1
|
Kabbashi AS, Eltawaty SA, Ismail AM, Elshikh AA, Alrasheid AA, Elmahi RA, Koko WS, Osman EE. Ethanolic Extract of Mangifera indica Protects against CCl 4-Induced Hepatotoxicity via Antioxidant Capabilities in Albino Rats. J Toxicol 2024; 2024:5539386. [PMID: 39229627 PMCID: PMC11371441 DOI: 10.1155/2024/5539386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024] Open
Abstract
Objective To investigate the antioxidant and hepatoprotective effects of ethanolic Mangifera indica (M. indica) seed extract on carbon tetrachloride (CCl4)-induced hepatotoxicity in albino rats. Methods Forty-eight albino rats weighing (100-150 g) were used for hepatoprotective and toxicity experiments. Antioxidant activity was determined using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The toxicity of M. indica seeds on the liver was evaluated by examining wellness parameters, body weight, and liver histological sections. The protective effects of 50 mg/kg and 100 mg/kg of seed extract on CCl4-induced hepatotoxicity were investigated by evaluating hematological, renal, and liver function parameters, body weight, and liver histological sections. Results The antioxidant activity of the M. indica ethanolic extract was (92 ± 0.03 RSA %) compared with (91 ± 0.01 RSA %) of propyl gallate, and the IC50 was (8.3 ± 0.01 µg/ml) and (14.1 ± 0.01 µg/ml). No changes were observed in the health indicators, body weights, and liver histological sections following oral administration of 50 mg/kg and 100 mg/kg of M. indica seed extracts. Treatment with M. indica seed extract significantly reduced alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), blood sugar, and urea levels compared with those in the CCl4-treated group. Conclusion The IC50 of the M. indica ethanolic extract was 8.3 µg/ml, and the M. indica extract is a potential source of natural antioxidants that protect against CCl4-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ahmed Saeed Kabbashi
- Department of Biomedical ScienceFaculty of PharmacyOmar Al-Mukhtar University, Al-Bayda, Libya
| | - Salwa Abdulla Eltawaty
- Department of Biomedical ScienceFaculty of PharmacyOmar Al-Mukhtar University, Al-Bayda, Libya
| | - Amar Mohamed Ismail
- Department of Biomedical ScienceFaculty of PharmacyOmar Al-Mukhtar University, Al-Bayda, Libya
| | | | - Ayat Ahmed Alrasheid
- Department of PharmacognosyFaculty of PharmacyUniversity of Medical Sciences and Technology, Khartoum, Sudan
| | - Rawan Ahmed Elmahi
- Department of HistopathologyFaculty of Medical Laboratory SciencesInternational University of Africa, Khartoum, Sudan
| | - Waleed S. Koko
- Department of BiologyCollege of ScienceQassim University, Qassim 51452, Saudi Arabia
| | - Elbadri Elamin Osman
- Department of MicrobiologyFaculty of Pure and Applied ScienceInternational University of Africa, Khartoum, Sudan
| |
Collapse
|
2
|
Qiu L, Ma Z, Sun J, Wu Z, Wang M, Wang S, Zhao Y, Liang S, Hu M, Li Y. Establishment of a Spontaneous Liver Fibrosis Model in NOD/SCID Mice Induced by Natural Aging. BIOLOGY 2023; 12:1493. [PMID: 38132319 PMCID: PMC10740877 DOI: 10.3390/biology12121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Liver fibrosis, a critical pathological feature of chronic liver diseases, arises from a multitude of pathogenic factors. Consequently, establishing an appropriate animal model to simulate liver fibrosis holds immense significance for comprehending its underlying pathogenesis. Despite the numerous methodologies available for generating liver fibrosis models, they often deviate substantially from the spontaneous age-related liver fibrosis process. In this study, compared with young (12 weeks) and middle-aged NOD/SCID mice (32 weeks), there were a large number of fibrous septum and collagen in the liver tissue of old NOD/SCID mice (43 weeks, 43 W). Immunohistochemical analysis unequivocally indicated heightened α-SMA content within the liver tissue of the 43 W mice, thereby underscoring aging's role in triggering the epithelial-to-mesenchymal transition. In addition, SA-β-gal staining as well as P21 expression were increased, and SIRT1 and SIRT3 expression were decreased in 43 W mice. A comprehensive evaluation encompassing transmission electron microscopy and fluorescence quantitative analysis elucidated compromised mitochondrial function and reduced antioxidant capacity in hepatocytes of the 43 W mice. Furthermore, the aging process activated the pro-fibrotic TGF-β-SMAD pathway, concurrently inducing hepatocellular inflammation. The results of the present study not only validate the successful construction of a spontaneous liver fibrosis mouse model through natural aging induction but also provide initial insights into the mechanisms underpinning age-induced liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China; (L.Q.); (Z.M.); (J.S.); (Z.W.); (M.W.); (S.W.); (Y.Z.); (S.L.)
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China; (L.Q.); (Z.M.); (J.S.); (Z.W.); (M.W.); (S.W.); (Y.Z.); (S.L.)
| |
Collapse
|
3
|
Hsouna AB, Sadaka C, Beyrouthy ME, Hfaiedh M, Dhifi W, Brini F, Saad RB, Mnif W. Immunomodulatory effect of Linalool (Lin) against CCl 4 -induced hepatotoxicity and oxidative damage in rats. Biotechnol Appl Biochem 2023; 70:469-477. [PMID: 35748559 DOI: 10.1002/bab.2371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/01/2022] [Indexed: 11/11/2022]
Abstract
The current study explored the hepatoprotective and immunomodulatory effects of Linalool (Lin) against carbon tetrachloride (CCl4 )-induced toxicity in mice. Four study groups (n = 8 each) were used: (1) a negative control group and (2) a toxicity control group (single dose of CCl4 administered on day 14 as 1 mL/kg of CCL4 in 1% olive oil). Intraperitoneally (i.p.)), and two experimental groups where mice were treated with either (3) Lin (25 mg/kg b.w., orally, daily for 15 days) or (4) pretreated with Lin (25 mg/kg b.w., orally, daily for 14 days) and intoxicated with CCl4 (1 mL/kg of CCL4 in 1% olive oil. i.p.) on day 14. The levels of the anti-inflammatory cytokine interleukin 10 (IL-10), the proinflammatory cytokines TNF-α, IL-6, and TGF-1β, and the histopathology of the liver were assessed. According to our findings, IL-10 concentrations were significantly increased in Lin-treated groups, while other cytokine levels were marked by a considerable decrease in the toxicity model group (CCl4 -treated group). Histopathological examinations of liver tissues showed that the Lin-treated groups had an almost normal structure. The current findings showed that Lin could inhibit CCl4 -induced liver injury in mice, which warrants further investigation of Lin as a potential protective and therapeutic agent against hepatotoxicity.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia.,Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Carmen Sadaka
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Mbarka Hfaiedh
- Research Unit of Active Biomolecules Valorisation, Higher Institute of Applied Biology of Medicine, University of Gabes, Medenine, Tunisia
| | - Wissal Dhifi
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, BiotechPole of Sidi Thabet, Ariana, Tunisia
| | - Faical Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha, Saudi Arabia.,ISBST, BVBGR-LR11ES31, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
4
|
Elzoheiry A, Ayad E, Omar N, Elbakry K, Hyder A. Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles. Sci Rep 2022; 12:18403. [PMID: 36319750 PMCID: PMC9626641 DOI: 10.1038/s41598-022-23276-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis results from the hepatic accumulation of the extracellular matrix accompanied by a failure of the mechanisms responsible for matrix dissolution. Pathogenesis of liver fibrosis is associated with many proteins from different cell types. In the present study, in silico molecular docking analysis revealed that curcumin may inhibit the fibrosis-mediating proteins PDGF, PDGFRB, TIMP-1, and TLR-9 by direct binding. Nano-formulation can overcome curcumin problems, increasing the efficacy of curcumin as a drug by maximizing its solubility and bioavailability, enhancing its membrane permeability, and improving its pharmacokinetics, pharmacodynamics and biodistribution. Therefore, green silver nanoparticles (AgNPs) were synthesized in the presence of sunlight by means of the metabolite of Streptomyces malachiticus, and coated with curcumin-chitosan mixture to serve as a drug delivery tool for curcumin to target CCl4-induced liver fibrosis mouse model. Fibrosis induction significantly increased hepatic gene expression of COL1A1, α-SMA, PDGFRB, and TIMP1, elevated hepatic enzymes, increased histopathological findings, and increased collagen deposition as determined by Mason's trichrome staining. Treatment with naked AgNPs tended to increase these inflammatory effects, while their coating with chitosan, similar to treatment with curcumin only, did not prevent the fibrogenic effect of CCl4. The induction of liver fibrosis was reversed by concurrent treatment with curcumin/chitosan-coated AgNPs. In this nano form, curcumin was found to be efficient as anti-liver fibrosis drug, maintaining the hepatic architecture and function during fibrosis development. This efficacy can be attributed to its inhibitory role through a direct binding to fibrosis-mediating proteins such as PDGFRB, TIMP-1, TLR-9 and TGF-β.
Collapse
Affiliation(s)
- Alya Elzoheiry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Esraa Ayad
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Nahed Omar
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Kadry Elbakry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
5
|
Liu XY, Li D, Li TY, Wu YL, Piao JS, Piao MG. Vitamin A - modified Betulin polymer micelles with hepatic targeting capability for hepatic fibrosis protection. Eur J Pharm Sci 2022; 174:106189. [DOI: 10.1016/j.ejps.2022.106189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
|
6
|
Wang Y, Yu C, Li Y, Bao H, Li X, Fan H, Huang J, Zhang Z. In vivo MRI tracking and therapeutic efficacy of transplanted mesenchymal stem cells labeled with ferrimagnetic vortex iron oxide nanorings for liver fibrosis repair. NANOSCALE 2022; 14:5227-5238. [PMID: 35315848 DOI: 10.1039/d1nr08544a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesenchymal stem cells (MSCs) have showed promising effects in the treatment of liver fibrosis. Long-term and noninvasive in vivo tracking of transplanted MSCs is essential for understanding the therapeutic mechanism of MSCs during the therapy of liver fibrosis. In this study, we report the development of a ferrimagnetic vortex iron oxide nanoring (FVIO)-based nanotracer for the long-term visualization of transplanted human MSCs (hMSCs) by magnetic resonance imaging (MRI). The FVIOs were prepared by a hydrothermal reaction followed by hydrogen reduction. To endow the FVIOs with biocompatibility, polyethylene glycol amine (mPEG-NH2) was covalently coupled on the surface of FVIOs, forming FVIO@PEG nanotracers with high contrast enhancement and intracellular uptake. The hMSCs labeled with FVIO@PEG nanotracers exhibited enhanced MRI contrast than those labeled with a commercial contrast agent, and could be continuously monitored by MRI in liver fibrosis mice for 28 days after transplantation, clearly clarifying the migration behavior of hMSCs in vivo. Moreover, we explored the therapeutic mechanism of the FVIO@PEG labeled hMSCs in the amelioration of liver fibrosis, including the reduction in inflammation and oxidative stress, the inhibition of hepatic fibrosis-caused histopathological damage, as well as the down-regulation of the expression of relevant cytokines. The results obtained in this work may deepen our understanding of the behavior and role of hMSCs in the treatment of liver fibrosis, which is key to the clinical application of stem cells in the therapy of liver diseases.
