1
|
Lavoie G, Pavord ID. Biologics in Asthma: Role of Biomarkers. Immunol Allergy Clin North Am 2024; 44:709-723. [PMID: 39389719 DOI: 10.1016/j.iac.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Our modern understanding of asthma mainly concerns identification of inflammatory endotype to guide management. The distinction mostly concerns identification of type-2 inflammation, for which different biomarkers have been well characterized. Blood eosinophils corroborate activity in the interleukin (IL)-5 axis while fraction of exhaled nitric oxide is indicative of the IL-4/IL-13 axis, giving us an indication of activity in these distinct but complementary pathways. These biomarkers predict disease activity, with increased risk of exacerbations when elevated, and a further, multiplicative increase when both are elevated. Serum immunoglobulin E is also implicated in this pathway, and can represent allergen-related stimulation.
Collapse
Affiliation(s)
- Gabriel Lavoie
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
| |
Collapse
|
2
|
Salciccioli JD, Israel E. Asthma Biologics: Lung Function, Steroid-Dependence, and Exacerbations. Immunol Allergy Clin North Am 2024; 44:693-708. [PMID: 39389718 PMCID: PMC11540338 DOI: 10.1016/j.iac.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The development of multiple targeted biologic therapies over the past two decades has revolutionized the management of asthma. Currently, there are 6 monoclonal antibodies that target specific inflammatory mediators involved in the pathophysiology of asthma, and together, they provide the opportunity for personalized treatment options beyond bronchodilators and inhaled or systemic glucocorticoids in severe and difficult-to-control cases of asthma. These agents are the anti-IgE antibody omalizumab, the anti-IL-5 antibodies mepolizumab and reslizumab, the IL-5 receptor alpha antagonist benralizumab, the IL-4 receptor alpha antagonist dupilumab, and the anti-thymic stromal lymphopoietin antibody tezepelumab.
Collapse
Affiliation(s)
- Justin D Salciccioli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; Division of Allergy and Immunology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
3
|
Tang X, Li M. The role of the skin in the atopic march. Int Immunol 2024; 36:567-577. [PMID: 39271155 DOI: 10.1093/intimm/dxae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024] Open
Abstract
Atopic diseases, including atopic dermatitis (AD), food allergy (FA), asthma, and allergic rhinitis (AR) are closely related to inflammatory diseases involving different body sites (i.e. the skin, airway, and digestive tract) with characteristic features including specific IgE to allergens (so-called "atopy") and Th2 cell-mediated inflammation. It has been recognized that AD often precedes the development of other atopic diseases. The progression from AD during infancy to FA or asthma/AR in later childhood is referred to as the "atopic march" (AM). Clinical, genetic, and experimental studies have provided evidence that allergen sensitization occurring through AD skin could be the origin of the AM. Here, we provide an updated review focusing on the role of the skin in the AM, from genetic mutations and environmental factors associated with epidermal barrier dysfunction in AD and the AM to immunological mechanisms for skin sensitization, particularly recent progress on the function of key cytokines produced by epidermal keratinocytes or by immune cells infiltrating the skin during AD. We also highlight the importance of developing strategies that target AD skin to prevent and attenuate the AM.
Collapse
Affiliation(s)
- Xin Tang
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, Illkirch 67404, France
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Mei Li
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
4
|
Mao Z, Huang Y, Zhu X, Zheng P, Wang L, Zhang F, Liu W, Liu H, Liao W, Zhou L. Adverse events associated with tezepelumab: a safety analysis of clinical trials and a pharmacovigilance system. Expert Opin Drug Saf 2024:1-10. [PMID: 39422097 DOI: 10.1080/14740338.2024.2416921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Tezepelumab is the first asthma biologic approved by the FDA that is not restricted by biomarker phenotypes. To date, there have been no studies reporting adverse events (AEs) associated with the real-world use of tezepelumab. RESEARCH DESIGN AND METHODS This study included a comprehensive evaluation of AE reports related to tezepelumab since its approval (4th quarter of 2021 to 1st quarter of 2024) using the FAERS database, and compared with the currently reported clinical trial results (ClinicalTrials.gov). RESULTS A total of 2153 reports of tezepelumab-related AEs were extracted. 256 preferred terms (PTs) of adverse reactions involving 27 system organ classes were identified. Significant AEs that were not reported on the drug label, such as 'dyspnea,' 'body temperature,' and 'tongue pruritus,' were reported. The median time to onset (TTO) of tezepelumab-related AEs was 35 days.The most frequent AEs in different sexes were 'arthralgia' and 'dyspnea,' with differences in signal strength ranking between the sexes. CONCLUSIONS This study represents the largest report to date on tezepelumab-related AEs, providing valuable insights into the potential side effects of tezepelumab. This work is crucial for the broader clinical application of this novel biologic and improving outcomes for patients with severe asthma.
Collapse
Affiliation(s)
- Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Huang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhui Liao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
6
|
Kawabe Y, Himori M, Watanabe Y, Davis J, Hamada H. Utilization of phase I studies for target validation of first-in-class drugs. Drug Discov Today 2024; 29:104200. [PMID: 39384032 DOI: 10.1016/j.drudis.2024.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
This review discusses the growing importance of target validation within phase I (P1) trials as a new trend in drug development, especially in establishing proof of concept (POC) for first-in-class drugs. The paper describes two approaches: the P1-PIV approach, which directly evaluates the primary endpoint for a pivotal clinical study to confirm therapeutic effects during P1, and the newly introduced P1-FCTE, which assesses functional changes necessary for therapeutic effect as a novel target validation milestone in P1. By providing practical examples of first-in-class drugs, we compare the benefits, costs, hurdles and applicable therapeutic areas of these approaches. Finally, we discuss the potential of these novel approaches to facilitate POC success, shorten development timelines and ultimately increase drug discovery success rates.
Collapse
Affiliation(s)
- Yoshiki Kawabe
- Research Division, Chugai Pharmaceutical Co., Ltd, 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 2449602, Japan.
| | - Motomu Himori
- Research Division, Chugai Pharmaceutical Co., Ltd, 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 2449602, Japan
| | - Yoshinori Watanabe
- Research Division, Chugai Pharmaceutical Co., Ltd, 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 2449602, Japan
| | - Jacob Davis
- Research Division, Chugai Pharmaceutical Co., Ltd, 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 2449602, Japan
| | - Hiromasa Hamada
- Research Division, Chugai Pharmaceutical Co., Ltd, 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 2449602, Japan
| |
Collapse
|
7
|
Mailhot-Larouche S, Celis-Preciado C, Heaney LG, Couillard S. Identifying super-responders: A review of the road to asthma remission. Ann Allergy Asthma Immunol 2024:S1081-1206(24)01559-X. [PMID: 39383944 DOI: 10.1016/j.anai.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Asthma is a chronic respiratory disease marked by heterogeneity and variable clinical outcomes. Recent therapeutic advances have highlighted patients achieving optimal outcomes, termed "remission" or "super-response." This review evaluates the various definitions of these terms and explores how disease burden impedes the attainment of remission. We assessed multiple studies, including a recent systematic review and meta-analysis, on biologic treatments for asthma remission. Our review highlights that type 2 inflammation may be the strongest predictor of biologic response. Key comorbidities (eg, obesity and mood disorders) and behavioral factors (eg, poor adherence, improper inhalation technique, and smoking) were identified as dominant traits limiting remission. In addition, asthma burden and longer disease duration significantly restrict the potential for remission in patients with severe asthma under the current treatment paradigm. We review the potential for a "predict-and-prevent" approach, which focuses on early identification of high-risk patients with type 2 inflammation and aggressive treatment to improve long-term asthma outcomes. In conclusion, this scoping review highlights the following unmet needs in asthma remission: (1) a harmonized global definition, with better defined lung function parameters; (2) integration of nonbiologic therapies into remission strategies; and (3) a clinical trial of early biologic intervention in patients with remission-prone, very type 2-high, moderately severe asthma with clinical remission as a predefined primary end point.
Collapse
Affiliation(s)
- Samuel Mailhot-Larouche
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Carlos Celis-Preciado
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Liam G Heaney
- Centre for Experimental Medicine, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, United Kingdom
| | - Simon Couillard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
8
|
Chin-See-Chong TCT, Valk JPMJVD, Layhadi JAJ, Shamji MHM, Kappen JHJ. Clinical efficacy of tezepelumab in pre-selected non-type 2 asthma patients. Allergy 2024; 79:2867-2870. [PMID: 39034850 DOI: 10.1111/all.16237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Affiliation(s)
| | - J P M Johanna van der Valk
- Department of Pulmonary Diseases, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
- Department of Pulmonary Diseases, Erasmus Medical Centrum, Rotterdam, The Netherlands
| | - J A Janice Layhadi
- National Heart and Lung Institute, Imperial College London, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - M H Mohamed Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - J H Jasper Kappen
- Department of Pulmonary Diseases, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
- National Heart and Lung Institute, Imperial College London, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
9
|
Hillson K, Saglani S, Bush A. The new biologic drugs: Which children with asthma should get what? Pediatr Pulmonol 2024. [PMID: 39267467 DOI: 10.1002/ppul.27218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/21/2024] [Accepted: 08/09/2024] [Indexed: 09/17/2024]
Abstract
Novel biologics (targeted antibody therapies) have revolutionized the management of severe childhood asthma. However, it is important that the right biologic is selected for the right patient, and understanding the evidence base for each biologic is crucial. Currently, four biologics (all monoclonal antibodies) are licensed in the UK for the treatment of children with severe asthma - omalizumab (Xolair), mepolizumab (Nucala), and dupilumab (Dupixent) in children aged 6 years and over; and tezepelumab (Tezspire), only in children aged 12 years and over. Tezepelumab is the only licensed biological that may be beneficial in severe asthma without evidence of Type 2 inflammation. All have a good safety profile but varying degrees of clinical efficacy in children, with wide variation in treatment responsiveness between individual patients. When selecting biologics for severe asthma, it is essential to remember the limitations of the current pediatric evidence. At present, there are no results from randomized, head-to-head trials of biologics in severe asthma. TREAT is an ongoing trial comparing omalizumab to mepolizumab and will be one of the first to provide such evidence. We must be especially aware of the dangers of extrapolating data from adults to children, because the pathophysiology and role of biomarkers may differ significantly from adult asthma. Given the current level of knowledge, even after treatment has been initiated, children should be regularly reviewed to determine the efficacy of treatment, side-effect profile and consideration of when treatment with the biologic should be discontinued.
