1
|
Chen K, Wei F, Zhang X, Jin H, Zhou R, Zuo Y, Fan K. Dynamics of an SVEIR transmission model with protection awareness and two strains. Infect Dis Model 2025; 10:207-228. [PMID: 39469221 PMCID: PMC11513685 DOI: 10.1016/j.idm.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
As of May 2024, the main strains of COVID-19 caused hundreds of millions of infection cases and millions of deaths worldwide. In this study, we consider the COVID-19 epidemics with the main strains in the Chinese mainland. We study complex interactions among hosts, non-pharmaceutical interventions, and vaccinations for the main strains by a differential equation model called SVEIR. The disease transmission model incorporates two strains and protection awareness of the susceptible population. Results of this study show that the protection awareness plays a crucial role against infection of the population, and that the vaccines are effective against the circulation of the earlier strains, but ineffective for emerging strains. By using the next generation matrix method, the basic reproduction number of the SVEIR model is firstly obtained. Our analysis by Hurwitz criterion and LaSalle's invariance principle shows that the disease free-equilibrium point is locally and globally asymptotically stable when the threshold value is below one. The existences of endemic equilibrium points are also established, and the global asymptotic stabilities are analyzed using the Lyapunov function method. Further, the SVEIR model is confirmed to satisfy the principle of competitive exclusion, of which the strain with the larger value of the basic reproduction number is dominant. Numerically, the surveillance data with the Omicron strain and the XBB strain are split by the cubic spline interpolation method. The fitting curves against the surveillance data are plotted using the least-squares method from MATLAB. The results indicate that the XBB strain dominates in this study. Moreover, a global sensitivity analysis of the key parameters is performed by using of PRCC. The numerical simulations imply that combination control strategy positively impacts on the infection scale than what separate control strategy does, and that the earlier time producing protection awareness for the public creates less infection scale, further that the increment of protection awareness also reduces the infection scale. Therefore, the policymakers of the local government are suggested to concern the changes of protection awareness of the public.
Collapse
Affiliation(s)
- Kaijing Chen
- School of Mathematics and Statistics, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Fengying Wei
- School of Mathematics and Statistics, Fuzhou University, Fuzhou, 350116, Fujian, China
- Key Laboratory of Operations Research and Control of Universities in Fujian, Fuzhou University, Fuzhou, 350116, Fujian, China
- Center for Applied Mathematics of Fujian Province, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Xinyan Zhang
- Jinzhou Center for Disease Control and Prevention, Jinzhou, 121000, Liaoning, China
| | - Hao Jin
- Jinzhou Center for Disease Control and Prevention, Jinzhou, 121000, Liaoning, China
| | - Ruiyang Zhou
- School of Mathematics and Statistics, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Yue Zuo
- Jinzhou Center for Disease Control and Prevention, Jinzhou, 121000, Liaoning, China
| | - Kai Fan
- Jinzhou Center for Disease Control and Prevention, Jinzhou, 121000, Liaoning, China
| |
Collapse
|
2
|
Kulkarni PS, Padmapriyadarsini C, Vekemans J, Bavdekar A, Gupta M, Kulkarni P, Garg B, Gogtay NJ, Tambe M, Lalwani S, Singh K, Munshi R, Meshram S, Selvavinayagam T, Pandey K, Bhimarasetty DM, Ramakrishnan S, Bhamare C, Dharmadhikari A, Budhawant C, Bonhomme CJ, Thakar M, Kurle SN, Kelly EJ, Gautam M, Gupta N, Panda S, Bhargava B, Poonawalla CS, Shaligram U, Kapse D, Gunale B. Seropersistence of SII-ChAdOx1 nCoV-19 (COVID-19 vaccine): 6-month follow-up of a randomized, controlled, observer-blind, phase 2/3 immuno-bridging study in Indian adults. Hum Vaccin Immunother 2024; 20:2304974. [PMID: 38512394 PMCID: PMC10962622 DOI: 10.1080/21645515.2024.2304974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/10/2024] [Indexed: 03/23/2024] Open
Abstract
AZD1222 (ChAdOx1 nCoV-19) is a replication-deficient adenoviral vectored coronavirus disease-19 (COVID-19) vaccine that is manufactured as SII-ChAdOx1 nCoV-19 by the Serum Institute of India Pvt Ltd following technology transfer from Oxford University/AstraZeneca. The non-inferiority of SII-ChAdOx1 nCoV-19 with AZD1222 was previously demonstrated in an observer-blind, phase 2/3 immuno-bridging study (trial registration: CTRI/2020/08/027170). In this analysis of immunogenicity and safety data 6 months post first vaccination (Day 180), 1,601 participants were randomized 3:1 to SII-ChAdOx1 nCoV-19 or AZD1222 (immunogenicity/reactogenicity cohort n = 401) and 3:1 to SII-ChAdOx1 nCoV-19 or placebo (safety cohort n = 1,200). Immunogenicity was measured by anti-severe acute respiratory syndrome coronavirus 2 spike (anti-S) binding immunoglobulin G and neutralizing antibody (nAb) titers. A decline in anti-S titers was observed in both vaccine groups, albeit with a greater decline in SII-ChAdOx1 nCoV-19 vaccinees (geometric mean titer [GMT] ratio [95% confidence interval (CI) of SII-ChAdOx1 nCoV-19 to AZD1222]: 0.60 [0.41-0.87]). Consistent similar decreases in nAb titers were observed between vaccine groups (GMT ratio [95% CI]: 0.88 [0.44-1.73]). No cases of severe COVID-19 were reported following vaccination, while one case was observed in the placebo group. No causally related serious adverse events were reported through 180 days. No thromboembolic or autoimmune adverse events of special interest were reported. Collectively, these data illustrate that SII-ChAdOx1 nCoV-19 maintained a high level of immunogenicity 6 months post-vaccination. SII-ChAdOx1 nCoV-19 was safe and well tolerated.
