1
|
Schwarz M, Schmidbauer VU, Malik J, Nowak NM, Kienast P, Watzenboeck M, Stuempflen M, Schwarz C, Kittinger J, Bettelheim D, Haberl C, Binder J, Kiss H, Reiberger T, Prayer D, Kasprian G. Intrauterine blood transfusion causes dose- and time-dependent signal alterations in the liver and the spleen on fetal magnetic resonance imaging. Eur Radiol 2025; 35:1605-1614. [PMID: 39663265 PMCID: PMC11836162 DOI: 10.1007/s00330-024-11228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Intrauterine transfusions (IUTs) are a life-saving treatment for fetal anemia. However, with each transfusion, iron bypasses uptake regulation through the placenta and accumulates in fetal organs. Unlike other imaging modalities, fetal magnetic resonance imaging (MRI) is capable of non-invasively assessing fetal liver disease and/or organ iron overload. This study aimed to investigate the effects of IUTs on MRI findings in the fetal liver and spleen. STUDY DESIGN For this retrospective study, we included eight fetuses undergoing IUT and prenatal MRI from 2014 to 2023. The fetuses were gestational age-matched with a cohort that received fetal MRI for other indications, but no IUTs. Signal intensity (SI) and volumetric analyses of the liver and the spleen were performed. RESULTS Fetuses receiving transfusions had significantly larger volumes of both liver (p = 0.003) and spleen (p = 0.029). T1 SI inversely correlated with the number of IUTs (Pearson's r = -0.43, p = 0.099). This effect regressed over time (r = 0.69, p = 0.057). T2 SI did not correlate significantly with transfusion frequency but showed a strong positive correlation with the number of days between IUT and MRI (r = 0.91, p = 0.002). For splenic SI measures, similar effects were observed regarding T1 SI reduction per received transfusion (r = -0.36, p = 0.167) and recovery of T2 SI after IUT (r = 0.88, p = 0.004). CONCLUSION This is the first study to report the effects of IUTs on MRI data of fetal livers and spleens. We observed considerable dose- and time-dependent SI alterations of the liver and spleen following IUT. Furthermore, fetal hepatosplenomegaly can be expected following IUT. KEY POINTS Question What fetal changes are found by MRI after life-saving intrauterine transfusion (IUT)? Findings Dose- and time-dependent reductions in signal intensity of the fetal liver and spleen, as well as hepatosplenomegaly, were found after intrauterine transfusion. Clinical relevance Intrauterine transfusions cause transient iron overload with consequential changes in MRI signal intensity of fetal livers and spleens. Fetal hepatosplenomegaly can be expected following transfusions. Radiologists' awareness of changes following IUT may improve report quality.
Collapse
Affiliation(s)
- Michael Schwarz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Victor Ulrich Schmidbauer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| | - Jakob Malik
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Michael Nowak
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Patric Kienast
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Watzenboeck
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marlene Stuempflen
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Caroline Schwarz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jakob Kittinger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dieter Bettelheim
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - Christina Haberl
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - Julia Binder
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Shu Y, Wu X, Zhang D, Jiang S, Ma W. Exploring the Mechanisms of Iron Overload-Induced Liver Injury in Rats Based on Transcriptomics and Proteomics. BIOLOGY 2025; 14:81. [PMID: 39857310 PMCID: PMC11761193 DOI: 10.3390/biology14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Iron is a trace element that is indispensable for the growth and development of animals. Excessive iron supplementation may lead to iron overload and elevated reactive oxygen species (ROS) production in animals, causing cellular damage. Nevertheless, the precise mechanism by which iron overload causes cell injury remains to be fully elucidated. In this study, 16 male SD rats aged 6 to 7 weeks were randomly assigned to either a control group (CON) or an iron overload group (IO). Rats in the iron overload group received 150 mg/kg iron dextran injections every three days for a duration of four weeks. The results indicated that iron treatment with iron dextran significantly increased the scores of steatosis (p < 0.05) and inflammation (p < 0.05) in the NAS score. The integrated transcriptomic and proteomic analysis suggests that HO-1 and Lnc286.2 are potentially significant in iron overload-induced liver injury in rats. In vitro experiments utilizing ferric ammonium citrate (FAC) were conducted to establish an iron overload model in rat liver-derived BRL-3A cells. The result found that FAC treatment can significantly increase the BRL-3A cell's Fe2+ content (p < 0.05), ROS (p < 0.01), lipid ROS (p < 0.01) levels, and the expression of the HO-1 gene and protein (p < 0.01), aligning with proteomic and transcriptomic findings. HO-1 inhibition can significantly decrease BRL-3A cell vitality (p < 0.01) and promote ROS (p < 0.05) and lipid ROS (p < 0.01), thus aggravating FAC-induced BRL-3A cell iron overload damage. Using the agonist of HO-1 agonist cobalt protoporphyrin (CoPP) to induce HO-1 overexpression can significantly alleviate the decrease in FAC-induced BRL-3A cell viability (p < 0.01), ROS (p < 0.01), and lipid ROS (p < 0.01). In addition, siLnc286.2 treatment can increase HO-1 expression, alleviate the decline of FAC-induced BRL-3A cell activity, and increase lipid ROS (p < 0.05) content. In conclusion, the findings of this study suggest that by suppressing the expression of Lnc286.2, we can enhance the expression of HO-1, which in turn alleviates lipid peroxidation in cells and increases their antioxidant capacity, thereby exerting a protective effect against liver cell injury induced by iron overload.
Collapse
Affiliation(s)
- Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Wang X, Wei T, Luo J, Lang K, Song Y, Ning X, Chao Y, Gu Z, Wang L, Chen C, Yang D, Song Y. Iron Overload-Dependent Ferroptosis Aggravates LPS-Induced Acute Lung Injury by Impairing Mitochondrial Function. Inflammation 2024; 47:2013-2026. [PMID: 38722504 DOI: 10.1007/s10753-024-02022-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 11/30/2024]
Abstract
Ferroptosis is a newly proposed form of programmed cell death that is iron-dependent and closely linked to oxidative stress. Its specific morphological changes include shrunken mitochondria, increased density of mitochondrial membrane, and rupture or disappearance of mitochondrial cristae. The main mechanism of ferroptosis involves excessive free iron reacting with membrane phospholipids, known as the Fenton reaction, resulting in lipid peroxidation. However, the role of iron in acute lung injury (ALI) remains largely unknown. In this study, LPS was instilled into the airway to induce ALI in mice. We observed a significant increase in iron concentration during ALI, accompanied by elevated levels of lipid peroxidation markers such as malonaldehyde (MDA) and 4-hydroxynonenal (4-HNE). Treatment with the iron chelator deferoxamine (DFO) or ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed lipid peroxidation and significantly attenuates lung injury. Similarly, DFO or Fer-1 treatment improved the cell survival significantly in vitro. These results demonstrated that ferroptosis occurs during ALI and that targeting ferroptosis is an effective treatment strategy. Interestingly, we found that the increased iron was primarily concentrated in mitochondria and DFO treatment effectively restored normal mitochondria morphology. To further confirm the damaging effect of iron on mitochondria, we performed mitochondrial stress tests in vitro, which revealed that iron stimulation led to mitochondrial dysfunction, characterized by impaired basal respiratory capacity, ATP production capacity, and maximum respiratory capacity. MitoTEMPO, an antioxidant targeting mitochondria, exhibited superior efficacy in improving iron-induced mitochondrial dysfunction compared to the broad-spectrum antioxidant NAC. Treatment with MitoTEMPO more effectively alleviated ALI. In conclusion, ferroptosis contributes to the pathogenesis of ALI and aggravates ALI by impairing mitochondrial function.
Collapse
Affiliation(s)
- Xiaocen Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Tingting Wei
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Jinlong Luo
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Ke Lang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yansha Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Xinyi Ning
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yencheng Chao
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Zhaolin Gu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Linlin Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Cuicui Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Dong Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China.
- Shanghai Respiratory Research Institute, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Pulmonary Medicine, Qingpu Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
- Jinshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Lee Y, Yoon S, Paek M, Han D, Choi MH, Park SH. Advanced MRI techniques in abdominal imaging. Abdom Radiol (NY) 2024; 49:3615-3636. [PMID: 38802629 DOI: 10.1007/s00261-024-04369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Magnetic resonance imaging (MRI) is a crucial modality for abdominal imaging evaluation of focal lesions and tissue properties. However, several obstacles, such as prolonged scan times, limitations in patients' breath-hold capacity, and contrast agent-associated artifacts, remain in abdominal MR images. Recent techniques, including parallel imaging, three-dimensional acquisition, compressed sensing, and deep learning, have been developed to reduce the scan time while ensuring acceptable image quality or to achieve higher resolution without extending the scan duration. Quantitative measurements using MRI techniques enable the noninvasive evaluation of specific materials. A comprehensive understanding of these advanced techniques is essential for accurate interpretation of MRI sequences. Herein, we therefore review advanced abdominal MRI techniques.
Collapse
Affiliation(s)
- Yoonhee Lee
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Sungjin Yoon
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | | | - Dongyeob Han
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - Moon Hyung Choi
- Department of Radiology, Catholic University of Korea Eunpyeong St Mary's Hospital, Seoul, Republic of Korea
| | - So Hyun Park
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
5
|
Cui K, Chen J, Zhang S, He C, Sun S, Li J. Risk Factors for Sinusoidal Obstruction Syndrome After Hematopoietic Stem Cell Transplantation in Children and Young Adults: A Systematic Review and Meta-Analysis. Clin Transplant 2024; 38:e15449. [PMID: 39258505 DOI: 10.1111/ctr.15449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE AND BACKGROUND Sinusoidal obstruction syndrome (SOS) is a life-threatening complication in hematopoietic stem cell transplantation (HSCT) patients. However, the related risk factors in pediatric and young adult HSCT recipients remain unclear. Thus, we conducted this meta-analysis to identify potential risk factors for SOS in children and young adults undergoing HSCT. METHOD We acquired related articles through searching PubMed, EMBASE, and the Cochrane Library up to May 31, 2024. We calculated odds ratios (ORs) and corresponding 95% confidence intervals (CIs) to identify potential risk factors. RESULTS A total of 12 studies with 7644 HSCT recipients were included. Bone marrow transplantation (OR = 1.35, 95% CI: 1.03-1.77, I2 = 0%), busulfan (BU) (OR = 3.63, 95% CI: 1.78-7.38, I2 = 70%), and fludarabine (FLU) (OR = 1.55, 95% CI: 1.09-2.21, I2 = 16%) were risk factors for SOS after HSCT in children and young adults. CONCLUSION Bone marrow transplantation and the use of BU or FLU might be risk factors for SOS after HSCT in children and young adults.