Collapse
Affiliation(s)
- K Hillson
- National Heart and Lung Institute, Imperial College London, London, UK
- Pediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - S Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Pediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - A Bush
- National Heart and Lung Institute, Imperial College London, London, UK
- Pediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| |
Collapse
|
10
|
Shen Y, Guan D, Gu Y, Zheng B, Ke X, Hong S, Yang Y. Comparative safety of monoclonal antibodies in chronic inflammatory airway diseases (chronic sinusitis with nasal polyposis and asthma): A network meta-analysis. Int Immunopharmacol 2024; 138:112462. [PMID: 38943971 DOI: 10.1016/j.intimp.2024.112462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE Several monoclonal antibodies (MoAbs) targeting specific type 2 immune reactions have been developed as innovative therapeutic approaches for chronic inflammatory airway diseases, such as chronic sinusitis with nasal polyps (CRSwNP) and asthma. However, the clinical safety of these MoAbs and how to choose them are not clear. Therefore, we aimed to assess the systemic drug- and dose-based safety of MoAbs in chronic airway inflammation using network meta-analysis (NMA). METHODS Electronic databases were systematically searched for relevant studies published in English between January 2009 and December 2022. Eligible studies must have clearly reported adverse events (AEs) among the MoAbs' safety data. RESULTS 1). Regarding serious AEs, mepolizumab was significantly safer than placebo; in terms of permanent treatment discontinuation, reslizumab and dupilumab were significantly safer than benralizumab. 2). Regarding asthma worsening, dupilumab was associated with the best safety profile; was safer than dupilumab/300 mg/q2-4w. 3). In terms of injection-site reactions, dupilumab posed a higher risk than placebo; dupilumab/300 mg/qw posed a higher risk than dupilumab/300 mg/q2w and dupilumab/300 mg/q2-4w; lebrikizumab/250 mg/q4w posed a higher risk than lebrikizumab/37.5 mg/q4w; mepolizumab/100 mg/q4w posed a higher risk than mepolizumab/75 mg/q4w; benralizumab/30 mg/q4-8w posed a higher risk than benralizumab/20 mg/q4-8w. 4) In CRSwNP patients combined with asthma, the risks of experiencing AEs were not increased. CONCLUSION Overall, biologics are safe and well tolerated in chronic inflammatory airway disease. This drug- and dose-based NMA provides further evidence on the different safety profiles of different emerging MoAbs. This information may help guide rational drug use and provide clinical recommendations for choosing MoAbs. TRIAL REGISTRATION SYSTEMATIC REVIEW REGISTRATION (PROSPERO #CRD42023387610).
Collapse
Affiliation(s)
- Yang Shen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dayu Guan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yue Gu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bowen Zheng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Ke
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Suling Hong
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yucheng Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Uehara Y, Suzukawa M, Horie M, Igarashi S, Minegishi M, Takada K, Saito A, Nagase H. ZFP36 family expression is suppressed by Th2 cells in asthma, leading to enhanced synthesis of inflammatory cytokines and cell surface molecules. Cell Immunol 2024; 403-404:104859. [PMID: 39067169 DOI: 10.1016/j.cellimm.2024.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Asthma is a chronic inflammatory airway disease, in which inflammatory cytokines play a pivotal role. The zinc finger binding protein 36 (ZFP36) family includes ZFP36, ZFP36L1, and ZFP36L2 and is among the RNA-binding proteins (RBPs) reported to cause inflammation. The present study aimed to clarify the roles of the ZFP36 family in asthma, particularly highlighting the relationship between the ZFP36 family and Th2 cells, which are key players in type 2 inflammation in asthma. Real-time PCR analysis revealed the preferential expression of ZFP36 family mRNAs in human white blood cells. Gene expression analysis using public datasets from the GEO database (https://www.ncbi.nlm.nih.gov/gds) showed significantly suppressed expression of ZFP36 family mRNAs in patients with asthma compared to that in healthy controls. Using multiple cytokine assays, Th2 cell transfection with ZFP36 family siRNAs enhanced the expression of inflammatory cytokines IL-8, IFN-γ, CCL3/MIP-1α, CCL4/MIP-1β, and TNF-α and cell surface molecules CCR4 (CD194) and PSGL-1 (CD162). Treatment with IL-2, 4, and 15 significantly suppressed, and corticosteroid significantly enhanced the expressions of ZFP36 family mRNAs by Th2 cells. In conclusion, the ZFP36 family expressed by Th2 cells was suppressed in patients with asthma, leading to the enhanced expression of cytokines and cell surface molecules. Suppressed ZFP36 expression in asthma may be involved in the enhancement of airway inflammation, and the ZFP36 family may be a therapeutic target for inflammatory diseases, including asthma.
Collapse
Affiliation(s)
- Yuki Uehara
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan; Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan.
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sayaka Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan
| | - Masaaki Minegishi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan
| | - Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nagase
- Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| |
Collapse
|
12
|
Biener L, Mümmler C, Hinze CA, Suhling H, Korn S, Fisser C, Biener A, Pizarro C, Lenoir A, Hackl C, Skowasch D, Milger K. Real-World Data on Tezepelumab in Patients With Severe Asthma in Germany. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2399-2407.e5. [PMID: 38866104 DOI: 10.1016/j.jaip.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Tezepelumab is a novel biologic blocking thymic stromal lymphopoetin, approved for severe asthma irrespective of biomarker levels or phenotype. OBJECTIVE To characterize a real-world tezepelumab patient cohort and the efficacy among various asthma phenotypes. METHODS We performed a retrospective, multicenter study on patients with severe asthma initiating tezepelumab. Clinical response was evaluated at 3 and 6 months. RESULTS We included 129 patients with an average age of 52.5 ± 13.1 years, 59.7% were female. The majority (86.0%) had increased type 2 (T2) biomarkers, 68.2% an allergic and 31.8% an eosinophilic phenotype. 23.3% of patients were biologic-naive. 22 (18.2%) patients discontinued tezepelumab therapy owing to suspected side effects or insufficient efficacy. At 6 months' follow-up, median reduction in annualized exacerbation rate was-1 [25th percentile; 75% percentile {-2.9; 0.0}], the reduction of oral corticosteroid dose among patients with long-term oral corticosteroid therapy was -5 mg [-10; 0] and the Asthma Control Test (ACT) improved by 2 [0; 5] points. A treatment response according to Biologic Asthma Response Score of 80.8% was demonstrated. There were no significant differences in treatment response between T2-high versus T2-low, early- versus adult-onset and eosinophilic versus non-eosinophilic asthma. Prior treatment with other biologics was associated with inferior treatment response. CONCLUSIONS In this real-life cohort, including a large proportion of patients with history of previous biologic use and encompassing various subgroups, the majority responded to tezepelumab. Our data further suggest a steroid-sparing effect of tezepelumab.
Collapse
Affiliation(s)
- Leonie Biener
- Department of Internal Medicine II, Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany.
| | - Carlo Mümmler
- Department of Medicine V, Ludwig-Maximilians-Universität (LMU) University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christopher Alexander Hinze
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Hendrik Suhling
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Stephanie Korn
- Institut für Klinische Forschung (IKF) Pneumologie Mainz and Thoraxklinik Heidelberg, Mainz and Heidelberg, Germany
| | - Christoph Fisser
- Department of Internal Medicine II, University Medical Centre Regensburg, Regensburg, Germany
| | - Arne Biener
- Department of Internal Medicine II, Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Carmen Pizarro
- Department of Internal Medicine II, Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Lenoir
- Department of Medicine V, Ludwig-Maximilians-Universität (LMU) University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Caroline Hackl
- Department of Medicine V, Ludwig-Maximilians-Universität (LMU) University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Katrin Milger
- Department of Medicine V, Ludwig-Maximilians-Universität (LMU) University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
13
|
Sim S, Choi Y, Park HS. Update on Inflammatory Biomarkers for Defining Asthma Phenotype. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:462-472. [PMID: 39363766 PMCID: PMC11450439 DOI: 10.4168/aair.2024.16.5.462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Asthma is a chronic heterogeneous disease characterized by various symptoms and persistent airway inflammation, resulting in progressive lung function decline. Classifying asthma phenotypes/endotypes is crucial because the underlying mechanisms and long-term outcomes vary from patient to patient. Recent trials have identified several biomarkers for classifying asthma phenotypes/endotypes, and current treatments have been developed on the basis of these biomarkers. Conventional biomarkers, including immunoglobulin E, blood/sputum eosinophil counts, airway obstruction or reversibility, and fractional exhaled nitric oxide, are widely used to diagnose asthma. However, these markers have some limitations, necessitating the discovery of additional biomarkers. Therefore, this review summarizes recently suggested biomarkers for representing type 2-high (eosinophilic) vs. type 2-low (neutrophilic) asthma, non-steroidal anti-inflammatory drug-exacerbated respiratory disease, and severe asthma. Additionally, we discuss the potential benefits of these biomarkers in classifying specific phenotypes/endotypes and managing asthmatic patients.
Collapse
Affiliation(s)
- Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
14
|
Maurer M, Kolkhir P, Pereira MP, Siebenhaar F, Witte-Händel E, Bergmann KC, Bonnekoh H, Buttgereit T, Fluhr JW, Frischbutter S, Grekowitz EM, Herzog L, Kiefer LA, Krause K, Magerl M, Muñoz M, Neisinger S, Nojarov N, Prins S, Pyatilova P, Ramanauskaité A, Scheffel J, Terhorst-Molawi D, Treudler R, Weller K, Zuberbier T, Metz M. Disease modification in chronic spontaneous urticaria. Allergy 2024; 79:2396-2413. [PMID: 39044706 DOI: 10.1111/all.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Chronic spontaneous urticaria (CSU) is a debilitating, inflammatory skin condition characterized by infiltrating immune cells. Available treatments are limited to improving the signs and symptoms. There is an unmet need to develop therapies that target disease-driving pathways upstream of mast cell activation to inhibit or delay the progression of CSU and associated comorbidities. Here, we aim to define disease modification due to a treatment intervention and criteria that disease-modifying treatments (DMTs) must meet in CSU. We have defined disease modification in CSU as a favorable treatment-induced change in the underlying pathophysiology and, therefore, the disease course, which is clinically beneficial and enduring. A DMT must fulfil the following criteria: (1) prevents or delays the progression of CSU, (2) induces long-term, therapy-free clinical remission, which is the sustained absence of CSU signs and symptoms without the need for treatment, and (3) affects the underlying mechanism of CSU, as demonstrated by an effect on disease-driving signals and/or a biomarker. DMTs in CSU should slow disease progression, achieve long-lasting disease remission, target disease-driving mechanisms, reduce mast cell-activating IgE autoantibodies, target cytokine profile polarization, and normalize the gut microbiome and barrier. Treating CSU at the immune system level could provide valuable alternatives to pharmacotherapy in CSU management. Specific DMTs in CSU are yet to be developed, but some show potential benefits, such as inhibitors of Bruton's Tyrosine Kinase, IL-4 and IL-13. Future therapies could prevent CSU signs and symptoms, achieve long-term clinical benefits after discontinuing treatment, and prevent associated concomitant disorders.
Collapse
Affiliation(s)
- Marcus Maurer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Pavel Kolkhir
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Manuel P Pereira
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Frank Siebenhaar
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Ellen Witte-Händel
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karl-Christian Bergmann
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Hanna Bonnekoh
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Thomas Buttgereit
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Joachim W Fluhr
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Stefan Frischbutter
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Eva Maria Grekowitz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Leonie Herzog
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Lea Alice Kiefer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karoline Krause
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Markus Magerl
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Melba Muñoz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Sophia Neisinger
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Nicole Nojarov
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Samantha Prins
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Polina Pyatilova
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Aisté Ramanauskaité
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Jörg Scheffel
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Dorothea Terhorst-Molawi
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Regina Treudler
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karsten Weller
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Torsten Zuberbier
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
15
|
Zhou M, Sun R, Jang J, Martin JG. T cell and airway smooth muscle interaction: a key driver of asthmatic airway inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol 2024; 327:L382-L394. [PMID: 39010821 DOI: 10.1152/ajplung.00121.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Cross talk between T cells and airway smooth muscle (ASM) may play a role in modulating asthmatic airway inflammation and remodeling. Infiltrating T cells have been observed within the ASM bundles of asthmatics, and a wide range of direct and indirect interactions between T cells and ASM has been demonstrated using various in vitro and in vivo model systems. Contact-dependent mechanisms such as ligation and activation of cellular adhesion and costimulatory molecules, as well as the formation of lymphocyte-derived membrane conduits, facilitate the adhesion, bidirectional communication, and transfer of materials between T and ASM cells. T cell-derived cytokines, particularly of the Th1, Th2, and Th17 subsets, modulate the secretome, proliferation, and contractility of ASM cells. This review summarizes the mechanisms governing T cell-ASM cross talk in the context of asthma. Understanding the underlying mechanistic basis is important for directing future research and developing therapeutic interventions targeted toward this complex interaction.