Collapse
Affiliation(s)
- Yujie Wang
- College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yuxuan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaodi Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Haiming Fan
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, 710127, China.
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
7
|
Wu X, Shu L, Zhang Z, Li J, Zong J, Cheong LY, Ye D, Lam KSL, Song E, Wang C, Xu A, Hoo RLC. Adipocyte Fatty Acid Binding Protein Promotes the Onset and Progression of Liver Fibrosis via Mediating the Crosstalk between Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003721. [PMID: 34105268 PMCID: PMC8188197 DOI: 10.1002/advs.202003721] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Indexed: 05/16/2023]
Abstract
Development of liver fibrosis results in drastic changes in the liver microenvironment, which in turn accelerates disease progression. Although the pathological function of various hepatic cells in fibrogenesis is identified, the crosstalk between them remains obscure. The present study demonstrates that hepatic expression of adipocyte fatty acid binding protein (A-FABP) is induced especially in the liver sinusoidal endothelial cells (LSECs) in mice after bile duct ligation (BDL). Genetic ablation and pharmacological inhibition of A-FABP attenuate BDL- or carbon tetrachloride-induced liver fibrosis in mice associating with reduced collagen accumulation, LSEC capillarization, and hepatic stellate cell (HSC) activation. Mechanistically, elevated A-FABP promotes LSEC capillarization by activating Hedgehog signaling, thus impairs the gatekeeper function of LSEC on HSC activation. LSEC-derived A-FABP also acts on HSCs in paracrine manner to potentiate the transactivation of transforming growth factor β1 (TGFβ1) by activating c-Jun N-terminal kinase (JNK)/c-Jun signaling. Elevated TGFβ1 subsequently exaggerates liver fibrosis. These findings uncover a novel pathological mechanism of liver fibrosis in which LSEC-derived A-FABP is a key regulator modulating the onset and progression of the disease. Targeting A-FABP may represent a potential approach against liver fibrosis.
Collapse
Affiliation(s)
- Xiaoping Wu
- State Key Laboratory of Pharmaceutical BiotechnologyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical BiotechnologyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- Department of MedicineLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zixuan Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
| | - Jingjing Li
- Department of Pharmacology and PharmacyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
| | - Jiuyu Zong
- State Key Laboratory of Pharmaceutical BiotechnologyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical BiotechnologyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- Department of MedicineLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
| | - Dewei Ye
- Joint Laboratory of Guangdong and Hong Kong on Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhou510000China
| | - Karen S. L. Lam
- State Key Laboratory of Pharmaceutical BiotechnologyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- Department of MedicineLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
| | - Erfei Song
- Department of Metabolic and Bariatric SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510630China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510630China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- Department of MedicineLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
| | - Ruby L. C. Hoo
- State Key Laboratory of Pharmaceutical BiotechnologyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLKS Faculty of Medicinethe University of Hong KongHong Kong999077China
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI)Shenzhen518057China
| |
Collapse
|
8
|
Jin L, Huang H, Ni J, Shen J, Liu Z, Li L, Fu S, Yan J, Hu B. Shh-Yap signaling controls hepatic ductular reactions in CCl 4 -induced liver injury. ENVIRONMENTAL TOXICOLOGY 2021; 36:194-203. [PMID: 32996673 DOI: 10.1002/tox.23025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Carbon tetrachloride (CCl4 ) exposure can induce hepatic ductular reactions. To date, however, the related mechanism remains largely unknown. Sonic hedgehog (Shh) and Yes-associated protein (Yap) signaling are correlated with liver injury and regeneration. Herein, we investigated the role of Shh and Yap signaling in the fate of ductular reaction cells in CCl4 -treated livers and the possible mechanisms. Wild-type and Shh-EGFP-Cre male mice were exposed to CCl4 (2 mL/kg), and then treated with or without the Shh signaling inhibitor Gant61. The level of liver injury, proliferation of ductular reaction cells, and expression levels of mRNA and protein related to the Shh and Yap signaling components were assessed. Results showed that CCl4 treatment induced liver injury and promoted activation and proliferation of ductular reaction cells. In addition, CCl4 induced the expression of Shh ligands in hepatocytes, accompanied by activation of Shh and Yap1 signaling in the liver. Furthermore, administration of Gant61 ameliorated liver regeneration, inhibited hepatic ductular reactions, and decreased Shh and Yap1 signaling activity. Thus, Shh-Yap1 signaling appears to play an integral role in the proliferation of ductular reaction cells in CCl4 -induced liver injury. This study should improve our understanding of the mechanism of CCl4 -induced liver injury and ductular reactions and provide support for future investigations on liver disease therapy.
Collapse
Affiliation(s)
- Lifang Jin
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Huarong Huang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Jian Ni
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiayuan Shen
- Department of pathology, affiliated hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Zuping Liu
- Department of pathology, affiliated hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Lijing Li
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shengmin Fu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Junyan Yan
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
9
|
Nathwani R, Mullish BH, Kockerling D, Forlano R, Manousou P, Dhar A. A Review of Liver Fibrosis and Emerging Therapies. EUROPEAN MEDICAL JOURNAL 2020. [DOI: 10.33590/emj/10310892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With the increasing burden of liver cirrhosis, the most advanced stage of hepatic fibrosis, there is a need to better understand the pathological processes and mechanisms to target specific treatments to reverse or cease fibrosis progression. Antiviral therapy for hepatitis B and C has effectively treated underlying causes of chronic liver disease and has induced fibrosis reversal in some; however, this has not been targeted for the majority of aetiologies for cirrhosis including alcohol or nonalcoholic steatohepatitis. Fibrosis, characterised by the accumulation of extracellular matrix proteins, is caused by chronic injury from toxic, infectious, or metabolic causes. The primary event of fibrogenesis is increased matrix production and scar formation mediated by the hepatic stellate cell, which is the principal cell type involved. Experimental models using rodent and human cell lines of liver injury have assisted in better understanding of fibrogenesis, especially in recognising the role of procoagulant factors. This has led to interventional studies using anticoagulants in animal models with reversal of fibrosis as the primary endpoint. Though these trials have been encouraging, no antifibrotic therapies are currently licenced for human use. This literature review discusses current knowledge in the pathophysiology of hepatic fibrosis, including characteristics of the extracellular matrix, signalling pathways, and hepatic stellate cells. Current types of experimental models used to induce fibrosis, as well as up-to-date anticoagulant therapies and agents targeting the hepatic stellate cell that have been trialled in animal and human studies with antifibrotic properties, are also reviewed.
Collapse
Affiliation(s)
- Rooshi Nathwani
- Integrative Systems Medicine and Digestive Disease, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Integrative Systems Medicine and Digestive Disease, Imperial College London, London, UK
| | - David Kockerling
- Integrative Systems Medicine and Digestive Disease, Imperial College London, London, UK
| | - Roberta Forlano
- Integrative Systems Medicine and Digestive Disease, Imperial College London, London, UK
| | - Pinelopi Manousou
- Integrative Systems Medicine and Digestive Disease, Imperial College London, London, UK
| | - Ameet Dhar
- Integrative Systems Medicine and Digestive Disease, Imperial College London, London, UK
| |
Collapse
|
10
|
Gu H, Han SM, Park KK. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins (Basel) 2020; 12:E195. [PMID: 32204567 PMCID: PMC7150898 DOI: 10.3390/toxins12030195] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Bee venom is a natural toxin produced by honeybees and plays an important role in defending bee colonies. Bee venom has several kinds of peptides, including melittin, apamin, adolapamine, and mast cell degranulation peptides. Apamin accounts for about 2%-3% dry weight of bee venom and is a peptide neurotoxin that contains 18 amino acid residues that are tightly crosslinked by two disulfide bonds. It is well known for its pharmacological functions, which irreversibly block Ca2+-activated K+ (SK) channels. Apamin regulates gene expression in various signal transduction pathways involved in cell development. The aim of this study was to review the current understanding of apamin in the treatment of apoptosis, fibrosis, and central nervous system diseases, which are the pathological processes of various diseases. Apamin's potential therapeutic and pharmacological applications are also discussed.