Collapse
Affiliation(s)
- Kai Cui
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Chen
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Senlin Zhang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - ChenChen He
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Shan Sun
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Su T, Peng X, Gan Y, Wu H, Ma S, Zhi M, Lu Y, Dai S, Yao J. Associations of genetically predicted iron status with 24 gastrointestinal diseases and gut microbiota: a Mendelian randomization study. Front Genet 2024; 15:1406230. [PMID: 39170693 PMCID: PMC11335489 DOI: 10.3389/fgene.2024.1406230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Background Iron status has been implicated in gastrointestinal diseases and gut microbiota, however, confounding factors may influence these associations. Objective We performed Mendelian randomization (MR) to investigate the associations of iron status, including blood iron content, visceral iron content, and iron deficiency anemia with the incidence of 24 gastrointestinal diseases and alterations in gut microbiota. Methods Independent genetic instruments linked with iron status were selected using a genome-wide threshold of p = 5 × 10-6 from corresponding genome-wide association studies. Genetic associations related to gastrointestinal diseases and gut microbiota were derived from the UK Biobank, the FinnGen study, and other consortia. Results Genetically predicted higher levels of iron and ferritin were associated with a higher risk of liver cancer. Higher levels of transferrin saturation were linked to a decreased risk of celiac disease, but a higher risk of non-alcoholic fatty liver disease (NAFLD) and liver cancer. Higher spleen iron content was linked to a lower risk of pancreatic cancer. Additionally, higher levels of liver iron content were linked to a higher risk of NAFLD and liver cancer. However, certain associations lost their statistical significance upon accounting for the genetically predicted usage of cigarettes and alcohol. Then, higher levels of iron and ferritin were associated with 11 gut microbiota abundance, respectively. In a secondary analysis, higher iron levels were associated with lower diverticular disease risk and higher ferritin levels with increased liver cancer risk. Higher levels of transferrin saturation were proven to increase the risk of NAFLD, alcoholic liver disease, and liver cancer, but decrease the risk of esophageal cancer. MR analysis showed no mediating relationship among iron status, gut microbiota, and gastrointestinal diseases. Conclusion This study provides evidence suggesting potential causal associations of iron status with gastrointestinal diseases and gut microbiota, especially liver disease.
Collapse
Affiliation(s)
- Tao Su
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Peng
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Gan
- Department of Anesthesiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongzhen Wu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shulin Ma
- Department of Anesthesiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhi
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Lu
- Department of Anesthesiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiayin Yao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Kartal İ, Albayrak C, Dağdemir A, Dinçer OS, Şimşek HK, Özgen Ü, Albayrak D. Clinical features and risk factors of hepatic sinusoidal obstruction syndrome in children after hematopoietic stem cell transplantation: A single-center experience. Transfus Apher Sci 2024; 63:103909. [PMID: 38467529 DOI: 10.1016/j.transci.2024.103909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Hepatic sinusoidal obstruction syndrome (SOS) is an illness with serious life effects that develops after hematopoietic stem cell transplantation (HSCT). We investigated the risk factors and clinical features of hepatic SOS in children following HSCT in 210 children who underwent allogeneic or autologous HSCT between 2009 and 2021 were analyzed in the context of SOS. The syndrome developed in 22 (10.4%) patients:frequently in neuroblastoma [24% (5/21)], hemophagocytic lymphohistiocytosis [57% (4/7)], and thalassemia major [22% (7/31)]. The median time from HSCT to diagnosis was 16 (6-38) days. Severe disease occurred in 8 (36%) patients, and mild/moderate in 14 (64%) and 4 patients died (18%). In univariate analyses, patient's age ≤ 2 years [odds ratio (OR)= 3.043, P = 0.028], pretransplant AST and ALT levels > 100 U/L (OR=3.576, P = 0.045), and chemotherapy/radiotherapy to abdomen before transplantation (OR = 3.162, P = 0.044) were determined as risk factors. In multivariate analysis, pre-transplant AST and ALT levels > 100 U/L (OR = 16.04, P = 0.010) and ferritin levels over 1000 mg/dl (OR=5.15, P = 0.047) were significant. The only independent risk factor on mortality was the age ≤ 2 years (P = 0.001). Although our study confirmed several risk factors for SOS, we failed to achieve some well-known risk factors. Precautions should be taken considering the factors affecting liver function before transplantation and the risk of SOS in infants receiving chemotherapy and radiotherapy before transplantation, such as neuroblastoma in which comparable results in respect to the chemotherapy only. The risk factors should be fully elucidated in multicenter studies to improve preventive and therapeutic strategies.
Collapse
Affiliation(s)
- İbrahim Kartal
- Ondokuz Mayıs University, Faculty of Medicine, Department of Pediatric Hematology and Oncology, Samsun, Turkey.
| | - Canan Albayrak
- Ondokuz Mayıs University, Faculty of Medicine, Department of Pediatric Hematology and Oncology, Samsun, Turkey
| | - Ayhan Dağdemir
- Ondokuz Mayıs University, Faculty of Medicine, Department of Pediatric Hematology and Oncology, Samsun, Turkey
| | - Oğuz Salih Dinçer
- Ondokuz Mayıs University, Faculty of Medicine, Department of Pediatric Hematology and Oncology, Samsun, Turkey
| | - Hülya Kangal Şimşek
- Ondokuz Mayıs University, Faculty of Medicine, Department of Pediatric Hematology and Oncology, Samsun, Turkey
| | - Ünsal Özgen
- Ondokuz Mayıs University, Faculty of Medicine, Department of Pediatric Hematology and Oncology, Samsun, Turkey
| | - Davut Albayrak
- Department of Pediatric Hematology and Oncology, Medicalpark Samsun Hospital, Samsun, Turkey
| |
Collapse
|
8
|
Abbasi U, Abbina S, Gill A, Kizhakkedathu JN. Development of an iron overload HepG2 cell model using ferrous ammonium citrate. Sci Rep 2023; 13:21915. [PMID: 38081916 PMCID: PMC10713717 DOI: 10.1038/s41598-023-49072-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Cell-based iron overload models provide tremendous utility for the investigations into the pathogenesis of different diseases as well as assessing efficacy of various therapeutic strategies. In the literature, establishing such models vary widely with regards to cell lines, iron source, iron treatment conditions and duration. Due to this diversity, researchers reported significant differences in the measured outcomes, either in cellular function or response to a stimulus. Herein, we report the process required to establish an iron overload HepG2 cell model to achieve a consistent and reproducible results such that the literature can strive towards a consensus. Iron loading in cells was achieved with 50 μM of iron every 24 h for 2 days, followed by an additional 24 h of maintenance in fresh media. We demonstrated that iron overloaded cells had significantly increased ROS generation, labile and total iron whilst having various cellular functions resemble cells without iron overload. The present report addresses key pitfalls with regards to the lack of consensus currently present in the literature.
Collapse
Affiliation(s)
- Usama Abbasi
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Srinivas Abbina
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Arshdeep Gill
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada.
- The School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Nashwan AJ, Alkhawaldeh IM, Shaheen N, Albalkhi I, Serag I, Sarhan K, Abujaber AA, Abd-Alrazaq A, Yassin MA. Using artificial intelligence to improve body iron quantification: A scoping review. Blood Rev 2023; 62:101133. [PMID: 37748945 DOI: 10.1016/j.blre.2023.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
This scoping review explores the potential of artificial intelligence (AI) in enhancing the screening, diagnosis, and monitoring of disorders related to body iron levels. A systematic search was performed to identify studies that utilize machine learning in iron-related disorders. The search revealed a wide range of machine learning algorithms used by different studies. Notably, most studies used a single data type. The studies varied in terms of sample sizes, participant ages, and geographical locations. AI's role in quantifying iron concentration is still in its early stages, yet its potential is significant. The question is whether AI-based diagnostic biomarkers can offer innovative approaches for screening, diagnosing, and monitoring of iron overload and anemia.
Collapse
Affiliation(s)
- Abdulqadir J Nashwan
- Department of Nursing, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar; Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| | | | - Nour Shaheen
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ibrahem Albalkhi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London WC1N 3JH, United Kingdom.
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khalid Sarhan
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmad A Abujaber
- Department of Nursing, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar.
| | - Alaa Abd-Alrazaq
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Mohamed A Yassin
- Hematology and Oncology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
10
|
Wang Y, Zhang Y, Wang X, Li Q, Zhao Y, Jiang Y, Guo R, Liu X, Yuan T, Liu Z. Sesamol Mitigates Chronic Iron Overload-Induced Cognitive Impairment and Systemic Inflammation via IL-6 and DMT1 Regulation. Mol Nutr Food Res 2023; 67:e2300012. [PMID: 37452409 DOI: 10.1002/mnfr.202300012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/27/2023] [Indexed: 07/18/2023]
Abstract
SCOPE Excessive iron contributes to oxidative damage and cognitive decline in Alzheimer's disease. Sesamol, a compound in sesame oil that exhibits both anti-inflammatory and neuroprotective properties, is examined in this study for its ability to alleviate cognitive impairments in iron overload mice model. METHODS AND RESULTS An iron overload model is established by intraperitoneally injecting dextran iron (250 mg kg-1 body weight) twice a week for 6 weeks, while sesamol (100 mg kg-1 body weight) is administered daily for the same length of time. The results demonstrate that sesamol protects spatial working memory and learning ability in iron overload mice, and inhibits neuronal loss and brain atrophy induced by iron overload. Moreover, sesamol significantly decreases interleukin-6 and malondialdehyde, and increases glutathione peroxidase 4 in the brains of iron overload mice. Additionally, sesamol maintains iron homeostasis in the brain by regulating the expressions of transferrin receptors, divalent metal transporter 1, and hepcidin, and reducing iron accumulation. Furthermore, sesamol suppresses disturbed systemic iron homeostasis and inflammation, particularly liver interleukin-6 expression. CONCLUSION These findings suggest that sesamol may be effective in mitigating neuroinflammatory responses and cognitive impairments induced by iron overload, potentially through its involvement in mediating the liver-brain axis.
Collapse
Affiliation(s)
- Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingyuan Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yishan Jiang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
11
|
Chuljerm H, Paradee N, Katekaew D, Nantachai P, Settakorn K, Srichairatanakool S, Koonyosying P. Iron Chelation Property, Antioxidant Activity, and Hepatoprotective Effect of 6-Gingerol-Rich Ginger ( Zingiber officinale) Extract in Iron-Loaded Huh7 Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:2936. [PMID: 37631148 PMCID: PMC10459954 DOI: 10.3390/plants12162936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Iron is essential for numerous biological processes; however, an iron imbalance can contribute to a number of diseases. An excess of iron can accumulate in the body and subsequently induce the production of reactive oxygen species (ROS), leading to oxidative tissue damage and organ dysfunction. The liver, a major iron storage site, is vulnerable to this iron-induced oxidative damage; however, this issue can be overcome by the chelation of excess iron. This study aimed to investigate the effect of 6-gingerol-rich ginger (Zingiber officinale) extract on iron chelation, antioxidation, and hepatoprotective function in protecting against iron-induced oxidative liver cell injury. In experiments, 6-gingerol was confirmed to be a main bioactive component of the ginger extract and possessed free radical scavenging activity, decreasing ABTS•+ and DPPH• radical levels, and inhibiting AAPH-induced red blood cell hemolysis. Interestingly, the extract significantly reduced the levels of labile cellular iron (LCI), intracellular ROS, and lipid peroxidation products (TBARS) in iron-loaded human hepatoma (Huh7) cells. In conclusion, this work highlights the iron chelation property of 6-gingerol-rich ginger extract and its antioxidant activity, which could potentially protect the liver from iron-induced oxidative tissue damage.
Collapse
Affiliation(s)
- Hataichanok Chuljerm
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental-Occupational Health Sciences and Non Communicable Diseases Research Center, Research Institute for Health Sciences Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narisara Paradee
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (K.S.); (S.S.)
| | - Dabudsawin Katekaew
- Science Classroom Affiliated School Project, Chiang Mai University Demonstration School, Chiang Mai University, Chiang Mai 50200, Thailand; (D.K.); (P.N.)
| | - Panaphat Nantachai
- Science Classroom Affiliated School Project, Chiang Mai University Demonstration School, Chiang Mai University, Chiang Mai 50200, Thailand; (D.K.); (P.N.)
| | - Kornvipa Settakorn
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (K.S.); (S.S.)
