1
|
Vaseghi-Shanjani M, Samra S, Yousefi P, Biggs CM, Turvey SE. Primary atopic disorders: inborn errors of immunity causing severe allergic disease. Curr Opin Immunol 2025; 94:102538. [PMID: 40020536 DOI: 10.1016/j.coi.2025.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Allergic diseases, including asthma, allergic rhinitis, atopic dermatitis, and food allergies, are driven by dysregulated immune responses, often involving IgE-mediated mast cell and basophil activation, Th2 inflammation, and epithelial dysfunction. While environmental factors are well-known contributors, the genetic components underpinning these conditions are increasingly understood. Traditionally viewed as polygenic multifactorial disorders, allergic diseases can also be caused by single-gene defects affecting the immune system and skin epithelial barrier, leading to profoundly dysregulated allergic responses. These monogenic allergic disorders are collectively referred to as primary atopic disorders or PADs. To date, over 48 single-gene defects have been established to cause PADs. This review highlights (i) the significance of PADs, (ii) the biological pathways involved in the pathogenesis of PADs, (iii) clinical strategies to differentiate PADs from their much more common polygenic counterparts, and (iv) diagnostic strategies for PADs.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Simran Samra
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Pariya Yousefi
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Bi L, Wang J, Yang J, Zhuang Z, Chen K, Xu Z, Zuo X, Xu J, Sheng Y, Cui Y. Multi-omics analyses, cell experiments, and network pharmacology tools identified key proteins and candidate drugs for alopecia areata treatment. Clin Proteomics 2025; 22:22. [PMID: 40442619 PMCID: PMC12121173 DOI: 10.1186/s12014-025-09544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
Purpose Alopecia Areata (AA) is an inflammatory non-cicatricial alopecia with a high prevalence. Some patients with AA show an inferior response to treatment. To find key proteins in AA, Genome-wide association study data from three cohorts were analyzed using Mendelian randomization (MR) method. Patients and methods The gene expression of the identified proteins was further evaluated and compared between AA and healthy samples from two single-cell RNA datasets (GSE212447 and GSE233906 ). A cell model was also built to validate the findings. Autodock Vina and GROMACS, were also employed to search for ingredients from traditional Chinese medicine(TCM) that interacted with the identified protein. Results Three proteins, DEFB1, HGFAC, and CYB5D2, were identified as potential drug targets. The altered gene expression in lesional samples of AA patients was consistent with the promoting or protective effects of identified proteins on the disease. The overexpression of risk factor DEFB1 upregulated the RNA and protein expression of MICA in HaCaT cells. The TCM ingredient cimigenol was found to interact with DEFB1 via molecular docking, and molecular dynamics simulations confirmed the stability of this interaction. Conclusion DEFB1 is a potential drug target with promising prospects for the development of novel drugs for treating AA. The TCM ingredient, cimigenol, is a promising drug for AA treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-025-09544-6.
Collapse
Affiliation(s)
- Lingbo Bi
- Department of Dermatology, Friendship Hospital, Beijing, 100029, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Department of Dermatology, Friendship Hospital, Beijing, 100029, China
| | - Jungang Yang
- Department of Dermatology, Friendship Hospital, Beijing, 100029, China
| | - Zhou Zhuang
- Department of Dermatology, Friendship Hospital, Beijing, 100029, China
| | - Kejun Chen
- Department of Dermatology, Friendship Hospital, Beijing, 100029, China
| | - Zining Xu
- Department of Dermatology, Friendship Hospital, Beijing, 100029, China
| | - Xianbo Zuo
- Department of Dermatology, Friendship Hospital, Beijing, 100029, China
| | - Jingkai Xu
- Department of Dermatology, Friendship Hospital, Beijing, 100029, China
| | - Yujun Sheng
- Department of Dermatology, Friendship Hospital, Beijing, 100029, China.
| | - Yong Cui
- Department of Dermatology, Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Sun S, Wang W. Mechanosensitive adhesion G protein-coupled receptors: Insights from health and disease. Genes Dis 2025; 12:101267. [PMID: 39935605 PMCID: PMC11810715 DOI: 10.1016/j.gendis.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/15/2024] [Accepted: 02/28/2024] [Indexed: 02/13/2025] Open
Abstract
Ontogeny cannot be separated from mechanical forces. Cells are continuously subjected to different types of mechanical stimuli that convert into intracellular signals through mechanotransduction. As a member of the G protein-coupled receptor superfamily, adhesion G protein-coupled receptors (aGPCRs) have attracted extensive attention due to their unique extracellular domain and adhesion properties. In the past few decades, increasing evidence has indicated that sensing mechanical stimuli may be one of the main physiological activities of aGPCRs. Here, we review the general structure and activation mechanisms of these receptors and highlight the lesion manifestations relevant to each mechanosensitive aGPCR.
Collapse
Affiliation(s)
- Shiying Sun
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Wen Wang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
4
|
Gatica-Ortega ME, Sánchez-Albisua B, Arranz-Sánchez DM, Pérez-Tato B, Sánchez-Gilo A, Córdoba-Guijarro S, Ortiz-Frutos FJ, Hernández-Cano N, Gómez de la Fuente E, Elosua-González M, Bergón-Sendín M, García-Martín C, Sanz-Sánchez T, Mazuela-Díez O, Torres-Aranda R, Vergara-de-la-Campa L, Marinero-Escobedo S, Alegre-Bailo A, Garrido-Ríos A, Tous-Romero F, Busto-Leis JM, Sarró-Fuente C, Rodríguez-Cuadrado FJ, García-Piqueras P, Beneyto P, Pastor-Nieto MA. [Translated article] Erythema, Localized Edema and Heat vs Forearm Perimeter Increase. Time to Revise the Consensus Recommendations on the Vortex Provocation Test in Vibratory Urticaria-Angioedema? ACTAS DERMO-SIFILIOGRAFICAS 2025; 116:T357-T364. [PMID: 39938775 DOI: 10.1016/j.ad.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/08/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Diagnosis of vibratory urticaria/angioedema is established after performing the vortex provocation test. There is current consensus on measuring the forearm perimeter after running such test to define a positive response to it. MATERIAL AND METHOD We evaluated the frequency of prior symptoms following vibratory stimuli in volunteers using a questionnaire, response to the vortex provocation test in the same volunteers (increase in forearm perimeter, erythema, localized edema, heat, and pruritus), inter-rater reliability, and correlation between the scores obtained in the questionnaire and response to the test. RESULTS A total of 40 volunteers participated in this survey, 17 of whom were excluded due to dermographism. A total of 59% out of 123 without dermographism responded positively to ≥1 items of the questionnaire. Localized erythema, heat or localized edema were reported in 58.5%, 38.2%, and 32.5%, respectively. A total of 73.6% of volunteers presented with itch. The mean intensity of itch was 3.44, 95% CI, 2.94-3.94. Inter-rater agreement was low regarding the increase in forearm circumference at three levels (intraclass correlation coefficient, 0.477, 95% CI: 0.253-0.634; 0.496, 95% CI: 0.280-0.647; and 0.370, 95% CI: 0.100-0.559, respectively) and optimal regarding erythema, heat and localized edema (kappa index, 0.868; 0.756; and 0.757, respectively). A significant correlation was identified between the questionnaire score and the altered response to the test in its different variables. CONCLUSIONS We propose the following variables: erythema; localized edema; heat; and the intensity/speed of onset/duration of pruritus to define a positive response to the vortex provocation test given their ease of execution and optimal inter-observer agreement.
Collapse
Affiliation(s)
- M E Gatica-Ortega
- Servicio de Dermatología, Hospital Universitario de Toledo, Toledo, Spain; Universidad de Castilla-La-Mancha, Toledo, Spain
| | - B Sánchez-Albisua
- Servicio de Dermatología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - D M Arranz-Sánchez
- Servicio de Dermatología, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - B Pérez-Tato
- Servicio de Dermatología, Hospital Universitario de Móstoles, Móstoles, Madrid, Spain
| | - A Sánchez-Gilo
- Servicio de Dermatología, Hospital Rey Juan Carlos, Móstoles, Madrid, Spain
| | - S Córdoba-Guijarro
- Servicio de Dermatología, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - F J Ortiz-Frutos
- Servicio de Dermatología, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - N Hernández-Cano
- Servicio de Dermatología, Hospital Universitario La Paz, Madrid, Spain
| | - E Gómez de la Fuente
- Servicio de Dermatología, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - M Elosua-González
- Servicio de Dermatología, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, Spain
| | - M Bergón-Sendín
- Servicio de Dermatología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - C García-Martín
- Servicio de Dermatología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - T Sanz-Sánchez
- Servicio de Dermatología, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - O Mazuela-Díez
- Servicio de Dermatología, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - R Torres-Aranda
- Servicio de Dermatología, Hospital Universitario de Toledo, Toledo, Spain
| | | | - S Marinero-Escobedo
- Servicio de Dermatología, Hospital Universitario de Móstoles, Móstoles, Madrid, Spain
| | - A Alegre-Bailo
- Servicio de Dermatología, Hospital Rey Juan Carlos, Móstoles, Madrid, Spain
| | - A Garrido-Ríos
- Servicio de Dermatología, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - F Tous-Romero
- Servicio de Dermatología, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - J M Busto-Leis
- Servicio de Dermatología, Hospital Universitario La Paz, Madrid, Spain
| | - C Sarró-Fuente
- Servicio de Dermatología, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - F J Rodríguez-Cuadrado
- Servicio de Dermatología, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, Spain
| | - P García-Piqueras
- Servicio de Dermatología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - P Beneyto
- Unidad de Apoyo a la Investigación, Hospital Universitario de Toledo, Toledo, Spain
| | - M A Pastor-Nieto
- Universidad de Castilla-La-Mancha, Toledo, Spain; Servicio de Dermatología, Hospital Universitario de Guadalajara, Guadalajara, Spain; Servicio de Dermatología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
5
|
Yang Z, Zhou SH, Zhang QY, Song ZC, Liu WW, Sun Y, Wang MW, Fu XL, Zhu KK, Guan Y, Qi JY, Wang XH, Sun YN, Lu Y, Ping YQ, Xi YT, Teng ZX, Xu L, Xiao P, Xu ZG, Xiong W, Qin W, Yang W, Yi F, Chai RJ, Yu X, Sun JP. A force-sensitive adhesion GPCR is required for equilibrioception. Cell Res 2025; 35:243-264. [PMID: 39966628 PMCID: PMC11958651 DOI: 10.1038/s41422-025-01075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Equilibrioception (sensing of balance) is essential for mammals to perceive and navigate the three-dimensional world. A rapid mechanoelectrical transduction (MET) response in vestibular hair cells is crucial for detecting position and motion. Here, we identify the G protein-coupled receptor (GPCR) LPHN2/ADGRL2, expressed on the apical membrane of utricular hair cells, as essential for maintaining normal balance. Loss of LPHN2 specifically in hair cells impaired both balance behavior and the MET response in mice. Functional analyses using hair-cell-specific Lphn2-knockout mice and an LPHN2-specific inhibitor suggest that LPHN2 regulates tip-link-independent MET currents at the apical surface of utricular hair cells. Mechanistic studies in a heterologous system show that LPHN2 converts force stimuli into increased open probability of transmembrane channel-like protein 1 (TMC1). LPHN2-mediated force sensation triggers glutamate release and calcium signaling in utricular hair cells. Importantly, reintroducing LPHN2 into the hair cells of Lphn2-deficient mice restores vestibular function and MET response. Our data reveal that a mechanosensitive GPCR is required for equilibrioception.