Collapse
Affiliation(s)
- Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Sang Mi Han
- National Academy of Agricultural Science, Jeonjusi, Jeonbuk 54875, Korea;
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| |
Collapse
|
11
|
Wang J, Ding Y, Zhou W. Albumin self-modified liposomes for hepatic fibrosis therapy via SPARC-dependent pathways. Int J Pharm 2019; 574:118940. [PMID: 31830578 DOI: 10.1016/j.ijpharm.2019.118940] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/17/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
Abstract
Activated hepatic stellate cells (HSCs) have a central role in the progression of liver fibrosis and express a large amount of secreted protein, acidic and rich in cysteine (SPARC), a specific protein-binding protein. In this study, we reported the preparation and evaluation of naringenin (Nar) -loaded albumin self-modified liposomes (NaAlLs), which delivered Nar, a specific Smad3 inhibitor that blocked the TGF-β/Smad3 signaling pathway and played an anti-fibrosis role. After a series of characterization, it was found that NaAlLs had favorable dispersion (PDI < 0.15) with an average particle size of about 120 nm and high entrapment efficiency (>85%), albumin coated the surface of liposomes or embedded in phospholipid bilayer by interaction with the encapsulated naringenin and phospholipid molecules during the preparation of liposomes. The amount of albumin modified to the surface of NaAlLs by this method is not only more than that of the physical adsorption method, but also the binding force between albumin and liposomes is stronger. The albumin modified to the surface of NaAlLs greatly reduced the aggregation of liposomes and drug leakage and increased the stability of liposomes. More importantly, the uptake of NaAlLs by activated HSCs was 1.5 times higher than that of Nar-loaded liposomes (NaLs), suggesting that NaAlLs specifically increased targeting of activated HSCs via albumin and SPARC-dependent pathways. As expected, NaAlLs was more effective in improving liver fibrosis than the NaLs or the inclusion complex solution of Nar and Hydroxypropyl-β-cyclodextrin (NaICS). The results suggested that NaAlLs was a promising drug delivery system, which could target drug delivery to activated HSC for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jianzhu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Yu Ding
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Wei Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
12
|
Jiayuan S, Junyan Y, Xiangzhen W, Zuping L, Jian N, Baowei H, Lifang J. Gant61 ameliorates CCl 4-induced liver fibrosis by inhibition of Hedgehog signaling activity. Toxicol Appl Pharmacol 2019; 387:114853. [PMID: 31816328 DOI: 10.1016/j.taap.2019.114853] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023]
Abstract
As an intercellular signaling molecule, Hedgehog (Hh) plays a critical role in liver fibrosis/regeneration. Transcription effectors Gli1 and Gli2 are key components of the Hh signaling pathway. However, whether inhibition of Gli1/2 activity can affect liver fibrogenesis is largely unknown. In the present study, we investigated the effect of Gant61 (a Gli1/2 transcription factor inhibitor) on liver fibrosis and its possible mechanism. Wild-type and Shh-EGFP-Cre male mice were exposed to CCl4, and then treated with or without Gant61 for four weeks. The level of liver injury/fibrosis and expression levels of mRNA and protein related to the Hh ligand/pathway were assessed. In our study, CCl4 treatment induced liver injury/fibrosis and promoted activation of hepatic stellate cells (HSCs). In addition, CCl4 induced the expression of Shh ligands in and around the fibrotic lesion, accompanied by induction of mRNA and protein expression of Hh components (Smo, Gli1 and Gli2). However, administration of Gant61 decreased liver fibrosis by reduction in HSC number, down-regulation of mRNA and protein expression of Hh components (Smo, Gli1 and Gli2), and cell-cycle arrest of HSCs. Our data highlight the importance of the Shh pathway for the development of liver fibrosis, and also suggest Glis as potential therapeutic targets for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shen Jiayuan
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China; Department of pathology, Affliliated hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Yan Junyan
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | | | - Liu Zuping
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China; Department of pathology, Affliliated hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Ni Jian
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hu Baowei
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China.
| | - Jin Lifang
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
13
|
Xu T, Huang S, Huang Q, Ming Z, Wang M, Li R, Zhao Y. Kaempferol attenuates liver fibrosis by inhibiting activin receptor-like kinase 5. J Cell Mol Med 2019; 23:6403-6410. [PMID: 31273920 PMCID: PMC6714241 DOI: 10.1111/jcmm.14528] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/03/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a common public health problem. Patients with liver fibrosis are more likely to develop cirrhosis, or hepatocellular carcinoma (HCC) as a more serious consequence. Numerous therapeutic approaches have emerged, but the final clinical outcome remains unsatisfactory. Here, we discovered a flavonoid natural product kaempferol that could dramatically ameliorate liver fibrosis formation. Our data showed that intraperitoneal injection of kaempferol could significantly decrease the necroinflammatory scores and collagen deposition in the liver tissue. In addition, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), laminin (LN) and hyaluronic acid (HA) levels were significantly down-regulated in kaempferol treatment group compared with those in the control group. Our study also demonstrated that kaempferol markedly inhibited the synthesis of collagen and activation of hepatic stellate cells (HSCs) both in vivo and in vitro. Furthermore, the results of Western blotting revealed that kaempferol could down-regulate Smad2/3 phosphorylation dose-dependently. These bioactivities of kaempferol may result from its targeted binding to the ATP-binding pocket of activin receptor-like kinase 5 (ALK5), as suggested by the molecular docking study and LanthaScreen Eu kinase binding assay. Above all, our data indicate that kaempferol may prove to be a novel agent for the treatment of liver fibrosis or other fibroproliferative diseases.
Collapse
Affiliation(s)
- Taifu Xu
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China.,Department of General Surgery, The Fourth Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Shan Huang
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| | - Qianrong Huang
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| | - Zhiyong Ming
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| | - Min Wang
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| | - Rongrui Li
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| | - Yinnong Zhao
- Department of Hepatobiliary Surgery, Affiliated Guangxi Tumor Hospital, Guangxi Medical University, Guangxi, China
| |
Collapse
|
14
|
Bellassoued K, Ghrab F, Hamed H, Kallel R, van Pelt J, Lahyani A, Ayadi FM, El Feki A. Protective effect of essential oil of Cinnamomum verum bark on hepatic and renal toxicity induced by carbon tetrachloride in rats. Appl Physiol Nutr Metab 2019; 44:606-618. [PMID: 30994004 DOI: 10.1139/apnm-2018-0246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The inner bark of cinnamon (Cinnamomum verum) is widely used as a spice. Cinnamon plants are also a valuable source of essential oil used for medicinal purposes. The present study aimed to investigate the composition and in vitro antioxidant activity of essential oil of C. verum bark (CvEO) and its protective effects in vivo on CCl4-induced hepatic and renal toxicity in rats. Groups of animals were pretreated for 7 days with CvEO (70 or 100 mg/kg body weight) or received no treatment and on day 7 a single dose of CCl4 was used to induce oxidative stress. Twenty-four hours after CCl4 administration, the animals were euthanized. In the untreated group, CCl4 induced an increase in serum biochemical parameters and triggered oxidative stress in both liver and kidneys. CvEO (100 mg/kg) caused significant reductions in CCl4-elevated levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, γ-glutamyl transferase, lactate dehydrogenase, total cholesterol, triglycerides, low-density lipoprotein, urea, and creatinine and increased the level of high-density lipoprotein compared with the untreated group. Moreover, pretreatment with CvEO at doses of 70 and 100 mg/kg before administration of CCl4 produced significant reductions in thiobarbituric acid reactive substances and protein carbonyl levels in liver and kidney tissues compared with the untreated group. The formation of pathological hepatic and kidney lesions induced by the administration of CCl4 was strongly prevented by CvEO at a dose of 100 mg/kg. Overall, this study suggests that administration of CvEO has high potential to quench free radicals and alleviate CCl4-induced hepatorenal toxicity in rats.
Collapse
Affiliation(s)
- Khaled Bellassoued
- a Department of Life Sciences, Animal Ecophysiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Ferdaws Ghrab
- b Coastal and Urban Environments, National Engineering School of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia
| | - Houda Hamed
- a Department of Life Sciences, Animal Ecophysiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Rim Kallel
- c Anatomopathology Laboratory, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Tunisia
| | - Jos van Pelt
- d Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Amina Lahyani
- e Biochemistry Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Tunisia
| | - Fatma Makni Ayadi
- e Biochemistry Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Tunisia
| | - Abdelfattah El Feki
- a Department of Life Sciences, Animal Ecophysiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| |
Collapse
|
15
|
Zuo L, Zhu Y, Hu L, Liu Y, Wang Y, Hu Y, Wang H, Pan X, Li K, Du N, Huang Y. PI3-kinase/Akt pathway-regulated membrane transportation of acid-sensing ion channel 1a/Calcium ion influx/endoplasmic reticulum stress activation on PDGF-induced HSC Activation. J Cell Mol Med 2019; 23:3940-3950. [PMID: 30938088 PMCID: PMC6533492 DOI: 10.1111/jcmm.14275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/14/2019] [Accepted: 01/27/2019] [Indexed: 12/15/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) allows Na+ and Ca2+ flow into cells. It is expressed during inflammation, in tumour and ischaemic tissue, in the central nervous system and non-neuronal injury environments. Endoplasmic reticulum stress (ERS) is caused by the accumulation of misfolded proteins that interferes with intracellular calcium homoeostasis. Our recent reports showed ASIC1a and ERS are involved in liver fibrosis progression, particularly in hepatic stellate cell (HSC) activation. In this study, we investigated the roles of ASIC1a and ERS in activated HSC. We found that ASIC1a and ERS-related proteins were up-regulated in carbon tetrachloride (CCl4 )-induced fibrotic mouse liver tissues, and in patient liver tissues with hepatocellular carcinoma with severe liver fibrosis. The results show silencing ASIC1a reduced the expression of ERS-related biomarkers GRP78, Caspase12 and IREI-XBP1. And, ERS inhibition by 4-PBA down-regulated the high expression of ASIC1a induced by PDGF, suggesting an interactive relationship. In PDGF-induced HSCs, ASIC1a was activated and migrated to the cell membrane, leading to extracellular calcium influx and ERS, which was mediated by PI3K/AKT pathway. Our work shows PDGF-activated ASIC1a via the PI3K/AKT pathway, induced ERS and promoted liver fibrosis progression.
Collapse
Affiliation(s)
- Longquan Zuo
- Department of Pharmacy, Hospital of Armed Police of Anhui Province, Hefei, China
| | - Yueqin Zhu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Lili Hu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Yanyi Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Yinghong Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yamin Hu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Huan Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Xuesheng Pan
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Kuayue Li
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Na Du
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Zhang Q, Chen K, Wu T, Song H. Swertiamarin ameliorates carbon tetrachloride-induced hepatic apoptosis via blocking the PI3K/Akt pathway in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 23:21-28. [PMID: 30627006 PMCID: PMC6315090 DOI: 10.4196/kjpp.2019.23.1.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/04/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023]
Abstract
Swertiamarin (STM) is an iridoid compound that is present in the Gentianaceae swertia genus. Here we investigated antiapoptotic effects of STM on carbon tetrachloride (CCl4)-induced liver injury and its possible mechanisms. Adult male Sprague Dawley rats were randomly divided into a control group, an STM 200 mg/kg group, a CCl4 group, a CCl4+STM 100 mg/kg group, and a CCl4+STM 200 mg/kg group. Rats in experimental groups were subcutaneously injected with 40% CCl4 twice weekly for 8 weeks. STM (100 and 200 mg/kg per day) was orally given to experimental rats by gavage for 8 consecutive weeks. Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of Bcl-2, Bax, and cleaved caspase-3 proteins were evaluated by western blot analysis. The expression of TGF-β1, collagen I, collagen III, CTGF and fibronectin mRNA were estimated by qRT-PCR. The results showed that STM significantly reduced the number of TUNEL-positive cells compared with the CCl4 group. The levels of Bax and cleaved caspase-3 proteins, and TGF-β1, collagen I, collagen III, CTGF, and fibronectin mRNA were significantly reduced by STM compared with the CCl4 group. In addition, STM markedly abrogated the repression of Bcl-2 by CCl4. STM also attenuated the activation of the PI3K/Akt pathway in the liver. These results suggested that STM ameliorated CCl4-induced hepatocyte apoptosis in rats.