Collapse
Affiliation(s)
- Muyang Zhou
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rui Sun
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Joyce Jang
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - James G Martin
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Brightling CE, Caminati M, Llanos JP, Caveney S, Kotalik A, Griffiths JM, Lundahl A, Israel E, Pavord ID, Wechsler ME, Porsbjerg C, Corren J, Gołąbek M, Martin N, Ponnarambil S. Biomarkers and clinical outcomes after tezepelumab cessation: Extended follow-up from the 2-year DESTINATION study. Ann Allergy Asthma Immunol 2024; 133:310-317.e4. [PMID: 38697286 DOI: 10.1016/j.anai.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Long-term tezepelumab treatment in the DESTINATION study (NCT03706079) resulted in reduced asthma exacerbations, reduced biomarker levels, and improved lung function and symptom control in patients with severe, uncontrolled asthma. OBJECTIVE To explore the time course of changes in biomarkers and clinical manifestations after treatment cessation after 2 years of tezepelumab treatment. METHODS DESTINATION was a 2-year, phase 3, multicenter, randomized, placebo-controlled, double-blind study of tezepelumab treatment in patients (12-80 years old) with severe asthma. Patients received their last treatment doses at week 100 and could enroll in an extended follow-up period from weeks 104 to 140. Change over time in key biomarkers and clinical outcomes were assessed in tezepelumab vs placebo recipients for 40 weeks after stopping treatment. RESULTS Of 569 patients enrolled in the extended follow-up period, 426 were included in the analysis (289 received tezepelumab and 137 placebo). In the 40-week period after the last tezepelumab dose, blood eosinophil counts, fractional exhaled nitric oxide levels, and Asthma Control Questionnaire-6 scores gradually increased from weeks 4 to 10, with a gradual reduction in pre-bronchodilator forced expiratory volume in 1 second such that blood eosinophil counts, fractional exhaled nitric oxide levels, and clinical outcomes returned to placebo levels; however, none of these outcomes returned to baseline levels. Total IgE levels increased later from week 28 and remained well below placebo and baseline levels during the 40-week period after the last tezepelumab dose. CONCLUSION This analysis reveals the benefits of continued tezepelumab treatment in the management of patients with severe, uncontrolled asthma, compared with stopping treatment after 2 years. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03706079.
Collapse
Affiliation(s)
- Christopher E Brightling
- Institute for Lung Health, National Institute for Health and Care Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom.
| | - Marco Caminati
- Allergy Unit and Asthma Center, Department of Medicine, University of Verona, Verona, Italy
| | | | - Scott Caveney
- Global Development, Inflammation, R&D, Amgen, Thousand Oaks, California
| | - Ales Kotalik
- Biometrics, Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Janet M Griffiths
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Anna Lundahl
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elliot Israel
- Pulmonary and Critical Care Medicine, Allergy & Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ian D Pavord
- Respiratory Medicine, National Institute for Health and Care Research, Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Celeste Porsbjerg
- Department of Respiratory Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Corren
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Monika Gołąbek
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Warsaw, Poland
| | - Neil Martin
- Institute for Lung Health, National Institute for Health and Care Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom; Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, United Kingdom
| | - Sandhia Ponnarambil
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
17
|
Nagasaki T, Wenzel SE. Asthma exacerbations and airway redox imbalance under type 2 inflammatory conditions. Respir Investig 2024; 62:923-928. [PMID: 39182396 DOI: 10.1016/j.resinv.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Asthma is a chronic inflammatory airway disease characterized by bronchial hyperresponsiveness and reversibility. Despite considerable advances in asthma treatment based on our understanding of its pathophysiology, asthma exacerbations remain challenging. To reduce asthma exacerbations, it is essential to identify triggers, patients' risk factors, and underlying mechanisms. While exposure to viruses and environmental stimuli are known common triggers for asthma exacerbations, the key factors involved in asthma exacerbations have been identified as type 2 inflammation. Type 2 inflammatory biomarkers have been demonstrated to be useful in predicting individuals at risk of exacerbations. Furthermore, recent clinical trials of targeted biological therapy, which blocks the type 2 pathway, have supported the critical role of type 2 inflammation in asthma exacerbations. Although the specific mechanisms linking type 2 inflammation to asthma exacerbations have not yet been fully elucidated, increasing evidence shows that reduction/oxidation (redox) imbalance likely plays an important role in this association. Under type 2 inflammatory conditions, human airway epithelial cells activate 15-lipoxygenase-1 in complex with phosphatidylethanolamine binding protein-1, leading to the generation of electrophilic hydroperoxyl-phospholipids. When the accumulation of reactive lipid peroxidation surpasses a specific glutathione-dependent activity, these electrophilic compounds are not neutralized, leading to programmed cell death, ferroptosis. Reduced glutathione levels, caused by type 2 inflammation, may impair its ability to neutralize reactive lipid peroxidation. The accumulation of lipid peroxidation with intracellular redox imbalance may contribute to asthma exacerbations in individuals with type 2 inflammation. Inhibiting the ferroptotic pathway holds promise as a therapeutic strategy to alleviate asthma exacerbations.
Collapse
Affiliation(s)
- Tadao Nagasaki
- Department of Respiratory Medicine and Allergology, Kindai University Nara Hospital, Nara, 630-0293, Japan.
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Asthma and Environmental Lung Health Institute at UPMC, Pittsburgh, PA, 15261, USA
| |
Collapse
|
18
|
Terl M, Diamant Z, Kosturiak R, Jesenak M. Choosing the right biologic treatment for individual patients with severe asthma - Lessons learnt from Picasso. Respir Med 2024; 234:107766. [PMID: 39181277 DOI: 10.1016/j.rmed.2024.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/07/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Severe asthma represents a true challenge for clinicians from two basic perspectives, i.e.: a rational assessment of the underlying endo/phenotype and the subsequent selection of the best fitted (personalized) and effective treatment. Even though asthma is a heterogeneous disease, in the majority of therapy-compliant patients, it is possible to achieve (almost) complete disease control or even remission through conventional and quite uniform step-based pharmacotherapy, even without phenotyping. However, the absence of deeper assessment of individual patients revealed its handicap to its fullest extent during the first years of the new millennium upon the launch of biological therapeutics for patients with the most severe forms of asthma. The introduction of differentially targeted biologics into clinical practice became a challenge in terms of understanding and recognizing the etiopathogenetic heterogeneity of the asthmatic inflammation, pheno/endotyping, and, consequently, to choose the right biologic for the right patient. The answers to the following three questions should lead to correct identification of the dominant pheno/endotype: Is it really (severe) asthma? Is it eosinophilic asthma? If eosinophilic, is it (predominantly) allergen-driven? The identification of the best achievable and relevant alliance between endotypes and phenotypes ("euphenotypes") should be based not only on the assessment of the actual clinical characteristics and laboratory biomarkers, but more importantly, on the evaluation of their development and changes over time. In the current paper, we present a pragmatic three-step approach to severe asthma diagnosis and management.
Collapse
Affiliation(s)
- Milan Terl
- Department of Pneumology and Phthisiology, University Hospital and Faculty of Medicine in Pilsen, Charles University Prague, Czech Republic
| | - Zuzana Diamant
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands; Dept Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Belgium; Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Radovan Kosturiak
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic; Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic.
| | - Milos Jesenak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic; Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic; Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic.
| |
Collapse
|
19
|
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev 2024. [PMID: 39158477 DOI: 10.1111/imr.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of many allergic conditions. At a high level, initial allergen exposure disrupts epithelial integrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruitment. Th2 cell dependent B cell activation promotes the production of allergen-specific IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells upon allergen re-exposure leads to allergic symptoms. Recent advances in our understanding of the molecular and cellular mechanisms underlying allergic pathophysiology have significantly shaped the development of therapeutic intervention strategies. In this review, we highlight key therapeutic targets within the allergic cascade with a particular focus on past, current and future treatment approaches using monoclonal antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown varying degrees of clinical benefit in different allergic indications including asthma, chronic spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been approved for clinical use, scientists are still working on ways to improve on current treatment approaches. Here, we provide context to understand therapeutic targeting strategies and their limitations, discussing both knowledge gaps and promising future directions to enhancing clinical efficacy in allergic disease management.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | | | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
20
|
Qin J, Wang G, Han D. Long-term safety of tezepelumab in patients with asthma: a systematic review and meta-analysis of randomized controlled trials. J Asthma 2024:1-10. [PMID: 39067012 DOI: 10.1080/02770903.2024.2385973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Tezepelumab has demonstrated its effectiveness in patients with asthma, but its safety, especially for long-term use, needs to be further explored. This systematic review and meta-analysis aimed to determine the safety of long-term use of tezepelumab in patients with asthma. DATA SOURCES A systematic search was made of PubMed, Embase, Cochrane Library, and clinicaltrials.gov, without language restrictions. STUDY SELECTIONS Randomized controlled trials (RCTs) on treatment of asthma with tezepelumab, compared with placebo, were reviewed. Studies were pooled to weighted mean differences (WMDs) and risk ratios (RRs), with 95% confidence intervals (CIs). RESULTS Seven RCTs (enrolling 2050 participants) met the inclusion criteria. Serious adverse event (RR 0.74, 95% CI 0.57 to 0.95), upper respiratory tract infection (RR 0.73, 95% CI 0.55 to 0.96), and asthma (RR 0.61, 95% CI 0.48 to 0.76) were more frequent in the placebo groups. There was no statistically significant difference in the proportion of patients with at least one adverse event (AE), AEs leading to discontinuation of study treatment, all-cause death, influenza, bronchitis, nasopharyngitis, headache, and hypertension between the two groups. CONCLUSION Long-term (12-52 wk) use of tezepelumab in patients with asthma does not increase the incidence of adverse events.