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (K.S.); (S.S.)
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (K.S.); (S.S.)
| |
Collapse
|
12
|
Motuziuk O, Nozdrenko D, Prylutska S, Vareniuk I, Bogutska K, Braniuk S, Korotkyi O, Prylutskyy Y, Ritter U, Piosik J. The effect of C 60 fullerene on the mechanokinetics of muscle gastrocnemius contraction in chronically alcoholized rats. Heliyon 2023; 9:e18745. [PMID: 37554800 PMCID: PMC10404780 DOI: 10.1016/j.heliyon.2023.e18745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
The C60 fullerene effect (oral administration at a dose of 1 mg kg-1) on the selected biomechanical parameters of muscle gastrocnemius contraction, biochemical indicators of blood and muscle tissue as well as histological changes in rat muscle tissue after chronic alcoholization for 3, 6 and 9 months was studied in detail. Water-soluble C60 fullerenes were shown to reduce the pathological processes development in the muscle apparatus by an average of (35-40)%. In particular, they reduced the time occurrence of fatigue processes in muscle during the long-term development of alcoholic myopathy and inhibited oxidative processes in muscle, thereby preventing its degradation. These findings open up the possibility of using C60 fullerenes as potent antioxidants for the correction of the pathological conditions of the muscle system arising from alcohol intoxication.
Collapse
Affiliation(s)
- Olexandr Motuziuk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, 43025, Ukraine
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Dmytro Nozdrenko
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Svitlana Prylutska
- Department of Physiology, Plant Biochemistry and Bioenergetics, Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Science of Ukraine, Kyiv, 03041, Ukraine
| | - Igor Vareniuk
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Kateryna Bogutska
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Serhii Braniuk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, 43025, Ukraine
| | - Olexandr Korotkyi
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Yuriy Prylutskyy
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Ilmenau, 98693, Germany
| | - Jacek Piosik
- Intercollegiate Faculty of Biotechnology, University of Gdansk, 80-307, Gdańsk, Poland
| |
Collapse
|
13
|
Abstract
Haemochromatosis is one of the most common genetic diseases affecting patients of northern European ancestry. It is overdiagnosed in patients without iron overload and is underdiagnosed in many patients. Early diagnosis by genetic testing and therapy by periodic phlebotomy can prevent the most serious complications, which include liver cirrhosis, liver cancer, and death. This Seminar includes an update on the origins of haemochromatosis; and an overview pathophysiology, genetics, natural history, signs and symptoms, differential diagnoses, treatment with phlebotomy, outcomes, and future directions.
Collapse
Affiliation(s)
- Paul C Adams
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
| | - Gary Jeffrey
- Medical School, University of Western Australia, Perth, WA, Australia
| | - John Ryan
- Royal College of Surgeons of Ireland, Dublin, Ireland
| |
Collapse
|
14
|
Shi JF, Liu Y, Wang Y, Gao R, Wang Y, Liu J. Targeting ferroptosis, a novel programmed cell death, for the potential of alcohol-related liver disease therapy. Front Pharmacol 2023; 14:1194343. [PMID: 37214434 PMCID: PMC10196366 DOI: 10.3389/fphar.2023.1194343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Ferroptosis is a new iron-dependent cell death mode, which is different from the other types of programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is characterized by a process in which fatal lipids from lipid peroxidation accumulate in cells and eventually lead to cell death. Alcohol-related liver disease (ALD) is a type of liver injury caused by excessive alcohol intake. Alcohol-related liver disease is a broad-spectrum disease category, which includes fatty liver, steatohepatitis, hepatitis, cirrhosis, and hepatocellular tumors. Recent studies have found that ferroptosis is involved in the pathological development of non-viral liver diseases. Therefore, ferroptosis may be an ideal target for the treatment of non-viral liver diseases. In this review article, we will elaborate the molecular mechanism and regulatory mechanism of ferroptosis, explore the key role of ferroptosis in the Alcohol-related liver disease process, and summarize the existing targeted ferroptosis drugs and their feasibility for the treatment of Alcohol-related liver disease.
Collapse
Affiliation(s)
- Jing-Fen Shi
- Institute for Health Policy and Hospital Management, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Ru Gao
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
- Department of Ultrasound Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Crawford DHG, Ramm GA, Bridle KR, Nicoll AJ, Delatycki MB, Olynyk JK. Clinical practice guidelines on hemochromatosis: Asian Pacific Association for the Study of the Liver. Hepatol Int 2023; 17:522-541. [PMID: 37067673 DOI: 10.1007/s12072-023-10510-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 04/18/2023]
Affiliation(s)
- Darrell H G Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Gallipoli Medical Research Foundation, Brisbane, Australia
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kim R Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.
- Gallipoli Medical Research Foundation, Brisbane, Australia.
| | - Amanda J Nicoll
- Department of Gastroenterology, Eastern Health, Box Hill, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Parkville, VIC, Australia
| | - John K Olynyk
- Department of Gastroenterology, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
16
|
Abstract
Iron overload remains a lethal complication of β-thalassemia and other anemias caused by ineffective erythropoiesis. This review discusses the pathogenetic mechanisms of iron overload in thalassemia, at organismal, cellular, and molecular levels.
Collapse
Affiliation(s)
- Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA.
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| |
Collapse
|
17
|
MicroRNA let-7d attenuates hypertrophic scar fibrosis through modulation of iron metabolism by reducing DMT1 expression. J Mol Histol 2023; 54:77-87. [PMID: 36705783 DOI: 10.1007/s10735-023-10113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Hypertrophic scar is an unavoidable result of wound healing following burns and trauma, which remains a challenging problem for clinicians. Previously, we demonstrated that exosomal microRNAs (miRs) of human amniotic epithelial cells accelerated wound healing and inhibited scar formation. However, the underlying mechanism is still unclear. In this particular study, we found that miR-let-7d reduced collagen deposition, and this was accompanied by decreased level of iron content in myofibroblasts. Importantly, inhibition of miR-let-7d in myofibroblasts accelerated collagen deposition and promoted cell proliferation. In addition, bioinformatics prediction combined with classical dual-luciferase reporter gene assay demonstrated that the cellular iron importer divalent metal transporter 1 (DMT1) was a target gene of miR-let-7d, and the miR-let-7d mimics inhibited the expression of DMT1 in myofibroblasts. Moreover, silencing of DMT1 with small interfering RNA (siRNA) reduced the deposition of extracellular matrix. Consistent with the results in vitro, the miR-let-7d mimics effectively ameliorated hypertrophic scar fibrosis in a rabbit ear hypertrophic scar model. Taken together, our results indicated for the first time that miR-let-7d attenuated hypertrophic scar fibrosis through modulation of iron metabolism by reducing iron uptake through DMT1, which may provide a novel therapeutic strategy for hypertrophic scar.
Collapse
|
18
|
Ghaith MM, El-Boshy M, Almasmoum H, Abdelghany AH, Azzeh FS, Almaimani RA, Idris S, Ahmad J, Mahbub AA, BaSalamah MA, Elzubeir ME, Refaat B. Deferasirox and vitamin D 3 co-therapy mitigates iron-induced renal injury by enhanced modulation of cellular anti-inflammatory, anti-oxidative stress, and iron regulatory pathways in rat. J Trace Elem Med Biol 2022; 74:127085. [PMID: 36179462 DOI: 10.1016/j.jtemb.2022.127085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chronic iron overload could induce nephropathy via oxidative stress and inflammation, and chelating therapy has limited efficacy in removing excess intracellular iron. Although vitamin D (VD) has shown potent antioxidant and anti-inflammatory effects, as well contribute to iron homeostasis, none of the previous studies measured its potential remedial effects against chronic iron toxicity. AIMS To measure the alleviating effects of deferasirox (DFX) and/or vitamin D (VD) single and combined therapies against nephrotoxicity induced by chronic iron overload. METHODS Forty male rats were divided into negative (NC) and positive (PC) controls, DFX, VD, and DFX/VD groups. The designated groups received iron for six weeks followed by DFX and/or VD for another six weeks. Then, the expression pattern of renal genes and proteins including hepcidin, ferroportin (FPN), megalin, transferrin receptor 1 (TfR1), ferritin heavy and light chains, VD receptor (VDR), VD synthesizing (Cyp27b1) and catabolizing (Cyp24a1) enzymes were measured alongside serum markers of renal function and iron biochemical parameters. Additionally, several markers of oxidative stress (MDA/H2O2/GSH/SOD1/CAT/GPx4) and inflammation (IL-1β/IL-6/TNF-α/IL-10) together with renal cell apoptosis and expression of caspase-3 (Casp-3) were measured. RESULTS The PC rats showed pathological iron and renal biochemical markers, hypovitaminosis D, increased renal tissue iron contents with increased Cyp24a1/Megalin/ferritin-chains/hepcidin, and decreased Cyp27b1/VDR/TfR1/FPN expression than the NC group. The PC renal tissues also showed abnormal histology, increased inflammatory (IL-1β/IL-6/TNF-α), oxidative stress (MDA/H2O2), and apoptosis markers with decreased IL-10/GSH/SOD1/CAT/GPx4. Although DFX monotherapy reduced serum iron levels, it was comparable to the PC group in renal iron concentrations, VD and iron-homeostatic molecules, alongside markers of oxidative stress, inflammation, and apoptosis. On the other hand, VD monotherapy markedly modulated renal iron and VD-related molecules, reduced renal tissue iron concentrations, and preserved renal tissue relative to the PC and DFX groups. However, serum iron levels were equal in the VD and PC groups. In contrast, the best significant improvements in serum and renal iron levels, expression of renal iron-homeostatic molecules, oxidative stress, inflammation, and apoptosis were seen in the co-therapy group. CONCLUSIONS iron-induced nephrotoxicity was associated with dysregulations in renal VD-system together with renal oxidative stress, inflammation, and apoptosis. While DFX reduced systemic iron, VD monotherapy showed better attenuation of renal iron concentrations and tissue damage. Nonetheless, the co-therapy approach exhibited the maximal remedial effects, possibly by enhanced modulation of renal iron-homeostatic molecules alongside reducing systemic iron levels. AVAILABILITY OF DATA AND MATERIALS All data generated or analysed during this study are included in this published article [and its Supplementary information files].
Collapse
Affiliation(s)
- Mazen M Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia; Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Abdelghany H Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Firas S Azzeh
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Amani A Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Mohammad A BaSalamah
- Pathology Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Mohamed E Elzubeir
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia.
| |
Collapse
|
19
|
Xiong H, Zhang C, Han L, Xu T, Saeed K, Han J, Liu J, Klaassen CD, Gonzalez FJ, Lu Y, Zhang Y. Suppressed farnesoid X receptor by iron overload in mice and humans potentiates iron-induced hepatotoxicity. Hepatology 2022; 76:387-403. [PMID: 34870866 DOI: 10.1002/hep.32270] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Iron overload (IO) is a frequent finding in the general population. As the major iron storage site, the liver is subject to iron toxicity. Farnesoid X receptor (FXR) regulates bile acid metabolism and is implicated in various liver diseases. We aimed to determine whether FXR plays a role in regulating iron hepatotoxicity. APPROACH AND RESULTS Human and mouse hepatocytes were treated with ferric ammonium citrate or iron dextran (FeDx). Mice were orally administered ferrous sulfate or injected i.p. with FeDx. Wild-type and Fxr-/- mice were fed an iron-rich diet for 1 or 5 weeks. Mice fed an iron-rich diet were coadministered the FXR agonist, GW4064. Forced expression of FXR was carried out with recombinant adeno-associated virus 1 week before iron-rich diet feeding. Serum levels of bile acids and fibroblast growth factor 19 (FGF19) were quantified in adults with hyperferritinemia and children with β-thalassemia. The data demonstrated that iron suppressed FXR expression and signaling in human and mouse hepatocytes as well as in mouse liver and intestine. FXR deficiency potentiated iron hepatotoxicity, accompanied with hepatic steatosis as well as dysregulated iron and bile acid homeostasis. FXR negatively regulated iron-regulatory proteins 1 and 2 and prevented hepatic iron accumulation. Forced FXR expression and ligand activation significantly suppressed iron hepatotoxicity in iron-fed mice. The FXR agonist, GW4064, almost completely restored dysregulated bile acid signaling and metabolic syndrome in iron-fed mice. Conjugated primary bile acids were increased and FGF19 was decreased in serum of adults with hyperferritinemia and children with β-thalassemia. CONCLUSIONS FXR plays a pivotal role in regulating iron homeostasis and protects mice against iron hepatotoxicity. Targeting FXR may represent a therapeutic strategy for IO-associated chronic liver diseases.