Collapse
Affiliation(s)
- Qianrui Zhang
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan 430022, China
| | - Kang Chen
- Department of Pharmacy, Huanggang Central Hospital, Huanggang 438000, China
| | - Tao Wu
- Department of Pharmacy, Wuhan NO.4 Hospital, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongping Song
- Department of Pharmacy, Wuhan NO.4 Hospital, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Serairi Beji R, Ben Mansour R, Bettaieb Rebey I, Aidi Wannes W, Jameleddine S, Hammami M, Megdiche W, Ksouri R. Does Curcuma longa root powder have an effect against CCl 4-induced hepatotoxicity in rats: a protective and curative approach. Food Sci Biotechnol 2018; 28:181-189. [PMID: 30815309 DOI: 10.1007/s10068-018-0449-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
This study was conducted to investigate potentially protective and curative effects of Curcuma longa root (turmeric) powder on CCl4-induced hepatotoxicity in rats. Turmeric was administered before (preventive effect) or after (curative effect) treatment with CCl4. Total phenolic and flavonoid levels were 26.35 mg GAE/g and 12.35 mg CE/g, respectively. Using HPLC analysis, turmeric powder was rich in curcumin (62.97%), demethoxycurcumin (20.86%) and bisdemethoxycurcumin (16.17%). Curcuma longa powder showed important in vitro antioxidant activities. Results showed that the activities of aspartate aminotransaminase and alanine aminotransaminase, and the levels of bilirubin and serum lipids were increased in CCl4-treated animals. However, total protein and albumin levels and antioxidant enzyme activities were decreased. Turmeric administration, before or after CCl4 treatment, significantly decreased the activities of marker enzymes and lipid levels in serum. Moreover, total protein and albumin contents were restored to nearly normal levels after turmeric administration accompanied with increase of antioxidant enzymes activities.
Collapse
Affiliation(s)
- Raja Serairi Beji
- Ecole Supérieure des Sciences et Techniques de la Santé de Tunis, B.P. 176, BabSouika, 1007 Tunis, Tunisia
- 2Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de BorjCédria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
| | - Rim Ben Mansour
- 2Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de BorjCédria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
| | - Iness Bettaieb Rebey
- 2Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de BorjCédria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
| | - Wissem Aidi Wannes
- 2Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de BorjCédria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
| | - Saloua Jameleddine
- 3Unité de recherche 03/UR/08-05, Fibrose pulmonaire: Prévention et traitement, Faculté de Médecine de Tunis, Tunis, Tunisia
| | - Majdi Hammami
- 2Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de BorjCédria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
| | - Wided Megdiche
- 2Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de BorjCédria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
| | - Riadh Ksouri
- 2Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de BorjCédria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
18
|
Antifibrotic Effect of Smad Decoy Oligodeoxynucleotide in a CCl₄-Induced Hepatic Fibrosis Animal Model. Molecules 2018; 23:molecules23081991. [PMID: 30103395 PMCID: PMC6222866 DOI: 10.3390/molecules23081991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/18/2023] Open
Abstract
Hepatic fibrosis is the wound-healing process of chronic hepatic disease that leads to the end-stage of hepatocellular carcinoma and demolition of hepatic structures. Epithelial–mesenchymal transition (EMT) has been identified to phenotypic conversion of the epithelium to mesenchymal phenotype that occurred during fibrosis. Smad decoy oligodeoxynucleotide (ODN) is a synthetic DNA fragment containing a complementary sequence of Smad transcription factor. Thus, this study evaluated the antifibrotic effects of Smad decoy ODN on carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice. As shown in histological results, CCl4 treatment triggered hepatic fibrosis and increased Smad expression. On the contrary, Smad decoy ODN administration suppressed fibrogenesis and EMT process. The expression of Smad signaling and EMT-associated protein was markedly decreased in Smad decoy ODN-treated mice compared with CCl4-injured mice. In conclusion, these data indicate the practicability of Smad decoy ODN administration for preventing hepatic fibrosis and EMT processes.
Collapse
|
19
|
Grouix B, Sarra-Bournet F, Leduc M, Simard JC, Hince K, Geerts L, Blais A, Gervais L, Laverdure A, Felton A, Richard J, Ouboudinar J, Gagnon W, Leblond FA, Laurin P, Gagnon L. PBI-4050 Reduces Stellate Cell Activation and Liver Fibrosis through Modulation of Intracellular ATP Levels and the Liver Kinase B1/AMP-Activated Protein Kinase/Mammalian Target of Rapamycin Pathway. J Pharmacol Exp Ther 2018; 367:71-81. [PMID: 30093459 DOI: 10.1124/jpet.118.250068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022] Open
Abstract
Hepatic fibrosis is a major cause of morbidity and mortality for which there is currently no effective therapy. We previously showed that 2-(3-pentylphenyl)acetic acid (PBI-4050) is a dual G protein-coupled receptor GPR40 agonist/GPR84 antagonist that exerts antifibrotic, anti-inflammatory, and antiproliferative action. We evaluated PBI-4050 for the treatment of liver fibrosis in vivo and elucidated its mechanism of action on human hepatic stellate cells (HSCs). The antifibrotic effect of PBI-4050 was evaluated in carbon tetrachloride (CCl4)- and bile duct ligation-induced liver fibrosis rodent models. Treatment with PBI-4050 suppressed CCl4-induced serum aspartate aminotransferase levels, inflammatory marker nitric oxide synthase, epithelial to mesenchymal transition transcription factor Snail, and multiple profibrotic factors. PBI-4050 also decreased GPR84 mRNA expression in CCl4-induced injury, while restoring peroxisome proliferator-activated receptor γ (PPARγ) to the control level. Collagen deposition and α-smooth muscle actin (α-SMA) protein levels were also attenuated by PBI-4050 treatment in the bile duct ligation rat model. Transforming growth factor-β-activated primary HSCs were used to examine the effect of PBI-4050 and its mechanism of action in vitro. PBI-4050 inhibited HSC proliferation by arresting cells in the G0/G1 cycle phase. Subsequent analysis demonstrated that PBI-4050 signals through a reduction of intracellular ATP levels, activation of liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK), and blockade of mammalian target of rapamycin (mTOR), resulting in reduced protein and mRNA levels of α-SMA and connective tissue growth factor and restored PPARγ mRNA expression. Our findings suggest that PBI-4050 may exert antifibrotic activity in the liver through a novel mechanism of action involving modulation of intracellular ATP levels and the LKB1/AMPK/mTOR pathway in stellate cells, and PBI-4050 may be a promising agent for treating liver fibrosis.
Collapse
Affiliation(s)
| | | | - Martin Leduc
- Prometic BioSciences Inc., Laval, Québec, Canada
| | | | - Kathy Hince
- Prometic BioSciences Inc., Laval, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | - Lyne Gagnon
- Prometic BioSciences Inc., Laval, Québec, Canada
| |
Collapse
|
20
|
Zhang Y, Miao H, Yan H, Sheng Y, Ji L. Hepatoprotective effect of Forsythiae Fructus water extract against carbon tetrachloride-induced liver fibrosis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2018; 218:27-34. [PMID: 29474900 DOI: 10.1016/j.jep.2018.02.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Forsythia suspensa (Thunb.) Vahl, named Forsythiae Fructus (Lian-Qiao), is a well-known traditional Chinese medicine (TCM) used for clearing away heat and toxic material, eliminating the mass and relieving swelling. AIM OF THE STUDY This study aims to observe the attenuation of the water extract of Forsythiae Fructus (FSE) on carbon tetrachloride (CCl4)-induced hepatic fibrosis in male C57BL/6 mice. MATERIALS AND METHODS Hepatic fibrosis was induced in male C57BL/6 mice by intraperitoneal injection with 2 ml/kg CCl4 (mixed 1: 3 in olive oil) twice a week for 4 weeks. At the same time, the mice were orally given with FSE (1, 2 g/kg) every day for 4 weeks. Serum biochemical parameters, gene and protein expression related to liver fibrosis were analyzed. The contents of forsythiaside A and forsythin in FSE were measured by high-performance liquid chromatography (HPLC). RESULTS Results of serum alanine/aspartate aminotransferase (ALT/AST) activity and liver histological evaluation both showed the protection of FSE against CCl4-induced liver injury. Further, the anti-fibrotic effects of FSE was evidenced by the results of Masson's trichrome and Sirius red staining, liver hydroxyproline content, and serum amounts of hyaluronic acid, laminin, collagen Ⅳ and type III procollagen (PCIII). FSE also reduced the expression of α-smooth muscle actin (α-SMA) in livers from CCl4-injured mice. Additionally, FSE decreased the increased hepatic expression of fibroblast-specific protein 1 (FSP1) and vimentin induced by CCl4 in mice. CONCLUSIONS FSE attenuates CCl4-induced liver fibrosis in mice by inhibiting hepatic stellate cells (HSCs) activation, reducing hepatic extracellular matrix (ECM) disposition and reversing epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Yi Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hui Miao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongyu Yan
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
21
|
Guo Q, Zhang QQ, Chen JQ, Zhang W, Qiu HC, Zhang ZJ, Liu BM, Xu FG. Liver metabolomics study reveals protective function of Phyllanthus urinaria against CCl 4-induced liver injury. Chin J Nat Med 2018; 15:525-533. [PMID: 28807226 DOI: 10.1016/s1875-5364(17)30078-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 12/15/2022]
Abstract
Phyllanthus Urinaria L. (PUL) is a traditional Chinese medicine used to treat hepatic and renal disorders. However, the mechanism of its hepatoprotective action is not fully understood. In the present study, blood biochemical indexes and liver histopathological changes were used to estimate the extent of hepatic injury. GC/MS and LC/MS-based untargeted metabolomics were used in combination to characterize the potential biomarkers associated with the protective activity of PUL against CCl4-induced liver injury in rats. PUL treatment could reverse the increase in ALT, AST and ALP induced by CCl4 and attenuate the pathological changes in rat liver. Significant changes in liver metabolic profiling were observed in PUL-treated group compared with liver injury model group. Seventeen biomarkers related to the hepatoprotective effects of PUL against CCl4-induced liver injury were screened out using nonparametric test and Pearson's correlation analysis (OPLS-DA). The results suggested that the potential hepatoprotective effects of PUL in attenuating CCl4-induced hepatotoxicity could be partially attributed to regulating L-carnitine, taurocholic acid, and amino acids metabolism, which may become promising targets for treatment of liver toxicity. In conclusion, this study provides new insights into the mechanism of the hepatoprotection of Phyllanthus Urinaria.