Collapse
Affiliation(s)
- Zhao Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shu-Hua Zhou
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi-Yue Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhi-Chen Song
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wen-Wen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming-Wei Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiao-Long Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Guan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie-Yu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China
| | - Xiao-Hui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Nan Sun
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Lu
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu-Qi Ping
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yue-Tong Xi
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-Xiao Teng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peng Xiao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, Shandong, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, China
| | - Wei Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| | - Ren-Jie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China.
| | - Xiao Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Jin-Peng Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Gatica-Ortega ME, Sánchez-Albisua B, Arranz-Sánchez DM, Pérez-Tato B, Sánchez-Gilo A, Córdoba-Guijarro S, Ortiz-Frutos FJ, Hernández-Cano N, Gómez de la Fuente E, Elosua-González M, Bergón-Sendín M, García-Martín C, Sanz-Sánchez T, Mazuela-Díez O, Torres-Aranda R, Vergara-de-la-Campa L, Marinero-Escobedo S, Alegre-Bailo A, Garrido-Ríos A, Tous-Romero F, Busto-Leis JM, Sarró-Fuente C, Rodríguez-Cuadrado FJ, García-Piqueras P, Beneyto P, Pastor-Nieto MA. Erythema, Localized Edema and Heat vs Forearm Perimeter Increase. Time to Revise the Consensus Recommendations on the Vortex Provocation Test in Vibratory Urticaria-Angioedema? ACTAS DERMO-SIFILIOGRAFICAS 2025; 116:357-364. [PMID: 39549940 DOI: 10.1016/j.ad.2024.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/24/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Diagnosis of vibratory urticaria/angioedema is established after performing the vortex provocation test. There is current consensus on measuring the forearm perimeter after running such test to define a positive response to it. MATERIAL AND METHOD We evaluated the frequency of prior symptoms following vibratory stimuli in volunteers using a questionnaire, response to the vortex provocation test in the same volunteers (increase in forearm perimeter, erythema, localized edema, heat, and pruritus), interrater reliability, and correlation between the scores obtained in the questionnaire and response to the test. RESULTS A total of 40 volunteers participated in this survey, 17 of whom were excluded due to dermographism. A total of 59% out of 123 without dermographism responded positively to ≥1 items of the questionnaire. Localized erythema, heat or localized edema were reported in 58.5%, 38.2%, and 32.5%, respectively. A total of 73.6% of volunteers presented with itch. The mean intensity of itch was 3.44, 95%CI: 2.94-3.94). Interrater agreement was low regarding the increase in forearm circumference at 3 levels (intraclass correlation coefficient, 0.477, 95%CI: 0.253-0.634; 0.496, 95%CI: 0.280-0.647; and 0.370, 95%CI: 0.100-0.559, respectively) and optimal regarding erythema, heat and localized edema (Kappa index, 0.868; 0.756; and 0.757, respectively). A significant correlation was identified between the questionnaire score and the altered response to the test in its different variables. CONCLUSIONS We propose the following variables: erythema; localized edema; heat; and the intensity/speed of onset/duration of pruritus to define a positive response to the vortex provocation test given their ease of execution and optimal inter-observer agreement.
Collapse
Affiliation(s)
- M E Gatica-Ortega
- Servicio de Dermatología, Hospital Universitario de Toledo, Toledo, España; Universidad de Castilla-La-Mancha, Toledo, España
| | - B Sánchez-Albisua
- Servicio de Dermatología, Hospital Universitario Infanta Leonor, Madrid, España
| | - D M Arranz-Sánchez
- Servicio de Dermatología, Hospital Universitario Infanta Sofía, Madrid, España
| | - B Pérez-Tato
- Servicio de Dermatología, Hospital Universitario de Móstoles, Móstoles, Madrid, España
| | - A Sánchez-Gilo
- Servicio de Dermatología, Hospital Rey Juan Carlos, Móstoles, Madrid, España
| | - S Córdoba-Guijarro
- Servicio de Dermatología, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, España
| | - F J Ortiz-Frutos
- Servicio de Dermatología, Hospital Universitario Doce de Octubre, Madrid, España
| | - N Hernández-Cano
- Servicio de Dermatología, Hospital Universitario La Paz, Madrid, España
| | - E Gómez de la Fuente
- Servicio de Dermatología, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - M Elosua-González
- Servicio de Dermatología, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, España
| | - M Bergón-Sendín
- Servicio de Dermatología, Hospital Universitario Gregorio Marañón, Madrid, España
| | - C García-Martín
- Servicio de Dermatología, Hospital Universitario Infanta Leonor, Madrid, España
| | - T Sanz-Sánchez
- Servicio de Dermatología, Hospital Universitario Infanta Sofía, Madrid, España
| | - O Mazuela-Díez
- Servicio de Dermatología, Hospital Universitario de Guadalajara, Guadalajara, España
| | - R Torres-Aranda
- Servicio de Dermatología, Hospital Universitario de Toledo, Toledo, España
| | | | - S Marinero-Escobedo
- Servicio de Dermatología, Hospital Universitario de Móstoles, Móstoles, Madrid, España
| | - A Alegre-Bailo
- Servicio de Dermatología, Hospital Rey Juan Carlos, Móstoles, Madrid, España
| | - A Garrido-Ríos
- Servicio de Dermatología, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, España
| | - F Tous-Romero
- Servicio de Dermatología, Hospital Universitario Doce de Octubre, Madrid, España
| | - J M Busto-Leis
- Servicio de Dermatología, Hospital Universitario La Paz, Madrid, España
| | - C Sarró-Fuente
- Servicio de Dermatología, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - F J Rodríguez-Cuadrado
- Servicio de Dermatología, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, España
| | - P García-Piqueras
- Servicio de Dermatología, Hospital Universitario Gregorio Marañón, Madrid, España
| | - P Beneyto
- Unidad de Apoyo a la Investigación, Hospital Universitario de Toledo, Toledo, España
| | - M A Pastor-Nieto
- Universidad de Castilla-La-Mancha, Toledo, España; Servicio de Dermatología, Hospital Universitario de Guadalajara, Guadalajara, España; Servicio de Dermatología, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, España.
| |
Collapse
|
7
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2025; 145:749-765.e8. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
8
|
Zeng PYF, Lin RJ, Fung K, Khan H, Cecchini MJ, Woo E, Hu A, Anderson J, MacInnis P, Jarycki L, Karimi A, Ying S, Al Jawhri M, Lin S, Shaikh M, Pan H, Coburn B, Mymryk JS, Inculet R, Barrett JW, Nichols AC. Cellular blueprint of healthy and diseased human epiglottis and subglottis-a study of the Canadian Airways Research (CARE) group. EBioMedicine 2025; 114:105631. [PMID: 40048848 PMCID: PMC11929080 DOI: 10.1016/j.ebiom.2025.105631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The larynx consists of the supraglottis, glottis, and subglottis and each differ in tissue composition, lymphatic drainage, ability to counter infections, and response to injuries. However, the cellular mechanisms driving laryngeal homoeostasis remain largely unexplored. As a result, understanding disease pathogenesis within the larynx including idiopathic subglottic stenosis (iSGS) and intubation-related traumatic stenosis has been challenging. Here, we sought to characterise the cellular processes governing laryngeal health and disease. METHODS As part of the prospective Canadian Airways Research (CARE) iSGS study, we characterised 122,004 high-quality transcriptomes using single nucleus RNA-sequencing to profile 11 human epiglottis and 17 human subglottis biopsies across three different conditions: control, iSGS, and intubation-related traumatic stenosis to define cell populations and pathways associated with disease. We validated our results using cohort-level bulk transcriptomics using 114 human epiglottis and 121 human subglottis. FINDINGS We defined the single-cell taxonomy of the human subglottis and epiglottis using single-nucleus sequencing in both healthy and disease states. Mechanistically, we discovered the presence of unique epithelial and fibroblast progenitor subsets within the control subglottis but not within the anatomically adjacent epiglottis. The uncontrolled proliferation of these cellular subsets exhibited skewed sex hormone signalling and orchestrated a fibro-inflammatory cascade. We leveraged cohort-level bulk transcriptomics to define hallmarks of iSGS associated with disease covariates and introduced the first biomarker associated with recurrent relapse. Longitudinal sampling demonstrated that the subglottic microenvironment in patients with iSGS is changing dynamically with and without therapeutic intervention. INTERPRETATION Together, our data refines our understanding of laryngeal biology, nominates candidate compounds for iSGS treatment, and serves as a transformative platform for future clinical investigations to further precision laryngology. FUNDING This study was funded by a grant from the American Laryngology Association (#1082), an Academic Medical Organisation of Southwestern Ontario innovation fund grant (INN21-016), grant support from the Departments of Otolaryngology-Head and Neck Surgery at University of Toronto, Canada and Western University, Canada. ACN was supported by the Wolfe Surgical Research Professorship in the Biology of Head and Neck Cancers Fund. PYFZ was supported by a Vanier Canada Graduate Scholarship and PSI Foundation fellowship.