Collapse
Affiliation(s)
| | | | - Johan Vekemans
- Formerly of: Clinical Development, Infection, Late-stage Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Madhu Gupta
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Praveen Kulkarni
- Department of Community Medicine, JSS Academy of Higher Education and Research, Mysore, India
| | - B.S. Garg
- Department of Community Medicine and Dr Sushila Nayar School of Public Health, Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Nithya J. Gogtay
- Department of Clinical Pharmacology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Muralidhar Tambe
- Department of Community Medicine, B J Government Medical College and Sassoon General Hospitals, Pune, India
| | - Sanjay Lalwani
- Department of Pediatrics, Bharati Vidyapeeth Deemed University Medical College and Hospital, Pune, India
| | - Kiranjit Singh
- Jehangir Clinical Development Centre Pvt Ltd, Pune, India
| | - Renuka Munshi
- Department of Clinical Pharmacology, TN Medical College & BYL Nair Hospital, Mumbai, India
| | - Sushant Meshram
- Department of Pulmonary Medicine, Government Medical College, Nagpur, India
| | | | - Krishna Pandey
- Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | | | - S.R. Ramakrishnan
- Department of Clinical Research, Sri Ramchandra Institute of Higher Education and Research, Chennai, India
| | | | | | | | - Cyrille J. Bonhomme
- Laboratory Services, Vaccines Sciences Lab, Clinical Research, PPD, Part of Thermo Fisher Scientific, Richmond, VA, USA
| | | | | | - Elizabeth J. Kelly
- Formerly of: Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Aydillo T, Balsera-Manzanero M, Rojo-Fernandez A, Escalera A, Salamanca-Rivera C, Pachón J, Del Mar Muñoz-García M, Sánchez-Cordero MJ, Sánchez-Céspedes J, García-Sastre A, Cordero E. Concomitant administration of seasonal influenza and COVID-19 mRNA vaccines. Emerg Microbes Infect 2024; 13:2292068. [PMID: 38054302 PMCID: PMC10798284 DOI: 10.1080/22221751.2023.2292068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
Current clinical guidelines support the concomitant administration of seasonal influenza vaccines and COVID-19 mRNA boosters vaccine. Whether dual vaccination may impact vaccine immunogenicity due to an interference between influenza or SARS-CoV-2 antigens is unknown. We aimed to understand the impact of mRNA COVID-19 vaccines administered concomitantly on the immune response to influenza vaccines. For this, 128 volunteers were vaccinated during the 22-23 influenza season. Three groups of vaccination were assembled: FLU vaccine only (46, 35%) versus volunteers that received the mRNA bivalent COVID-19 vaccines concomitantly to seasonal influenza vaccines, FluCOVID vaccine in the same arm (42, 33%) or different arm (40, 31%), respectively. Sera and whole blood were obtained the day of vaccination, +7, and +28 days after for antibody and T cells response quantification. As expected, side effects were increased in individuals who received the FluCOVID vaccine as compared to FLU vaccine only based on the known reactogenicity of mRNA vaccines. In general, antibody levels were high at 4 weeks post-vaccination and differences were found only for the H3N2 virus when administered in different arms compared to the other groups at day 28 post-vaccination. Additionally, our data showed that subjects that received the FluCOVID vaccine in different arm tended to have better antibody induction than those receiving FLU vaccines for H3N2 virus in the absence of pre-existing immunity. Furthermore, no notable differences in the influenza-specific cellular immune response were found for any of the vaccination groups. Our data supports the concomitant administration of seasonal influenza and mRNA COVID-19 vaccines.