Collapse
Affiliation(s)
- Qing Guo
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China; State key laboratory of natural medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Qian-Qian Zhang
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China; State key laboratory of natural medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Qing Chen
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China; State key laboratory of natural medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Zhang
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science & Technology, Avenida Wai Long, Taipa, Macau, China
| | - Hong-Cong Qiu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning 530022, China
| | - Zun-Jian Zhang
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China; State key laboratory of natural medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Bu-Ming Liu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning 530022, China.
| | - Feng-Guo Xu
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China; State key laboratory of natural medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Kim JY, An HJ, Kim WH, Gwon MG, Gu H, Park YY, Park KK. Anti-fibrotic Effects of Synthetic Oligodeoxynucleotide for TGF-β1 and Smad in an Animal Model of Liver Cirrhosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:250-263. [PMID: 28918026 PMCID: PMC5511593 DOI: 10.1016/j.omtn.2017.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is characterized by changes in tissue architecture and extracellular matrix composition. Liver fibrosis affects not only hepatocytes but also the non-parenchymal cells such as hepatic stellate cells (HSCs), which are essential for maintaining an intact liver structure and function. Transforming growth factor β1 (TGF-β1) is a multifunctional cytokine that induces liver fibrosis through activation of Smad signaling pathways. To improve a new therapeutic approach, synthetic TGF-β1/Smad oligodeoxynucleotide (ODN) was used to suppress both TGF-β1 expression and Smad transcription factor using a combination of antisense ODN and decoy ODN. The aims of this study are to investigate the anti-fibrotic effects of TGF-β1/Smad ODN on simultaneous suppressions of both Smad transcription factor and TGF-β1 mRNA expression in the hepatic fibrosis model in vitro and in vivo. Synthetic TGF-β1/Smad ODN effectively inhibits Smad binding activity and TGF-β1 expression. TGF-β1/Smad ODN attenuated the epithelial mesenchymal transition (EMT) and activation of HSCs in TGF-β1-induced AML12 and HSC-T6 cells. TGF-β1/Smad ODN prevented the fibrogenesis and deposition of collagen in CCl4-treated mouse model. Synthetic TGF-β1/Smad ODN demonstrates anti-fibrotic effects that are mediated by the suppression of fibrogenic protein and inflammatory cytokines. Therefore, synthetic TGF-β1/Smad ODN has substantial therapeutic feasibility for the treatment of liver fibrotic diseases.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Woon-Hae Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Mi-Gyeong Gwon
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Yoon-Yub Park
- Department of Physiology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea.
| |
Collapse
|
23
|
Fan K, Wu K, Lin L, Ge P, Dai J, He X, Hu K, Zhang L. Metformin mitigates carbon tetrachloride-induced TGF-β1/Smad3 signaling and liver fibrosis in mice. Biomed Pharmacother 2017; 90:421-426. [DOI: 10.1016/j.biopha.2017.03.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 02/06/2023] Open
|
24
|
Wang R, Zhang H, Wang Y, Song F, Yuan Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling. Int Immunopharmacol 2017; 47:126-133. [PMID: 28391159 DOI: 10.1016/j.intimp.2017.03.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 01/17/2023]
Abstract
Quercetin, a natural flavonoid, has been used as a nutritional supplement for its anti-inflammatory and antioxidative properties. Quercetin was reported to exhibit a wide range of pharmacological properties, including its effect on anti-hepatic fibrosis. However, the anti-fibrotic mechanisms of quercetin have not been well-characterized to date. This study aimed to investigate the protective effects of quercetin on carbon tetrachloride (CCl4)-induced liver fibrosis in rats and to clarify its anti-hepatofibrotic mechanisms. We demonstrated that quercetin exhibited in-vivo hepatoprotective and anti-fibrogenic effects against CCl4-induced liver injury by improving the pathological manifestations, thereby reducing the activities of serum total bilirubin (TBIL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and decreasing the serum levels of hyaluronic acid (HA), laminin (LN), type IV collagen (IV-C) and procollagen III peptide (PIIIP). Furthermore, treatment with quercetin 5-15mg/kg inhibited the activation of NF-κB in a dose-dependent manner via inhibition of IкBα degradation and decreased the expression of p38 MAPK by inhibiting its phosphorylation. Additionally, in a dose-dependent manner, quercetin down-regulated Bax, up-regulated Bcl-2, and subsequently inhibited caspase-3 activation. Moreover, quercetin regulated inflammation factors and hepatic stellate cells (HSCs)-activation markers, such as TNF-α, IL-6, IL-1β, Cox-2, TGF-β, α-SMA, Colla1, Colla2, TIMP-1, MMP-1, and desmin. Taken together, quercetin prevented the progression of liver fibrosis in SD rats. The anti-fibrotic mechanisms of quercetin might be associated with its ability to regulate NF-кB/IкBα, p38 MAPK anti-inflammation signaling pathways to inhibit inflammation, and regulate Bcl-2/Bax anti-apoptosis signaling pathway to prevent liver cell apoptosis.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, 536 Changle Road, Shanghai 200080, China
| | - Yuanyuan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Fuxing Song
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China.
| |
Collapse
|
25
|
Cui X, Dang S, Wang Y, Chen Y, Zhou J, Shen C, Kuang Y, Fei J, Lu L, Wang Z. Retinol dehydrogenase 13 deficiency diminishes carbon tetrachloride-induced liver fibrosis in mice. Toxicol Lett 2016; 265:17-22. [PMID: 27865848 DOI: 10.1016/j.toxlet.2016.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 01/06/2023]
Abstract
Retinol dehydrogenase 13 (RDH13) is a mitochondrion-localized member of the short-chain dehydrogenases/reductases (SDRs) superfamily that participates in metabolism of some compounds. Rdh13 mRNA is most highly expressed in mouse liver. Rdh13 deficiency reduces the extent of liver injury and fibrosis, reduces hepatic stellate cell (HSC) activation, attenuates collagen I (II), tissue inhibitor of metalloproteinase 1 (TIMP-1) and transforming growth factor beta 1 (Tgf-β1) expression. The results indicate an important role of Rdh13 and suggest RDH13 as a possible new therapeutic target for CCl4-induced fibrosis.
Collapse
Affiliation(s)
- Xiaofang Cui
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China; Model Organism Division, E-Institutes of Shanghai Jiao Tong Universities School of Medicine (SJTUSM), Shanghai, 200025, China; Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Suying Dang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China; Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Yan Wang
- Department of Gastroenterology, Shanghai First People's Hospital Affiliated to SJTUSM, Shanghai, 200080, China
| | - Yan Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Jia Zhou
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China; Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai First People's Hospital Affiliated to SJTUSM, Shanghai, 200080, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China; Model Organism Division, E-Institutes of Shanghai Jiao Tong Universities School of Medicine (SJTUSM), Shanghai, 200025, China; Shanghai Research Center for Model Organisms, Shanghai, 201203, China.
| |
Collapse
|
26
|
Yu Y, Sun X, Gu J, Yu C, Wen Y, Gao Y, Xia Q, Kong X. Deficiency of DJ-1 Ameliorates Liver Fibrosis through Inhibition of Hepatic ROS Production and Inflammation. Int J Biol Sci 2016; 12:1225-1235. [PMID: 27766037 PMCID: PMC5069444 DOI: 10.7150/ijbs.15154] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a global health problem and previous studies have demonstrated that reactive oxygen species (ROS) play important roles in fibrogenesis. Parkinson disease (autosomal recessive, early onset) 7 (Park7) also called DJ-1 has an essential role in modulating cellular ROS levels. DJ-1 therefore may play functions in liver fibrogenesis and modulation of DJ-1 may be a promising therapeutic approach. Here, wild-type (WT) and DJ-1 knockout (DJ-1 KO) mice were administrated with carbon tetrachloride (CCl4) to induce liver fibrosis or acute liver injury. Results showed that DJ-1 depletion significantly blunted liver fibrosis, accompanied by marked reductions in liver injury and ROS production. In the acute CCl4 model, deficiency of DJ-1 showed hepatic protective functions as evidenced by decreased hepatic damage, reduced ROS levels, diminished hepatic inflammation and hepatocyte proliferation compared to WT mice. In vitro hepatic stellate cells (HSCs) activation assays indicated that DJ-1 has no direct effect on the activation of HSCs in the context of with or without TGFβ treatment. Thus our present study demonstrates that in CCl4-induced liver fibrosis, DJ-1 deficiency attenuates mice fibrosis by inhibiting ROS production and liver injury, and further indirectly affecting the activation of HSCs. These results are in line with previous studies that ROS promote HSC activation and fibrosis development, and suggest the therapeutic value of DJ-1 in treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yingxue Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehua Sun
- Department of liver diseases, Shuguang Hospital affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yankai Wen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yueqiu Gao
- Department of liver diseases, Shuguang Hospital affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Furuya S, Chappell GA, Iwata Y, Uehara T, Kato Y, Kono H, Bataller R, Rusyn I. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways. Toxicol Appl Pharmacol 2016; 310:129-139. [PMID: 27641628 DOI: 10.1016/j.taap.2016.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023]
Abstract
Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl4)-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl4 (0.2ml/kg 2× week/6weeks) followed by alcohol intragastrically (up to 25g/kg/day for 3weeks) and with continued CCl4. We observed that combined treatment with CCl4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways.
Collapse
Affiliation(s)
- Shinji Furuya
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Grace A Chappell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Yasuhiro Iwata
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Takeki Uehara
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka, Japan
| | - Yuki Kato
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka, Japan
| | - Hiroshi Kono
- First Department of Surgery, University of Yamanashi, Yamanashi, Japan
| | - Ramon Bataller
- Division of Gastroenterology & Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
28
|
Zhang Y, Tang J, Tian Z, van Velkinburgh JC, Song J, Wu Y, Ni B. Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases. Int Rev Immunol 2016. [PMID: 26222510 DOI: 10.3109/08830185.2015.1068304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.