Collapse
Affiliation(s)
- Peter Y F Zeng
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| | - R Jun Lin
- Department of Otolaryngology - Head & Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Unity Health Toronto, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Kevin Fung
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| | - Halema Khan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Elissa Woo
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Amanda Hu
- Division of Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Anderson
- Department of Otolaryngology - Head & Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Unity Health Toronto, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Patrick MacInnis
- Department of Otolaryngology - Head & Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Unity Health Toronto, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Laura Jarycki
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| | - Amir Karimi
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Shengjie Ying
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - MohdWessam Al Jawhri
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Sherman Lin
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Mushfiq Shaikh
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Harrison Pan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Bryan Coburn
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Joe S Mymryk
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Western University, London, Ontario, Canada
| | - Richard Inculet
- Division of Thoracic Surgery, Western University, London, Ontario, Canada
| | - John W Barrett
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada.
| |
Collapse
|
9
|
Hao H, Eberand BM, Larance M, Haltiwanger RS. Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals. Molecules 2025; 30:1470. [PMID: 40286076 PMCID: PMC11990869 DOI: 10.3390/molecules30071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30605, USA;
| | - Benjamin M. Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | | |
Collapse
|
10
|
Bormann A, Körner MB, Dahse AK, Gläser MS, Irmer J, Lede V, Alenfelder J, Lehmann J, Hall DCN, Thane M, Schleyer M, Kostenis E, Schöneberg T, Bigl M, Langenhan T, Ljaschenko D, Scholz N. Intron retention of an adhesion GPCR generates 1TM isoforms required for 7TM-GPCR function. Cell Rep 2025; 44:115078. [PMID: 39705141 DOI: 10.1016/j.celrep.2024.115078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are expressed in all organs and are involved in various mechanobiological processes. They are heavily alternatively spliced, forecasting an extraordinary molecular structural diversity. Here, we uncovered the existence of unconventional single-transmembrane (1TM)-containing ADGRL/Cirl proteins devoid of the conventional GPCR layout (i.e., the 7TM signaling unit) in Drosophila. These 1TM proteins are made as a result of intron retention and provide an N-terminal fragment that acts as an interactor to allow Gαo-dependent signaling through conventional 7TM-containing Cirl isoforms encoded by the same gene. This molecular mechanism determines sensory precision of neurons in response to mechanical stimulation in vivo. This action mode of aGPCR provides a promising entry point for experimental and therapeutic approaches to intervene in aGPCR signaling and implicates alternative splicing as a physiological strategy to express a given aGPCR together with its molecular interactor.
Collapse
Affiliation(s)
- Anne Bormann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Marek B Körner
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Anne-Kristin Dahse
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Marie S Gläser
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Johanna Irmer
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Division of Molecular Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Joris Lehmann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Daniella C N Hall
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Michael Thane
- Department of Genetics Learning and Memory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Michael Schleyer
- Department of Genetics Learning and Memory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-08080, Japan
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Division of Molecular Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Marina Bigl
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
11
|
Seufert F, Pérez-Hernández G, Pándy-Szekeres G, Guixà-González R, Langenhan T, Gloriam DE, Hildebrand PW. Generic residue numbering of the GAIN domain of adhesion GPCRs. Nat Commun 2025; 16:246. [PMID: 39747076 PMCID: PMC11697300 DOI: 10.1038/s41467-024-55466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The GPCR autoproteolysis inducing (GAIN) domain is an ancient protein fold ubiquitous in adhesion G protein-coupled receptors (aGPCR). It contains a tethered agonist necessary and sufficient for receptor activation. The GAIN domain is a hotspot for pathological mutations. However, the low primary sequence conservation of GAIN domains has thus far hindered the knowledge transfer across different GAIN domains in human receptors as well as species orthologs. Here, we present a scheme for generic residue numbering of GAIN domains, based on structural alignments of over 14,000 modeled GAIN domain structures. This scheme is implemented in the GPCR database (GPCRdb) and elucidates the domain topology across different aGPCRs and their homologs in a large panel of species. We identify conservation hotspots and statistically cancer-enriched positions in human aGPCRs and show the transferability of positional and structural information between GAIN domain homologs. The GAIN-GRN scheme provides a robust strategy to allocate structural homologies at the primary and secondary levels also to GAIN domains of polycystic kidney disease 1/PKD1-like proteins, which now renders positions in both GAIN domain types comparable to one another. In summary, our work enables researchers to generate hypothesis and rationalize experiments related to GAIN domain function and pathology.
Collapse
Affiliation(s)
- Florian Seufert
- Institute for Medical Physics and Biophysics, Leipzig University, Medical Faculty, Leipzig, Germany
| | - Guillermo Pérez-Hernández
- Institute for Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Magyar Tudósok körútja 2., Budapest, Hungary
| | - Ramon Guixà-González
- Institute for Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig, Germany
- Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Leipzig University, Medical Faculty, Leipzig, Germany.
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig, Germany.
| |
Collapse
|
12
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
13
|
Afzal A, Jamshaid H, Badshah Y, Shabbir M, Trembley JH, Zafar S, Kamal GM, Afsar T, Husain FM, Razak S. Investigating the role of non-synonymous variant D67N of ADGRE2 in chronic myeloid leukemia. BMC Cancer 2024; 24:1354. [PMID: 39501172 PMCID: PMC11536965 DOI: 10.1186/s12885-024-13108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/24/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Chronic myeloid leukaemia (CML) is a type of blood cancer that begins in the hematopoietic stem cells. It is primarily characterized by a specific chromosomal aberration, the Philadelphia chromosome. While the fusion gene is a major contributor to CML, several other genes including ADGRE2, that are reported as highly expressed in hematopoietic stem cells and could be utilized as a therapeutic marker in leukemic patients are implicated in the disease's progression. Until recently, little research had been conducted to identify single nucleotide polymorphisms (SNPs) associated with CML. Therefore, this study aims to investigate the influence of non-synonymous variants on the structure and function of the gene encoding adhesion G protein-coupled receptor E2, ADGRE2, and to evaluate their association with CML and its clinical and pathological characteristics. METHODS Non-synonymous SNPs of ADGRE2 were retrieved from the ENSEMBL, COSMIC, and gnomAD genome browsers, and the pathogenicity of deleterious variants was assessed using several established computational tools, including SIFT, CADD, REVEL, PolyPhen, and MetaLR. RESULTS Various in silico analyses explored the impact of damaging SNP on the function, stability, and structure of EGF-like modules containing mucin-like hormone receptor-like2 (EMR2) protein encoded by the ADGRE2 gene. Genotype analysis was performed on collected blood samples, revealing that altered genotype TT of variant rs765071211 (C/T) was associated significantly with CML patients compared to the control. Further in vitro and in vivo analyses suggest that this SNP holds potential for clinical translation.
Collapse
Affiliation(s)
- Ayesha Afzal
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Harooma Jamshaid
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sameen Zafar
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ghulam Murtaza Kamal
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Niehues T, von Hardenberg S, Velleuer E. Rapid identification of primary atopic disorders (PAD) by a clinical landmark-guided, upfront use of genomic sequencing. Allergol Select 2024; 8:304-323. [PMID: 39381601 PMCID: PMC11460323 DOI: 10.5414/alx02520e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 10/10/2024] Open
Abstract
Primary atopic disorders (PAD) are monogenic disorders caused by pathogenic gene variants encoding proteins that are key for the maintenance of a healthy skin barrier and a well-functioning immune system. Physicians face the challenge to find single, extremely rare PAD patients/families among the millions of individuals with common allergic diseases. We describe case scenarios with signature PAD. We review the literature and deduct specific clinical red flags for PAD detection. They include a positive family history and/or signs of pathological susceptibility to infections, immunodysregulation, or syndromic disease. Results of conventional laboratory and most immunological lab studies are not sufficient to make a definitive diagnosis of PAD. In the past, multistep narrowing of differential diagnoses by various immunological and other laboratory tests led to testing of single genes or gene panel analyses, which was a time-consuming and often unsuccessful approach. The implementation of whole-genomic analyses in the routine diagnostics has led to a paradigm shift. Upfront genome-wide analysis by whole genome sequencing (WGS) will shorten the time to diagnosis, save patients from unnecessary investigations, and reduce morbidity and mortality. We propose a rational, clinical landmark-based approach for deciding which cases pass the filter for carrying out early WGS. WGS result interpretation requires a great deal of caution regarding the causal relationship of variants in PAD phenotypes and absence of proof by adequate functional tests. In case of negative WGS results, a re-iteration attitude with re-analyses of the data (using the latest data base annotation)) may eventually lead to PAD diagnosis. PAD, like many other rare genetic diseases, will only be successfully managed, if physicians from different clinical specialties and geneticists interact regularly in multidisciplinary conferences.
Collapse
Affiliation(s)
- Tim Niehues
- Center for Child and Adolescent Health, Helios Hospital Krefeld, Academic Hospital of RWTH Aachen, Krefeld
| | | | - Eunike Velleuer
- Center for Child and Adolescent Health, Helios Hospital Krefeld, Academic Hospital of RWTH Aachen, Krefeld
- Department of Cytopathology, Institute of Pathology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
15
|
Xu Y, Xu H, Yan J, Song G. Mechanical force induced activation of adhesion G protein-coupled receptor. MECHANOBIOLOGY IN MEDICINE 2024; 2:100078. [PMID: 40395494 PMCID: PMC12082320 DOI: 10.1016/j.mbm.2024.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2025]
Abstract
Among the various families of G protein-couple receptors (GPCR), the adhesion family of GPCRs is specialized by its expansive extracellular region, which facilitates the recruitment of various ligands. Previous hypothesis proposed that aGPCRs are activated by mechanical force, wherein a Stachel peptide is liberated from the GPCR autoproteolysis-inducing (GAIN) domain and subsequently binds to the transmembrane domain (7TM) upon activation. In this review, we summarize recent advancements in structural studies of aGPCRs, unveiling a conserved structural change of the Stachel peptide from the GAIN domain-embedded β-strand conformation to the 7TM-loaded α-helical conformation. Notably, using single-molecule studies, we directly observed the unfolding of GAIN domain and the release of Stachel peptide under physiological level of force, precisely supporting the mechanosensing mechanism for aGPCRs. We observed that the current complex structures of aGPCR adhesion domains with their respective ligands share a common pattern with the C-termini of each binding partner extending in opposite directions, suggesting a similar shearing stretch geometry for these aGPCRs to transmit the mechanical force generated in the circulating environment to the GAIN domain for its unfolding. Outstanding questions, including the relative orientations and interactions between 7TM and its preceding GAIN and adhesion domains of different aGPCRs, may require further structural and mechanical studies at the full-length receptor scale or cell-based level. Our analysis extends the current view of aGPCR structural organization and activation and offers valuable insights for the development of mechanosensor based on aGPCRs or discovery of mechanotherapy against aGPCRs.