Collapse
Affiliation(s)
- Jinlv Qin
- Radioimmunoassay Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Guizuo Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Dong Han
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Zheng Y, Abuqayyas L, Quartino A, Guan Y, Gao Y, Liu L, Hellqvist Å, Colice G, MacDonald A. Population Pharmacokinetic Modeling and Exposure-Efficacy and Body Weight-Response Analyses for Tezepelumab in Patients With Severe, Uncontrolled Asthma. J Clin Pharmacol 2024; 64:908-921. [PMID: 38632826 DOI: 10.1002/jcph.2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Tezepelumab is a human monoclonal antibody that blocks the activity of thymic stromal lymphopoietin. This analysis assessed the suitability of a fixed-dose regimen of tezepelumab 210 mg every 4 weeks (Q4W) in adults and adolescents with severe, uncontrolled asthma. A population pharmacokinetic model was developed using data from 1368 patients with asthma or healthy participants enrolled in 8 clinical studies (phases 1-3). Tezepelumab exposure-efficacy relationships were analyzed in the phase 3 NAVIGATOR study (NCT03347279), using asthma exacerbation rates over 52 weeks and changes in pre-bronchodilator forced expiratory volume in 1 s at week 52. Tezepelumab pharmacokinetics were well characterized by a 2-compartment linear disposition model with first-order absorption and elimination following subcutaneous and intravenous administration at 2.1-420 and 210-700 mg, respectively. There were no clinically relevant effects on tezepelumab pharmacokinetics from age (≥12 years), sex, race/ethnicity, renal or hepatic function, disease severity (inhaled corticosteroid dose level), concomitant asthma medication use, smoking history, or anti-drug antibodies. Body weight was the most influential covariate on tezepelumab exposure, but no meaningful differences in efficacy or safety were observed across body weight quartiles in patients with asthma who received tezepelumab 210 mg subcutaneously Q4W. There was no apparent relationship between tezepelumab exposure and efficacy at this dose regimen, suggesting that it is on the plateau of the exposure-response curve of tezepelumab. In conclusion, a fixed-dose regimen of tezepelumab 210 mg subcutaneously Q4W is appropriate for eligible adults and adolescents with severe, uncontrolled asthma.
Collapse
Affiliation(s)
- Yanan Zheng
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, San Francisco, CA, USA
| | - Lubna Abuqayyas
- Clinical Pharmacology Modeling and Simulation, Amgen, Cambridge, MA, USA
| | - Angelica Quartino
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, Gothenburg, Sweden
| | - Ye Guan
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Yuying Gao
- Shanghai Qiangshi Information Technology, Shanghai, China
| | - Lu Liu
- Shanghai Qiangshi Information Technology, Shanghai, China
| | - Åsa Hellqvist
- Biometrics, Late-stage Development, Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden
| | - Gene Colice
- Late-Stage Development, Respiratory and Immunology, AstraZeneca, Gaithersburg, MD, USA
| | - Alexander MacDonald
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, Cambridge, UK
| |
Collapse
|
22
|
Kosloski MP, Guttman‐Yassky E, Cork MJ, Worm M, Nahm D, Zhu X, Ruddy MK, Harel S, Kamal MA, Goulaouic H, Xu CR, Avetisova E, Davis JD, Nivens MC, Shabbir A, Radin A. Pharmacokinetics and pharmacodynamics of itepekimab in adults with moderate-to-severe atopic dermatitis: Results from two terminated phase II trials. Clin Transl Sci 2024; 17:e13874. [PMID: 39077906 PMCID: PMC11287337 DOI: 10.1111/cts.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/31/2024] Open
Abstract
Interleukin-33 (IL-33) is a proinflammatory alarmin cytokine released by damaged epithelial tissue cells that initiates and amplifies both type 1 and type 2 inflammatory cascades. A role for IL-33 in atopic dermatitis (AD; a chronic, relapsing type 2 inflammatory disease of the skin) has been proposed. Itepekimab is a novel human IgG4P monoclonal antibody against IL-33, currently in clinical development for chronic obstructive pulmonary disease (COPD). Two global phase II studies-a dose-ranging itepekimab monotherapy study (NCT03738423) and a proof-of-concept study of itepekimab alone and in combination with dupilumab (NCT03736967)-were conducted in patients with moderate-to-severe AD to assess safety, tolerability, pharmacokinetics, pharmacodynamics, and efficacy; both studies were terminated following an interim analysis of the proof-of-concept study, which failed to demonstrate the efficacy of itepekimab. In these two studies, itepekimab exhibited linear and dose-proportional pharmacokinetics. Pharmacodynamics of total IL-33 indicated that itepekimab saturated binding to the target in serum at 300 mg q2w and q4w doses, and decreased blood eosinophil counts. Concentration-time profiles of itepekimab and total IL-33 were similar for itepekimab with or without dupilumab, and between East Asian and non-East Asian subgroups. Itepekimab was generally well tolerated, both alone and in combination with dupilumab. The lack of clinical efficacy for itepekimab observed in these studies suggests that IL-33 may not be a key pathogenic driver in moderate-to-severe AD.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/immunology
- Male
- Female
- Adult
- Interleukin-33
- Middle Aged
- Severity of Illness Index
- Treatment Outcome
- Drug Therapy, Combination/methods
- Young Adult
- Proof of Concept Study
- Dose-Response Relationship, Drug
- Aged
- Double-Blind Method
Collapse
Affiliation(s)
| | - Emma Guttman‐Yassky
- Icahn School of Medicine at Mount Sinai Medical CenterNew YorkNew YorkUSA
- Rockefeller UniversityNew YorkNew YorkUSA
| | - Michael J. Cork
- Sheffield Dermatology ResearchUniversity of SheffieldSheffieldUK
- Sheffield Children's HospitalSheffieldUK
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and AllergyCharité‐Universitätsmedizin BerlinBerlinGermany
| | | | - Xiaoping Zhu
- Formerly Regeneron Pharmaceuticals Inc.Basking RidgeNew JersyUSA
| | | | - Sivan Harel
- Regeneron Pharmaceuticals Inc.TarrytownNew YorkUSA
| | | | | | | | | | | | | | | | - Allen Radin
- Regeneron Pharmaceuticals Inc.TarrytownNew YorkUSA
| |
Collapse
|
23
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Ambrosino P, Marcuccio G, Raffio G, Formisano R, Candia C, Manzo F, Guerra G, Lubrano E, Mancusi C, Maniscalco M. Endotyping Chronic Respiratory Diseases: T2 Inflammation in the United Airways Model. Life (Basel) 2024; 14:899. [PMID: 39063652 PMCID: PMC11278432 DOI: 10.3390/life14070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past 15 years, the paradigm of viewing the upper and lower airways as a unified system has progressively shifted the approach to chronic respiratory diseases (CRDs). As the global prevalence of CRDs continues to increase, it becomes evident that acknowledging the presence of airway pathology as an integrated entity could profoundly impact healthcare resource allocation and guide the implementation of pharmacological and rehabilitation strategies. In the era of precision medicine, endotyping has emerged as another novel approach to CRDs, whereby pathologies are categorized into distinct subtypes based on specific molecular mechanisms. This has contributed to the growing acknowledgment of a group of conditions that, in both the upper and lower airways, share a common type 2 (T2) inflammatory signature. These diverse pathologies, ranging from allergic rhinitis to severe asthma, frequently coexist and share diagnostic and prognostic biomarkers, as well as therapeutic strategies targeting common molecular pathways. Thus, T2 inflammation may serve as a unifying endotypic trait for the upper and lower airways, reinforcing the practical significance of the united airways model. This review aims to summarize the literature on the role of T2 inflammation in major CRDs, emphasizing the value of common biomarkers and integrated treatment strategies targeting shared molecular mechanisms.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Giuseppina Marcuccio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Giuseppina Raffio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
| | - Claudio Candia
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| | - Fabio Manzo
- Fleming Clinical Laboratory, 81020 Casapulla, Italy;
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Ennio Lubrano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Costantino Mancusi
- Department of Advanced Biomedical Science, Federico II University, 80131 Naples, Italy;
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| |
Collapse
|
25
|
Varricchi G, Poto R. Towards precision medicine in COPD: Targeting type 2 cytokines and alarmins. Eur J Intern Med 2024; 125:28-31. [PMID: 38762432 DOI: 10.1016/j.ejim.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a main global epidemic increasing as population age and affecting approximately 10% of subjects over 45 years. COPD is a heterogeneous inflammatory disease with several endo-phenotypes and clinical presentations. Although neutrophilic inflammation is canonically considered a hallmark of COPD, eosinophilic inflammation can also be present in a subgroup of patients. Several other immune cells and cytokines play a key role in orchestrating and perpetuating the inflammatory pathways in COPD, making them attractive targets for treating this disorder. Recent studies have started to evaluate the possible role of type 2 (T2) inflammation and epithelial-derived alarmins (TSLP and IL-33) in COPD. Two phase III randomized clinical trials (RCTs) showed a modest reduction in exacerbations in COPD patients with eosinophilic phenotype treated with mepolizumab (anti-IL-5) or benralizumab (anti-IL-5Rα). A phase III RCT showed a 30% reduction in exacerbations in COPD patients with ≥ 300 eosinophils/μL treated with dupilumab (anti-IL-4Rα). These results suggest that blocking a single cytokine (e.g., IL-5) or its main target (i.e., IL-5Rα) is less promising than blocking a wider spectrum of cytokines (i.e., IL-4 and IL-13) in COPD. TSLP and IL-33 are upstream regulators of T2-high and T2-low immune responses in airway inflammation. Several ongoing RCTs are evaluating the efficacy and safety of anti-TSLP (tezepelumab), anti-IL-33 (itepekimab, tozorakimab), and anti-ST2 (astegolimab) in patients with COPD, who experience exacerbations. In conclusion, targeting T2 inflammation or epithelial-derived alarmins might represent a step forward in precision medicine for the treatment of a subset of COPD.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy.
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| |
Collapse
|
26
|
Higo H, Taniguchi A, Senoo S, Ozeki T, Nakamura N, Atokawa M, Itano J, Oda N, Sunami R, Shiota Y, Arakawa Y, Mori Y, Kunichika N, Takata I, Suwaki T, Nakanishi N, Tanimoto Y, Kanehiro A, Maeda Y, Kiura K, Miyahara N. Predictors of exacerbation in Japanese patients with severe asthma: Analysis of the severe asthma research program (Okayama-SARP) cohort. Respir Investig 2024; 62:695-701. [PMID: 38815413 DOI: 10.1016/j.resinv.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Because exacerbation of severe asthma decreases patients' quality of life, this study aimed to identify predictive factors for asthma exacerbation. METHODS Japanese patients with severe asthma requiring treatment according to the Global Initiative for Asthma (GINA) guidelines ≥ Step 4 between January 2018 and August 2021 were prospectively enrolled and followed up for one year at facilities participating in the Okayama Respiratory Disease Study Group (Okayama Severe Asthma Research Program). RESULTS A total of 85 patients (29 men and 56 women) were included. The median age was 64 (interquartile range [IQR], 51-72) years. Treatment according to GINA Steps 4 and 5 was required in 29 and 56 patients, respectively, and 44 patients (51.8%) were treated with biologics. The median peripheral-blood eosinophil count, fractional exhaled nitric oxide, IgE level, and percent predicted FEV1 (%FEV1) at enrollment were 204 (IQR, 49-436)/μL, 28 (IQR, 15-43) ppb, 172 (IQR, 56-473) IU/mL, and 80.0 (IQR, 61.1-96.1) %, respectively. Exacerbation during the previous year, asthma control test (ACT) score <20, %FEV1 <60%, and serum IL-10 level >6.7 pg/mL were associated with exacerbation during the observation period. CONCLUSIONS Exacerbation during the previous year, low ACT score, and low %FEV1 were predictive factors of future exacerbation, even in a cohort with >50% of patients treated with biologics. Furthermore, high serum IL-10 levels might be a new predictive factor.