Collapse
Affiliation(s)
- Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, USA
| | - Maria Balsera-Manzanero
- Viral Diseases and Infections in Immunodeficiencies Research Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Amaya Rojo-Fernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, USA
| | - Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Celia Salamanca-Rivera
- Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Sevilla, Spain
- Department of Preventive Medicine, University of Seville, Spain
| | - Jerónimo Pachón
- Viral Diseases and Infections in Immunodeficiencies Research Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Department of Medicine, School of Medicine, University of Sevilla, Sevilla, Spain
| | | | | | - Javier Sánchez-Céspedes
- Viral Diseases and Infections in Immunodeficiencies Research Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Sevilla, Spain
- CIBERINFEC, CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, USA
| | - Elisa Cordero
- Viral Diseases and Infections in Immunodeficiencies Research Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Sevilla, Spain
- CIBERINFEC, CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine, University of Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Serrano-Ortiz Á, Romero-Cabrera JL, Monserrat Villatoro J, Cordero-Ramos J, Ruiz-Montero R, Ritoré Á, Dopazo J, Del Diego Salas J, García Sánchez V, Salcedo-Leal I, Armengol de la Hoz MÁ, Túnez I, Guzmán MÁ. Assessing COVID-19 Vaccine Effectiveness and Risk Factors for Severe Outcomes through Machine Learning Techniques: A Real-World Data Study in Andalusia, Spain. J Epidemiol Glob Health 2024:10.1007/s44197-024-00298-2. [PMID: 39527397 DOI: 10.1007/s44197-024-00298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND COVID-19 vaccination has become a pivotal global strategy in managing the pandemic. Despite COVID-19 no longer being classified as a Public Health Emergency of International Concern, the virus continues affecting people worldwide. This study aimed to evaluate risk factors and vaccine effectiveness on COVID-19-related hospital admissions, intensive care unit (ICU) admission and mortality within the Andalusian population throughout the pandemic. METHODS From March 2020 to April 2022, 671,229 individuals, out of 9,283,485 with electronic health records in Andalusia, experienced SARS-CoV-2 infection and were included in the analysis. Data on demographics, medical history, vaccine administration, and hospitalization records were collected. Associations between medical history, COVID-19 vaccines, and COVID-19 outcomes were assessed. RESULTS Our study identified 48,196 hospital admissions, 5,057 ICU admissions, and 11,289 deaths linked to COVID-19. Age, male sex, and chronic diseases were identified as risk factors, while the COVID-19 vaccine demonstrated protective effects, although with reduced effectiveness during the omicron variant period. However, the risk for these outcomes increased over time after receiving the last vaccine dose, particularly after six months, especially among those aged 60 or older. CONCLUSION The global health challenge of COVID-19 persists, marked by emerging variants with higher virulence and severity, particularly among the unvaccinated and those beyond six months post-vaccination, especially those aged 60 and above. These findings highlight the need for robust surveillance systems targeting new variants and administering booster doses, particularly for individuals aged 60 or older with underlying health conditions, to mitigate the global burden of COVID-19.
Collapse
Affiliation(s)
- Álvaro Serrano-Ortiz
- Preventive Medicine and Public Health Unit, Reina Sofía University Hospital, Córdoba, Spain
- Preventive Medicine and Public Health Research Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Preventive Medicine and Public Health Unit, Healthcare Management Area: South of Córdoba, Cabra, Córdoba, Spain
| | - Juan Luis Romero-Cabrera
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaime Monserrat Villatoro
- Health District of Córdoba and Guadalquivir, Córdoba, Spain
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Jaime Cordero-Ramos
- Pharmaceutical Management Department, Extremadura Health Service, Mérida, Spain
- Hospital Pharmacy, Virgen Macarena University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Seville, Spain
| | - Rafael Ruiz-Montero
- Preventive Medicine and Public Health Unit, Reina Sofía University Hospital, Córdoba, Spain
- Preventive Medicine and Public Health Research Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, Córdoba, Spain
| | - Álvaro Ritoré
- Big Data Department, PMC-FPS, Regional Ministry of Health and Consumer Affairs, Seville, Spain
| | - Joaquín Dopazo
- Institute of Biomedicine of Seville (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Seville, Spain
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Jorge Del Diego Salas
- Directorate General of Public Health and Pharmaceutical Regulation, Ministry of Health and Consumer Affairs of the Regional Government of Andalusia, Seville, Spain
| | - Valle García Sánchez
- Management Directorate of Andalusian Health Service, Ministry of Health and Consumer Affairs of the Regional Government of Andalusia, Seville, Spain
- Reina Sofía University Hospital, Córdoba, Spain
| | - Inmaculada Salcedo-Leal
- Preventive Medicine and Public Health Unit, Reina Sofía University Hospital, Córdoba, Spain
- Preventive Medicine and Public Health Research Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, Córdoba, Spain
| | | | - Isaac Túnez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- General Secretariat of Public Health and Research, Development and Innovation in Health, Ministry of Health and Consumer Affairs of the Regional Government of Andalusia, Seville, Spain
| | | |
Collapse
|
5
|