Collapse
Affiliation(s)
- Yueming Xu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huanhuan Xu
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Gaojie Song
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
16
|
Slater AM, Barclay SJ, Granfar RMS, Pratt RL. Fascia as a regulatory system in health and disease. Front Neurol 2024; 15:1458385. [PMID: 39188704 PMCID: PMC11346343 DOI: 10.3389/fneur.2024.1458385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Neurology and connective tissue are intimately interdependent systems and are critical in regulating many of the body's systems. Unlocking their multifaceted relationship can transform clinical understanding of the mechanisms involved in multisystemic regulation and dysregulation. The fascial system is highly innervated and rich with blood vessels, lymphatics, and hormonal and neurotransmitter receptors. Given its ubiquity, fascia may serve as a "watchman," receiving and processing information on whole body health. This paper reviews what constitutes fascia, why it is clinically important, and its contiguous and interdependent relationship with the nervous system. Unquestionably, fascial integrity is paramount to human locomotion, interaction with our environment, bodily sense, and general physical and emotional wellbeing, so an understanding of the fascial dysregulation that defines a range of pathological states, including hypermobility syndromes, autonomic dysregulation, mast cell activation, and acquired connective tissue disorders is critical in ensuring recognition, research, and appropriate management of these conditions, to the satisfaction of the patient as well as the treating practitioner.
Collapse
Affiliation(s)
- Alison M. Slater
- School of Population Health, The University of New South Wales, Sydney, NSW, Australia
| | - S. Jade Barclay
- Neuromuscular Imaging Research Lab, The Kolling Institute, St Leonards, NSW, Australia
- Hypermobility and Performance Lab, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Rouha M. S. Granfar
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Rebecca L. Pratt
- Department of Foundational Medical Studies, William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
17
|
Castells M, Giannetti MP, Hamilton MJ, Novak P, Pozdnyakova O, Nicoloro-SantaBarbara J, Jennings SV, Francomano C, Kim B, Glover SC, Galli SJ, Maitland A, White A, Abonia JP, Slee V, Valent P, Butterfield JH, Carter M, Metcalfe DD, Akin C, Lyons JJ, Togias A, Wheatley L, Milner JD. Mast cell activation syndrome: Current understanding and research needs. J Allergy Clin Immunol 2024; 154:255-263. [PMID: 38851398 PMCID: PMC11881543 DOI: 10.1016/j.jaci.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Mast cell activation syndrome (MCAS) is a term applied to several clinical entities that have gained increased attention from patients and medical providers. Although several descriptive publications about MCAS exist, there are many gaps in knowledge, resulting in confusion about this clinical syndrome. Whether MCAS is a primary syndrome or exists as a constellation of symptoms in the context of known inflammatory, allergic, or clonal disorders associated with systemic mast cell activation is not well understood. More importantly, the underlying mechanisms and pathways that lead to mast cell activation in MCAS patients remain to be elucidated. Here we summarize the known literature, identify gaps in knowledge, and highlight research needs. Covered topics include contextualization of MCAS and MCAS-like endotypes and related diagnostic evaluations; mechanistic research; management of typical and refractory symptoms; and MCAS-specific education for patients and health care providers.
Collapse
Affiliation(s)
- Mariana Castells
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| | - Matthew P Giannetti
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Matthew J Hamilton
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Peter Novak
- Department of Neurology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Olga Pozdnyakova
- department of Pathology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | | | | | - Clair Francomano
- Medical and Molecular Genetics, Riley Children's Health, Indianapolis, Ind
| | - Brian Kim
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sarah C Glover
- Gastroenterology & Hepatology, Tulane University School of Medicine, New Orleans, La
| | - Stephen J Galli
- Departments of Pathology and Immunology and Microbiology, and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Anne Maitland
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Allergy and Immunology Services, Metrodora Institute, Salt Lake City, Utah
| | - Andrew White
- Division of Allergy and Immunology, Scripps Clinic, San Diego, Calif
| | - J Pablo Abonia
- Departent of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Valerie Slee
- The Mast Cell Disease Society Inc, Sterling, Mass
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Joseph H Butterfield
- Division of Allergic Diseases and the Mayo Clinic Program for Mast Cell and Eosinophilic Disorders, Mayo Clinic, Rochester, Minn
| | - Melody Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Jonathan J Lyons
- Division of Allergy and Immunology, Department of Medicine, University of California-San Diego, La Jolla, Calif; Veterans Affairs San Diego Healthcare System, La Jolla, Calif
| | - Alkis Togias
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lisa Wheatley
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Joshua D Milner
- Division of Pediatric Allergy, Immunology and Rheumatology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
18
|
Maurer M, Pereira MP, Kolkhir P. The Definition, Classification, and History of Urticaria. Immunol Allergy Clin North Am 2024; 44:407-419. [PMID: 38937006 DOI: 10.1016/j.iac.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The term "urticaria" was first introduced by William Cullen in the eighteenth century. Urticaria is a common mast cell-mediated cutaneous disease presenting with pruritic wheals, angioedema, or both. It is classified as acute (≤6 weeks) or chronic (>6 weeks) and as spontaneous (no definite triggers) or inducible (definite and subtype-specific triggers). The international urticaria guideline on the definition, classification, diagnosis, and management of urticaria is revised every 4 years. The global network of Urticaria Centers of Reference and Excellence, the biggest and most active consortium of urticaria specialists, offers physicians and patients several research, educational, and digital care initiatives.
Collapse
Affiliation(s)
- Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Manuel P Pereira
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
19
|
James AE, Abdalgani M, Khoury P, Freeman AF, Milner JD. T H2-driven manifestations of inborn errors of immunity. J Allergy Clin Immunol 2024; 154:245-254. [PMID: 38761995 DOI: 10.1016/j.jaci.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Monogenic lesions in pathways critical for effector functions responsible for immune surveillance, protection against autoinflammation, and appropriate responses to allergens and microorganisms underlie the pathophysiology of inborn errors of immunity (IEI). Variants in cytokine production, cytokine signaling, epithelial barrier function, antigen presentation, receptor signaling, and cellular processes and metabolism can drive autoimmunity, immunodeficiency, and/or allergic inflammation. Identification of these variants has improved our understanding of the role that many of these proteins play in skewing toward TH2-related allergic inflammation. Early-onset or atypical atopic disease, often in conjunction with immunodeficiency and/or autoimmunity, should raise suspicion for an IEI. This becomes a diagnostic dilemma if the initial clinical presentation is solely allergic inflammation, especially when the prevalence of allergic diseases is becoming more common. Genetic sequencing is necessary for IEI diagnosis and is helpful for early recognition and implementation of targeted treatment, if available. Although genetic evaluation is not feasible for all patients with atopy, identifying atopic patients with molecular immune abnormalities may be helpful for diagnostic, therapeutic, and prognostic purposes. In this review, we focus on IEI associated with TH2-driven allergic manifestations and classify them on the basis of the affected molecular pathways and predominant clinical manifestations.
Collapse
Affiliation(s)
- Alyssa E James
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manar Abdalgani
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Paneez Khoury
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Joshua D Milner
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
20
|
Huang D, Yu Z, Lu H, Jiang P, Qian X, Han Y, Qian P. Adhesion GPCR ADGRE2 Maintains Proteostasis to Promote Progression in Acute Myeloid Leukemia. Cancer Res 2024; 84:2090-2108. [PMID: 39082681 DOI: 10.1158/0008-5472.can-23-2314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/19/2024] [Accepted: 03/28/2024] [Indexed: 08/15/2024]
Abstract
Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematologic malignancy. In elderly patients, AML incidence is high and has a poor prognosis due to a lack of effective therapies. G protein-coupled receptors (GPCR) play integral roles in physiologic processes and human diseases. Particularly, one third of adhesion GPCRs, the second largest group of GPCRs, are highly expressed in hematopoietic stem and progenitor cells or lineage cells. Here, we investigate the role of adhesion GPCRs in AML and whether they could be harnessed as antileukemia targets. Systematic screening of the impact of adhesion GPCRs on AML functionality by bioinformatic and functional analyses revealed high expression of ADGRE2 in AML, particularly in leukemic stem cells, which is associated with poor patient outcomes. Silencing ADGRE2 not only exerts antileukemic effects in AML cell lines and cells derived from patients with AML in vitro, but also delays AML progression in xenograft models in vivo. Mechanistically, ADGRE2 activates phospholipase Cβ/protein kinase C/MEK/ERK signaling to enhance the expression of AP1 and transcriptionally drive the expression of DUSP1, a protein phosphatase. DUSP1 dephosphorylates Ser16 in the J-domain of the co-chaperone DNAJB1, which facilitates the DNAJB1-HSP70 interaction and maintenance of proteostasis in AML. Finally, combined inhibition of MEK, AP1, and DUSP1 exhibits robust therapeutic efficacy in AML xenograft mouse models. Collectively, this study deciphers the roles and mechanisms of ADGRE2 in AML and provides a promising therapeutic strategy for treating AML. Significance: Increased expression of the adhesion GPCR member ADGRE2 in AML supports leukemia stem cell self-renewal and leukemogenesis by modulating proteostasis via an MEK/AP1/DUSP1 axis, which can be targeted to suppress AML progression.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Cell Proliferation
- Disease Progression
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Mice, Inbred NOD
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Proteostasis
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Deyu Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zebin Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Huan Lu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Penglei Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xinyue Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
21
|
Žáčková S, Pávová M, Trylčová J, Chalupová J, Priss A, Lukšan O, Weber J. Upregulation of mRNA Expression of ADGRD1/GPR133 and ADGRG7/GPR128 in SARS-CoV-2-Infected Lung Adenocarcinoma Calu-3 Cells. Cells 2024; 13:791. [PMID: 38786015 PMCID: PMC11119037 DOI: 10.3390/cells13100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.