Collapse
Affiliation(s)
- Yi Zhang
- a Institute of Immunology, PLA, Third Military Medical University , Chongqing , PR China
| | - Jun Tang
- b Department of Dermatology , 105th Hospital of PLA , Hefei , PR China
| | - Zhiqiang Tian
- a Institute of Immunology, PLA, Third Military Medical University , Chongqing , PR China
| | | | - Jianxun Song
- d Department of Microbiology and Immunology , The Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Yuzhang Wu
- a Institute of Immunology, PLA, Third Military Medical University , Chongqing , PR China
| | - Bing Ni
- a Institute of Immunology, PLA, Third Military Medical University , Chongqing , PR China
| |
Collapse
|
29
|
Clichici S, Olteanu D, Filip A, Nagy AL, Oros A, Mircea PA. Beneficial Effects of Silymarin After the Discontinuation of CCl4-Induced Liver Fibrosis. J Med Food 2016; 19:789-97. [PMID: 27441792 DOI: 10.1089/jmf.2015.0104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Silymarin (Si) is a herbal product with hepatoprotective potential, well-known for its antioxidant, anti-inflammatory, and immunomodulatory properties. We have recently demonstrated that the usual therapeutic doses of Si are capable of inhibiting the progression of incipient liver fibrosis. We aimed at further investigating the benefits of Si administration upon liver alterations after the hepatotoxin discontinuation, using CCl4 to induce liver injuries on rats. CCl4 administration induces first of all oxidative stress, but other mechanisms, such as inflammation and liver fibrosis are also triggered. Fifty Wistar rats were randomly divided into five groups (n = 10). The control group received sunflower oil twice a week for 8 weeks. Carboxymethyl cellulose group received sunflower oil twice a week, for 8 weeks and CMC daily, for the next 2 weeks. CCl4 group received CCl4 in sunflower oil, by gavage, twice a week, for 8 weeks. CCl4 + Si 50 group received CCl4 twice a week, for 8 weeks, and then 50 mg/body weight (b.w.) Silymarin for the next 2 weeks. CCl4 + Si 200 group was similar to the previous group, but with Si 200 mg/b.w. Ten weeks after the experiment had begun, we assessed inflammation (IL-6, MAPK, NF-κB, pNF-κB), fibrosis (hyaluronic acid), TGF-β1, MMP-9, markers of hepatic stellate cell activation (α-SMA expression), and proliferative capacity (proliferating cell nuclear antigen). Our data showed that Silymarin administered after the toxic liver injury is capable of reducing inflammation and liver fibrosis. The benefits were more important for the higher dose than for the usual therapeutic dose.
Collapse
Affiliation(s)
- Simona Clichici
- 1 Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Diana Olteanu
- 1 Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Adriana Filip
- 1 Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Andras-Laszlo Nagy
- 2 Department of Pathology, University of Agricultural Sciences and Veterinary Medicine , Cluj-Napoca, Romania
| | - Adrian Oros
- 3 Department of Veterinary Toxicology, University of Agricultural Sciences and Veterinary Medicine , Cluj-Napoca, Romania
| | - Petru A Mircea
- 4 Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| |
Collapse
|
30
|
Wahid A, Hamed AN, Eltahir HM, Abouzied MM. Hepatoprotective activity of ethanolic extract of Salix subserrata against CCl4-induced chronic hepatotoxicity in rats. Altern Ther Health Med 2016; 16:263. [PMID: 27473536 PMCID: PMC4966707 DOI: 10.1186/s12906-016-1238-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 07/23/2016] [Indexed: 02/07/2023]
Abstract
Background The liver performs diverse functions that are essential for life. In the absence of reliable liver protective drugs, a large number of natural medicinal preparations are used for the treatment of liver diseases. Therefore the present study aims to investigate the hepatoprotective effects of Salix subserrata Willd flower ethanolic extract (SFEE) against carbon tetrachloride (CCl4)-induced liver damage. Methods Rats were divided into 4 groups of 10 animals each. Group I served as the normal healthy control, groups II rats were intoxicated with CCl4 i.p. (0.8 ml/kg body weight CCl4/olive oil, twice weekly for 9 weeks), group III rats received CCl4 i.p. and SFEE orally (150 mg/kg daily) and group IV rats received CCl4 i.p. and Silymarin orally (100 mg/kg, daily). The hepatoprotective potential of SFEE in rats was evaluated by measuring the protein levels of two inflammatory biomarkers; tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa-B (NF-kB) in addition to other liver biomarkers. Histopathological changes in the liver were assessed using hematoxylin and eosin staining (HE). Results The administration of SFEE showed hepatic protection at an oral dose of 150 mg/kg. SFEE significantly reduced the elevated serum levels of intracellular liver enzymes as well as liver biomarkers in comparison to CCl4− intoxicated group. Notably, SFEE significantly reduced the expression levels of TNF-α and NFkB proteins compared to their levels in CCl4 intoxicated group. These findings were confirmed with the histopathological observations, where SFEE was capable of reversing the toxic effects of CCl4 on liver cells compared to that observed in CCl4-intoxicated animals. Conclusion Our results show that SFEE has potential hepatoprotective effects at 150 mg/kg. These effects can be regarded to the antioxidant and anti-inflammatory properties of the extract.
Collapse
|
31
|
Cinar R, Iyer MR, Liu Z, Cao Z, Jourdan T, Erdelyi K, Godlewski G, Szanda G, Liu J, Park JK, Mukhopadhyay B, Rosenberg AZ, Liow JS, Lorenz RG, Pacher P, Innis RB, Kunos G. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis. JCI Insight 2016; 1:87336. [PMID: 27525312 DOI: 10.1172/jci.insight.87336] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1-/- but not in nos2-/- mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.
Collapse
Affiliation(s)
| | | | - Ziyi Liu
- Laboratory of Physiologic Studies and
| | - Zongxian Cao
- Laboratory of Oxidative Stress and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA
| | | | - Katalin Erdelyi
- Laboratory of Oxidative Stress and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA
| | | | | | - Jie Liu
- Laboratory of Physiologic Studies and
| | | | | | - Avi Z Rosenberg
- Kidney Diseases Section, National Institute on Diabetes, Digestive, and Kidney Diseases, Washington, DC, USA.,Children's National Medical Center, Washington, DC, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute on Mental Health, NIH, Bethesda, Maryland, USA
| | - Robin G Lorenz
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pal Pacher
- Laboratory of Oxidative Stress and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute on Mental Health, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
32
|
Yang JH, Kim SC, Kim KM, Jang CH, Cho SS, Kim SJ, Ku SK, Cho IJ, Ki SH. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress. Eur J Pharmacol 2016; 783:92-102. [DOI: 10.1016/j.ejphar.2016.04.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/28/2022]
|
33
|
Up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver. Sci Rep 2016; 6:26540. [PMID: 27226149 PMCID: PMC4880910 DOI: 10.1038/srep26540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Although the healthy liver is known to have high regenerative potential, poor liver regeneration under pathological conditions remains a substantial problem. We investigated the key molecules that impair the regeneration of cholestatic liver. C57BL/6 mice were randomly subjected to partial hepatectomy and bile duct ligation (PH+BDL group, n = 16), partial hepatectomy only (PH group, n = 16), or sham operation (Sham group, n = 16). The liver sizes and histological findings were similar in the PH and sham groups 14 days after operation. However, compared with those in the sham group, the livers in mice in the PH+BDL group had a smaller size, a lower cell proliferative activity, and more fibrotic tissue 14 days after the operation, suggesting the insufficient regeneration of the cholestatic liver. Pathway-focused array analysis showed that many genes were up- or down-regulated over 1.5-fold in both PH+BDL and PH groups at 1, 3, 7, and 14 days after treatment. Interestingly, more genes that were functionally related to the extracellular matrix and inflammatory chemokines were found in the PH+BDL group than in the PH group at 7 and 14 days after treatment. Our data suggest that up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver.
Collapse
|
34
|
Intravoxel incoherent motion analysis of abdominal organs: computation of reference parameters in a large cohort of C57Bl/6 mice and correlation to microvessel density. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:751-63. [DOI: 10.1007/s10334-016-0540-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/30/2022]
|
35
|
Chow LN, Schreiner P, Ng BYY, Lo B, Hughes MR, Scott RW, Gusti V, Lecour S, Simonson E, Manisali I, Barta I, McNagny KM, Crawford J, Webb M, Underhill TM. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice. PLoS One 2016; 11:e0151765. [PMID: 26998906 PMCID: PMC4801399 DOI: 10.1371/journal.pone.0151765] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/03/2016] [Indexed: 12/22/2022] Open
Abstract
Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.
Collapse
Affiliation(s)
- Leola N. Chow
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
- * E-mail: (LNC); (TMU)
| | - Petra Schreiner
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Betina Y. Y. Ng
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bernard Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R. Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. Wilder Scott
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vionarica Gusti
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Samantha Lecour
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Eric Simonson
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Irina Manisali
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Ingrid Barta
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly M. McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Crawford
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Murray Webb
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - T. Michael Underhill
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (LNC); (TMU)
| |
Collapse
|
36
|
Palladini G, Ferrigno A, Richelmi P, Perlini S, Vairetti M. Role of matrix metalloproteinases in cholestasis and hepatic ischemia/reperfusion injury: A review. World J Gastroenterol 2015; 21:12114-12124. [PMID: 26576096 PMCID: PMC4641129 DOI: 10.3748/wjg.v21.i42.12114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/28/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases using zinc-dependent catalysis to break down extracellular matrix (ECM) components, allowing cell movement and tissue reorganization. Like many other proteases, MMPs are produced as zymogens, an inactive form, which are activated after their release from cells. Hepatic ischemia/reperfusion (I/R) is associated with MMP activation and release, with profound effects on tissue integrity: their inappropriate, prolonged or excessive expression has harmful consequences for the liver. Kupffer cells and hepatic stellate cells can secrete MMPs though sinusoidal endothelial cells are a further source of MMPs. After liver transplantation, biliary complications are mainly attributable to cholangiocytes, which, compared with hepatocytes, are particularly susceptible to injury and ultimately a major cause of increased graft dysfunction and patient morbidity. This paper focuses on liver I/R injury and cholestasis and reviews factors and mechanisms involved in MMP activation together with synthetic compounds used in their regulation. In this respect, recent data have demonstrated that the role of MMPs during I/R may go beyond the mere destruction of the ECM and may be much more complex than previously thought. We thus discuss the role of MMPs as an important factor in cholestasis associated with I/R injury.
Collapse
|
37
|
Abouzied MM, Eltahir HM, Taye A, Abdelrahman MS. Experimental evidence for the therapeutic potential of tempol in the treatment of acute liver injury. Mol Cell Biochem 2015; 411:107-15. [DOI: 10.1007/s11010-015-2572-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/26/2015] [Indexed: 01/04/2023]
|
38
|
Liang B, Guo XL, Jin J, Ma YC, Feng ZQ. Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury. World J Gastroenterol 2015; 21:5271-5280. [PMID: 25954100 PMCID: PMC4419067 DOI: 10.3748/wjg.v21.i17.5271] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/27/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate anti-apoptotic effects of glycyrrhizic acid (GA) against fibrosis in carbon tetrachloride (CCl4)-induced liver injury and its contributing factors.
METHODS: Liver fibrosis was induced by administration of CCl4 for 8 wk. Pathological changes in the liver of rats were examined by hematoxylin-eosin staining. Collagen fibers were detected by Sirius red staining. Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of cleaved caspase-3, Bax, α-SMA, connective tissue growth factor (CTGF), matrix metalloproteinase (MMP) 2 and MMP9 proteins were evaluated by western blot analysis, and α-SMA mRNA, collagen type I and III mRNA were estimated by real-time PCR.
