne L Slavin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.
| |
Collapse
|
49
|
Larsen PJ, Holst JJ. Glucagon-related peptide 1 (GLP-1): hormone and neurotransmitter. ACTA ACUST UNITED AC 2005; 128:97-107. [PMID: 15780429 DOI: 10.1016/j.regpep.2004.08.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 08/26/2004] [Accepted: 08/31/2004] [Indexed: 12/23/2022]
Abstract
The interest in glucagon-like petide-1 (GLP-1) and other pre-proglucagon derived peptides has risen almost exponentially since seminal papers in the early 1990s proposed to use GLP-1 agonists as therapeutic agents for treatment of type 2 diabetes. A wealth of interesting studies covering both normal and pathophysiological role of GLP-1 have been published over the last two decades and our understanding of GLP-1 action has widened considerably. In the present review, we have tried to cover our current understanding of GLP-1 actions both as a peripheral hormone and as a central neurotransmitter. From an initial focus on glycaemic control, GLP-1 research has been diverted to study its role in energy homeostasis, neurodegeneration, cognitive functions, anxiety and many more functions. With the upcoming introduction of GLP-1 agonists on the pharmaceutical venue, we have witnessed an outstanding example of how initial ideas from basic science laboratories have paved their way to become a novel therapeutic strategy to fight diabetes.
Collapse
Affiliation(s)
- Philip J Larsen
- Rheoscience A/S, The Panum Insitute, University of Copenhagen, Glerupvej 2, 2610 Rødovre, Denmark.
| | | |
Collapse
|
50
|
Schirra J, Göke B. The physiological role of GLP-1 in human: incretin, ileal brake or more? ACTA ACUST UNITED AC 2005; 128:109-15. [PMID: 15780430 DOI: 10.1016/j.regpep.2004.06.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Accepted: 06/17/2004] [Indexed: 12/22/2022]
Abstract
The proglucagon-derived peptide glucagon-like peptide-1 (GLP-1) is an intestinal signal peptide postprandially released from the L cells of the lower gut. Exogenously administered the synthetic hormone exerts a glucose-dependent insulinotropic effect at the pancreatic beta-cells and lowers plasma glucagon by an inhibitory effect against the alpha-cells. It delays gastric emptying by relaxation of the gastric fundus, inhibition of antral contractility, and stimulation of both the tonic and phasic motility of the pyloric sphincter. Enhancement of insulin, suppression of glucagon, and inhibition of gastric emptying are the main determinants controlling glucose homeostasis with GLP-1. Human studies employing the specific GLP-1 receptor antagonist exendin(9-39) show that endogenously released GLP-1 likewise controls fasting plasma glucagon, stimulates insulin, and influences all the motoric mechanisms known to control gastric emptying. Therefore, GLP-1 is discussed as an incretin hormone and as an enterogastrone in man. Synthetic GLP-1 also suppresses gastric acid and pancreatic enzyme secretion. The inhibitory effects on upper gastrointestinal functions are at least partly mediated by vagal-cholinergic inhibition and may involve interactions with vagal afferent pathways and/or circumventricular regions within the CNS. GLP-1 is a candidate humoral mediator of the 'ileal brake' exerting inhibition of upper gastrointestinal function preventing malabsorption and postprandial metabolic disturbances. As human studies indicate a central action of GLP-1 in reduction of food intake, it is uncertain if this is a consequence of induction of satiety or of transduction of visceral aversive stress signals.
Collapse
Affiliation(s)
- Jörg Schirra
- Department of Internal Medicine II, Marchioninistr. 15, University of Munich, Munich D-81377, Germany.
| | | |
Collapse
|