Collapse
Affiliation(s)
- Sandra Žáčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
- Department of Genetics and Microbiology, Charles University, Faculty of Sciences, 128 44 Prague, Czech Republic
| | - Marcela Pávová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jana Trylčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jitka Chalupová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| |
Collapse
|
22
|
Shin H, Lyons JJ. Alpha-Tryptase as a Risk-Modifying Factor for Mast Cell-Mediated Reactions. Curr Allergy Asthma Rep 2024; 24:199-209. [PMID: 38460022 PMCID: PMC11870015 DOI: 10.1007/s11882-024-01136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/11/2024]
Abstract
PURPOSE OF REVIEW To provide an overview on the current understanding of genetic variability in human tryptases and summarize the literature demonstrating the differential impact of mature tryptases on mast cell-mediated reactions and associated clinical phenotypes. RECENT FINDINGS It is becoming increasingly recognized that tryptase gene composition, and in particular the common genetic trait hereditary alpha-tryptasemia (HαT), impacts clinical allergy. HαT has consistently been associated with clonal mast cell disorders (MCD) and has also been associated with more frequent anaphylaxis among these patients, and patients in whom no allergic trigger can be found, specifically idiopathic anaphylaxis. Additionally, more severe anaphylaxis among Hymenoptera venom allergy patients has been linked to HαT in both retrospective and prospective studies. An increased relative number of α-tryptase-encoding gene copies, even in the absence of HαT, has also been associated with systemic mastocytosis and has been shown to positively correlate with the severity of mast cell-mediated reactions to vibration and food. These findings may be due to increased generation of α/β-tryptase heterotetramers and differences in their enzymatic activity relative to β-tryptase homotetramers. HαT is a naturally occurring overexpression model of α-tryptase in humans. Increased relative α-tryptase expression modifies immediate hypersensitivity symptoms and is associated with more frequent and severe mast cell-mediated reactions, ostensibly due to increased α/β-tryptase heterotetramer production.
Collapse
Affiliation(s)
- Hannah Shin
- Division of Allergy & Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jonathan J Lyons
- Division of Allergy & Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
23
|
Zhang X, Zhang X, Yang Q, Han R, Fadhul W, Sachdeva A, Zhang X. Comprehensive analysis of ADGRE5 gene in human tumors: Clinical relevance, prognostic implications, and potential for personalized immunotherapy. Heliyon 2024; 10:e27459. [PMID: 38501000 PMCID: PMC10945187 DOI: 10.1016/j.heliyon.2024.e27459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose The Adhesion G protein receptor E5 (ADGRE5) gene is involved in a wide range of biological functions in human tumors; however, its specific molecular mechanism and significance in the analysis of human tumors have not yet been determined. Here, we provide a comprehensive genomic architecture of ADGRE5 in the tumor immune microenvironment and its clinical relevance across a broad range of solid tumors. Methods In this study, we used publicly available bioinformatics databases, with a primary focus on The Cancer Genome Atlas (TCGA) database and GTEx data, to conduct a comprehensive analysis of the impact on patient prognosis associated with ADGRE5. Results Statistics of more than 30 solid tumors from TCGA and Cancer Cell Line Encyclopedia (CCLE) were examined. ADGRE5 was differentially expressed in several cancers and was significantly associated with survival outcomes. Higher ADGRE5 levels were associated with worse prognosis in adrenocortical carcinoma, low grade glioma of the brain (LGG), lung squamous cell carcinoma, liver hepatocellular carcinoma, and uveal melanoma (UVM). Additionally, ADGRE5 was found to be an independent risk factor for LGG and UVM. The clinical relevance of ADGRE5 in tumor immunogenicity was further investigated. The expression level of ADGRE5 was not only strongly associated with tumor infiltration, such as tumor-infiltrating immune cells and immune subtypes, but also with tumor mutation burden, pyroptosis, and epithelial-mesenchymal transition in various types of cancer (P < 0.05). Furthermore, we noted that ADGRE5 exhibited a positive association with targeted drug sensitivity and conversely, a negative association with traditional chemotherapeutic drug sensitivity. Thus, ADGRE5 is expected to be a guiding marker gene for clinical prognosis and personalized tumor immunotherapy.
Collapse
Affiliation(s)
- Xiangjian Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinxin Zhang
- Department of Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuhui Yang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruokuo Han
- Department of Surgical Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Walaa Fadhul
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Alisha Sachdeva
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xianbo Zhang
- Department of Surgical Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
24
|
Mehrani Y, Morovati S, Tajik T, Sarmadi S, Bitaraf A, Sourani Z, Shahverdi M, Javadi H, Kakish JE, Bridle BW, Karimi K. Communication between Mast Cells and Group 2 Innate Lymphoid Cells in the Skin. Cells 2024; 13:462. [PMID: 38474426 PMCID: PMC10931169 DOI: 10.3390/cells13050462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The skin is a dynamic organ with a complex immune network critical for maintaining balance and defending against various pathogens. Different types of cells in the skin, such as mast cells (MCs) and group 2 innate lymphoid cells (ILC2s), contribute to immune regulation and play essential roles in the early immune response to various triggers, including allergens. It is beneficial to dissect cell-to-cell interactions in the skin to elucidate the mechanisms underlying skin immunity. The current manuscript concentrates explicitly on the communication pathways between MCs and ILC2s in the skin, highlighting their ability to regulate immune responses, inflammation, and tissue repair. Furthermore, it discusses how the interactions between MCs and ILC2s play a crucial role in various skin conditions, such as autoimmune diseases, dermatological disorders, and allergic reactions. Understanding the complex interactions between MCs and ILC2s in different skin conditions is crucial to developing targeted treatments for related disorders. The discovery of shared pathways could pave the way for novel therapeutic interventions to restore immunological balance in diseased skin tissues.
Collapse
Affiliation(s)
- Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.E.K.)
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran;
| | - Tahmineh Tajik
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Soroush Sarmadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 14199-63114, Iran;
| | - Ali Bitaraf
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Zahra Sourani
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord 88186-34141, Iran; (Z.S.); (M.S.)
| | - Mohammad Shahverdi
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord 88186-34141, Iran; (Z.S.); (M.S.)
- Clinical Biochemistry Research Center, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord 88157-13471, Iran
| | - Helia Javadi
- Department of Medical Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Julia E. Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.E.K.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.E.K.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.E.K.)
| |
Collapse
|
25
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
26
|
Vieira Contreras F, Auger GM, Müller L, Richter V, Huetteroth W, Seufert F, Hildebrand PW, Scholz N, Thum AS, Ljaschenko D, Blanco-Redondo B, Langenhan T. The adhesion G-protein-coupled receptor mayo/CG11318 controls midgut development in Drosophila. Cell Rep 2024; 43:113640. [PMID: 38180839 DOI: 10.1016/j.celrep.2023.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/14/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024] Open
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) form a large family of cell surface molecules with versatile tasks in organ development. Many aGPCRs still await their functional and pharmacological deorphanization. Here, we characterized the orphan aGPCR CG11318/mayo of Drosophila melanogaster and found it expressed in specific regions of the gastrointestinal canal and anal plates, epithelial specializations that control ion homeostasis. Genetic removal of mayo results in tachycardia, which is caused by hyperkalemia of the larval hemolymph. The hyperkalemic effect can be mimicked by a raise in ambient potassium concentration, while normal potassium levels in mayoKO mutants can be restored by pharmacological inhibition of potassium channels. Intriguingly, hyperkalemia and tachycardia are caused non-cell autonomously through mayo-dependent control of enterocyte proliferation in the larval midgut, which is the primary function of this aGPCR. These findings characterize the ancestral aGPCR Mayo as a homeostatic regulator of gut development.
Collapse
Affiliation(s)
- Fernando Vieira Contreras
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Genevieve M Auger
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Lena Müller
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Vincent Richter
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Wolf Huetteroth
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Florian Seufert
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Andreas S Thum
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Beatriz Blanco-Redondo
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; Institute of Biology, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Germany.
| |
Collapse
|
27
|
Röthe J, Kraft R, Ricken A, Kaczmarek I, Matz-Soja M, Winter K, Dietzsch AN, Buchold J, Ludwig MG, Liebscher I, Schöneberg T, Thor D. The adhesion GPCR GPR116/ADGRF5 has a dual function in pancreatic islets regulating somatostatin release and islet development. Commun Biol 2024; 7:104. [PMID: 38228886 PMCID: PMC10791652 DOI: 10.1038/s42003-024-05783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Glucose homeostasis is maintained by hormones secreted from different cell types of the pancreatic islets and controlled by manifold input including signals mediated through G protein-coupled receptors (GPCRs). RNA-seq analyses revealed expression of numerous GPCRs in mouse and human pancreatic islets, among them Gpr116/Adgrf5. GPR116 is an adhesion GPCR mainly found in lung and required for surfactant secretion. Here, we demonstrate that GPR116 is involved in the somatostatin release from pancreatic delta cells using a whole-body as well as a cell-specific knock-out mouse model. Interestingly, the whole-body GPR116 deficiency causes further changes such as decreased beta-cell mass, lower number of small islets, and reduced pancreatic insulin content. Glucose homeostasis in global GPR116-deficient mice is maintained by counter-acting mechanisms modulating insulin degradation. Our data highlight an important function of GPR116 in controlling glucose homeostasis.