Kim SA, Maeda M, Murata F, Fukuda H. Effect of COVID-19 vaccination on the risk of developing post-COVID conditions: The VENUS study. Vaccine 2024; 43:126497. [PMID: 39504683 DOI: 10.1016/j.vaccine.2024.126497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Post-COVID-19 conditions have emerged as a global health challenge. This study examined the long-term effects of COVID-19 vaccination on the incidence and risk of post-COVID-19 conditions in Japan. METHODS This retrospective cohort study was conducted using a database comprising medical claims, COVID-19 case information, and vaccination records of persons residing in four Japanese municipalities. The cohort included COVID-19 cases diagnosed between August 2020 and December 2022. Participants were classified according to the duration between their most recent COVID-19 vaccination and COVID-19 occurrence (≥365 days, 150-364 days, and 14-149 days). The incidences of 36 post-COVID-19 conditions were monitored for 3, 5, and 8 months after infection. Cox proportional hazards models were used to calculate the risk of developing each post-COVID-19 condition within 8 months after infection according to vaccination status. RESULTS From among 84,464 participants, 9642 (11.4 %) developed post-COVID-19 conditions over 8 months. The 8-month risks of developing 28 (including various respiratory conditions, cardiovascular conditions, inflammatory and immune diseases, physical conditions, psychiatric conditions, and endocrine disorders) of the 36 target conditions were significantly lower when individuals had been recently vaccinated (14-149 days) before infection. CONCLUSIONS COVID-19 vaccination can reduce the incidence and risk of post-COVID-19 conditions if administered within 5 months before infection. Despite having the highest mean age and prevalence of comorbidities, individuals who were most recently vaccinated had a lower risk of developing post-COVID-19 conditions. These results provide important evidence for future COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Sung-A Kim
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; St. Mary's Research Center, Kurume, Japan
| | - Megumi Maeda
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumiko Murata
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruhisa Fukuda
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Wu H, Zhang Y, Tang W, Lv M, Chen Z, Meng F, Zhao Y, Xu H, Dai Y, Xue J, Wang J, Dong L, Wu D, Zhang S, Xue R. Liver function abnormality on admission predicts long COVID syndrome in digestive system. Heliyon 2024; 10:e37664. [PMID: 39386803 PMCID: PMC11462002 DOI: 10.1016/j.heliyon.2024.e37664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 10/12/2024] Open
Abstract
Background Clinical practice showed that many patients with SARS-CoV-2 infection presented with long COVID syndrome in digestive system. We sought to investigate the factor affecting the incidence of long COVID syndrome in digestive system. Methods and results Patients with SARS-CoV-2 infection diagnosed at two centers of Zhongshan Hospital and one center of Shanghai Pudong Hospital from March 01, 2022 to May 31, 2022 were enrolled, collected in the hospital database, and followed up until March 30, 2023. The primary outcome of the study was the occurrence of post-acute sequelae of COVID-19 in the digestive system (long COVID syndrome). Modified Poisson regression was used to calculate the relative risk (RR). This cohort study included 494 patients with SARS-CoV-2 infection, 144 (29.1 %) patients developed liver function abnormality on admission. During the follow-up period, the primary study outcome occurred in 30 (20.8 %) of the group presenting with liver function abnormality on admission and in 20 (5.7 %) of the group without liver function abnormality on admission (adjusted, RR = 3.550, 95%CI: 2.099-6.006, P ≤ 0.001). Conclusion Our study suggests that patients with COVID-19 who experience liver function abnormality on admission have an increased risk of developing long COVID syndrome in the digestive system.
Collapse
Affiliation(s)
- Huibin Wu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunjie Zhang
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Minzhi Lv
- Department of Biostatistics, Clinical Research Unit, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Biostatistics, Clinical Research Unit, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Center of Evidence-Based Medicine, Fudan University, Shanghai, 200032, China
| | - Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fansheng Meng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yitong Zhao
- School of Medicine, Anhui University of Science and Technology, Anhui, 232000, China
| | - Huajie Xu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Yuxin Dai
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jindan Xue
- School of Medicine, Anhui University of Science and Technology, Anhui, 232000, China
| | - Jingya Wang
- Department of Biochemistry and Molecular Biology, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dejun Wu
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai, 200940, China
| |
Collapse
|
7
|
Holder KA, Ings DP, Fifield KE, Barnes DA, Barnable KA, Harnum DOA, Russell RS, Grant MD. Sequence Matters: Primary COVID-19 Vaccination after Infection Elicits Similar Anti-spike Antibody Levels, but Stronger Antibody Dependent Cell-mediated Cytotoxicity than Breakthrough Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1105-1114. [PMID: 39248629 PMCID: PMC11457723 DOI: 10.4049/jimmunol.2400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Infection before primary vaccination (herein termed "hybrid immunity") engenders robust humoral immunity and broad Ab-dependent cell-mediated cytotoxicity (ADCC) across SARS-CoV-2 variants. We measured and compared plasma IgG and IgA against Wuhan-Hu-1 and Omicron (B.1.1.529) full-length spike (FLS) and receptor binding domain after three mRNA vaccines encoding Wuhan-Hu-1 spike (S) and after Omicron breakthrough infection. We also measured IgG binding to Wuhan-Hu-1 and Omicron S1, Wuhan-Hu-1 S2 and Wuhan-Hu-1 and Omicron cell-based S. We compared ADCC using human embryonic lung fibroblast (MRC-5) cells expressing Wuhan-Hu-1 or Omicron S. The effect of Omicron breakthrough infection on IgG anti-Wuhan-Hu-1 and Omicron FLS avidity was also considered. Despite Omicron breakthrough infection increasing IgG and IgA against FLS and receptor binding domain to levels similar to those seen with hybrid immunity, there was no boost to ADCC. Preferential recognition of Wuhan-Hu-1 persisted following Omicron breakthrough infection, which increased IgG avidity against Wuhan-Hu-1 FLS. Despite similar total anti-FLS IgG levels following breakthrough infection, 4-fold higher plasma concentrations were required to elicit ADCC comparable to that elicited by hybrid immunity. The greater capacity for hybrid immunity to elicit ADCC was associated with a differential IgG reactivity pattern against S1, S2, and linear determinants throughout FLS. Immunity against SARS-CoV-2 following Omicron breakthrough infection manifests significantly less ADCC capacity than hybrid immunity. Thus, the sequence of antigenic exposure by infection versus vaccination and other factors such as severity of infection affect antiviral functions of humoral immunity in the absence of overt quantitative differences in the humoral response.