Collapse
Affiliation(s)
- Hisao Higo
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan; Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Senoo
- Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Taichi Ozeki
- Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naoki Nakamura
- Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaki Atokawa
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Junko Itano
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, 4066, Hayashima, Hayashima-cho Tsukubo-gun, Okayama, 701-0304, Japan
| | - Naohiro Oda
- Department of Internal Medicine, Fukuyama City Hospital, 5-23-1 Zaou-cho, Fukuyama, 721-8511, Japan
| | - Ryota Sunami
- Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yutaro Shiota
- Department of Respiratory Medicine, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami-ku, Okayama, 702-8055, Japan
| | - Yukako Arakawa
- Department of Respiratory Medicine, KKR Takamatsu Hospital, 4-18 Tenjinmae, Takamatsu, 760-0018, Japan
| | - Yoshihiro Mori
- Department of Respiratory Medicine, KKR Takamatsu Hospital, 4-18 Tenjinmae, Takamatsu, 760-0018, Japan
| | - Naomi Kunichika
- Department of Respiratory Medicine, Japanese Red Cross Yamaguchi Hospital, 53-1 Yahatanobaba, Yamaguchi, 753-0092, Japan
| | - Ichiro Takata
- Department of Internal Medicine, Fukuyama City Hospital, 5-23-1 Zaou-cho, Fukuyama, 721-8511, Japan
| | - Toshimitsu Suwaki
- Department of Respiratory Medicine, Okayama City Hospital, 3-20-1 Kitanagaseomote-cho, Kita-Ku, Okayama, 700-8557, Japan
| | - Norihiko Nakanishi
- Department of Respiratory Medicine, Ehime Prefectural Central Hospital, 83 Kasuga-cho, Matsuyama, 790-0024, Japan
| | - Yasushi Tanimoto
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, 4066, Hayashima, Hayashima-cho Tsukubo-gun, Okayama, 701-0304, Japan
| | - Arihiko Kanehiro
- Department of Respiratory Medicine, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami-ku, Okayama, 702-8055, Japan; Department of Internal Medicine, Himeji St. Mary's Hospital. 650 Nibuno, Himeji, 670-0801, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Nobuaki Miyahara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan; Department of Medical Technology, Okayama University Graduate School of Health Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
27
|
Chen Y, Tang H, Yao B, Pan S, Ying S, Zhang C. Basophil differentiation, heterogeneity, and functional implications. Trends Immunol 2024; 45:523-534. [PMID: 38944621 DOI: 10.1016/j.it.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024]
Abstract
Basophils, rare granulocytes, have long been acknowledged for their roles in type 2 immune responses. However, the mechanisms by which basophils adapt their functions to diverse mammalian microenvironments remain unclear. Recent advancements in specific research tools and single-cell-based technologies have greatly enhanced our understanding of basophils. Several studies have shown that basophils play a role in maintaining homeostasis but can also contribute to pathology in various tissues and organs, including skin, lung, and others. Here, we provide an overview of recent basophil research, including cell development, characteristics, and functions. Based on an increasing understanding of basophil biology, we suggest that the precise targeting of basophil features might be beneficial in alleviating certain pathologies such as asthma, atopic dermatitis (AD), and others.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China
| | - Haoyu Tang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China
| | - Bingpeng Yao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Sheng Pan
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Songmin Ying
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, 322000, China.
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Pelaia C, Melhorn J, Hinks TS, Couillard S, Vatrella A, Pelaia G, Pavord ID. Type 2 severe asthma: pathophysiology and treatment with biologics. Expert Rev Respir Med 2024; 18:485-498. [PMID: 38994712 DOI: 10.1080/17476348.2024.2380072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION The hallmark of most patients with severe asthma is type 2 inflammation, driven by innate and adaptive immune responses leading to either allergic or non-allergic eosinophilic infiltration of airways. The cellular and molecular pathways underlying severe type 2 asthma can be successfully targeted by specific monoclonal antibodies. AREAS COVERED This review article provides a concise overview of the pathophysiology of type 2 asthma, followed by an updated appraisal of the mechanisms of action and therapeutic efficacy of currently available biologic treatments used for management of severe type 2 asthma. Therefore, all reported information arises from a wide literature search performed on PubMed. EXPERT OPINION The main result of the recent advances in the field of anti-asthma biologic therapies is the implementation of a personalized medicine approach, aimed to achieve clinical remission of severe asthma. Today this accomplishment is made possible by the right choice of the most beneficial biologic drug for the pathologic traits characterizing each patient, including type 2 severe asthma and its comorbidities.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Calabria, Italy
| | - James Melhorn
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| | - Timothy Sc Hinks
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| | - Simon Couillard
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Ian D Pavord
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Sun B, Shen K, Zhao R, Li Y, Xiang M, Lin J. Precision medicine for severe asthma - Biological targeted therapy. Int Immunopharmacol 2024; 134:112189. [PMID: 38759375 DOI: 10.1016/j.intimp.2024.112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
Severe asthma is a complex and heterogeneous chronic airway inflammatory disease. Current treatment strategies are increasingly focused on disease classification, facilitating the transition towards personalized medicine by integrating biomarkers and monoclonal antibodies for tailored therapeutic approaches. Several approved biological agents, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-4, anti-IL-5, and anti-thymic stromal lymphopoietin (TSLP) monoclonal antibodies, have demonstrated significant efficacy in reducing asthma exacerbations, eosinophil counts, improving lung function, minimizing oral corticosteroid usage, and enhancing patients' quality of life. The utilization of these biological agents has brought about profound transformations in the management of severe asthma. This article provides a comprehensive review on biomarkers and biological agents for severe asthma while emphasizing the increasing importance of further research into its pathogenesis and novel treatment modalities.
Collapse
Affiliation(s)
- Bingqing Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kunlu Shen
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruiheng Zhao
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yun Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Min Xiang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jiangtao Lin
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
30
|
Olejnik AE, Kuźnar-Kamińska B. Association of Obesity and Severe Asthma in Adults. J Clin Med 2024; 13:3474. [PMID: 38930006 PMCID: PMC11204497 DOI: 10.3390/jcm13123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The incidence of obesity and asthma continues to enhance, significantly impacting global public health. Adipose tissue is an organ that secretes hormones and cytokines, causes meta-inflammation, and contributes to the intensification of bronchial hyperreactivity, oxidative stress, and consequently affects the different phenotypes of asthma in obese people. As body weight increases, the risk of severe asthma increases, as well as more frequent exacerbations requiring the use of glucocorticoids and hospitalization, which consequently leads to a deterioration of the quality of life. This review discusses the relationship between obesity and severe asthma, the underlying molecular mechanisms, changes in respiratory function tests in obese people, its impact on the occurrence of comorbidities, and consequently, a different response to conventional asthma treatment. The article also reviews research on possible future therapies for severe asthma. The manuscript is a narrative review of clinical trials in severe asthma and comorbid obesity. The articles were found in the PubMed database using the keywords asthma and obesity. Studies on severe asthma were then selected for inclusion in the article. The sections: 'The classification connected with asthma and obesity', 'Obesity-related changes in pulmonary functional tests', and 'Obesity and inflammation', include studies on subjects without asthma or non-severe asthma, which, according to the authors, familiarize the reader with the pathophysiology of obesity-related asthma.
Collapse
Affiliation(s)
- Aneta Elżbieta Olejnik
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznan, Poland;
| | | |
Collapse
|
31
|
Schmitt P, Duval A, Camus M, Lefrançais E, Roga S, Dedieu C, Ortega N, Bellard E, Mirey E, Mouton-Barbosa E, Burlet-Schiltz O, Gonzalez-de-Peredo A, Cayrol C, Girard JP. TL1A is an epithelial alarmin that cooperates with IL-33 for initiation of allergic airway inflammation. J Exp Med 2024; 221:e20231236. [PMID: 38597952 PMCID: PMC11010340 DOI: 10.1084/jem.20231236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Epithelium-derived cytokines or alarmins, such as interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP), are major players in type 2 immunity and asthma. Here, we demonstrate that TNF-like ligand 1A (TL1A) is an epithelial alarmin, constitutively expressed in alveolar epithelium at steady state in both mice and humans, which cooperates with IL-33 for early induction of IL-9high ILC2s during the initiation of allergic airway inflammation. Upon synergistic activation by IL-33 and TL1A, lung ILC2s acquire a transient IL-9highGATA3low "ILC9" phenotype and produce prodigious amounts of IL-9. A combination of large-scale proteomic analyses, lung intravital microscopy, and adoptive transfer of ILC9 cells revealed that high IL-9 expression distinguishes a multicytokine-producing state-of-activated ILC2s with an increased capacity to initiate IL-5-dependent allergic airway inflammation. Similar to IL-33 and TSLP, TL1A is expressed in airway basal cells in healthy and asthmatic human lungs. Together, these results indicate that TL1A is an epithelium-derived cytokine and an important cofactor of IL-33 in the airways.
Collapse
Affiliation(s)
- Pauline Schmitt
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Anais Duval
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emma Lefrançais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Stéphane Roga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Cécile Dedieu
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Nathalie Ortega
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emilie Mirey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Anne Gonzalez-de-Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
32
|
Berni Canani R, Caminati M, Carucci L, Eguiluz-Gracia I. Skin, gut, and lung barrier: Physiological interface and target of intervention for preventing and treating allergic diseases. Allergy 2024; 79:1485-1500. [PMID: 38439599 DOI: 10.1111/all.16092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The epithelial barriers of the skin, gut, and respiratory tract are critical interfaces between the environment and the host, and they orchestrate both homeostatic and pathogenic immune responses. The mechanisms underlying epithelial barrier dysfunction in allergic and inflammatory conditions, such as atopic dermatitis, food allergy, eosinophilic oesophagitis, allergic rhinitis, chronic rhinosinusitis, and asthma, are complex and influenced by the exposome, microbiome, individual genetics, and epigenetics. Here, we review the role of the epithelial barriers of the skin, digestive tract, and airways in maintaining homeostasis, how they influence the occurrence and progression of allergic and inflammatory conditions, how current treatments target the epithelium to improve symptoms of these disorders, and what the unmet needs are in the identification and treatment of epithelial disorders.
Collapse
Affiliation(s)
- Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Marco Caminati
- Allergy Unit and Asthma Centre, Verona Integrated University Hospital and Department of Medicine, University of Verona, Verona, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malága, Malaga, Spain
- Allergy Group, Biomedical Research Institute of Malaga (IBIMA)-BIONAND Platform, RICORS Inflammatory Diseases, Malaga, Spain
| |
Collapse
|
33
|
Kim J. Precision medicine to personalize medicine in allergic airway disease. Curr Opin Allergy Clin Immunol 2024; 24:109-113. [PMID: 38547381 DOI: 10.1097/aci.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW The purpose of this study is to understand the approach to precision medicine and personalized medicine in the management of allergic airway disease. RECENT FINDINGS Identification of biomarkers as key tools used in precision medicine has led to the development of multiple biologic drugs being used as new treatments for allergic airway disease. SUMMARY In addition to these advances, there is still much needed effort to improve the feasibility and utility of integrating biologic omics data of precision medicine with physicochemical, behavioral, psychological, and social data to deliver optimized treatments that is personalized for each individual.