Collapse
Affiliation(s)
- Juliane Röthe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Robert Kraft
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Madlen Matz-Soja
- Medical Department II - Gastroenterology, Hepatology, Infectious Diseases, Pneumology, University Medical Center, Leipzig, Germany
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, Infectious Diseases, and Pneumology, University Hospital, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Julia Buchold
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
28
|
Zheng L, Rang M, Fuchs C, Keß A, Wunsch M, Hentschel J, Hsiao CC, Kleber C, Osterhoff G, Aust G. The Posttraumatic Increase of the Adhesion GPCR EMR2/ ADGRE2 on Circulating Neutrophils Is Not Related to Injury Severity. Cells 2023; 12:2657. [PMID: 37998392 PMCID: PMC10670733 DOI: 10.3390/cells12222657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Trauma triggers a rapid innate immune response to aid the clearance of damaged/necrotic cells and their released damage-associated molecular pattern (DAMP). Here, we monitored the expression of EMR2/ADGRE2, involved in the functional regulation of innate immune cells, on circulating neutrophils in very severely and moderately/severely injured patients up to 240 h after trauma. Notably, neutrophilic EMR2 showed a uniform, injury severity- and type of injury-independent posttraumatic course in all patients. The percentage of EMR2+ neutrophils and their EMR2 level increased and peaked 48 h after trauma. Afterwards, they declined and normalized in some, but not all, patients. Circulating EMR2+ compared to EMR2- neutrophils express less CD62L and more CD11c, a sign of activation. Neutrophilic EMR2 regulation was verified in vitro. Remarkably, it increased, depending on extracellular calcium, in controls as well. Cytokines, enhanced in patients immediately after trauma, and sera of patients did not further affect this neutrophilic EMR2 increase, whereas apoptosis induction disrupted it. Likely the damaged/necrotic cells/DAMPs, unavoidable during neutrophil culture, stimulate the neutrophilic EMR2 increase. In summary, the rapidly increased absolute number of neutrophils, especially present in very severely injured patients, together with upregulated neutrophilic EMR2, may expand our in vivo capacity to react to and finally clear damaged/necrotic cells/DAMPs after trauma.
Collapse
Affiliation(s)
- Leyu Zheng
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Moujie Rang
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Carolin Fuchs
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Annette Keß
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Mandy Wunsch
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Julia Hentschel
- Institute of Human Genetics, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands;
| | - Christian Kleber
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Georg Osterhoff
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Gabriela Aust
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
- Research Laboratories and Department of Visceral, Transplantation, Vascular and Thoracic Surgery (VTTG), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Afrin LB, Dempsey TT, Molderings GJ. Learned cautions regarding antibody testing in mast cell activation syndrome. Diagnosis (Berl) 2023; 10:424-431. [PMID: 37566881 DOI: 10.1515/dx-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
OBJECTIVES To describe patterns observed in antibody titer trendlines in patients with mast cell activation syndrome (MCAS, a prevalent but underrecognized chronic multisystem inflammatory disorder of great clinical heterogeneity) and offer clinical lessons learned from such pattern recognition. METHODS The available records of 104 MCAS patients drawn from the authors' practices were reviewed, including all antibody tests therein. RESULTS All patients had positive/elevated antibodies of various sorts at various points, but for most of the antibodies which were found to be positive at least some points, the diseases classically associated with those antibodies were not present, marking such antibodies as clinically insignificant mimickers (likely consequent to inflammatory effects of MCAS on the immune system itself driving spurious/random antibody production) rather than "on-target" and pathogenic antibodies reflecting true disease warranting treatment. We also observed two distinct patterns in trendlines of the titers of the mimickers vs. the trendline pattern expected in a true case of an antibody-associated disease (AAD). CONCLUSIONS Our observations suggest most positive antibody tests in MCAS patients represent detection of clinically insignificant mimicking antibodies. As such, to reduce incorrect diagnoses of AADs and inappropriate treatment in MCAS patients, caution is warranted in interpreting positive antibody tests in these patients. Except in clinically urgent/emergent situations, patience in determining the trendline of a positive antibody in an MCAS patient, and more carefully assessing whether the AAD is truly present, is to be preferred.
Collapse
|
30
|
Fu C, Huang W, Tang Q, Niu M, Guo S, Langenhan T, Song G, Yan J. Unveiling Mechanical Activation: GAIN Domain Unfolding and Dissociation in Adhesion GPCRs. NANO LETTERS 2023; 23:9179-9186. [PMID: 37831892 PMCID: PMC10607210 DOI: 10.1021/acs.nanolett.3c01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Indexed: 10/15/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have extracellular regions (ECRs) containing GPCR autoproteolysis-inducing (GAIN) domains. The GAIN domain enables the ECR to self-cleave into N- and C-terminal fragments. However, the impact of force on the GAIN domain's conformation, critical for mechanosensitive aGPCR activation, remains unclear. Our study investigated the mechanical stability of GAIN domains in three aGPCRs (B, G, and L subfamilies) at a loading rate of 1 pN/s. We discovered that forces of a few piconewtons can destabilize the GAIN domains. In autocleaved aGPCRs ADGRG1/GPR56 and ADGRL1/LPHN1, these forces cause the GAIN domain detachment from the membrane-proximal Stachel sequence, preceded by partial unfolding. In noncleavable aGPCR ADGRB3/BAI3 and cleavage-deficient mutant ADGRG1/GPR56-T383G, complex mechanical unfolding of the GAIN domain occurs. Additionally, GAIN domain detachment happens during cell migration. Our findings support the mechanical activation hypothesis of aGPCRs, emphasizing the sensitivity of the GAIN domain structure and detachment to physiological force ranges.
Collapse
Affiliation(s)
- Chaoyu Fu
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Qingnan Tang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Minghui Niu
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shiwen Guo
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Tobias Langenhan
- Rudolf
Schönheimer Institute of Biochemistry, Division of General
Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Gaojie Song
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yan
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, Singapore 117557, Singapore
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
31
|
Seufert F, Chung YK, Hildebrand PW, Langenhan T. 7TM domain structures of adhesion GPCRs: what's new and what's missing? Trends Biochem Sci 2023; 48:726-739. [PMID: 37349240 DOI: 10.1016/j.tibs.2023.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Adhesion-type G protein-coupled receptors (aGPCRs) have long resisted approaches to resolve the structural details of their heptahelical transmembrane (7TM) domains. Single-particle cryogenic electron microscopy (cryo-EM) has recently produced aGPCR 7TM domain structures for ADGRD1, ADGRG1, ADGRG2, ADGRG3, ADGRG4, ADGRG5, ADGRF1, and ADGRL3. We review the unique properties, including the position and conformation of their activating tethered agonist (TA) and signaling motifs within the 7TM bundle, that the novel structures have helped to identify. We also discuss questions that the kaleidoscope of novel aGPCR 7TM domain structures have left unanswered. These concern the relative positions, orientations, and interactions of the 7TM and GPCR autoproteolysis-inducing (GAIN) domains with one another. Clarifying their interplay remains an important goal of future structural studies on aGPCRs.
Collapse
Affiliation(s)
- Florian Seufert
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Yin Kwan Chung
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
32
|
Lyons JJ, Farkas H, Germenis AE, Rijavec M, Smith TD, Valent P. Genetic Variants Leading to Urticaria and Angioedema and Associated Biomarkers. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2286-2301. [PMID: 37263349 PMCID: PMC11854852 DOI: 10.1016/j.jaip.2023.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Advances in next generation sequencing technologies, as well as their expanded accessibility and clinical use over the past 2 decades, have led to an exponential increase in the number of identified single gene disorders. Among these are primary atopic disorders-inborn errors of immunity resulting in severe allergic phenotypes as a primary presenting feature. Two cardinal aspects of type I immediate hypersensitivity allergic reactions are hives and angioedema. Mast cells (MCs) are frequent primary drivers of these symptoms, but other cells have also been implicated. Even where MC degranulation is believed to be the cause, mediator-induced symptoms may greatly vary among individuals. Angioedema-particularly in the absence of hives-may also be caused by hereditary angioedema conditions resulting from aberrant regulation of contact system activation and excessive bradykinin generation or impairment of vascular integrity. In these patients, swelling can affect unpredictable locations and fail to respond to MC-directed therapies. Genetic variants have helped delineate key pathways in the etiology of urticaria and nonatopic angioedema and led to the development of targeted therapies. Herein, we describe the currently known inherited and acquired genetic causes for these conditions, highlight specific features in their clinical presentations, and discuss the benefits and limitations of biomarkers that can help distinguish them.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Henriette Farkas
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Anastasios E Germenis
- Department of Immunology and Histocompatibility, School of Medicine, University of Thessaly, Larissa, Greece
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tukisa D Smith
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, Calif
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Costanzo G, Costanzo GAML, Del Moro L, Nappi E, Pelaia C, Puggioni F, Canonica GW, Heffler E, Paoletti G. Mast Cells in Upper and Lower Airway Diseases: Sentinels in the Front Line. Int J Mol Sci 2023; 24:ijms24119771. [PMID: 37298721 DOI: 10.3390/ijms24119771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells (MCs) are fascinating cells of the innate immune system involved not only in allergic reaction but also in tissue homeostasis, response to infection, wound healing, protection against kidney injury, the effects of pollution and, in some circumstances, cancer. Indeed, exploring their role in respiratory allergic diseases would give us, perhaps, novel therapy targets. Based on this, there is currently a great demand for therapeutic regimens to enfeeble the damaging impact of MCs in these pathological conditions. Several strategies can accomplish this at different levels in response to MC activation, including targeting individual mediators released by MCs, blockade of receptors for MC-released compounds, inhibition of MC activation, limiting mast cell growth, or inducing mast cell apoptosis. The current work focuses on and summarizes the mast cells' role in pathogenesis and as a personalized treatment target in allergic rhinitis and asthma; even these supposed treatments are still at the preclinical stage.
Collapse
Affiliation(s)
- Giovanni Costanzo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | | | - Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Emanuele Nappi
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University 'Magna Græcia' of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
34
|
Yang BG, Kim AR, Lee D, An SB, Shim YA, Jang MH. Degranulation of Mast Cells as a Target for Drug Development. Cells 2023; 12:1506. [PMID: 37296626 PMCID: PMC10253146 DOI: 10.3390/cells12111506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells act as key effector cells of inflammatory responses through degranulation. Mast cell degranulation is induced by the activation of cell surface receptors, such as FcεRI, MRGPRX2/B2, and P2RX7. Each receptor, except FcεRI, varies in its expression pattern depending on the tissue, which contributes to their differing involvement in inflammatory responses depending on the site of occurrence. Focusing on the mechanism of allergic inflammatory responses by mast cells, this review will describe newly identified mast cell receptors in terms of their involvement in degranulation induction and patterns of tissue-specific expression. In addition, new drugs targeting mast cell degranulation for the treatment of allergy-related diseases will be introduced.