RESULTS: Treatment with GA significantly improved the pathological changes in the liver and markedly decreased the positive area of Sirius red compared with rats in the CCl4-treated group. TUNEL assay showed that GA significantly reduced the number of TUNEL-positive cells compared with the CCl4-treated group. The expression levels of cleaved caspase-3, Bax, α-SMA, CTGF, MMP2 and MMP9 proteins, and α-SMA mRNA, collagen type I and III mRNA were also significantly reduced by GA compared with the CCl4-treated group (P < 0.05).
CONCLUSION: GA treatment can ameliorate CCl4-induced liver fibrosis by inhibiting hepatocyte apoptosis and hepatic stellate cell activation.
Collapse
|
39
|
Tag CG, Sauer-Lehnen S, Weiskirchen S, Borkham-Kamphorst E, Tolba RH, Tacke F, Weiskirchen R. Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. J Vis Exp 2015. [PMID: 25741630 PMCID: PMC4354634 DOI: 10.3791/52438] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most vertebrates, the liver produces bile that is necessary to emulsify absorbed fats and enable the digestion of lipids in the small intestine as well as to excrete bilirubin and other metabolic products. In the liver, the experimental obstruction of the extrahepatic biliary system initiates a complex cascade of pathological events that leads to cholestasis and inflammation resulting in a strong fibrotic reaction originating from the periportal fields. Therefore, surgical ligation of the common bile duct has become the most commonly used model to induce obstructive cholestatic injury in rodents and to study the molecular and cellular events that underlie these pathophysiological mechanisms induced by inappropriate bile flow. In recent years, different surgical techniques have been described that either allow reconnection or reanastomosis after bile duct ligation (BDL), e.g., partial BDL, or other microsurgical methods for specific research questions. However, the most frequently used model is the complete obstruction of the common bile duct that induces a strong fibrotic response after 21 to 28 days. The mortality rate can be high due to infectious complications or technical inaccuracies. Here we provide a detailed surgical procedure for the BDL model in mice that induce a highly reproducible fibrotic response in accordance to the 3R rule for animal welfare postulated by Russel and Burch in 1959.
Collapse
Affiliation(s)
- Carmen G Tag
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University
| | - Sibille Sauer-Lehnen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University
| | - Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University
| | - René H Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University
| | - Frank Tacke
- Department of Medicine III, RWTH Aachen University
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University;
| |
Collapse
|
40
|
Regulator of G-protein signaling-5 is a marker of hepatic stellate cells and expression mediates response to liver injury. PLoS One 2014; 9:e108505. [PMID: 25290689 PMCID: PMC4188519 DOI: 10.1371/journal.pone.0108505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is mediated by hepatic stellate cells (HSCs), which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR)-mediated signaling, via endothelin-1 (ET-1) and angiotensin II (AngII), increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5), an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs). Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4)-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.
Collapse
|
41
|
GIV/Girdin is a central hub for profibrogenic signalling networks during liver fibrosis. Nat Commun 2014; 5:4451. [PMID: 25043713 PMCID: PMC4107319 DOI: 10.1038/ncomms5451] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023] Open
Abstract
Progressive liver fibrosis is characterized by the deposition of collagen by activated hepatic stellate cells (HSCs). Activation of HSCs is a multiple receptor-driven process in which profibrotic signals are enhanced, and anti-fibrotic pathways are suppressed. Here we report the discovery of a novel signaling platform comprised of G protein subunit, Gαi and GIV, its guanine exchange factor (GEF), which serves as a central hub within the fibrogenic signalling network initiated by diverse classes of receptors. GIV is expressed in the liver after fibrogenic injury and is required for HSC activation. Once expressed, GIV enhances the profibrotic (PI3K-Akt-FoxO1 and TGFβ-SMAD) and inhibits the anti-fibrotic (cAMP-PKA-pCREB) pathways to skew the signalling network in favor of fibrosis, all via activation of Gαi. We also provide evidence that GIV may serve as a biomarker for progression of fibrosis after liver injury and a therapeutic target for arresting and/or reversing HSC activation during liver fibrosis.
Collapse
|
42
|
Delgado I, Carrasco M, Cano E, Carmona R, García-Carbonero R, Marín-Gómez LM, Soria B, Martín F, Cano DA, Muñoz-Chápuli R, Rojas A. GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. Hepatology 2014; 59:2358-70. [PMID: 24415412 DOI: 10.1002/hep.27005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/08/2014] [Indexed: 01/15/2023]
Abstract
UNLABELLED The zinc finger transcription factor GATA4 controls specification and differentiation of multiple cell types during embryonic development. In mouse embryonic liver, Gata4 is expressed in the endodermal hepatic bud and in the adjacent mesenchyme of the septum transversum. Previous studies have shown that Gata4 inactivation impairs liver formation. However, whether these defects are caused by loss of Gata4 in the hepatic endoderm or in the septum transversum mesenchyme remains to be determined. In this study, we have investigated the role of mesenchymal GATA4 activity in liver formation. We have conditionally inactivated Gata4 in the septum transversum mesenchyme and its derivatives by using Cre/loxP technology. We have generated a mouse transgenic Cre line, in which expression of Cre recombinase is controlled by a previously identified distal Gata4 enhancer. Conditional inactivation of Gata4 in hepatic mesenchymal cells led to embryonic lethality around mouse embryonic stage 13.5, likely as a consequence of fetal anemia. Gata4 knockout fetal livers exhibited reduced size, advanced fibrosis, accumulation of extracellular matrix components and hepatic stellate cell (HSC) activation. Haploinsufficiency of Gata4 accelerated CCl4 -induced liver fibrosis in adult mice. Moreover, Gata4 expression was dramatically reduced in advanced hepatic fibrosis and cirrhosis in humans. CONCLUSIONS Our data demonstrate that mesenchymal GATA4 activity regulates HSC activation and inhibits the liver fibrogenic process.
Collapse
Affiliation(s)
- Irene Delgado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aher JS, Khan S, Jain S, Tikoo K, Jena G. Valproate ameliorates thioacetamide-induced fibrosis by hepatic stellate cell inactivation. Hum Exp Toxicol 2014; 34:44-55. [PMID: 24812151 DOI: 10.1177/0960327114531992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Valproic acid (VPA) has been reported as inhibitor of histone deacetylases (HDACs). Several reports indicated that HDACs play a crucial role in the pathogenesis of fibrosis and hepatic stellate cell (HSC) activation. The present study was aimed to evaluate the anti-fibrotic effect of VPA against thioacetamide (TAA)-induced hepatic fibrosis and activation of the HSC in rat. VPA and TAA were administrated intraperitoneally at the dose of 400 and 200 mg/kg each at 2 days interval, respectively for a period of 6 weeks. Administration of TAA significantly increased the absolute and relative liver weight, aspartate aminotransferase and alanine aminotransferase levels, which were significantly decreased by VPA treatment as compared to TAA control. VPA treatment prevents the TAA-induced activation of HSC and decreases collagen deposition and infiltration of inflammatory cells as revealed by Sirius red and H&E staining. Interestingly, VPA co-treatment led to significantly increase the DNA damage and apoptosis in the activated HSC as compared to TAA control. Further, TAA decreased the expression of matrix metalloproteinase-2 (MMP-2), while VPA co-treatment significantly increased the expression of MMP-2 as compared to respective control. The present study clearly demonstrated that VPA treatment significantly alleviates TAA-induced activation of HSC and subsequent hepatic fibrosis.
Collapse
Affiliation(s)
- J S Aher
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India These two authors contributed equally
| | - S Khan
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India These two authors contributed equally
| | - S Jain
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - K Tikoo
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - G Jena
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
44
|
Kong XY, Nesset CK, Damme M, Løberg EM, Lübke T, Mæhlen J, Andersson KB, Lorenzo PI, Roos N, Thoresen GH, Rustan AC, Kase ET, Eskild W. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells. Dis Model Mech 2014; 7:351-62. [PMID: 24487409 PMCID: PMC3944495 DOI: 10.1242/dmm.014050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.
Collapse
Affiliation(s)
- Xiang Y Kong
- Department of Bioscience, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tao C, Sifuentes A, Holland WL. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic β cells and adipocytes. Best Pract Res Clin Endocrinol Metab 2014; 28:43-58. [PMID: 24417945 PMCID: PMC4455885 DOI: 10.1016/j.beem.2013.11.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adiponectin has received considerable attention for its potential anti-diabetic actions. The adipokine exerts control of glucose and lipid homeostasis via critical effects within the liver, adipose, and pancreas. By stimulating adipogenesis, opposing inflammation, and influencing rates of lipid oxidation and lipolysis, adiponectin critically governs lipid spillover into non-adipose tissues. Ceramide, a cytotoxic and insulin desensitizing lipid metabolite formed when peripheral tissues are exposed to excessive lipid deposition, is potently opposed by adiponectin. Via adiponectin receptors, AdipoR1 and AdipoR2, adiponectin stimulates the deacylation of ceramide- yielding sphingosine for conversion to sphingosine 1-phosphate (S1P) by sphingosine kinase. The resulting conversion from ceramide to S1P promotes survival of functional beta cell mass, allowing for insulin production to meet insulin demands. Alleviation of ceramide burden on the liver allows for improvements in hepatic insulin action. Here, we summarize how adiponectin-induced changes in these tissues lead to improvements in glucose metabolism, highlighting the sphingolipid signaling mechanisms linking adiponectin to each action. ONE SENTENCE SUMMARY: We review the anti-diabetic actions of adiponectin.