Collapse
Affiliation(s)
- Hui Xiong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Khawar Saeed
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jing Han
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jing Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Curtis D Klaassen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Wang H, Jiang C, Yang Y, Li J, Wang Y, Wang C, Gao Y. Resveratrol ameliorates iron overload induced liver fibrosis in mice by regulating iron homeostasis. PeerJ 2022; 10:e13592. [PMID: 35698613 PMCID: PMC9188311 DOI: 10.7717/peerj.13592] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
This study is intended to explore the protective effects of resveratrol (RES) on iron overload-induced liver fibrosis and its mechanism. Iron dextran (50 mg/kg) was injected intraperitoneally in all groups except the control group. Mice in the L-RES, M-RES and H-RES groups were gavaged with RES solution at 25, 50 mg/kg and 100 mg/kg, respectively, 4 h before injection of iron dextran every day; mice in the deferoxamine (DFO) group were injected with DFO intraperitoneally (100 mg/kg); mice in the control group received isovolumetric saline. After seven weeks of RES administration, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities and liver hydroxyproline (Hyp) levels were reduced; the malondialdehyde (MDA) activities decreased and the levels of superoxide dismutase (SOD) and glutathione (GSH) were raised. Hematoxylin and eosin (H&E), Prussian, and Masson staining indicated that RES treatment could improve cell damage and reduce hepatic iron deposition and collagen deposition in iron-overload mice. The expression of Bcl-2 was increased, the expression levels of Bax and caspase-3 were decreased under RES treatment. Moreover, RES reduced the expression of hepcidin, ferritin (Ft), divalent metal transporter-1 (DMT-1), transferrin receptor-2 (TFR-2), and raised the expression of ferroprotein-1 (FPN-1). In conclusion, RES could ameliorate iron overload-induced liver fibrosis, and the potential mechanisms may be related to antioxidant, anti-inflammatory, anti-apoptotic, and more importantly, regulation of iron homeostasis by reducing iron uptake and increasing iron export.
Collapse
Affiliation(s)
- Hua Wang
- Hebei University of Chinese Medicine, Department of Preventive Medicine, Shijiazhuang, Hebei, China
| | - Chuan Jiang
- Hebei University of Chinese Medicine, Department of Preventive Medicine, Shijiazhuang, Hebei, China
| | - Yakun Yang
- Hebei University of Chinese Medicine, School of Pharmacy, Shijiazhuang, Hebei, China
| | - Jinghan Li
- Hebei University of Chinese Medicine, Department of Preventive Medicine, Shijiazhuang, Hebei, China
| | - Yihan Wang
- Hebei University of Chinese Medicine, Collge of Basic Medicine, Shijiazhuang, Hebei, China
| | - Chaonan Wang
- Hebei University of Chinese Medicine, Department of Preventive Medicine, Shijiazhuang, Hebei, China
| | - Yonggang Gao
- Hebei University of Chinese Medicine, Department of Preventive Medicine, Shijiazhuang, Hebei, China,Hebei Key laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Roles of homopolymeric apoferritin in alleviating alcohol-induced liver injury. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Iron-mediated tissue damage in acquired ineffective erythropoiesis disease: It’s more a matter of burden or more of exposure to toxic iron form? Leuk Res 2022; 114:106792. [DOI: 10.1016/j.leukres.2022.106792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/19/2023]
|
23
|
Günaydin N, Altin E, Ormanci N, Ertekin A. The Effect of Di (2-Ethylhexyl) Phthalate on Hair Trace Mineral Levels in Rats. Biol Trace Elem Res 2022; 200:647-651. [PMID: 33683540 DOI: 10.1007/s12011-021-02663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
We studied the effect of di (2-ethylhexyl) phthalate (DEHP) on rat hair deposition of Iron (Fe), Copper (Cu), Manganese (Mn), and Zinc (Zn). Four groups, each of eight of female Wistar rats weighing 250-300 g, were randomly distributed to (1) control (corn oil-based diet), (2) DEHP 20 (20 mg DEHP per kg body weight (bw), (3) DEHP 100 (100mg DEHP kg/bw, and (4) DEHP 500 (500 mg DEHP kg/bw). The diets were fed daily for 14 days by gastric gavage before the rats were sacrificed. Hair content of Fe, Cu, Mn, and Zn was analyzed with atomic absorption spectrophotometry. There were no significant effect of DEHP on hair Fe content. However, hair Cu, Mn, and Zn were increased after DEHP 20 exposure (p<0.001). After administering DEHP 100 and DEHP 500, both Mn and Zn were decreased (p<0.001), respectively. Hair deposition of Cu, Mn, and Zn was affected by DEHP.
Collapse
Affiliation(s)
- Nurgül Günaydin
- Republic of Turkey Ministry of Health, 29 Mayis State Hospital, Ankara, Turkey
| | - Emine Altin
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey.
| | - Neslihan Ormanci
- Samsun Veterinary Control and Research Institute, Samsun, Turkey
| | - Ali Ertekin
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey
| |
Collapse
|
24
|
Bouvier ML, Fehsel K, Schmitt A, Meisenzahl-Lechner E, Gaebel W, von Wilmsdorff M. Sex-dependent effects of long-term clozapine or haloperidol medication on red blood cells and liver iron metabolism in Sprague Dawley rats as a model of metabolic syndrome. BMC Pharmacol Toxicol 2022; 23:8. [PMID: 35033194 PMCID: PMC8760835 DOI: 10.1186/s40360-021-00544-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Patients with liver diseases often have some form of anemia. Hematological dyscrasias are known side effects of antipsychotic drug medication and the occurrence of agranulocytosis under clozapine is well described. However, the sex-dependent impact of clozapine and haloperidol on erythrocytes and symptoms like anemia, and its association with hepatic iron metabolism has not yet been completely clarified. Therefore, in the present study, we investigated the effect of both antipsychotic drugs on blood parameters and iron metabolism in the liver of male and female Sprague Dawley rats. METHODS After puberty, rats were treated orally with haloperidol or clozapine for 12 weeks. Blood count parameters, serum ferritin, and liver transferrin bound iron were determined by automated counter. Hemosiderin (Fe3+) was detected in liver sections by Perl's Prussian blue staining. Liver hemoxygenase (HO-1), 5'aminolevulinate synthase (ALAS1), hepcidin, heme-regulated inhibitor (HRI), cytochrome P4501A1 (CYP1A1) and 1A2 (CYP1A2) were determined by Western blotting. RESULTS We found anemia with decreased erythrocyte counts, associated with lower hemoglobin and hematocrit, in females with haloperidol treatment. Males with clozapine medication showed reduced hemoglobin and increased red cell distribution width (RDW) without changes in erythrocyte numbers. High levels of hepatic hemosiderin were found in the female clozapine and haloperidol medicated groups. Liver HRI was significantly elevated in male clozapine medicated rats. CYP1A2 was significantly reduced in clozapine medicated females. CONCLUSIONS The characteristics of anemia under haloperidol and clozapine medication depend on the administered antipsychotic drug and on sex. We suggest that anemia in rats under antipsychotic drug medication is a sign of an underlying liver injury induced by the drugs. Changing hepatic iron metabolism under clozapine and haloperidol may help to reduce these effects of liver diseases.
Collapse
Affiliation(s)
- Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629, Düsseldorf, Germany.
| | - Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nußbaumstrasse 7, 80336, Munich, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, São Paulo, SP, 05453-010, Brazil
| | - Eva Meisenzahl-Lechner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Martina von Wilmsdorff
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| |
Collapse
|
25
|
Wang K, Yang F, Zhang P, Yang Y, Jiang L. Genetic effects of iron levels on liver injury and risk of liver diseases: A two-sample Mendelian randomization analysis. Front Nutr 2022; 9:964163. [PMID: 36185655 PMCID: PMC9523310 DOI: 10.3389/fnut.2022.964163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims Although iron homeostasis has been associated with liver function in many observational studies, the causality in this relationship remains unclear. By using Mendelian Randomization analyses, we aimed to evaluate the genetic effects of increased systemic iron levels on the risk of liver injury and various liver diseases. Moreover, in light of the sex-dependent iron regulation in human beings, we further estimated the sex-specific effect of iron levels in liver diseases. Methods Independent single nucleotide polymorphisms associated with systemic iron status (including four indicators) at the genome-wide significance level from the Genetics of Iron Status (GIS) Consortium were selected as instrumental variables. Summary data for six liver function biomarkers and five liver diseases were obtained from the UK Biobank, the Estonian Biobank, the eMERGE network, and FinnGen consortium. Mendelian Randomization assessment of the effect of iron on liver function and liver diseases was conducted. Results Genetically predicted iron levels were positively and significantly associated with an increased risk of different dimensions of liver injury. Furthermore, increased iron status posed hazardous effects on non-alcoholic fatty liver disease, alcoholic liver disease, and liver fibrosis/cirrhosis. Sex-stratified analyses indicated that the hepatoxic role of iron might exist in NAFLD and liver fibrosis/cirrhosis development among men. No significantly causal relationship was found between iron status and viral hepatitis. Conclusion Our study adds to current knowledge on the genetic role of iron in the risk of liver injury and related liver diseases, which provides clinical and public health implications for liver disease prevention as iron status can be modified.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangkun Yang
- Department of Cardiology, Ningbo First Hospital, School of Medicine, Zhejiang University, Ningbo, China
| | - Pengcheng Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Yang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
26
|
Shendge AK, Panja S, Basu T, Ghate NB, Mandal N. Ameliorating effects of white mulberry on iron-overload-induced oxidative stress and liver fibrosis in Swiss albino mice. Food Chem Toxicol 2021; 156:112520. [PMID: 34464637 DOI: 10.1016/j.fct.2021.112520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022]
Abstract
Excess iron causes oxidative damage of biomolecules, leading to tissue injury primarily liver failure. In this study, we explored the remediating effects of Morus alba L. (MAME) on iron-overload-induced oxidative stress and liver injury in mice. The In vitro study revealed the antioxidant and free radical scavenging properties of MAME. Intraperitoneal injection of iron-dextran was administered in Swiss albino mice to induce iron-overload condition and the mice were further treated with MAME. MAME treatment significantly decreased liver iron, serum ferritin level, oxidative stress, and restored serum parameters and liver antioxidants. Moreover, biochemical and histopathological analyses confirmed the alleviated liver damage and fibrosis upon MAME treatment. The protective effect of MAME against iron-overload-induced apoptosis was confirmed by upregulation of protein levels of Bax, Caspase-3, and PARP. The treatment also affected the expression of MAPKs (ERK, JNK, and p38). GC-MS analysis revealed the presence of various bioactive phytochemicals in MAME that may be responsible for ameliorating effects of excess iron. Thus MAME can be envisaged as an effective iron chelator in the treatment of iron-overload-induced liver injury and fibrosis.