Collapse
Affiliation(s)
- Jean Kim
- Johns Hopkins University School of Medicine, Department of Otolaryngology-Head and Neck Surgery, Division of Rhinology, Department of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Canè L, Poto R, Palestra F, Pirozzi M, Parashuraman S, Iacobucci I, Ferrara AL, La Rocca A, Mercadante E, Pucci P, Marone G, Monti M, Loffredo S, Varricchi G. TSLP is localized in and released from human lung macrophages activated by T2-high and T2-low stimuli: relevance in asthma and COPD. Eur J Intern Med 2024; 124:89-98. [PMID: 38402021 DOI: 10.1016/j.ejim.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.
Collapse
Affiliation(s)
- Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Marinella Pirozzi
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Seetharaman Parashuraman
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Ilaria Iacobucci
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Antonello La Rocca
- Thoracic Surgery Unit - Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Edoardo Mercadante
- Thoracic Surgery Unit - Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Piero Pucci
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
35
|
Polverino F, Sin DD. Type 2 airway inflammation in COPD. Eur Respir J 2024; 63:2400150. [PMID: 38485148 DOI: 10.1183/13993003.00150-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 05/30/2024]
Abstract
Globally, nearly 400 million persons have COPD, and COPD is one of the leading causes of hospitalisation and mortality across the world. While it has been long-recognised that COPD is an inflammatory lung disease, dissimilar to asthma, type 2 inflammation was thought to play a minor role. However, recent studies suggest that in approximately one third of patients with COPD, type 2 inflammation may be an important driver of disease and a potential therapeutic target. Importantly, the immune cells and molecules involved in COPD-related type 2 immunity may be significantly different from those observed in severe asthma. Here, we identify the important molecules and effector immune cells involved in type 2 airway inflammation in COPD, discuss the recent therapeutic trial results of biologicals that have targeted these pathways and explore the future of therapeutic development of type 2 immune modulators in COPD.
Collapse
Affiliation(s)
- Francesca Polverino
- Pulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia Division of Respiratory Medicine, Vancouver, BC, Canada
| |
Collapse
|
36
|
Pathinayake PS, Hsu ACY, Nichol KS, Horvat JC, Hansbro PM, Wark PAB. Endoplasmic reticulum stress enhances the expression of TLR3-induced TSLP by airway epithelium. Am J Physiol Lung Cell Mol Physiol 2024; 326:L618-L626. [PMID: 38469627 PMCID: PMC11381004 DOI: 10.1152/ajplung.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.
Collapse
Affiliation(s)
- Prabuddha S Pathinayake
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan C-Y Hsu
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Signature Research Program in Emerging Infectious Diseases, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Kristy S Nichol
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Peter A B Wark
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
- School of Medicine, Monash University, Melbourne, Victoria, Australia
- AIRMED Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Kollabathula SS, Venkatachalam K, Susmitha Divya K, Guruprasad P, Nayar PAS. A Comparative Study on Serum Levels of "Thymic Stromal Lymphopoietin" Between Patients with Psoriasis Vulgaris and Healthy Individuals: A Case-Control Study. Indian Dermatol Online J 2024; 15:449-453. [PMID: 38845675 PMCID: PMC11152502 DOI: 10.4103/idoj.idoj_742_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 06/09/2024] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) is a cytokine initially implicated to be associated with allergic disorders inducing Th2 response. Emerging studies have shown that TSLP is also involved in autoimmune diseases. In psoriasis, TSLP acts in synergy with T cell-derived CD40L to promote the release of IL-23 from dendritic cells. IL-23 is responsible for the inappropriate immune reaction and keratinocyte proliferation in psoriasis. Targeting TSLP could be a novel therapeutic approach in the treatment of psoriasis. Objective To compare the serum levels of TSLP between patients with psoriasis and healthy individuals. Materials and Methods A prospective hospital-based case-control study was carried out on 38 patients with psoriasis. The severity of psoriasis was graded into mild, moderate, and severe according to PASI. A total of 30 healthy individuals with matched age and sex were taken as controls. 5 ml of venous blood was collected, centrifuged, and the collected serum was stored at -80°C until quantitative assessment by sandwich enzyme-linked immunosorbent assay (ELISA) technique. Results TSLP has been found to be significantly elevated in the sera of cases (0.1380178 pg/ml) than in controls (0.1125974 pg/ml). There was also a significant proportionate increase in the mean TSLP with the mean PASI score. Limitations The sample size was small and we could not follow-up the cases to study the changes in TSLP levels with remission of the lesions. Conclusion We found that serum TSLP was elevated in psoriasis patients and correlated with disease severity, indicating a possible pathogenetic role.
Collapse
Affiliation(s)
- Siri Sri Kollabathula
- Department of Dermatology, Venereology and Leprosy, Andhra Medical College, Visakhapatnam, Andhra Pradesh, India
| | - Konakanchi Venkatachalam
- Department of Dermatology, Venereology and Leprosy, Government Medical College, Srikakulam, Andhra Pradesh, India
| | - Kethireddi Susmitha Divya
- Department of Dermatology, Venereology and Leprosy, Andhra Medical College, Visakhapatnam, Andhra Pradesh, India
| | - Patnala Guruprasad
- Department of Dermatology, Venereology and Leprosy, Andhra Medical College, Visakhapatnam, Andhra Pradesh, India
| | | |
Collapse
|
38
|
Mohan A, Qiu AY, Lugogo N. Long-term safety, durability of response, cessation and switching of biologics. Curr Opin Pulm Med 2024; 30:303-312. [PMID: 38426355 DOI: 10.1097/mcp.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW Severe asthma patients suffer from decreased quality of life, and increased asthma symptoms, exacerbations, hospitalizations, and risk of death. Biologics have revolutionized treatment for severe asthma. However, with multiple biologic agents now available, clinicians must consider initial selection the long-term effectiveness of biologics. Additionally, patients have overlapping eligibilities and clinicians may consider switching between biologics for improved response. Finally, careful assessment of biologics cessation is needed for severe asthma patients who depend on these add-on therapies for asthma control. RECENT FINDINGS Evidence for long-term durability and safety varies by biologic agent. In general, initial benefits noted from these agents (ex. exacerbation reduction) is, at minimum, sustained with long term use. Rates of adverse events and serious adverse events, including those requiring cessation of a biologics are low with long term use. Further studies are needed to understand the development of antidrug antibodies but currently their prevalence rates are low. Adverse events and insufficient efficacy are common reasons for biologic cessation or switching. Discontinuation maybe associated with waning of benefits but can be considered in certain situations. Biologic switching can be associated with improved asthma control. SUMMARY Biologics are safe and effective long-term therapies for the management of asthma. Discontinuation must be carefully considered and if possible avoided. Reasons for insufficient efficacy must be evaluated and if needed, biologic switching should be considered.
Collapse
Affiliation(s)
- Arjun Mohan
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna Y Qiu
- Division of Pulmonary, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Njira Lugogo
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
Anselmo-Lima WT, Romano FR, Tamashiro E, Roithmann R, Dinarte VRP, Piltcher OB, Miyake MM, Fornazieri MA, Nakanishi M, Bezerra TFP, Dolci RLL, Mello JF, Lessa MM, Voegels RL, Kosugi EM, Sakano E, Valera FCP. Brazilian guideline for the use of immunobiologicals in chronic rhinosinusitis with nasal polyps ‒ 2024 update. Braz J Otorhinolaryngol 2024; 90:101394. [PMID: 38367543 PMCID: PMC10879704 DOI: 10.1016/j.bjorl.2024.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/19/2024] Open
Abstract
INTRODUCTION Biologics targeting type 2 inflammation have revolutionized the way we treat patients with Chronic Rhinosinusitis with Nasal Polyps (CRSwNP). Particularly in severe and difficult-to-control cases, these drugs have provided a new reality for these patients, allowing for the effective and safe treatment of extensive diseases that were not completely managed with the typical strategy of surgery and topical medications. OBJECTIVES The experience achieved with the approval of these medications by ANVISA for use in CRSwNP and the knowledge obtained regarding outcomes, adverse effects, and the ideal patient profile prompted the update of the previously published guideline, with a detailed review of the most recent scientific literature, the personal experiences of experts, and the adaptation to the reality of the Brazilian healthcare system, both public and private. RESULTS We proposed a new eligibility criterion for biologics in patients with CRSwNP based on four pillars of indication: the impact of the disease on the patient's life, whether in the presence of specific symptoms or in overall quality of life; the extent of sinonasal disease; the presence of type 2 comorbidities, considering other associated diseases that may also benefit from anti-T2 biologics, and the presence of biomarkers to define type 2 inflammation, especially those associated with worse disease prognoses. CONCLUSIONS This innovative and pioneering method has two major advantages. First, it ensures a comprehensive evaluation of patients; second, it is flexible, as advancements in our understanding of the disease and changes in cost-effectiveness can be addressed by simply adjusting the required score for indication, without the need to modify the entire evaluation scheme.
Collapse
Affiliation(s)
- Wilma T Anselmo-Lima
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia, Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil.
| | - Fabrizio R Romano
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Universidade de São Paulo (FMRP-USP), Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Edwin Tamashiro
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia, Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | | | | | - Otavio B Piltcher
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul (FAMED-UFRGS), Departamento de Oftalmologia e Otorrinolaringologia, Porto Alegre, RS, Brazil
| | - Marcel M Miyake
- Universidade de São Paulo (FMRP-USP), Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil; Santa Casa de Misericórdia, Hospital de São Paulo, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Marco A Fornazieri
- Universidade Estatual de Londrina, Londrina, PR, Brazil; Pontifícia Universidade Católica do Paraná (PUCPR), Câmpus Londrina, Londrina, PR, Brazil
| | - Marcio Nakanishi
- Universidade de Brasília, Faculdade de Medicina, Programa de Pós-Graduação, Brasilia, DF, Brazil
| | | | | | - João F Mello
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marcus M Lessa
- Faculdade de Medicina da Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Richard L Voegels
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eduardo M Kosugi
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, São Paulo, SP, Brazil
| | - Eulalia Sakano
- Universidade Estadual Paulista, Faculdade de Ciências Médicas, Departamento de Oftalmologia/Otorrinolaringologia, Campinas, SP, Brazil
| | - Fabiana C P Valera
- Universidade de São Paulo (FMRP-USP), Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
40
|
Karkar A, Khan S, O'Leary R, Tyker A, Unger M. Pulmonology: What You May Have Missed in 2023. Ann Intern Med 2024; 177:S71-S81. [PMID: 38621245 DOI: 10.7326/m24-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
The field of pulmonology saw significant advances in 2023. The publications highlighted in this article address advances and changes in practice related to asthma, chronic obstructive pulmonary disease (COPD), interstitial lung disease, pleural disorders, and sleep-disordered breathing. One article reviews data examining the efficacy of vaccination against respiratory syncytial virus, a respiratory viral illness that has had devastating effects globally. Four studies evaluate the role of various therapies in COPD, including dupilumab, ensifentrine, pulmonary rehabilitation programs, and lung volume reduction versus endobronchial valves. Another study explores the effect on vascular events of positive-pressure ventilation in patients with sleep-disordered breathing and recent stroke. The use of combination therapy with rituximab and mycophenolate mofetil on progression-free survival in patients with nonspecific interstitial pneumonia is the topic of another study. We also highlight an update of clinical recommendations for the evaluation of patients with pleural disorders and a systematic review analyzing the effectiveness of inhaled corticosteroids as a supplement to dual therapy for COPD.