Collapse
Affiliation(s)
- Kayla A. Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Danielle P. Ings
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Kathleen E. Fifield
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - David A. Barnes
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Keeley A. Barnable
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rodney S. Russell
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Michael D. Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
8
|
Manoha C, Dequiedt AL, Thery L, Marotel M, Pez F, Vouillon B, Gueneau E, de Rougemont A. Multisite community-scale monitoring of respiratory and enteric viruses in the effluent of a nursing home and in the inlet of the local wastewater treatment plant. Appl Environ Microbiol 2024:e0115824. [PMID: 39387558 DOI: 10.1128/aem.01158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
The aim of this study was to evaluate whether community-level monitoring of respiratory and enteric viruses in wastewater can provide a comprehensive picture of local virus circulation. Wastewater samples were collected weekly at the wastewater treatment plant (WWTP) inlet and at the outlet of a nearby nursing home (NH) in Burgundy, France, during the winter period of 2022/2023. We searched for the pepper mild mottle virus as an indicator of fecal content as well as for the main respiratory viruses [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, and respiratory syncytial virus] and enteric viruses (rotavirus, sapovirus, norovirus, astrovirus, and adenovirus). Samples were analyzed using real-time reverse transcription PCR-based methods. SARS-CoV-2 was the most frequently detected respiratory virus, with 66.7% of positive samples from the WWTP and 28.6% from the NH. Peaks of SARS-CoV-2 were consistent with the chronological incidence of infections recorded in the sentinel surveillance and the nearby hospital databases. The number of positive samples was lower in the NH than in WWTP for the three respiratory viruses. Enteric viruses were frequently detected, most often sapovirus and norovirus genogroup II, accounting both for 77.8% of positive samples in the WWTP and 57.1% and 37%, respectively, in the NH. The large circulation of sapovirus was unexpected in particular in the NH. Combined wastewater surveillance using simple optimized methods can be a valuable tool for monitoring viral circulation and may serve as a suitable early warning system for identifying both local outbreaks and the onset of epidemics. These results encourage the application of wastewater-based surveillance (WBS) to SARS-CoV2, norovirus, and sapovirus.IMPORTANCEWBS provides valuable information on the spread of epidemic viruses in the environment using appropriate and sensitive detection methods. By monitoring the circulation of viruses using reverse transcription PCR methods in wastewater from the inlet of a wastewater treatment plant and the outlet of a nearby retirement home (connected to the same collective sewer network), we aimed to demonstrate that implementing combined WBS at key community sites allows effective detection of the occurrence of respiratory (influenza, respiratory syncytial virus, and SARS-CoV-2) and enteric (norovirus, rotavirus, and sapovirus) virus infections within a given population. This analysis on a localized scale provided new information on the viral circulation in the two different sites. Implementing WBS to monitor the circulation or the emergence of infectious diseases is an important means of alerting the authorities and improving public health management. WBS could participate actively to the health of humans, animals, and the environment.
Collapse
Affiliation(s)
- Catherine Manoha
- Laboratory of Virology, University Hospital of Dijon Bourgogne, Dijon, France
| | - Anne-Laure Dequiedt
- Departmental Laboratory of Côte d'Or, Departmental Council of Côte-d'Or, Dijon, France
| | - Lucie Thery
- National Reference Centre for Gastroenteritis Viruses, University Hospital of Dijon Bourgogne, Dijon, France
| | - Marina Marotel
- Departmental Laboratory of Côte d'Or, Departmental Council of Côte-d'Or, Dijon, France
| | | | - Bruno Vouillon
- Departmental Laboratory of Côte d'Or, Departmental Council of Côte-d'Or, Dijon, France
| | - Eric Gueneau
- Departmental Laboratory of Côte d'Or, Departmental Council of Côte-d'Or, Dijon, France
| | - Alexis de Rougemont
- Laboratory of Virology, University Hospital of Dijon Bourgogne, Dijon, France
- National Reference Centre for Gastroenteritis Viruses, University Hospital of Dijon Bourgogne, Dijon, France
| |
Collapse
|
9
|
d'Onofrio A, Iannelli M, Marinoschi G, Manfredi P. Multiple pandemic waves vs multi-period/multi-phasic epidemics: Global shape of the COVID-19 pandemic. J Theor Biol 2024; 593:111881. [PMID: 38972568 DOI: 10.1016/j.jtbi.2024.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/29/2023] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
The overall course of the COVID-19 pandemic in Western countries has been characterized by complex sequences of phases. In the period before the arrival of vaccines, these phases were mainly due to the alternation between the strengthening/lifting of social distancing measures, with the aim to balance the protection of health and that of the society as a whole. After the arrival of vaccines, this multi-phasic character was further emphasized by the complicated deployment of vaccination campaigns and the onset of virus' variants. To cope with this multi-phasic character, we propose a theoretical approach to the modeling of overall pandemic courses, that we term multi-period/multi-phasic, based on a specific definition of phase. This allows a unified and parsimonious representation of complex epidemic courses even when vaccination and virus' variants are considered, through sequences of weak ergodic renewal equations that become fully ergodic when appropriate conditions are met. Specific hypotheses on epidemiological and intervention parameters allow reduction to simple models. The framework suggest a simple, theory driven, approach to data explanation that allows an accurate reproduction of the overall course of the COVID-19 epidemic in Italy since its beginning (February 2020) up to omicron onset, confirming the validity of the concept.