Collapse
Affiliation(s)
- Bo-Gie Yang
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - A-Ram Kim
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - Dajeong Lee
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - Seong Beom An
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - Yaein Amy Shim
- Research Institute, GI Innovation Inc., Songpa-gu, Seoul 05855, Republic of Korea;
| | - Myoung Ho Jang
- Research Institute, GI Innovation Inc., Songpa-gu, Seoul 05855, Republic of Korea;
| |
Collapse
|
35
|
Jones DTD, Dates AN, Rawson SD, Burruss MM, Lipper CH, Blacklow SC. Tethered agonist activated ADGRF1 structure and signalling analysis reveal basis for G protein coupling. Nat Commun 2023; 14:2490. [PMID: 37120430 PMCID: PMC10148833 DOI: 10.1038/s41467-023-38083-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
Adhesion G Protein Coupled Receptors (aGPCRs) have evolved an activation mechanism to translate extracellular force into liberation of a tethered agonist (TA) to effect cell signalling. We report here that ADGRF1 can signal through all major G protein classes and identify the structural basis for a previously reported Gαq preference by cryo-EM. Our structure shows that Gαq preference in ADGRF1 may derive from tighter packing at the conserved F569 of the TA, altering contacts between TM helix I and VII, with a concurrent rearrangement of TM helix VII and helix VIII at the site of Gα recruitment. Mutational studies of the interface and of contact residues within the 7TM domain identify residues critical for signalling, and suggest that Gαs signalling is more sensitive to mutation of TA or binding site residues than Gαq. Our work advances the detailed molecular understanding of aGPCR TA activation, identifying features that potentially explain preferential signal modulation.
Collapse
Affiliation(s)
- Daniel T D Jones
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Andrew N Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaun D Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Maggie M Burruss
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Colin H Lipper
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
36
|
Tseng WY, Stacey M, Lin HH. Role of Adhesion G Protein-Coupled Receptors in Immune Dysfunction and Disorder. Int J Mol Sci 2023; 24:ijms24065499. [PMID: 36982575 PMCID: PMC10055975 DOI: 10.3390/ijms24065499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Disorders of the immune system, including immunodeficiency, immuno-malignancy, and (auto)inflammatory, autoimmune, and allergic diseases, have a great impact on a host’s health. Cellular communication mediated through cell surface receptors, among different cell types and between cell and microenvironment, plays a critical role in immune responses. Selective members of the adhesion G protein-coupled receptor (aGPCR) family are expressed differentially in diverse immune cell types and have been implicated recently in unique immune dysfunctions and disorders in part due to their dual cell adhesion and signaling roles. Here, we discuss the molecular and functional characteristics of distinctive immune aGPCRs and their physiopathological roles in the immune system.
Collapse
Affiliation(s)
- Wen-Yi Tseng
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Hsi-Hsien Lin
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
37
|
Streit M, Hemberger M, Häfner S, Knote F, Langenhan T, Beliu G. Optimized genetic code expansion technology for time-dependent induction of adhesion GPCR-ligand engagement. Protein Sci 2023; 32:e4614. [PMID: 36870000 PMCID: PMC10031756 DOI: 10.1002/pro.4614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
The introduction of an engineered aminoacyl-tRNA synthetase/tRNA pair enables site-specific incorporation of unnatural amino acids (uAAs) with functionalized side chains into proteins of interest. Genetic Code Expansion (GCE) via amber codon suppression confers functionalities to proteins but can also be used to temporally control the incorporation of genetically encoded elements into proteins. Here, we report an optimized GCE system (GCEXpress) for efficient and fast uAA incorporation. We demonstrate that GCEXpress can be used to efficiently alter the subcellular localization of proteins within living cells. We show that click labeling can resolve co-labeling problems of intercellular adhesive protein complexes. We apply this strategy to study the adhesion G protein-coupled receptor (aGPCR) ADGRE5/CD97 and its ligand CD55/DAF that play central roles in immune functions and oncological processes. Furthermore, we use GCEXpress to analyze the time course of ADGRE5-CD55 ligation and replenishment of mature receptor-ligand complexes. Supported by fluorescence recovery after photobleaching (FRAP) experiments our results show that ADGRE5 and CD55 form stable intercellular contacts that may support transmission of mechanical forces onto ADGRE5 in a ligand-dependent manner. We conclude that GCE in combination with biophysical measurements can be a useful approach to analyze the adhesive, mechanical and signaling properties of aGPCRs and their ligand interactions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Mareike Hemberger
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Stephanie Häfner
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Felix Knote
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
Scholz N, Dahse AK, Kemkemer M, Bormann A, Auger GM, Vieira Contreras F, Ernst LF, Staake H, Körner MB, Buhlan M, Meyer-Mölck A, Chung YK, Blanco-Redondo B, Klose F, Jarboui MA, Ljaschenko D, Bigl M, Langenhan T. Molecular sensing of mechano- and ligand-dependent adhesion GPCR dissociation. Nature 2023; 615:945-953. [PMID: 36890234 DOI: 10.1038/s41586-023-05802-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) bear notable similarity to Notch proteins1, a class of surface receptors poised for mechano-proteolytic activation2-4, including an evolutionarily conserved mechanism of cleavage5-8. However, so far there is no unifying explanation for why aGPCRs are autoproteolytically processed. Here we introduce a genetically encoded sensor system to detect the dissociation events of aGPCR heterodimers into their constituent N-terminal and C-terminal fragments (NTFs and CTFs, respectively). An NTF release sensor (NRS) of the neural latrophilin-type aGPCR Cirl (ADGRL)9-11, from Drosophila melanogaster, is stimulated by mechanical force. Cirl-NRS activation indicates that receptor dissociation occurs in neurons and cortex glial cells. The release of NTFs from cortex glial cells requires trans-interaction between Cirl and its ligand, the Toll-like receptor Tollo (Toll-8)12, on neural progenitor cells, whereas expressing Cirl and Tollo in cis suppresses dissociation of the aGPCR. This interaction is necessary to control the size of the neuroblast pool in the central nervous system. We conclude that receptor autoproteolysis enables non-cell-autonomous activities of aGPCRs, and that the dissociation of aGPCRs is controlled by their ligand expression profile and by mechanical force. The NRS system will be helpful in elucidating the physiological roles and signal modulators of aGPCRs, which constitute a large untapped reservoir of drug targets for cardiovascular, immune, neuropsychiatric and neoplastic diseases13.
Collapse
Affiliation(s)
- Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Anne-Kristin Dahse
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marguerite Kemkemer
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Anne Bormann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Genevieve M Auger
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Fernando Vieira Contreras
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Lucia F Ernst
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Hauke Staake
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marek B Körner
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Max Buhlan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Amelie Meyer-Mölck
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Yin Kwan Chung
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Beatriz Blanco-Redondo
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Franziska Klose
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Mohamed Ali Jarboui
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marina Bigl
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
39
|
Michel M, Klingebiel C, Vitte J. Tryptase in type I hypersensitivity. Ann Allergy Asthma Immunol 2023; 130:169-177. [PMID: 36084866 DOI: 10.1016/j.anai.2022.08.996] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 02/07/2023]
Abstract
Tryptase is currently the main mast cell biomarker available in medical practice. Tryptase determination is a quantitative test performed in serum or plasma for the diagnosis, stratification, and follow-up of mast cell-related conditions. The continuous secretion of monomeric α and β protryptases forms the baseline tryptase level. Transient, activation-induced release of tryptase is known as acute tryptase. Because mast cells are tissue-resident cells, the detection of an acute tryptase release in the bloodstream is protracted, with a delay of 15 to 20 minutes after the onset of symptoms and a peak at approximately 1 hour. Constitutive release of tryptase is a marker of mast cell number and activity status, whereas transient release of mature tryptase is a marker of mast cell degranulation. Although consensual as a concept, the application of this statement in clinical practice has only been clarified since 2020. For baseline tryptase to be used as a biomarker, reference values need to be established. In contrast, defining a transient increase using acute tryptase can only be achieved as a function of the baseline status.
Collapse
Affiliation(s)
- Moïse Michel
- Immunology Laboratory, Centre Hospitalier Universitaire Nîmes, Nîmes, France; Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille University, Marseille, France
| | | | - Joana Vitte
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille University, Marseille, France; Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France; Montpellier University, Institut Desbrest d'Épidémiologie et de Santé Publique, Institut National de la Sante et de la Recherche Medicale, UMR UA 11, Montpellier, France.
| |
Collapse
|
40
|
Adhesion G protein-coupled receptors-Structure and functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:1-25. [PMID: 36707149 DOI: 10.1016/bs.pmbts.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are an ancient class of receptors that represent some of the largest transmembrane-integrated proteins in humans. First recognized as surface markers on immune cells, it took more than a decade to appreciate their 7-transmembrane structure, which is reminiscent of GPCRs. Roughly 30 years went by before the first functional proof of an interaction with a G protein was published. Besides classic features of GPCRs (extracellular N terminus, 7-transmembrane region, intracellular C terminus), aGPCRs display a distinct N-terminal structure, which harbors the highly conserved GPCR autoproteolysis-inducing (GAIN) domain with the GPCR proteolysis site (GPS) in addition to several functional domains. Several human diseases have been associated with variants of aGPCRs and subsequent animal models have been established to investigate these phenotypes. Much progress has been made in recent years to decipher the structure and functions of these receptors. This chapter gives an overview of our current understanding with respect to the molecular structural patterns governing aGPCR activation and the contribution of these giant molecules to the development of pathologies.