Collapse
Affiliation(s)
- Anil Khushalrao Shendge
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VIIM, Kolkata, 700054, West Bengal, India.
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VIIM, Kolkata, 700054, West Bengal, India.
| | - Tapasree Basu
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VIIM, Kolkata, 700054, West Bengal, India.
| | - Nikhil Baban Ghate
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VIIM, Kolkata, 700054, West Bengal, India.
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VIIM, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
27
|
Petrillo S, Manco M, Altruda F, Fagoonee S, Tolosano E. Liver Sinusoidal Endothelial Cells at the Crossroad of Iron Overload and Liver Fibrosis. Antioxid Redox Signal 2021; 35:474-486. [PMID: 32689808 DOI: 10.1089/ars.2020.8168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Liver fibrosis results from different etiologies and represents one of the most serious health issues worldwide. Fibrosis is the outcome of chronic insults on the liver and is associated with several factors, including abnormal iron metabolism. Recent Advances: Multiple mechanisms underlying the profibrogenic role of iron have been proposed. The pivotal role of liver sinusoidal endothelial cells (LSECs) in iron-level regulation, as well as their morphological and molecular dedifferentiation occurring in liver fibrosis, has encouraged research on LSECs as prime regulators of very early fibrotic events. Importantly, normal differentiated LSECs may act as gatekeepers of fibrogenesis by maintaining the quiescence of hepatic stellate cells, while LSECs capillarization precedes the onset of liver fibrosis. Critical Issues: In the present review, the morphological and molecular alterations occurring in LSECs after liver injury are addressed in an attempt to highlight how vascular dysfunction promotes fibrogenesis. In particular, we discuss in depth how a vicious loop can be established in which iron dysregulation and LSEC dedifferentiation synergize to exacerbate and promote the progression of liver fibrosis. Future Directions: LSECs, due to their pivotal role in early liver fibrosis and iron homeostasis, show great promises as a therapeutic target. In particular, new strategies can be devised for restoring LSECs differentiation and thus their role as regulators of iron homeostasis, hence preventing the progression of liver fibrosis or, even better, promoting its regression. Antioxid. Redox Signal. 35, 474-486.
Collapse
Affiliation(s)
- Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Manco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
28
|
Kloehn J, Brodt G, Ernst J, Gruhn B. Analysis of risk factors for hepatic sinusoidal obstruction syndrome following allogeneic hematopoietic stem cell transplantation in pediatric patients. J Cancer Res Clin Oncol 2021; 148:1447-1455. [PMID: 34255148 PMCID: PMC9114040 DOI: 10.1007/s00432-021-03732-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/07/2021] [Indexed: 01/19/2023]
Abstract
Purpose Hepatic sinusoidal obstruction syndrome (SOS) represents a serious complication following hematopoietic stem cell transplantation (HSCT). Our study aimed to investigate important risk factors of SOS in a pediatric population. Methods This retrospective study analyzed 105 children, adolescents and young adults who underwent allogeneic HSCT at our pediatric HSCT center in Jena. The observation period was 12 years and SOS was defined by the pediatric criteria of the European Society for Blood and Marrow Transplantation (EBMT). Results 15 out of all 105 patients developed SOS (14.3%). The median time from HSCT to SOS diagnosis was 12 days. The mortality rate of SOS was 20.0%. In univariate analyses, we identified the significant risk factors of patient age < 1 year [odds ratio (OR) = 7.25, p = 0.037], prior treatment with gemtuzumab ozogamicin (OR = 11.00, p = 0.020), high pretransplant ferritin levels above 1500 ng/mL (OR = 4.00, p = 0.033), 2000 ng/mL (OR = 4.69, p = 0.016), and 2400 ng/mL (OR = 5.29, p = 0.005) as well as international normalized ratio (INR) ≥ 1.3 (OR = 5.91, p = 0.009). The following risk factors could be confirmed in multivariate analysis: treatment with gemtuzumab ozogamicin (OR = 9.24, p = 0.048), ferritin > 2400 ng/mL (OR = 5.74, p = 0.023), and INR ≥ 1.3 (OR = 8.02, p = 0.007). Conclusion Our study confirms several risk factors from the current literature. Additionally, this is the first report on the risk factor of high pretransplant INR.
Collapse
Affiliation(s)
- Jaspar Kloehn
- Department of Pediatrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Grit Brodt
- Department of Pediatrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Jana Ernst
- Department of Pediatrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
29
|
Ávila RA, Rossi EM, de Carvalho GM, Krause M, Leopoldo AS, Carneiro MTWD, Dos Santos L. Moderate-intensity aerobic training reduces cardiac damage attributable to experimental iron overload in rats. Exp Physiol 2021; 106:1772-1784. [PMID: 34148259 DOI: 10.1113/ep089429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? The current literature indicates that oxidative stress plays a major role in iron overload. Although exercise is a well-established approach to treat/prevent cardiovascular diseases, its effects on iron overload are not known. What is the main finding and its importance? Moderate-intensity aerobic training had benefits in a rodent model of iron-overload cardiomyopathy by improving the antioxidant capacity of the heart. After further confirmation by translational and clinical studies, we should consider using this non-pharmacological, highly accessible and easily executable adjuvant approach allied to other therapies to improve the quality of life of iron-overloaded patients. ABSTRACT Iron is an essential micronutrient for several life processes, but its excess can damage organs owing to oxidative stress, with cardiomyopathy being the leading cause of death in iron-overloaded patients. Although exercise has long been considered as a cardioprotective tool, its effects on iron overload are not known. This study was designed to investigate the effects of moderate-intensity aerobic training in rats previously submitted to chronic iron overload. Wistar rats received i.p. injections of iron dextran (100 mg/kg, 5 days/week for 4 weeks); thereafter, the rats were kept sedentary or exercised (60 min/day, progressive aerobic training, 60-70% of maximal speed, 5 days/week on a treadmill) for 8 weeks. At the end of the experimental period, haemodynamics were recorded and blood samples, livers and hearts harvested. Myocardial mechanics of papillary muscles were assessed in vitro, and cardiac remodelling was evaluated by histology and immunoblotting. Iron overload led to liver iron deposition, liver fibrosis and increased serum alanine aminotransferase and aspartate aminotransferase. Moreover, cardiac iron accumulation was accompanied by impaired myocardial mechanics, increased cardiac collagen type I and lipid peroxidation (TBARS), and release of creatine phosphokinase-MB to the serum. Although exercise did not influence iron levels, tissue injury markers were significantly reduced. Likewise, myocardial contractility and inotropic responsiveness were improved in exercised rats, in association with an increase in the endogenous antioxidant enzyme catalase. In conclusion, moderate-intensity aerobic exercise was associated with attenuated oxidative stress and cardiac damage in a rodent model of iron overload, thereby suggesting its potential role as a non-pharmacological adjuvant therapy for iron-overload cardiomyopathy.
Collapse
Affiliation(s)
- Renata Andrade Ávila
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil.,Faculdades Integradas São Pedro (FAESA), Vitória, ES, Brazil
| | - Emilly Martinelli Rossi
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil
| | | | - Maiara Krause
- Department of Chemistry, Federal University of Espirito Santo, Vitória, ES, Brazil
| | | | | | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil
| |
Collapse
|
30
|
Rubilar T, Barbieri ES, Gazquez A, Avaro M. Sea Urchin Pigments: Echinochrome A and Its Potential Implication in the Cytokine Storm Syndrome. Mar Drugs 2021; 19:267. [PMID: 34064550 PMCID: PMC8151293 DOI: 10.3390/md19050267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Echinochrome A (EchA) is a pigment from sea urchins. EchA is a polyhydroxylated 1,4-naphthoquinone that contains several hydroxyl groups appropriate for free-radical scavenging and preventing redox imbalance. EchA is the most studied molecule of this family and is an active principle approved to be used in humans, usually for cardiopathies and glaucoma. EchA is used as a pharmaceutical drug. Methods: A comprehensive literature and patent search review was undertaken using PubMed, as well as Google Scholar and Espacenet search engines to review these areas. Conclusions: In the bloodstream, EchA can mediate cellular responses, act as a radical scavenger, and activate the glutathione pathway. It decreases ROS imbalance, prevents and limits lipid peroxidation, and enhances mitochondrial functions. Most importantly, EchA contributes to the modulation of the immune system. EchA can regulate the generation of regulatory T cells, inhibit pro-inflammatory IL-1β and IL-6 cytokine production, while slightly reducing IL-8, TNF-α, INF-α, and NKT, thus correcting immune imbalance. These characteristics suggest that EchA is a candidate drug to alleviate the cytokine storm syndrome (CSS).
Collapse
Affiliation(s)
- Tamara Rubilar
- Laboratorio de Química de Organismos Marinos, Instituto Patagónico del Mar, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn 9120, Chubut, Argentina;
- Laboratorio de Oceanografía Biológica, Centro Para el Estudio de Sistemas Marinos (CESIMAR), CONICET, Puerto Madryn 9120, Chubut, Argentina;
| | - Elena S. Barbieri
- Laboratorio de Oceanografía Biológica, Centro Para el Estudio de Sistemas Marinos (CESIMAR), CONICET, Puerto Madryn 9120, Chubut, Argentina;
- Laboratorio de Virología, Instituto Patagónico del Mar, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn 9120, Chubut, Argentina
| | - Ayelén Gazquez
- Instituto Tecnológico de Chascomús, The Chascomús Technological Institute (INTECH), CONICET-UNSAM, Chascomús 7130, Buenos Aires, Argentina;
| | - Marisa Avaro
- Laboratorio de Química de Organismos Marinos, Instituto Patagónico del Mar, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn 9120, Chubut, Argentina;
| |
Collapse
|
31
|
Rostami T, Monzavi SM, Poustchi H, Khoshdel AR, Behfar M, Hamidieh AA. Analysis of determinant factors of liver fibrosis progression in ex-thalassemic patients. Int J Hematol 2021; 113:145-157. [PMID: 33033952 DOI: 10.1007/s12185-020-02998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) potentially renders thalassemia patients disease-free with presumably cessation of associated complications. This study analyzes the liver fibrosis status and the determinants of its progression in ex-thalassemic patients. The liver fibrosis status of 108 pediatric transfusion-dependent β-thalassemia major patients was evaluated before and one year after allo-HSCT using transient elastography (TE). All patients achieved normal hematopoiesis. In univariate analyses, not in all, but in patients developing significant post-HSCT iron overload or hepatic graft-versus-host disease (GvHD), as well as recipients of bone marrow stem cells (BMSC), significant TE increment occurred. In multivariable analyses, through a model with large effect size (Adj.R2 = 26%, F(3,104) = 13.53, P < 0.001), post-HSCT serum ferritin and hepatic GvHD were ascertained as independent determinants of significant TE increase, and the effect of stem cell graft source approached the level of significance. Excluding the patients with intermediate/high Lucarelli risk classes, the TE increase was significantly greater only in BMSC recipients (P = 0.033). Although the risk impact of allograft source on liver fibrosis progression requires further evaluation; hepatic status of ex-thalassemic patients can be preserved after HSCT, if hepatic GvHD is controlled and adequate post-transplantation iron depletion is ensured.