Collapse
Affiliation(s)
- Alberto d'Onofrio
- Dipartimento di Matematica e Geoscienze, Universitá di Trieste, Via Alfonso Valerio 12, Edificio H2bis, 34127 Trieste, Italy.
| | - Mimmo Iannelli
- Mathematics Department, University of Trento, Via Sommarive 14, 38123 Trento, Italy.
| | - Gabriela Marinoschi
- Gheorghe Mihoc-Caius Iacob Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Bucharest, Romania.
| | - Piero Manfredi
- Department of Economics and Management, University of Pisa, Via Ridolfi 10, 56124 Pisa, Italy.
| |
Collapse
|
10
|
Gagne M, Flynn BJ, Andrew SF, Marquez J, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Pessaint L, Todd JPM, Doria-Rose NA, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, O'Dell S, Wali B, Ellis M, Godbole S, Laboune F, Henry AR, Teng IT, Wang D, Wang L, Zhou Q, Zouantchangadou S, Van Ry A, Lewis MG, Andersen H, Kwong PD, Curiel DT, Roederer M, Nason MC, Foulds KE, Suthar MS, Diamond MS, Douek DC, Seder RA. Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat Immunol 2024; 25:1913-1927. [PMID: 39227514 PMCID: PMC11436372 DOI: 10.1038/s41590-024-01951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Mychalowych
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Matthew R Burnett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonid A Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zohar E Ziff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erin Maule
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yogita Jethmalani
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bushra Wali
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehul S Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines & Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Dinç HÖ, Can G, Budak B, Daşdemir FO, Keskin E, Kirkoyun-Uysal H, Aydoğan O, Balkan II, Karaali R, Ergin S, Saltoğlu N, Kocazeybek B. Antibody responses post-booster COVID-19 vaccination: Insights from a single-center prospective cohort study. Diagn Microbiol Infect Dis 2024; 110:116425. [PMID: 39098282 DOI: 10.1016/j.diagmicrobio.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
The study aimed to evaluate the effect of booster dose COVID-19 vaccines on prevention and humoral immune response in individuals with different vaccination schemes during the period BA.4 and BA.5 omicron sub-variants were globally dominant. The study included 146 individuals who preferred different vaccination schemes for booster doses. Anti-spike/RBD-IgG and neutralizing antibody levels were measured 28 days after the booster dose vaccination upon their consent. There is no significant difference between median antibody titers detected according to different vaccination schemes. SARS-CoV-2 neutralizing antibody inhibition percentages were detected significantly higher in serum samples before and after the last booster dose in 2 BNT162b2+1 BNT162b2(99.42 %), 2 BNT162b2 + 2 BNT162b2(99.42 %), and 2 BNT162b2 + 3 BNT162b2(99.42 %) vaccination schemes (p = 0.004, p = 0.044, p = 0.002,respectively). The study indicated that a booster vaccination dose provides a high level of protection against severe COVID-19 and death. We think that the variant-specific pancoronavirus vaccines will be necessary to protect against breakthrough infections.
Collapse
Affiliation(s)
- Harika-Öykü Dinç
- Department of Medical Microbiology, Faculty of Medicine, Üsküdar University, Istanbul, 34768, Turkey
| | - Günay Can
- Department of Public Health, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Beyhan Budak
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Ferhat-Osman Daşdemir
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Elif Keskin
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Hayriye Kirkoyun-Uysal
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Okan Aydoğan
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Ilker-Inanç Balkan
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Rıdvan Karaali
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Sevgi Ergin
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Neşe Saltoğlu
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey
| | - Bekir Kocazeybek
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey.