Collapse
Affiliation(s)
- Aram Karkar
- McMaster University, Hamilton, Ontario, Canada (A.K., S.K., R.O., A.T.)
| | - Sana Khan
- McMaster University, Hamilton, Ontario, Canada (A.K., S.K., R.O., A.T.)
| | - Rebecca O'Leary
- McMaster University, Hamilton, Ontario, Canada (A.K., S.K., R.O., A.T.)
| | - Albina Tyker
- McMaster University, Hamilton, Ontario, Canada (A.K., S.K., R.O., A.T.)
| | - Michael Unger
- Thomas Jefferson University, Korman Respiratory Institute, Philadelphia, Pennsylvania (M.U.)
| |
Collapse
|
41
|
Caminati M, Buhl R, Corren J, Hanania NA, Kim H, Korn S, Lommatzsch M, Martin N, Matucci A, Nasser SM, Pavord ID, Domingo C. Tezepelumab in patients with allergic and eosinophilic asthma. Allergy 2024; 79:1134-1145. [PMID: 38146651 DOI: 10.1111/all.15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Asthma is a heterogeneous disease commonly driven by allergic and/or eosinophilic inflammation, both of which may be present in severe disease. Most approved biologics for severe asthma are indicated for specific phenotypes and target individual downstream type 2 components of the inflammatory cascade. Tezepelumab, a human monoclonal antibody (immunoglobulin G2λ), binds specifically to thymic stromal lymphopoietin (TSLP), an epithelial cytokine that initiates and sustains allergic and eosinophilic inflammation in asthma. By blocking TSLP, tezepelumab has demonstrated efficacy across known asthma phenotypes and acts upstream of all current clinically used biomarkers. In a pooled analysis of the phase 2b PATHWAY (NCT02054130) and phase 3 NAVIGATOR (NCT03347279) studies, compared with placebo, tezepelumab reduced the annualized asthma exacerbation rate over 52 weeks by 62% (95% confidence interval [CI]: 53, 70) in patients with perennial aeroallergen sensitization (allergic asthma); by 71% (95% CI: 62, 78) in patients with a baseline blood eosinophil count ≥300 cells/μL; and by 71% (95% CI: 59, 79) in patients with allergic asthma and a baseline blood eosinophil count ≥300 cells/μL. This review examines the efficacy and mode of action of tezepelumab in patients with allergic asthma, eosinophilic asthma and coexisting allergic and eosinophilic phenotypes.
Collapse
Affiliation(s)
- Marco Caminati
- Asthma Center and Allergy Unit, Verona Integrated University Hospital & Department of Medicine, University of Verona, Verona, Italy
| | - Roland Buhl
- Pulmonary Department, Mainz University Hospital, Mainz, Germany
| | - Jonathan Corren
- David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Harold Kim
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stephanie Korn
- IKF Pneumologie Mainz, Mainz, Germany
- Thoraxklinik Heidelberg, Heidelberg, Germany
| | - Marek Lommatzsch
- Department of Pneumology and Critical Care Medicine, University of Rostock, Rostock, Germany
| | - Neil Martin
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
- University of Leicester, Leicester, UK
| | - Andrea Matucci
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Shuaib M Nasser
- Department of Allergy, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Domingo
- Servei de Pneumologia, Corporació Sanitària Parc Taulí, Sabadell, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
42
|
Kyriakopoulos C, Gogali A, Markozannes G, Kostikas K. Biologic agents licensed for severe asthma: a systematic review and meta-analysis of randomised controlled trials. Eur Respir Rev 2024; 33:230238. [PMID: 38657997 PMCID: PMC11040390 DOI: 10.1183/16000617.0238-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Six biologic agents are now approved for patients with severe asthma. This meta-analysis aimed to assess the efficacy and safety of licensed biologic agents in patients with severe asthma, including the recently approved tezepelumab. METHODS We searched MEDLINE, Embase and CENTRAL to identify randomised controlled trials involving licensed biologics until 31 January 2023. We used random-effects meta-analysis models for efficacy, including subgroup analyses by individual agents and markers of T2-high inflammation (blood eosinophils and fractional exhaled nitric oxide), and assessed safety. RESULTS 48 studies with 16 350 patients were included in the meta-analysis. Biologics were associated with a 44% reduction in the annualised rate of asthma exacerbations (rate ratio 0.56, 95% CI 0.51-0.62) and 60% reduction of hospitalisations (rate ratio 0.40, 95% CI 0.27-0.60), a mean increase in the forced expiratory volume in 1 s of 0.11 L (95% CI 0.09-0.14), a reduction in asthma control questionnaire by 0.34 points (95% CI -0.46--0.23) and an increase in asthma quality of life questionnaire by 0.38 points (95% CI 0.26-0.49). There was heterogeneity between different classes of biologics in certain outcomes, with overall greater efficacy in patients with T2 inflammation. Overall, biologics exhibited a favourable safety profile. CONCLUSIONS This comprehensive meta-analysis demonstrated that licensed asthma biologics reduce exacerbations and hospitalisations, improve lung function, asthma control and quality of life, and limit the use of systemic corticosteroids, with a favourable safety profile. These effects are more prominent in patients with evidence of T2 inflammation.
Collapse
Affiliation(s)
- Christos Kyriakopoulos
- Respiratory Medicine Department, University of Ioannina Faculty of Medicine, Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Department, University of Ioannina Faculty of Medicine, Ioannina, Greece
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina Faculty of Medicine, Ioannina, Greece
| | - Konstantinos Kostikas
- Respiratory Medicine Department, University of Ioannina Faculty of Medicine, Ioannina, Greece
| |
Collapse
|
43
|
Kovach MA, Käck U, Che KF, Brundin B, Konradsen JR, Lindén A. Systemic IL-26 correlates with improved asthma control in children sensitized to dog allergen. Respir Res 2024; 25:163. [PMID: 38622712 PMCID: PMC11020994 DOI: 10.1186/s12931-024-02773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Interleukin (IL)-26 is produced by T helper type 17 (Type 17) cells and exerts immunomodulatory plus antimicrobial effects. Previous studies show that local IL-26 concentrations in the airways are higher in patients with uncontrolled than in those with controlled asthma, and that this intriguing cytokine bears biomarker potential. Here, we determined how systemic IL-26 relates to allergen sensitization, asthma severity, and to IL-17 A in children. METHODS Serum samples were obtained from children with (n = 60) and without (n = 17) sensitization to dog allergen, and IL-26 and IL-17 A protein concentrations were measured using ELISA. Self-reported history, including medication use and validated symptom-based questionnaire scores, was recorded. RESULTS The serum concentrations of IL-26 were enhanced in allergen-sensitized subjects and correlated with those of IL-17 A in a positive manner. However, the IL-26 concentrations did not markedly differ between allergen-sensitized subjects with and without asthma, eczema, allergic rhinitis, or a history of food allergy. Notably, IL-26 concentrations correlated with increasing Asthma Control Test (ACT) scores in a positive manner and with inhaled corticosteroid in a negative manner, amongst sensitized subjects with asthma. Moreover, subjects with asthma requiring ≥ 1 course of oral corticosteroids in the preceding 12 months had decreased IL-26 concentrations. CONCLUSION This study forwards evidence that systemic IL-26, just like IL-17 A, is involved in allergen sensitization among children. The association of systemic IL-26 with improved asthma control is compatible with the cellular sources being recruited into the airways in severe asthma, which supports that this kinocidin bears potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Melissa A Kovach
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - Ulrika Käck
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs´ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Karlhans F Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Bettina Brundin
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Jon R Konradsen
- Department of Medicine Solna Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Canè L, Poto R, Palestra F, Iacobucci I, Pirozzi M, Parashuraman S, Ferrara AL, Illiano A, La Rocca A, Mercadante E, Pucci P, Marone G, Spadaro G, Loffredo S, Monti M, Varricchi G. Thymic Stromal Lymphopoietin (TSLP) Is Cleaved by Human Mast Cell Tryptase and Chymase. Int J Mol Sci 2024; 25:4049. [PMID: 38612858 PMCID: PMC11012384 DOI: 10.3390/ijms25074049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.
Collapse
Affiliation(s)
- Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Ilaria Iacobucci
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marinella Pirozzi
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
| | - Seetharaman Parashuraman
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Amalia Illiano
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Antonello La Rocca
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Edoardo Mercadante
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Piero Pucci
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
45
|
Varricchi G, Brightling CE, Grainge C, Lambrecht BN, Chanez P. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur Respir J 2024; 63:2301619. [PMID: 38609094 PMCID: PMC11024394 DOI: 10.1183/13993003.01619-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
Asthma is a chronic, heterogeneous disease of the airways, often characterised by structural changes known collectively as airway remodelling. In response to environmental insults, including pathogens, allergens and pollutants, the epithelium can initiate remodelling via an inflammatory cascade involving a variety of mediators that have downstream effects on both structural and immune cells. These mediators include the epithelial cytokines thymic stromal lymphopoietin, interleukin (IL)-33 and IL-25, which facilitate airway remodelling through cross-talk between epithelial cells and fibroblasts, and between mast cells and airway smooth muscle cells, as well as through signalling with immune cells such as macrophages. The epithelium can also initiate airway remodelling independently of inflammation in response to the mechanical stress present during bronchoconstriction. Furthermore, genetic and epigenetic alterations to epithelial components are believed to influence remodelling. Here, we review recent advances in our understanding of the roles of the epithelium and epithelial cytokines in driving airway remodelling, facilitated by developments in genetic sequencing and imaging techniques. We also explore how new and existing therapeutics that target the epithelium and epithelial cytokines could modify airway remodelling.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher E. Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Bart N. Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| |
Collapse
|
46
|
Cameron BH, Gong SW, Corry DB, Luong AU. Update on the Role of Fungus in Allergy, Asthma, and the Unified Airway. Otolaryngol Clin North Am 2024; 57:279-292. [PMID: 37867110 DOI: 10.1016/j.otc.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The united airway refers to the combined upper and lower airways and their interconnected pathophysiologic relationships. Inflammatory airway diseases (chronic rhinosinusitis, asthma, and so forth) have been linked to fungal species through type 2 immune responses. These type 2 immune responses involve the cytokines interleukin (IL)-4, IL-5, IL-13, and a myriad of other inflammatory processes that lead to a spectrum of diseases from allergic bronchopulmonary mycosis to chronic rhinosinusitis. Historically, these diseases have been managed primarily with corticosteroids but recent revelations in the molecular pathophysiology provide opportunities for more diverse treatment options for patients with uncontrolled disease.