Collapse
Affiliation(s)
- Tahereh Rostami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mostafa Monzavi
- Department of Pediatric Stem Cell Transplantation, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Khoshdel
- Modern Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Department of Pediatric Stem Cell Transplantation, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Department of Pediatric Stem Cell Transplantation, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serrano-Luna J, de la Garza M. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020; 25:E5763. [PMID: 33302377 PMCID: PMC7762604 DOI: 10.3390/molecules25245763] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.
Collapse
Affiliation(s)
- Daniela Zarzosa-Moreno
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Coyoacán 04510, CdMx, Mexico
| | - Luisa Sofía Ramírez-Texcalco
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Erick Torres-López
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Ricardo Ramírez-Mondragón
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Juan Omar Hernández-Ramírez
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| |
Collapse
|
33
|
Valente de Souza L, Hoffmann A, Weiss G. Impact of bacterial infections on erythropoiesis. Expert Rev Anti Infect Ther 2020; 19:619-633. [PMID: 33092423 DOI: 10.1080/14787210.2021.1841636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The importance of iron is highlighted by the many complex metabolic pathways in which it is involved. A sufficient supply is essential for the effective production of 200 billion erythrocytes daily, a process called erythropoiesis. AREAS COVERED During infection, the human body can withhold iron from pathogens, mechanism termed nutritional immunity. The subsequent disturbances in iron homeostasis not only impact on immune function and infection control, but also negatively affect erythropoiesis. The complex interplay between iron, immunity, erythropoiesis and infection control on the molecular and clinical level are highlighted in this review. Diagnostic algorithms for correct interpretation and diagnosis of the iron status in the setting of infection are presented. Therapeutic concepts are discussed regarding effects on anemia correction, but also toward their role on the course of infection. EXPERT OPINION In the setting of infection, anemia is often neglected and its impact on the course of diseases is incompletely understood. Clinical expertise can be improved in correct diagnosing of anemia and disturbances of iron homeostasis. Systemic studies are needed to evaluate the impact of specific therapeutic interventions on anemia correction on the course of infection, but also on patients' cardiovascular performance and quality of life.
Collapse
Affiliation(s)
- Lara Valente de Souza
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Hoffmann
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Salama SA, Kabel AM. Taxifolin ameliorates iron overload-induced hepatocellular injury: Modulating PI3K/AKT and p38 MAPK signaling, inflammatory response, and hepatocellular regeneration. Chem Biol Interact 2020; 330:109230. [PMID: 32828744 DOI: 10.1016/j.cbi.2020.109230] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Although physiological levels of iron are essential for numerous biological processes, excess iron causes critical tissue injury. Under iron overload conditions, non-chelated iron generates reactive oxygen species that mediate iron-induced tissue injury with subsequent induction of apoptosis, necrosis, and inflammatory responses. Because liver is a central player in iron metabolism and storage, it is vulnerable to iron-induced tissue injury. Taxifolin is naturally occurring compound that has shown potent antioxidant and potential iron chelation competency. The aim of the current study was to investigate the potential protective effects of taxifolin against iron-induced hepatocellular injury and to elucidate the underlining mechanisms using rats as a mammalian model. The results of the current work indicated that taxifolin inhibited iron-induced apoptosis and enhanced hepatocellular survival as demonstrated by decreased activity of caspase-3 and activation of the pro-survival signaling PI3K/AKT, respectively. Western blotting analysis revealed that taxifolin enhanced liver regeneration as indicated by increased PCNA protein abundance. Taxifolin mitigated the iron-induced histopathological aberration and reduced serum activity of liver enzymes (ALT and AST), highlighting enhanced liver cell integrity. Mechanistically, taxifolin modulated the redox-sensitive MAPK signaling (p38/c-Fos) and improved redox status of the liver tissues as indicated by decreased lipid peroxidation and protein oxidation along with enhanced total antioxidant capacity. Interestingly, it decreased liver iron content and down-regulated the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β. Collectively, these data highlight, for the first time, the ameliorating effects of taxifolin against iron overload-induced hepatocellular injury that is potentially mediated through anti-inflammatory, antioxidant, and potential iron chelation activities.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Ahmed M Kabel
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
35
|
Basu T, Kumar B, Shendge AK, Panja S, Chugh H, Gautam HK, Mandal N. An Indian Desert Shrub 'Hiran Chabba', Farsetia hamiltonii Royle, Exhibits Potent Antioxidant and Hepatoprotective Effect Against Iron- Overload Induced Liver Toxicity in Swiss Albino Mice. Curr Drug Discov Technol 2020; 16:210-222. [PMID: 29669498 DOI: 10.2174/1570163815666180418150123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Farsetia hamiltonii Royle, also known as Hiran Chabba grows in desert regions. It is widely used as folk medicine to treat joint pains, diarrhea and diabetes. However, its antioxidant and iron chelation abilities both in vitro and in vivo have not yet been investigated. METHODS The 70% methanolic extract of F. hamiltonii (FHME) was investigated for its free radical scavenging and iron chelation potential, in vitro. An iron-overload situation was established by intraperitoneal injection of iron-dextran in Swiss albino mice, followed by oral administration of FHME. Liver damage and serum parameters due to iron-overload were measured biochemically and histopathologically to test iron-overload remediation and hepatoprotective potential of FHME. Phytochemical analyses were performed to determine its probable bioactive components. RESULTS FHME showed promising antioxidant activity, scavenged various reactive oxygen and nitrogen species and chelated iron in vitro. FHME reduced liver iron, serum ferritin, normalized serum parameters, reduced oxidative stress in liver, serum and improved liver antioxidant status in ironoverloaded mice. It also alleviated liver damage and fibrosis as evident from biochemical parameters and morphological analysis of liver sections. The phytochemical analyses of FHME reflected the presence of alkaloids, phenols, flavonoids and tannins. HPLC analysis indicated presence of tannic acid, quercetin, methyl gallate, catechin, reserpine, ascorbic acid and gallic acid. CONCLUSION Based on the experimental outcome, FHME, an ethnologically important plant can be envisaged as excellent antioxidant and iron chelator drug capable of remediating iron-overload induced hepatotoxicity and the bioactive compounds present in FHME might be responsible for its efficacy.
Collapse
Affiliation(s)
- Tapasree Basu
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VII M, Kolkata 700054, West Bengal, India
| | - Bipul Kumar
- Department of Microbial Biotechnology, CSIR- Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| | - Anil K Shendge
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VII M, Kolkata 700054, West Bengal, India
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VII M, Kolkata 700054, West Bengal, India
| | - Heerak Chugh
- Department of Microbial Biotechnology, CSIR- Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| | - Hemant K Gautam
- Department of Microbial Biotechnology, CSIR- Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme - VII M, Kolkata 700054, West Bengal, India
| |
Collapse
|
36
|
Wu J, Meng QH. Current understanding of the metabolism of micronutrients in chronic alcoholic liver disease. World J Gastroenterol 2020; 26:4567-4578. [PMID: 32884217 PMCID: PMC7445863 DOI: 10.3748/wjg.v26.i31.4567] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) remains an important health problem worldwide. Perturbation of micronutrients has been broadly reported to be a common characteristic in patients with ALD, given the fact that micronutrients often act as composition or coenzymes of many biochemical enzymes responsible for the inflammatory response, oxidative stress, and cell proliferation. Mapping the metabolic pattern and the function of these micronutrients is a prerequisite before targeted intervention can be delivered in clinical practice. Recent years have registered a significant improvement in our understanding of the role of micronutrients on the pathogenesis and progression of ALD. However, how and to what extent these micronutrients are involved in the pathophysiology of ALD remains largely unknown. In the current study, we provide a review of recent studies that investigated the imbalance of micronutrients in patients with ALD with a focus on zinc, iron, copper, magnesium, selenium, vitamin D and vitamin E, and determine how disturbances in micronutrients relates to the pathophysiology of ALD. Overall, zinc, selenium, vitamin D, and vitamin E uniformly exhibited a deficiency, and iron demonstrated an elevated trend. While for copper, both an elevation and deficiency were observed from existing literature. More importantly, we also highlight several challenges in terms of low sample size, study design discrepancies, sample heterogeneity across studies, and the use of machine learning approaches.
Collapse
Affiliation(s)
- Jing Wu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Qing-Hua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
37
|
[Iron status, weight changes and body composition during anemia recovery in an experimental model: the effect of fermented goat or cow milk]. NUTR HOSP 2020; 34:568-576. [PMID: 31973543 DOI: 10.20960/nh.02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Objective: to provide detailed information on iron status, body changes, food intake, hepatosomatic index, and body composition during recovery from severe iron deficiency anemia with fermented cow or goat milk. Material and methods: sixty male Wistar albino rats were divided into two experimental groups (control and anemic) and fed ad libitum an AIN-93G diet for 40 days, receiving a normal Fe diet (45 mg/kg of diet) or a low-Fe diet (5 mg/kg of diet), respectively. After induction of anemia, both the control and anemic groups were additionally fed for 30 days either a fermented cow milk-based or fermented goat milk-based diet with normal Fe content. Hematological and iron-related biochemical parameters, weight changes, food intake, hepatosomatic index, and body composition were assessed. Results: The hepatosomatic index was higher in the anemic group versus the control group. In both groups fed a fermented goat milk-based diet the hepatosomatic index was higher due to lower body weight and a higher liver weight. Food intake, weight gain, and total body fat were lower, whereas lean mass and free and total water were higher in the anemic group as compared to the control group. In both animal groups fed a fermented goat milk-based diet body weight and body fat were lower and the percentages of lean mass and free water and total water were higher. Conclusion: Iron deficiency decreased weight gain, lean mass, and body fat, indicating lower energy stores. Fermented goat milk-based diet recovers more efficiently iron status, decreased adiposity, and increased energy expenditure.
Collapse
|
38
|
Zhang V, Ganz T, Nemeth E, Kim A. Iron overload causes a mild and transient increase in acute lung injury. Physiol Rep 2020; 8:e14470. [PMID: 32596989 PMCID: PMC7322498 DOI: 10.14814/phy2.14470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have demonstrated a strong link between acute respiratory distress syndrome (ARDS) and the levels of iron and iron-related proteins in the lungs. However, the role of iron overload in ARDS development has yet to be characterized. In this study, we compared the highly iron-overloaded hepcidin knockout mice (HKO) to their iron-sufficient wild-type (WT) littermates in a model of sterile acute lung injury (ALI) induced by treatment with oropharyngeal (OP) LPS. There were no major differences in systemic inflammatory response or airway neutrophil infiltration between the two groups at the time of maximal injury (days 2 and 3) or during the recovery phase (day 7). Hepcidin knockout mice had transiently increased bronchoalveolar lavage fluid (BALF) protein and MPO activity in the lung and BALF on day 3, indicating worse vascular leakage and increased neutrophil activity, respectively. The increased ALI severity in iron-overloaded mice may be a result of increased apoptosis of lung tissue, as evidenced by an increase in cleaved capsase-3 protein in lung homogenates from HKO mice versus WT mice on day 3. Altogether, our data suggest that even severe iron overload has a relatively minor and transient effect in LPS-induced ALI.