| |
Collapse
|
12
|
Lin MR, Huang CG, Chiu CH, Chen CJ. Evaluation of Vaccine Strategies among Healthcare Workers during COVID-19 Omicron Outbreak in Taiwan. Vaccines (Basel) 2024; 12:1057. [PMID: 39340088 PMCID: PMC11435596 DOI: 10.3390/vaccines12091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to assess the reactogenicity and immunogenicity of various SARS-CoV-2 vaccines and compare their protective effects against COVID-19 among healthcare workers (HCWs) during the Omicron outbreak in Taiwan. METHODS Conducted from March 2021 to July 2023, this prospective observational study included healthy HCWs without prior COVID-19 immunization. Participants chose between adenovirus-vectored (AstraZeneca), mRNA (Moderna, BioNTech-Pfizer), and protein-based (Medigen, Novavax) vaccines. Blood samples were taken at multiple points to measure neutralizing antibody (nAb) titers, and adverse events (AEs) were recorded via questionnaires. RESULTS Of 710 HCWs, 668 (94.1%) completed three doses, and 290 (40.8%) received a fourth dose during the Omicron outbreak. AEs were more common with AstraZeneca and Moderna vaccines, while Medigen caused fewer AEs. Initial nAb titers were highest with Moderna but waned over time regardless of the vaccine. Booster doses significantly increased nAb titers, with the highest levels observed in Moderna BA1 recipients. The fourth dose significantly reduced COVID-19 incidence, with Moderna BA1 being the most effective. CONCLUSIONS Regular booster doses, especially with mRNA and adjuvant-protein vaccines, effectively enhance nAb levels and reduce infection rates, providing critical protection for frontline HCWs during variant outbreaks.
Collapse
Affiliation(s)
- Min-Ru Lin
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Jung Chen
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
13
|
Rubio R, Macià D, Barrios D, Vidal M, Jiménez A, Molinos-Albert LM, Díaz N, Canyelles M, Lara-Escandell M, Planchais C, Santamaria P, Carolis C, Izquierdo L, Aguilar R, Moncunill G, Dobaño C. High-resolution kinetics and cellular determinants of SARS-CoV-2 antibody response over two years after COVID-19 vaccination. Microbes Infect 2024:105423. [PMID: 39299570 DOI: 10.1016/j.micinf.2024.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) studies usually rely on cross-sectional data of large cohorts but limited repeated samples, overlooking significant inter-individual antibody kinetic differences. By combining Luminex, activation-induced marker (AIM) and IFN-γ/IL-2 Fluorospot assays, we characterized the IgM, IgA, and IgG antibody kinetics using 610 samples from 31 healthy adults over two years after COVID-19 vaccination, and the T-cell responses six months post-booster. Antibody trajectories varied among isotypes: IgG decayed slowly, IgA exhibited an initial sharp decline, which gradually slowed down and stabilized above the seropositivity threshold. Contrarily, IgM rapidly dropped to undetectable levels after primary vaccination. Importantly, three vaccine doses induced higher and more durable anti-spike IgG and IgA levels compared to two doses, whereas infection led to the highest antibody peak and slowest antibody decay rate compared to vaccination. Comparing with ancestral virus, antibody levels recognizing Omicron subvariants had a faster antibody decay. Finally, polyfunctional T cells were positively associated with subsequent IgA responses. These results revealed distinctive antibody patterns by isotype and highlight the benefits of booster doses in enhancing and sustaining antibody responses.
Collapse
Affiliation(s)
- Rocío Rubio
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Dídac Macià
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Diana Barrios
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBERESP, Barcelona, Spain
| | - Luis M Molinos-Albert
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Natalia Díaz
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mar Canyelles
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Maria Lara-Escandell
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
| | - Pere Santamaria
- Pathogenesis and treatment of autoimmunity group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis Izquierdo
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
| | - Carlota Dobaño
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
| |
Collapse
|
14
|
Salomez-Ihl C, Giai J, Barbado M, Paris A, Touati S, Alcaraz JP, Tanguy S, Leroy C, Lehmann A, Degano B, Gavard M, Bedouch P, Pavese P, Moreau-Gaudry A, Roustit M, Boucher F, Cinquin P, Brion JP. H 2 inhalation therapy in patients with moderate COVID-19 (H 2COVID): a prospective ascending-dose phase I clinical trial. Antimicrob Agents Chemother 2024; 68:e0057324. [PMID: 39016593 PMCID: PMC11304737 DOI: 10.1128/aac.00573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a serious global health crisis, resulting in millions of reported deaths since its initial identification in China in November 2019. The global disparities in immunization access emphasize the urgent need for ongoing research into therapeutic interventions. This study focuses on the potential use of molecular dihydrogen (H2) inhalation as an adjunctive treatment for COVID-19. H2 therapy shows promise in inhibiting intracellular signaling pathways associated with inflammation, particularly when administered early in conjunction with nasal oxygen therapy. This phase I study, characterized by an open-label, prospective, monocentric, and single ascending-dose design, seeks to assess the safety and tolerability of the procedure in individuals with confirmed SARS-CoV-2 infection. Employing a 3 + 3 design, the study includes three exposure durations (target durations): 1 day (D1), 3 days (D2), and 6 days (D3). We concluded that the maximum tolerated duration is at least 3 days. Every patient showed clinical improvement and excellent tolerance to H2 therapy. To the best of our knowledge, this phase I clinical trial is the first to establish the safety of inhaling a mixture of H2 (3.6%) and N2 (96.4%) in hospitalized COVID-19 patients. The original device and method employed ensure the absence of explosion risk. The encouraging outcomes observed in the 12 patients included in the study justify further exploration through larger, controlled clinical trials. CLINICAL TRIALS This study is registered with ClinicalTrials.gov as NCT04633980.