Collapse
Affiliation(s)
- Brian H Cameron
- Department of Otorhinolaryngology - Head and Neck Surgery, McGovern Medical School at the University of Texas Health Science Center, 6431 Fannin Street, MSB 5.036, Houston, TX, USA
| | - Shaina W Gong
- Department of Otorhinolaryngology - Head and Neck Surgery, McGovern Medical School at the University of Texas Health Science Center, 6431 Fannin Street, MSB 5.036, Houston, TX, USA
| | - David B Corry
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, 77030 TX, USA
| | - Amber U Luong
- Department of Otorhinolaryngology - Head and Neck Surgery, McGovern Medical School at the University of Texas Health Science Center, 6431 Fannin Street, MSB 5.036, Houston, TX, USA; Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, 1835 Pressler, Houston, TX, 77030 USA.
| |
Collapse
|
47
|
Patadia R, Casale TB, Fowler J, Patel S, Cardet JC. Advancements in biologic therapy in eosinophilic asthma. Expert Opin Biol Ther 2024; 24:251-261. [PMID: 38619468 DOI: 10.1080/14712598.2024.2342527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Asthma encompasses a spectrum of phenotypes often categorized into two groups- type 2 high (T2 high) and type 2 low (T2 low). T2 high includes atopic and eosinophilic presentations whereas T2 low is non-atopic, non-eosinophilic, and oft associated with neutrophilic inflammation. Eosinophilic asthma is often driven by IgE, IL-4, IL-5, and IL-13 and TSLP. This can lead to eosinophilic inflammatory response in the airways which in turn can be used as target for treatment. AREAS COVERED The article will focus on biologic therapy that is currently being used in eosinophilic asthma management in mainly the adult population including clinical trials and co-morbidities that can be treated using the same biologics. A review on asthma biologics for pediatric population has been reviewed elsewhere. EXPERT OPINION Biological therapy for asthma targeting the IgE, IL-4, IL-5, IL-13, and TSLP pathways are shown to have benefit for the treatment of eosinophilic asthma, as exemplified in real-world studies. When choosing the right biological agent factors such as phenotype, comorbidities, and cost-effectiveness of the biologic agent must be taken into consideration.
Collapse
Affiliation(s)
- Rini Patadia
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, The James A. Haley Veterans' Affairs Hospital, Tampa, FL, USA
| | - Thomas B Casale
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, The James A. Haley Veterans' Affairs Hospital, Tampa, FL, USA
| | - John Fowler
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Shiven Patel
- Department of Internal Medicine, University of South Carolina School of Medicine, Greenville, SC, USA
| | - Juan Carlos Cardet
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, The James A. Haley Veterans' Affairs Hospital, Tampa, FL, USA
| |
Collapse
|
48
|
Agarwal R, Sehgal IS, Muthu V, Denning DW, Chakrabarti A, Soundappan K, Garg M, Rudramurthy SM, Dhooria S, Armstrong-James D, Asano K, Gangneux JP, Chotirmall SH, Salzer HJF, Chalmers JD, Godet C, Joest M, Page I, Nair P, Arjun P, Dhar R, Jat KR, Joe G, Krishnaswamy UM, Mathew JL, Maturu VN, Mohan A, Nath A, Patel D, Savio J, Saxena P, Soman R, Thangakunam B, Baxter CG, Bongomin F, Calhoun WJ, Cornely OA, Douglass JA, Kosmidis C, Meis JF, Moss R, Pasqualotto AC, Seidel D, Sprute R, Prasad KT, Aggarwal AN. Revised ISHAM-ABPA working group clinical practice guidelines for diagnosing, classifying and treating allergic bronchopulmonary aspergillosis/mycoses. Eur Respir J 2024; 63:2400061. [PMID: 38423624 PMCID: PMC10991853 DOI: 10.1183/13993003.00061-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The International Society for Human and Animal Mycology (ISHAM) working group proposed recommendations for managing allergic bronchopulmonary aspergillosis (ABPA) a decade ago. There is a need to update these recommendations due to advances in diagnostics and therapeutics. METHODS An international expert group was convened to develop guidelines for managing ABPA (caused by Aspergillus spp.) and allergic bronchopulmonary mycosis (ABPM; caused by fungi other than Aspergillus spp.) in adults and children using a modified Delphi method (two online rounds and one in-person meeting). We defined consensus as ≥70% agreement or disagreement. The terms "recommend" and "suggest" are used when the consensus was ≥70% and <70%, respectively. RESULTS We recommend screening for A. fumigatus sensitisation using fungus-specific IgE in all newly diagnosed asthmatic adults at tertiary care but only difficult-to-treat asthmatic children. We recommend diagnosing ABPA in those with predisposing conditions or compatible clinico-radiological presentation, with a mandatory demonstration of fungal sensitisation and serum total IgE ≥500 IU·mL-1 and two of the following: fungal-specific IgG, peripheral blood eosinophilia or suggestive imaging. ABPM is considered in those with an ABPA-like presentation but normal A. fumigatus-IgE. Additionally, diagnosing ABPM requires repeated growth of the causative fungus from sputum. We do not routinely recommend treating asymptomatic ABPA patients. We recommend oral prednisolone or itraconazole monotherapy for treating acute ABPA (newly diagnosed or exacerbation), with prednisolone and itraconazole combination only for treating recurrent ABPA exacerbations. We have devised an objective multidimensional criterion to assess treatment response. CONCLUSION We have framed consensus guidelines for diagnosing, classifying and treating ABPA/M for patient care and research.
Collapse
Affiliation(s)
- Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Kathirvel Soundappan
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Garg
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Darius Armstrong-James
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Jean-Pierre Gangneux
- Université Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
- CHU Rennes, Laboratoire de Parasitologie-Mycologie, ECMM Excellence Center in Medical Mycology, Rennes, France
- National Reference Center on Mycoses and Antifungals (CNRMA LA-Asp C), Rennes, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU) and Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital and Medical Faculty, Johannes Kepler University, Linz, Austria
| | | | - Cendrine Godet
- Université Paris Sorbonne, AP-HP, Hôpital Tenon, Service de Pneumologie et Oncologie Thoracique, Centre Constitutif Maladies Pulmonaires Rares Paris, Paris, France
| | | | - Iain Page
- NHS Lothian, Regional Infectious Diseases Unit, Western General Hospital, Edinburgh, UK
| | - Parameswaran Nair
- McMaster University, McGill University, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - P Arjun
- KIMS Hospital, Trivandrum, India
| | - Raja Dhar
- Department of Pulmonology, CK Birla Hospitals, Kolkata, India
| | - Kana Ram Jat
- Division of Pediatric Pulmonology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Joseph L Mathew
- Pediatric Pulmonology Division, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute, Lucknow, India
| | - Dharmesh Patel
- City Clinic and Bhailal Amin General Hospital, Vadodara, India
| | - Jayanthi Savio
- Department of Microbiology, St John's Medical College and Hospital, Bengaluru, India
| | - Puneet Saxena
- Pulmonary and Critical Care Medicine, Army Hospital (R&R), New Delhi, India
| | - Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
| | | | - Caroline G Baxter
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Oliver A Cornely
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Jo A Douglass
- University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Chris Kosmidis
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jacques F Meis
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- Center of Expertise in Mycology Radboudumc/CWZ Nijmegen, Nijmegen, The Netherlands
| | - Richard Moss
- Center of Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alessandro C Pasqualotto
- Molecular Biology Laboratory, Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Danila Seidel
- Department of Internal Medicine, University Hospital, Cologne, Germany
| | - Rosanne Sprute
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
49
|
Liu X, Han J, Wang Q, Wang P, Li L, Du K, Jiang F, Zhang P, Liu H, Huang J. Development of a novel humanized anti-TSLP monoclonal antibody HZ-1127 with anti-allergic diseases and cancer potential. Antib Ther 2024; 7:123-130. [PMID: 38566968 PMCID: PMC10983073 DOI: 10.1093/abt/tbae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a member of the IL-2 cytokine family and has been widely recognized as a master regulator of type 2 inflammatory responses at barrier surfaces. Recent studies found dysregulation of the TSLP-TSLP receptor (TSLPR) pathway is associated with the pathogenesis of not only allergic diseases but also a wide variety of cancers including both solid tumors and hematological tumors. Thus, the blockade of TSLP represents an attractive therapeutic strategy for allergic diseases and cancer. In this study, we report the development of a novel humanized anti-TSLP monoclonal antibody (mAb) HZ-1127. Binding affinity, specificity, and ability of HZ-1127 in inhibiting TSLP were tested. HZ-1127 selectively binds to the TSLP cytokine with high affinity and specificity. Furthermore, HZ-1127 dramatically inhibits TSLP-dependent STAT5 activation and is more potent than Tezepelumab, which is an FDA-approved humanized mAb against TSLP for severe asthma treatment in inhibiting TSLP-induced CCL17 and CCL22 chemokines secretion in human peripheral blood mononuclear cells. Our pre-clinical study demonstrates that HZ-1127 may serve as a potential therapeutic agent for allergic diseases and cancer.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3500 N Broad St, Philadelphia, PA 19140, USA
| | - Jianzhong Han
- Department of Research, Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103, USA
| | - Qian Wang
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Peng Wang
- Department of Research, Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103, USA
| | - Li Li
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Kehe Du
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Fengchao Jiang
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Pei Zhang
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Hongjun Liu
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Jian Huang
- Department of Research, Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103, USA
- Department of Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad St, Philadelphia, PA 19140, USA
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 303 Cooper St, Camden, NJ 08102, USA
| |
Collapse
|
50
|
Andreasson LM, Dyhre-Petersen N, Hvidtfeldt M, Jørgensen GØ, Von Bülow A, Klein DK, Uller L, Erjefält J, Porsbjerg C, Sverrild A. Airway hyperresponsiveness correlates with airway TSLP in asthma independent of eosinophilic inflammation. J Allergy Clin Immunol 2024; 153:988-997.e11. [PMID: 38081546 DOI: 10.1016/j.jaci.2023.11.915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is released from the airway epithelium in response to various environmental triggers, inducing a type-2 inflammatory response, and is associated with airway inflammation, airway hyperresponsiveness (AHR), and exacerbations. TSLP may also induce AHR via a direct effect on airway smooth muscle and mast cells, independently of type-2 inflammation, although association between airway TSLP and AHR across asthma phenotypes has been described sparsely. OBJECTIVES This study sought to investigate the association between AHR and levels of TSLP in serum, sputum, and bronchoalveolar lavage in patients with asthma with and without type-2 inflammation. METHODS A novel ultrasensitive assay was used to measure levels of TSLP in patients with asthma (serum, n = 182; sputum, n = 81; bronchoalveolar lavage, n = 85) and healthy controls (serum, n = 47). The distribution and association among airway and systemic TSLP, measures of AHR, type-2 inflammation, and severity of disease were assessed. RESULTS TSLP in sputum was associated with AHR independently of levels of eosinophils and fractional exhaled nitric oxide (ρ = 0.49, P = .005). Serum TSLP was higher in both eosinophil-high and eosinophil-low asthma compared to healthy controls: geometric mean: 1600 fg/mL (95% CI: 1468-1744 fg/mL) and 1294 fg/mL (95% CI: 1167-1435 fg/mL) versus 846 fg/mL (95% CI: 661-1082 fg/mL), but did not correlate with the level of AHR. Increasing age, male sex, and eosinophils in blood were associated with higher levels of TSLP in serum, whereas lung function, inhaled corticosteroid dose, and symptom score were not. CONCLUSIONS The association between TSLP in sputum and AHR to mannitol irrespective of markers of type-2 inflammation further supports a role of TSLP in AHR that is partially independent of eosinophilic inflammation.
Collapse
Affiliation(s)
- Louise Munkholm Andreasson
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Nanna Dyhre-Petersen
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Morten Hvidtfeldt
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Gustav Ørting Jørgensen
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anna Von Bülow
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Ditte Kjærsgaard Klein
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Lena Uller
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - Jonas Erjefält
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark.
| |
Collapse
|