Collapse
|
41
|
Akin C, Brockow K, Hartmann K, Nilsson GP. Legends of Allergy and Immunology-Dean D. Metcalfe. Allergy 2023; 78:1395-1396. [PMID: 36704860 DOI: 10.1111/all.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Affiliation(s)
- Cem Akin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gunnar P Nilsson
- Division of Allergy and Immunology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Urticaria and Angioedema: Understanding Complex Pathomechanisms to Facilitate Patient Communication, Disease Management, and Future Treatment. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:94-106. [PMID: 36610760 DOI: 10.1016/j.jaip.2022.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 01/06/2023]
Abstract
Chronic spontaneous urticaria (CSU) is primarily a T2-dominant disease with a complex genetic background. Skin mast cell activation can be induced not only via the IgE-FcεRI axis but also from several other distinct mechanisms, molecules, and receptors involved in CSU onset, persistence, and exacerbation. These include autoallergy, autoimmunity, central or peripheral neuroimmune dysregulation, activation of both extrinsic and intrinsic coagulation pathways, and microbial infections. Besides mast cells, recent reports suggest the active and direct involvement of basophils and eosinophils. Several biological characteristics or biomarkers have been linked with CSU's known endotypes and may help forecast therapeutic responses. The introduction of biologic therapy for CSU has been a major advance in the last 10 years. The cornerstone of angioedema (AE) pathogenesis is increased vascular permeability and plasma leakage into the deeper dermis and subcutis, either mediated by histamine or bradykinin (BK). C1-inhibitor deficiency, hereditary or acquired, is the primary cause of BK-mediated AE due to increased plasma BK concentration. Other complex conditions have been identified, with some likely involving contact system dysregulation and other putative mechanisms related to vascular endothelial dysfunction. The approval of multiple hereditary-AE-specific therapies for both prevention and acute attacks has revolutionized treatment of this disease. Any new knowledge of the pathogenesis of CSU and AE offers the opportunity to improve patient information, physician-patient communication, prediction of therapeutic responses, selection of precise tailor-made treatment for each patient, and exploration of novel treatment options for those who do not achieve disease control with current medications.
Collapse
|
43
|
Liebscher I, Cevheroğlu O, Hsiao CC, Maia AF, Schihada H, Scholz N, Soave M, Spiess K, Trajković K, Kosloff M, Prömel S. A guide to adhesion GPCR research. FEBS J 2022; 289:7610-7630. [PMID: 34729908 DOI: 10.1111/febs.16258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a class of structurally and functionally highly intriguing cell surface receptors with essential functions in health and disease. Thus, they display a vastly unexploited pharmacological potential. Our current understanding of the physiological functions and signaling mechanisms of aGPCRs form the basis for elucidating further molecular aspects. Combining these with novel tools and methodologies from different fields tailored for studying these unusual receptors yields a powerful potential for pushing aGPCR research from singular approaches toward building up an in-depth knowledge that will facilitate its translation to applied science. In this review, we summarize the state-of-the-art knowledge on aGPCRs in respect to structure-function relations, physiology, and clinical aspects, as well as the latest advances in the field. We highlight the upcoming most pressing topics in aGPCR research and identify strategies to tackle them. Furthermore, we discuss approaches how to promote, stimulate, and translate research on aGPCRs 'from bench to bedside' in the future.
Collapse
Affiliation(s)
- Ines Liebscher
- Division of Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | | | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - André F Maia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IBMC - Instituto Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Hannes Schihada
- C3 Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, UK
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Katarina Trajković
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, The University of Haifa, Israel
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
44
|
Yoon CW, Pan Y, Wang Y. The application of mechanobiotechnology for immuno-engineering and cancer immunotherapy. Front Cell Dev Biol 2022; 10:1064484. [PMID: 36483679 PMCID: PMC9725026 DOI: 10.3389/fcell.2022.1064484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Immune-engineering is a rapidly emerging field in the past few years, as immunotherapy evolved from a paradigm-shifting therapeutic approach for cancer treatment to promising immuno-oncology models in clinical trials and commercial products. Linking the field of biomedical engineering with immunology, immuno-engineering applies engineering principles and utilizes synthetic biology tools to study and control the immune system for diseases treatments and interventions. Over the past decades, there has been a deeper understanding that mechanical forces play crucial roles in regulating immune cells at different stages from antigen recognition to actual killing, which suggests potential opportunities to design and tailor mechanobiology tools to novel immunotherapy. In this review, we first provide a brief introduction to recent technological and scientific advances in mechanobiology for immune cells. Different strategies for immuno-engineering are then discussed and evaluated. Furthermore, we describe the opportunities and challenges of applying mechanobiology and related technologies to study and engineer immune cells and ultimately modulate their function for immunotherapy. In summary, the synergetic integration of cutting-edge mechanical biology techniques into immune-engineering strategies can provide a powerful platform and allow new directions for the field of immunotherapy.
Collapse
Affiliation(s)
- Chi Woo Yoon
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yijia Pan
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
45
|
Lin H, Xiao P, Bu RQ, Guo S, Yang Z, Yuan D, Zhu ZL, Zhang CX, He QT, Zhang C, Ping YQ, Zhao RJ, Ma CS, Liu CH, Zhang XN, Jiang D, Huang S, Xi YT, Zhang DL, Xue CY, Yang BS, Li JY, Lin HC, Zeng XH, Zhao H, Xu WM, Yi F, Liu Z, Sun JP, Yu X. Structures of the ADGRG2-G s complex in apo and ligand-bound forms. Nat Chem Biol 2022; 18:1196-1203. [PMID: 35982227 DOI: 10.1038/s41589-022-01084-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/10/2022] [Indexed: 01/13/2023]
Abstract
Adhesion G protein-coupled receptors are elusive in terms of their structural information and ligands. Here, we solved the cryogenic-electron microscopy (cryo-EM) structure of apo-ADGRG2, an essential membrane receptor for maintaining male fertility, in complex with a Gs trimer. Whereas the formations of two kinks were determinants of the active state, identification of a potential ligand-binding pocket in ADGRG2 facilitated the screening and identification of dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate and deoxycorticosterone as potential ligands of ADGRG2. The cryo-EM structures of DHEA-ADGRG2-Gs provided interaction details for DHEA within the seven transmembrane domains of ADGRG2. Collectively, our data provide a structural basis for the activation and signaling of ADGRG2, as well as characterization of steroid hormones as ADGRG2 ligands, which might be used as useful tools for further functional studies of the orphan ADGRG2.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Clinical Laboratory, The Second Hospital, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Peng Xiao
- Department of Clinical Laboratory, The Second Hospital, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui-Qian Bu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Shengchao Guo
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao Yang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daopeng Yuan
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhong-Liang Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chuan-Xin Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Tao He
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Zhang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu-Qi Ping
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ru-Jia Zhao
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuan-Shun Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chang-Hao Liu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ning Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Dan Jiang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaohui Huang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue-Tong Xi
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dao-Lai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chen-Yang Xue
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Bai-Sheng Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian-Yuan Li
- Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, National Health and Family Planning Commission, Beijing, China
| | - Hao-Cheng Lin
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Ming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Zhongmin Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Jin-Peng Sun
- Department of Clinical Laboratory, The Second Hospital, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiao Yu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
46
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
47
|
|
48
|
Bridges JP, Safina C, Pirard B, Brown K, Filuta A, Panchanathan R, Bouhelal R, Reymann N, Patel S, Seuwen K, Miller WE, Ludwig MG. Regulation of pulmonary surfactant by the adhesion GPCR GPR116/ADGRF5 requires a tethered agonist-mediated activation mechanism. eLife 2022; 11:69061. [PMID: 36073784 PMCID: PMC9489211 DOI: 10.7554/elife.69061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
The mechanistic details of the tethered agonist mode of activation for the adhesion GPCR ADGRF5/GPR116 have not been completely deciphered. We set out to investigate the physiological importance of autocatalytic cleavage upstream of the agonistic peptide sequence, an event necessary for NTF displacement and subsequent receptor activation. To examine this hypothesis, we characterized tethered agonist-mediated activation of GPR116 in vitro and in vivo. A knock-in mouse expressing a non-cleavable GPR116 mutant phenocopies the pulmonary phenotype of GPR116 knock-out mice, demonstrating that tethered agonist-mediated receptor activation is indispensable for function in vivo. Using site-directed mutagenesis and species-swapping approaches, we identified key conserved amino acids for GPR116 activation in the tethered agonist sequence and in extracellular loops 2/3 (ECL2/3). We further highlight residues in transmembrane 7 (TM7) that mediate stronger signaling in mouse versus human GPR116 and recapitulate these findings in a model supporting tethered agonist:ECL2 interactions for GPR116 activation.
Collapse
Affiliation(s)
- James P Bridges
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Caterina Safina
- Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - Bernard Pirard
- Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - Kari Brown
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Alyssa Filuta
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ravichandran Panchanathan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, United States
| | - Rochdi Bouhelal
- Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - Nicole Reymann
- Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - Sejal Patel
- Novartis Institutes for Biomedical Research, Novartis, Cambridge, United States
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - William E Miller
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, United States
| | | |
Collapse
|
49
|
Sreepada A, Tiwari M, Pal K. Adhesion G protein-coupled receptor gluing action guides tissue development and disease. J Mol Med (Berl) 2022; 100:1355-1372. [PMID: 35969283 DOI: 10.1007/s00109-022-02240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Phylogenetic analysis of human G protein-coupled receptors (GPCRs) divides these transmembrane signaling proteins into five groups: glutamate, rhodopsin, adhesion, frizzled, and secretin families, commonly abbreviated as the GRAFS classification system. The adhesion GPCR (aGPCR) sub-family comprises 33 different receptors in humans. Majority of the aGPCRs are orphan receptors with unknown ligands, structures, and tissue expression profiles. They have a long N-terminal extracellular domain (ECD) with several adhesion sites similar to integrin receptors. Many aGPCRs undergo autoproteolysis at the GPCR proteolysis site (GPS), enclosed within the larger GPCR autoproteolysis inducing (GAIN) domain. Recent breakthroughs in aGPCR research have created new paradigms for understanding their roles in organogenesis. They play crucial roles in multiple aspects of organ development through cell signaling, intercellular adhesion, and cell-matrix associations. They are involved in essential physiological processes like regulation of cell polarity, mitotic spindle orientation, cell adhesion, and migration. Multiple aGPCRs have been associated with the development of the brain, musculoskeletal system, kidneys, cardiovascular system, hormone secretion, and regulation of immune functions. Since aGPCRs have crucial roles in tissue patterning and organogenesis, mutations in these receptors are often associated with diseases with loss of tissue integrity. Thus, aGPCRs include a group of enigmatic receptors with untapped potential for elucidating novel signaling pathways leading to drug discovery. We summarized the current knowledge on how aGPCRs play critical roles in organ development and discussed how aGPCR mutations/genetic variants cause diseases.
Collapse
Affiliation(s)
- Abhijit Sreepada
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India
| | - Mansi Tiwari
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India
| | - Kasturi Pal
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India.
| |
Collapse
|
50
|
[Translated article] Acquired Nonfamilial Vibratory Angioedema. ACTAS DERMO-SIFILIOGRAFICAS 2022; 113:T900-T904. [DOI: 10.1016/j.ad.2021.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022] Open
|