Collapse
Affiliation(s)
- Vida Zhang
- Department of MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Department of Molecular and Medical PharmacologyUCLALos AngelesCAUSA
| | - Tomas Ganz
- Department of MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
| | - Elizabeta Nemeth
- Department of MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
| | - Airie Kim
- Department of MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
| |
Collapse
|
39
|
Liver Stiffness Measurement by Vibration Controlled Transient Elastography Does Not Correlate to Hepatic Iron Overload in Children With Sickle Cell Disease. J Pediatr Hematol Oncol 2020; 42:214-217. [PMID: 32032243 DOI: 10.1097/mph.0000000000001726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Children with sickle cell disease (SCD) are at risk of liver injury because of sickle cell hepatopathy and iron overload from chronic transfusions (CT). The authors examine the association between iron overload and liver stiffness measurement (LSM) by vibration controlled transient elastography (VCTE), which has been shown to correlate with fibrosis. METHODS Patients 21 years of age and less with SCD had VCTE performed; those who received CT underwent magnetic resonance imaging T2* for iron quantification. RESULTS The authors enrolled 42 patients, 17 (40%) of whom received CT. There was no difference in LSM between patients who underwent CT (5.5±1.5 kPa) and those who did not (5.2±2.3 kPa) (P=0.923). There was no correlation between iron quantification and LSM (r=-0.077, P=0.769). However, children 12 years of age and older had abnormal LSM when compared with a reference range (P=0.013). CONCLUSION VCTE is a noninvasive technology that is feasible in children with SCD. LSM values were elevated in older children but did not correlate with iron overload, suggesting that fibrosis may not be affected by iron overload alone. Though additional data are needed, LSM may be a useful test for the progression of liver disease in SCD regardless of iron burden.
Collapse
|
40
|
M. Almalki A, Ajarem J, A. Allam A, A. El-Serehy H, N. Maodaa S, M. Mahmoud A. Use of Spilopelia senegalensis as a Biomonitor of Heavy Metal Contamination from Mining Activities in Riyadh (Saudi Arabia). Animals (Basel) 2019; 9:ani9121046. [PMID: 31795364 PMCID: PMC6941054 DOI: 10.3390/ani9121046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Bioindicators and biomonitors are living organisms utilized to appraise the health of the environment or natural ecosystem. Mining, which refers to extraction of valuable materials from the earth, represents a source of heavy metals that can impact the environment, biodiversity, and human health. We investigated the value of the laughing dove (Spilopelia senegalensis) as a biomonitor of environmental contamination with heavy metals from mining practices. Our results revealed the accumulation of heavy metals in the liver, kidneys, and lungs of the laughing dove collected from the mining site. The doves exhibited tissue dysfunction and injury, and decreased antioxidants. These results show the value of the laughing dove as a biomonitor of environmental pollution with heavy metals. Abstract Environmental pollution with heavy metals (HMs) is of serious ecological and public health concern worldwide. Mining is one of the main sources of HMs and can impact the environment, species diversity, and human health. This study assessed the value of Spilopelia senegalensis as a biomonitor of environmental contamination with metal(loid)s caused by mining activities. S. senegalensis was collected from a gold mining site and a reference site, and metal(loid)s and biochemical parameters were determined. Lead, cadmium, mercury, vanadium, arsenic, copper, zinc, and iron were significantly increased in the liver, kidney, and lung of S. senegalensis from the mining site. Serum transaminases, alkaline phosphatase, creatinine, and urea were significantly elevated in S. senegalensis from the mining site. Lipid peroxidation and nitric oxide were increased, whereas glutathione and antioxidant enzymes were diminished in the liver and kidney of S. senegalensis from the mining site. In addition, multiple histological alterations were observed in the liver, kidney, and lung of S. senegalensis. In conclusion, mining activities provoke the accumulation of metal(loid)s, oxidative stress, and tissue injury in S. senegalensis. Therefore, S. senegalensis is a valuable biomonitor of environmental pollution caused by mining activities and could be utilized in epidemiological avian studies of human health.
Collapse
Affiliation(s)
- Ahmed M. Almalki
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (H.A.E.-S.); (S.N.M.)
| | - Jamaan Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (H.A.E.-S.); (S.N.M.)
- Correspondence: (J.A.); (A.M.M.)
| | - Ahmed A. Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Hamed A. El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (H.A.E.-S.); (S.N.M.)
- Oceanography Department, College of Science, Port Said University, Port Said 42522, Egypt
| | - Saleh N. Maodaa
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (H.A.E.-S.); (S.N.M.)
| | - Ayman M. Mahmoud
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
- Correspondence: (J.A.); (A.M.M.)
| |
Collapse
|
41
|
Almalki AM, Ajarem J, Altoom N, Al-Otaibi FS, Maodaa SN, Allam AA, Mahmoud AM. Effects of Mining Activities on Gerbillus nanus in Saudi Arabia: A Biochemical and Histological Study. Animals (Basel) 2019; 9:ani9090664. [PMID: 31500235 PMCID: PMC6770580 DOI: 10.3390/ani9090664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Mining can impact the environment, biodiversity, and human health through direct and indirect practices. This study investigated the effects of gold mining on Gerbillus nanus, in relation to organ dysfunction and redox imbalance. Soil samples, Lycium shawii, and G. nanus were collected from a site near a mining plant, and a control site. Soil and L. shawii samples from the mining site showed significantly higher cadmium (Cd), copper (Cu), mercury (Hg), arsenic (As), zinc (Zn), lead (Pb), and vanadium (V) levels. Hepatic, renal, and pulmonary Cd, Pb, Hg, Zn, Cu, Fe, As, and V concentrations were significantly higher in G. nanus from the mining site. Markers of liver and kidney function were elevated in serum, and several histological manifestations were observed in the liver, kidney, and lung of G. nanus from the mining site. Malondialdehyde and nitric oxide levels increased, and glutathione and antioxidant enzymes decreased in the liver and kidney of G. nanus. In conclusion, mining practices trigger tissue damage and oxidative stress in G. nanus that live close to the mining site. These findings can represent a scientific basis for evaluating the environmental and health impacts of mining on nearby communities.
Collapse
Affiliation(s)
- Ahmed M Almalki
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Jamaan Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naif Altoom
- Department of Biology, King Khalid Military Academy, Riyadh 14625, Saudi Arabia.
| | - Fahed S Al-Otaibi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Saleh N Maodaa
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ayman M Mahmoud
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
42
|
Yuan Q, Zhang Z, Hu X, Liao J, Kuang J. miR-374a/Myc axis modulates iron overload-induced production of ROS and the activation of hepatic stellate cells via TGF-β1 and IL-6. Biochem Biophys Res Commun 2019; 515:499-504. [PMID: 31171361 DOI: 10.1016/j.bbrc.2019.05.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023]
Abstract
The transformation of hepatic stellate cells (HSCs) to activated myofibroblasts plays a critical role in the progression of hepatic fibrosis, while iron-catalyzed production of free radical, including reaction and active oxygen (ROS), and activation and transformation of HSC into a myofibroblasts has been regarded as a major mechanism. In the present study, we attempted to investigate the mechanism of iron overload in hepatic fibrosis from the perspective of regulating HSC activation via oxidative stress and miR-374a/Myc axis. FAC stimulation significantly increased ROS production and TGF-β1 and IL-6 release dose-dependently in hepatocytes. miR-374a could target Myc, a co-transcription factor of both TGF-β1 and IL-6, to negatively regulate Myc expression; FAC stimulation significantly suppressed miR-374a expression, whereas the suppressive effect of FAC stimulation on miR-374a expression could be reversed by ROS inhibitor NAC, indicating that miR-374a could be modulated by iron overload-induced ROS. Via targeting Myc, miR-374a overexpression significantly reduced FAC-induced increases in TGF-β1 and IL-6 levels within L02 cells, whereas the effects of miR-374a overexpression were significantly attenuated via Myc overexpression. Finally, miR-374a overexpression attenuated FAC-induced activity of HSCs by decreasing α-SMA and Collagen I levels whereas Myc overexpression enhanced FAC-induced activity of HSCs by increasing α-SMA and Collagen I levels; the effects of miR-374a overexpression could also be significantly reversed by Myc overexpression, indicating that miR-374a suppresses the activation of HSCs by inhibiting Myc to reduce FAC-induced increases in TGF-β1 and IL-6 release. In conclusion, we demonstrate a novel mechanism of miR-374a/Myc axis modulating iron overload-induced production of ROS and the activation of HSCs via TGF-β1 and IL-6.
Collapse
Affiliation(s)
- Qi Yuan
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheng Zhang
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China.
| | - Xiaoxuan Hu
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Jinmao Liao
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Jia Kuang
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| |
Collapse
|
43
|
Ljubojević M, Orct T, Micek V, Karaica D, Jurasović J, Breljak D, Madunić IV, Rašić D, Jovanović IN, Peraica M, Gerić M, Gajski G, Oguić SK, Rogić D, Nanić L, Rubelj I, Sabolić I. Sex-dependent expression of metallothioneins MT1 and MT2 and concentrations of trace elements in rat liver and kidney tissues: Effect of gonadectomy. J Trace Elem Med Biol 2019; 53:98-108. [PMID: 30910215 DOI: 10.1016/j.jtemb.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023]
Abstract
Metallothioneins (MTs) exhibit binding affinity for several essential and toxic trace elements. Previous studies in rodents indicated sex differences in the hepatic and renal expression of MTs and concentrations of various elements. The mechanism responsible for these differences has not been resolved. Here, in the liver and kidney tissues of sham-operated and gonadectomized male and female rats we determined the expression of MT1 and MT2 (MT1&2) mRNA by RT-PCR, abundance of MT1&2 proteins by Western blotting and immunocytochemistry, concentrations of essential (Fe, Zn, Cu, Co) and toxic (Cd, Hg, Pb) elements by ICP-MS, and oxidative status parameters (SOD, GPx, MDA, GSH) by biochemical methods. In both organs, the expression of MT1&2 mRNA and MT1&2 proteins was female-dominant, upregulated by castration, and downregulated by ovariectomy. Concentrations of Fe in the liver and Co in the kidneys followed the same pattern. Most other elements (Zn, Cu, Cd, Hg) exhibited female- or male-dominant sex differences, affected by gonadectomy in one or both organs. Pb was sex- and gonadectomy-unaffected. GPx and MDA were elevated and associated with the highest concentrations of Fe only in the female liver. We conclude that the sex-dependent expression of MT1&2 mRNA and proteins in the rat liver and kidneys may include different mechanisms. In the liver, the female-dominant tissue concentrations of Fe may generate oxidative stress which is a potent enhancer of MTs production, whereas in kidneys, the female-dominant expression of MTs may be unrelated to Fe-mediated oxidative stress.