Collapse
Affiliation(s)
- Caroline Tao
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Angelica Sifuentes
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
46
|
Leeming DJ, Karsdal MA, Byrjalsen I, Bendtsen F, Trebicka J, Nielsen MJ, Christiansen C, Møller S, Krag A. Novel serological neo-epitope markers of extracellular matrix proteins for the detection of portal hypertension. Aliment Pharmacol Ther 2013; 38:1086-96. [PMID: 24099470 PMCID: PMC3935409 DOI: 10.1111/apt.12484] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/08/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The hepatic venous pressure gradient (HVPG) is an invasive, but important diagnostic and prognostic marker in cirrhosis with portal hypertension (PHT). During cirrhosis, remodelling of fibrotic tissue by matrix metalloproteinases (MMPs) is a permanent process generating small fragments of degraded extracellular matrix (ECM) proteins known as neoepitopes, which are then released into the circulation. AIM To investigate their potential as plasma markers for detection of PHT. METHODS Ninety-four patients with alcoholic cirrhosis and 20 liver-healthy controls were included. Clinical and laboratory data of the patients were collected. All patients received HVPG measurement with blood sampling. In these samples, the following degradation or formation markers were measured: C1M (type I-collagen), C3M and PRO-C3 (type III collagen), C4M and P4NP 7S (type IV collagen), C5M (type V collagen), C6M (type VI collagen), BGM (biglycan), ELM (elastin), CRPM (CRP). RESULTS All ECM markers except for CRPM correlated significantly with HVPG. Interestingly, C4M, C5M and ELM levels were significantly higher in patients with HVPG >10 mmHg. Multiple regression analysis identified PRO-C3, C6M and ELM as significant determinants, while the models A and B including PRO-C3, ELM, C6M and model for end-stage liver disease (MELD) provided better description of PHT (r = 0.75, P < 0.0001). The models provided odds ratios of >100 for having clinical significant PHT. CONCLUSIONS These novel non-invasive extracellular matrix markers reflect the degree of liver dysfunction. The different degrees of portal hypertension correlated with these circulating neoepitopes. Using a single blood sample, these neoepitopes in combination with MELD detect the level of portal hypertension.
Collapse
Affiliation(s)
- D J Leeming
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - M A Karsdal
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - I Byrjalsen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - F Bendtsen
- Department of Gastroenterology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark
| | - J Trebicka
- Department of Internal Medicine I, University of BonnBonn, Germany
| | - M J Nielsen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - C Christiansen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - S Møller
- Department of Clinical Physiology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark
| | - A Krag
- Department of Gastroenterology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark,Department of Gastroenterology Odense University Hospital, University of Southern DenmarkOdense, Denmark
| |
Collapse
|
47
|
Wright JH, Johnson MM, Shimizu-Albergine M, Bauer RL, Hayes BJ, Surapisitchat J, Hudkins KL, Riehle KJ, Johnson SC, Yeh MM, Bammler TK, Beyer RP, Gilbertson DG, Alpers CE, Fausto N, Campbell JS. Paracrine activation of hepatic stellate cells in platelet-derived growth factor C transgenic mice: evidence for stromal induction of hepatocellular carcinoma. Int J Cancer 2013; 134:778-88. [PMID: 23929039 DOI: 10.1002/ijc.28421] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Cirrhosis is the primary risk factor for the development of hepatocellular carcinoma (HCC), yet the mechanisms by which cirrhosis predisposes to carcinogenesis are poorly understood. Using a mouse model that recapitulates many aspects of the pathophysiology of human liver disease, we explored the mechanisms by which changes in the liver microenvironment induce dysplasia and HCC. Hepatic expression of platelet-derived growth factor C (PDGF-C) induces progressive fibrosis, chronic inflammation, neoangiogenesis and sinusoidal congestion, as well as global changes in gene expression. Using reporter mice, immunofluorescence, immunohistochemistry and liver cell isolation, we demonstrate that receptors for PDGF-CC are localized on hepatic stellate cells (HSCs), which proliferate, and transform into myofibroblast-like cells that deposit extracellular matrix and lead to production of growth factors and cytokines. We demonstrate induction of cytokine genes at 2 months, and stromal cell-derived hepatocyte growth factors that coincide with the onset of dysplasia at 4 months. Our results support a paracrine signaling model wherein hepatocyte-derived PDGF-C stimulates widespread HSC activation throughout the liver leading to chronic inflammation, liver injury and architectural changes. These complex changes to the liver microenvironment precede the development of HCC. Further, increased PDGF-CC levels were observed in livers of patients with nonalcoholic fatty steatohepatitis and correlate with the stage of disease, suggesting a role for this growth factor in chronic liver disease in humans. PDGF-C transgenic mice provide a unique model for the in vivo study of tumor-stromal interactions in the liver.
Collapse
|
48
|
Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 2013; 39:357-71. [PMID: 23954132 DOI: 10.1016/j.immuni.2013.07.018] [Citation(s) in RCA: 396] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/17/2013] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is a consequence of chronic liver diseases and thus a major cause of mortality and morbidity. Clinical evidence and animal studies suggest that local tissue homeostasis is disturbed due to immunological responses to chronic hepatocellular stress. Poorly defined stress-associated inflammatory networks are thought to mediate gradual accumulation of extracellular-matrix components, ultimately leading to fibrosis and liver failure. Here we have reported that hepatic expression of interleukin-33 (IL-33) was both required and sufficient for severe hepatic fibrosis in vivo. We have demonstrated that IL-33's profibrotic effects related to activation and expansion of liver resident innate lymphoid cells (ILC2). We identified ILC2-derived IL-13, acting through type-II IL-4 receptor-dependent signaling via the transcription factor STAT6 and hepatic stellate-cell activation, as a critical downstream cytokine of IL-33-dependent pathologic tissue remodeling and fibrosis. Our data reveal key immunological networks implicated in hepatic fibrosis and support the concept of modulation of IL-33 bioactivity for therapeutic purposes.
Collapse
|
49
|
Guo XL, Liang B, Wang XW, Fan FG, Jin J, Lan R, Yang JH, Wang XC, Jin L, Cao Q. Glycyrrhizic acid attenuates CCl4-induced hepatocyte apoptosis in rats via a p53-mediated pathway. World J Gastroenterol 2013; 19:3781-3791. [PMID: 23840116 PMCID: PMC3699029 DOI: 10.3748/wjg.v19.i24.3781] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/15/2013] [Accepted: 05/19/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of glycyrrhizic acid (GA) on carbon tetrachloride (CCl4)-induced hepatocyte apoptosis in rats via a p53-dependent mitochondrial pathway.
METHODS: Forty-five male Sprague-Dawley rats were randomly and equally divided into three groups, the control group, the CCl4 group, and the GA treatment group. To induce liver fibrosis in this model, rats were given a subcutaneous injection of a 40% solution of CCl4 in olive oil at a dose of 0.3 mL/100 g body weight biweekly for 8 wk, while controls received the same isovolumetric dose of olive oil by hypodermic injection, with an initial double-dose injection. In the GA group, rats were also treated with a 40% solution of CCl4 plus 0.2% GA solution in double distilled water by the intraperitoneal injection of 3 mL per rat three times a week from the first week following previously published methods, with modifications. Controls were given the same isovolumetric dose of double distilled water. Liver function parameters, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Pathologic changes in the liver were detected by hematoxylin and eosin staining. Collagen fibers were evaluated by Sirius red staining. Hepatocyte apoptosis was investigated using the terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) assay and the cleaved caspase-3 immunohistochemistry assay. The expression levels of p53 and apoptosis-related proteins were evaluated by immunohistochemistry or Western blotting analysis.
RESULTS: After 8 wk of treatment, GA significantly reduced serum activity of ALT (from 526.7 ± 57.2 to 342 ± 44.8, P < 0.05) and AST (from 640 ± 33.7 to 462.8 ± 30.6, P < 0.05), attenuated the changes in liver histopathology and reduced the staging score (from 3.53 ± 0.74 to 3.00 ± 0.76, P < 0.05) in CCl4-treated rats. GA markedly reduced the positive area of Sirius red and the ratio of the hepatic fibrotic region (from 7.87% ± 0.66% to 3.68% ± 0.32%, P < 0.05) compared with the CCl4 group. GA also decreased the expression level of cleaved caspase-3 compared to the CCl4 group. TUNEL assay indicated that GA significantly diminished the number of TUNEL-positive cells compared with the CCl4 group (P < 0.05). GA treatment clearly decreased the level of p53 (P < 0.05) detected by immunohistochemistry and Western blotting analysis. Compared with the CCl4 group, we also found that GA reduced the Bax/Bcl-2 ratio (P < 0.05), the expression of cleaved caspase-3 (P < 0.05), cleaved caspase-9 (P < 0.05), and inhibited cytochrome C and second mitochondria-derived activator of caspases (Smac) release from mitochondria to cytoplasm, i.e., GA reduced the expression level of Smac, which inhibited c-IAP1 activity (P < 0.05), ultimately inhibiting the activity of caspase-3, according to Western blotting analysis. As a result, GA suppressed activation of the caspase cascades and prevented hepatocyte apoptosis.
CONCLUSION: GA can inhibit CCl4-induced hepatocyte apoptosis via a p53-dependent mitochondrial pathway to retard the progress of liver fibrosis in rats.
Collapse
|
50
|
Genovese F, Barascuk N, Larsen L, Larsen MR, Nawrocki A, Li Y, Zheng Q, Wang J, Veidal SS, Leeming DJ, Karsdal MA. Biglycan fragmentation in pathologies associated with extracellular matrix remodeling by matrix metalloproteinases. FIBROGENESIS & TISSUE REPAIR 2013; 6:9. [PMID: 23635022 PMCID: PMC3651402 DOI: 10.1186/1755-1536-6-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/19/2013] [Indexed: 01/23/2023]
Abstract
Background The proteoglycan biglycan (BGN) is involved in collagen fibril assembly and its fragmentation is likely to be associated with collagen turnover during the pathogenesis of diseases which involve dysregulated extracellular matrix remodeling (ECMR), such as rheumatoid arthritis (RA) and liver fibrosis. The scope of the present study was to develop a novel enzyme-linked immunosorbent assay (ELISA) for the measurement of a MMP-9 and MMP-12-generated biglycan neo-epitope and to test its biological validity in a rat model of RA and in two rat models of liver fibrosis, chosen as models of ECMR. Results Biglycan was cleaved in vitro by MMP-9 and -12 and the 344′YWEVQPATFR′353 peptide (BGM) was chosen as a potential neo-epitope. A technically sound competitive ELISA for the measurement of BGM was generated and the assay was validated in a bovine cartilage explant culture (BEX), in a collagen induced model of rheumatoid arthritis (CIA) and in two different rat models of liver fibrosis: the carbon tetrachloride (CCL4)-induced fibrosis model, and the bile duct ligation (BDL) model. Significant elevation in serum BGM was found in CIA rats compared to controls, in rats treated with CCL4 for 16 weeks and 20 weeks compared to the control groups as well as in all groups of rats subject to BDL compared with sham operated groups. Furthermore, there was a significant correlation of serum BGM levels with the extent of liver fibrosis determined by the Sirius red staining of liver sections in the CCL4 model. Conclusion We demonstrated that the specific tissue remodeling product of MMPs-degraded biglycan, namely the neo-epitope BGM, is correlated with pathological ECMR. This assay represents both a novel marker of ECM turnover and a potential new tool to elucidate biglycan role during the pathological processes associated with ECMR.
Collapse
Affiliation(s)
- Federica Genovese
- Nordic Bioscience A/S, Herlev Hovedgade 207, Herlev, DK-2730, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|