Collapse
Affiliation(s)
- Marija Ljubojević
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dubravka Rašić
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Novak Jovanović
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Maja Peraica
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Saša Kralik Oguić
- Clinical Institute of Laboratory Diagnostics, Clinical Hospital Center, Zagreb, Croatia
| | - Dunja Rogić
- Clinical Institute of Laboratory Diagnostics, Clinical Hospital Center, Zagreb, Croatia
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Sabolić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
44
|
Behairy BES, Konswa HAA, Ahmed HT, El-Azab DS, Adawy NM, Sira AM. Serum ferritin in neonatal cholestasis: A specific and active molecule or a non-specific bystander marker? Hepatobiliary Pancreat Dis Int 2019; 18:173-180. [PMID: 30833173 DOI: 10.1016/j.hbpd.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Serum ferritin (SF) and consequently hepatic iron have long been considered important in liver fibrosis progression. They have been studied in different liver diseases with no previous reports in neonatal cholestasis (NC). This study aimed to measure SF in different etiologies of NC and investigate its relation to hepatic iron and fibrosis. METHODS SF was measured in 75 infants, including 50 with NC and 25 with sepsis. SF was compared between these two groups. Biochemical parameters, hepatic iron grades, and liver fibrosis and other histopathological characteristics and correlated with SF were assessed in NC group. Finally, a comparison between intrahepatic cholestasis and obstructive etiology was performed. RESULTS SF was elevated in NC (1598 ± 2405 ng/mL) with no significant difference from those with sepsis (P = 0.445). NC and sepsis constituted augmenting factors leading to more elevation of SF (2589 ± 3511 ng/mL). SF was significantly correlated with hepatic iron grades (r = 0.536, P < 0.0001) and a cut-off value of 803.5 ng/mL can predict higher grades (≥ grade 3) of iron deposition with sensitivity of 100%, specificity of 70% and accuracy of 85%. Moreover, SF was significantly higher (P < 0.0001) in those with intrahepatic cholestasis (2602 ± 3154 ng/mL) and their prevalent pathological findings of giant cell transformation (P = 0.009) and hepatocyte swelling (P = 0.023) than those with obstructive etiology (672 ± 566 ng/mL) and their prevalent pathological findings of ductular proliferation (P = 0.003) and bile plugs (P = 0.002). SF was unrelated to the grade of liver fibrosis (P = 0.058). CONCLUSIONS SF is non-specifically elevated in NC, with positive correlation to hepatic iron grades. SF ≥ 803.5 ng/mL can predict higher grades (≥ grade 3) of hepatic iron. However, an active role of increased SF and hepatic iron in disease progression remains questionable.
Collapse
Affiliation(s)
- Behairy El-Sayed Behairy
- Department of Pediatric Hepatology, Gastroenterology, and Nutrition, National Liver Institute, Menofiya University, 32511 Shebin El-koom, Menofiya, Egypt
| | - Hatem Abd-Alsattar Konswa
- Department of Pediatric Hepatology, Gastroenterology, and Nutrition, National Liver Institute, Menofiya University, 32511 Shebin El-koom, Menofiya, Egypt
| | - Hanaa Talaat Ahmed
- Department of Pediatric Hepatology, Gastroenterology, and Nutrition, National Liver Institute, Menofiya University, 32511 Shebin El-koom, Menofiya, Egypt
| | - Dina Shehata El-Azab
- Department of Pathology, National Liver Institute, Menofiya University, 32511 Shebin El-koom, Menofiya, Egypt
| | - Nermin Mohamed Adawy
- Department of Pediatric Hepatology, Gastroenterology, and Nutrition, National Liver Institute, Menofiya University, 32511 Shebin El-koom, Menofiya, Egypt
| | - Ahmad Mohamed Sira
- Department of Pediatric Hepatology, Gastroenterology, and Nutrition, National Liver Institute, Menofiya University, 32511 Shebin El-koom, Menofiya, Egypt.
| |
Collapse
|
45
|
Sungkar T, Rozi MF, Dairi LB, Zain LH. Serum Ferritin Levels: A Potential Biomarker to Represent Child-Turcotte-Pugh Score among Decompensated Liver Cirrhosis Patients. Malays J Med Sci 2019; 26:59-65. [PMID: 31447609 PMCID: PMC6687222 DOI: 10.21315/mjms2019.26.2.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/04/2019] [Indexed: 01/05/2023] Open
Abstract
Background Liver cirrhosis and the child-Turcotte-Pugh (CTP) score are inseparable entities in liver disease. CTP score is largely known as the mortality and prognosis predictor. Nevertheless, ferritin emerges as a simple biomarker related to prognosis. The study aimed to determine whether there was a significant correlation between serum ferritin levels and CTP score. Methods The study analysed 54 decompensated liver cirrhotic patients including 17 females and 37 males between May 2016 and May 2017 at the Haji Adam Malik General Hospital, Medan, Indonesia. Ferritin levels were, then, divided into trichotomous cut-off value (< 200 ng/mL, n = 22; 200–400 ng/mL, n = 5; and > 400 ng/mL, n = 27). Data was analysed using SPSS version 12.0 (continuous variables were assessed by the Kruskal-Wallis test and Chi-square test was used for categorical variables). In addition, Spearman correlation test was used to determine any significant correlation between ferritin levels and CTP score. Results Based on data analysis, gender and CTP score were related to higher ferritin levels (P = 0.002 and P = 0.018, respectively). Furthermore, a significant correlation between serum ferritin levels and CTP score was obtained in to moderate degree (P = 0.000; r = 0.487). Conclusions There might be a significant role of serum ferritin levels in predicting mortality and prognosis among decompensated liver cirrhosis patients but it still needs further attention.
Collapse
Affiliation(s)
- Taufik Sungkar
- Department of Internal Medicine, Gastroenterology-Hepatology Division, Universitas Sumatera Utara, Padang Bulan, Medan, Indonesia
| | | | - Leo Basa Dairi
- Department of Internal Medicine, Gastroenterology-Hepatology Division, Universitas Sumatera Utara, Padang Bulan, Medan, Indonesia
| | - Lukman Hakim Zain
- Department of Internal Medicine, Gastroenterology-Hepatology Division, Universitas Sumatera Utara, Padang Bulan, Medan, Indonesia
| |
Collapse
|
46
|
Iron in Lung Pathology. Pharmaceuticals (Basel) 2019; 12:ph12010030. [PMID: 30781366 PMCID: PMC6469192 DOI: 10.3390/ph12010030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022] Open
Abstract
The lung presents a unique challenge for iron homeostasis. The entire airway is in direct contact with the environment and its iron particulate matter and iron-utilizing microbes. However, the homeostatic and adaptive mechanisms of pulmonary iron regulation are poorly understood. This review provides an overview of systemic and local lung iron regulation, as well as the roles of iron in the development of lung infections, airway disease, and lung injury. These mechanisms provide an important foundation for the ongoing development of therapeutic applications.
Collapse
|
47
|
Wu J, Yang L, Zhang X, Li Y, Wang J, Zhang S, Liu H, Huang H, Wang Y, Yuan L, Cheng X, Zhuang D, Zhang H, Chen X. MC-LR induces dysregulation of iron homeostasis by inhibiting hepcidin expression: A preliminary study. CHEMOSPHERE 2018; 212:572-584. [PMID: 30172039 DOI: 10.1016/j.chemosphere.2018.08.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The liver is an important iron storage site and a primary MC-LR target. C57BL/6 and Hfe-/- mice were used to investigate effects and mechanisms of MC-LR on systematic iron homeostasis. Body weight, tissue iron content, hematological and serological indexes, and histopathological were evaluated. Ultrastructure and iron metabolism-related genes and proteins were analyzed. MC-LR induced dose-dependent increases in red blood cells, hemoglobin, and hematocrit. In contrast MC-LR-induced dose-dependent decreases in mean corpuscular volume, hemoglobin, and hemoglobin concentration were observed both C57BL/6 and Hfe-/- mice. In both mouse species, serological indexes increased. Aggravated liver and spleen iron were observed in C57BL/6 mice, consistent with Perls' Prussian blue staining. However, an opposite trend was observed in Hfe-/- mice. C57BL/6 mice had lower Hamp1 (Hepcidn), Bmp6, Il-6, and Tmprss6. Significant increased Hjv, Hif-1α and Hif-2α were observed in both C57BL/6 and Hfe-/- mice. MC-LR-induced pathological lesions were dose-dependent increase in C57BL/6 mice. More severe pathological injuries in MC-LR groups (25 μg/kg) were observed in Hfe-/- mice than in C57BL/6 mice. In Hfe-/- mice, upon exposure to 25 μg/kg MC-LR, mitochondrial membranes were damaged and mitochondrial counts increased with significant swelling. These results indicated that MC-LR can induce the accumulation of iron in C57BL/6 mice with the occurrence of anemia, similar to thalassemia. Moreover, dysregulation of iron homeostasis may be due to MC-LR-induced Hamp1 downregulation, possibly mediated by hypoxia or the IL6-STAT3 and BMP-SMAD signaling pathways.
Collapse
Affiliation(s)
- Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lei Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Nursing, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaofeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yang Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jianyao Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Shenshen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hui Huang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| |
Collapse
|
48
|
The genetic variants of solute carrier family 11 member 2 gene and risk of developing type-2 diabetes. J Genet 2018. [DOI: 10.1007/s12041-018-1032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Abstract
Histochemistry has an important, continuing role in the current assessment of hepatic biopsies and resection specimens. The evaluation of connective tissue elements in the liver can be accomplished with such methods as the Masson trichrome, Snook reticulin, Vierhoff van Gieson, orcein, and Victoria blue stains. The results contribute to the diagnosis of acute and chronic hepatitis, submassive necrosis, venous outflow obstruction, steatohepatitis, and cirrhosis. Fat stains done on frozen sections of liver tissue are routinely performed in the evaluation of donor liver allograft biopsies. Iron stains such as Perls' method and the Prussian blue technique contribute to the recognition of hemochromatosis and hemosiderosis. The rhodanine, orcein, and Timm stains for copper are used in the characterization of chronic cholestatic liver disease and Wilson's disease. Labeling of carbohydrate-based moieties in various disorders is accomplished with the digested and undigested periodic acid-Schiff method, and Congo red or crystal violet stains can be employed to detect amyloid deposition. Lastly, evaluations of the thickness of the cell plates and continuity of the reticulin framework, as seen with the Snook reticulin stain, can contribute to the diagnostic separation of benign from malignant hepatocellular neoplasms.
Collapse
Affiliation(s)
- Julia C Iezzoni
- Division of Surgical Pathology and Cytopathology, Department of Pathology, University of Virginia Health System, P.O. Box 800214, Charlottesville, VA 22908, United States.
| |
Collapse
|
50
|
Chung JW, Shin E, Kim H, Han HS, Cho JY, Choi YR, Hong S, Jang ES, Kim JW, Jeong SH. Hepatic iron overload in the portal tract predicts poor survival in hepatocellular carcinoma after curative resection. Liver Int 2018; 38:903-914. [PMID: 29105340 DOI: 10.1111/liv.13619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatic iron overload is associated with liver injury and hepatocarcinogenesis; however, it has not been evaluated in patients with hepatocellular carcinoma (HCC) in Asia. The aim of this study was to clarify the degree and distribution of intrahepatic iron deposition, and their effects on the survival of HCC patients. METHODS Intrahepatic iron deposition was examined using non-tumorous liver tissues from 204 HCC patients after curative resection, and they were scored by 2 semi-quantitative methods: simplified Scheuer's and modified Deugnier's methods. For the Scheuer's method, iron deposition in hepatocytes and Kupffer cells was separately evaluated, while for the modified Deugnier's method, hepatocyte iron score (HIS), sinusoidal iron score (SIS) and portal iron score (PIS) were systematically evaluated, and the corrected total iron score (cTIS) was calculated by multiplying the sum (TIS) of the HIS, SIS, and PIS by the coefficient. RESULTS The overall prevalence of hepatic iron was 40.7% with the simplified Scheuer's method and 45.1% with the modified Deugnier's method with a mean cTIS score of 2.46. During a median follow-up of 67 months, the cTIS was not associated with overall survival. However, a positive PIS was significantly associated with a lower 5-year overall survival rate (50.0%) compared with a negative PIS (73.7%, P = .006). In the multivariate analysis, a positive PIS was an independent factor for overall mortality (hazard ratio, 2.310; 95% confidence interval, 1.181-4.517). CONCLUSIONS Intrahepatic iron deposition was common, and iron overload in the portal tract indicated poor survival in curatively resected HCC patients.
Collapse
Affiliation(s)
- Jung Wha Chung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eun Shin
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ho-Seong Han
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jai Young Cho
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young Rok Choi
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sukho Hong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eun Sun Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin-Wook Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sook-Hyang Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|