Collapse
Affiliation(s)
- C. Salomez-Ihl
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, UMR5525, Grenoble, France
- Department of Pharmacy, Université Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - J. Giai
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Centre for Clinical Investigation, Grenoble, France
| | - M. Barbado
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Centre for Clinical Investigation, Grenoble, France
| | - A. Paris
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Centre for Clinical Investigation, Grenoble, France
| | - S. Touati
- Department of Infectious and Tropical Diseases, CHU Grenoble Alpes, Grenoble, France
| | - J. P. Alcaraz
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, UMR5525, Grenoble, France
| | - S. Tanguy
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, UMR5525, Grenoble, France
| | - C. Leroy
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Centre for Clinical Investigation, Grenoble, France
| | - A. Lehmann
- Department of Pharmacy, Université Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - B. Degano
- Department of Pneumology, CHU Grenoble Alpes, Grenoble, France
| | - M. Gavard
- CHU Grenoble Alpes, Delegation for Clinical Research and Innovation, Grenoble, France
| | - P. Bedouch
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, UMR5525, Grenoble, France
- Department of Pharmacy, Université Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - P. Pavese
- Department of Infectious and Tropical Diseases, CHU Grenoble Alpes, Grenoble, France
| | - A. Moreau-Gaudry
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, UMR5525, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Centre for Clinical Investigation, Grenoble, France
| | - M. Roustit
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Centre for Clinical Investigation, Grenoble, France
| | - F. Boucher
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, UMR5525, Grenoble, France
| | - P. Cinquin
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, UMR5525, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Centre for Clinical Investigation, Grenoble, France
| | - J. P. Brion
- Department of Infectious and Tropical Diseases, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
15
|
Belayneh EK, Workneh Leulseged T, Teklu BS, Tewodros BH, Megiso MZ, Weldesenbet ES, Berhanu MF, Shaweno YS, Hailu KT. Causal Inference of the Effect of Vaccination on COVID-19 Disease Severity and Need for Intensive Care Unit Admission Among Hospitalized Patients in an African Setting. Cureus 2024; 16:e67719. [PMID: 39318914 PMCID: PMC11421194 DOI: 10.7759/cureus.67719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/26/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a novel, primarily respiratory, coronavirus that became a pandemic when it spread to over 210 countries and led to the death of over six million people. There is no definitive treatment for COVID-19, but vaccines have been developed that can help prevent severe illness and death. Studies have investigated the effect of vaccination on disease severity and outcome, and the findings indicate that vaccination is linked to a significant reduction in the risk of hospitalization, intensive care unit (ICU) admission, and disease mortality. However, there is a scarcity of evidence in Africa in general, and no similar study has been conducted in Ethiopia yet. Therefore, the study aimed to assess the effect of vaccination on COVID-19 disease severity and the need for ICU admission among hospitalized patients at a private specialty clinic in Ethiopia. Methods A retrospective cohort study was conducted among 126 patients with COVID-19, 41 vaccinated and 85 unvaccinated, who were hospitalized between September 2021 and May 2022. Data were summarized using frequency (percentage) and median (interquartile range (IQR)). To compare the characteristics of the two groups, Chi-square/Fisher's exact and Mann-Whitney U tests at p-values of ≤ 0.05 were used. To identify the effect of vaccination on COVID-19 disease severity, a marginal structural model (MSM) with an inverse probability weighting (IPW) approach using a robust Poisson regression model was fitted. Adjusted relative risk (ARR) and 95% confidence interval (CI) for ARR were used for interpreting the result. Results The cohort included groups that were comparable in terms of their sociodemographic and clinical characteristics. More than half of the participants were older than 60 years (n = 66, 52.4%), were males (n = 71, 56.3%), and had one or more comorbid illnesses (n = 66, 52.4%). At admission, 85 (67.5%) had severe disease, and 11 (8.7%) progressed after hospitalization and required ICU admission, of which three unvaccinated cases died. From the final model, vaccination was found to be associated with a 62% decreased risk of developing severe COVID-19 disease if infected, compared to not getting vaccinated (ARR = 0.38, 95% CI = 0.23-0.65, p < 0.0001). Conclusions The study's findings support previous reports that vaccinated people are less likely to develop severe COVID-19 disease if later infected with the virus, emphasizing the importance of continuing efforts to promote COVID-19 vaccination not only to safeguard individuals but also to confer community-level immunity.
Collapse
Affiliation(s)
| | - Tigist Workneh Leulseged
- Public Health, Medical Research Lounge (MRL), Addis Ababa, ETH
- Internal Medicine, St. Paul's Hospital Millennium Medical College, Addis Ababa, ETH
| | | | | | | | | | | | | | - Kirubel Tesfaye Hailu
- Public Health, Medical Research Lounge (MRL), Addis Ababa, ETH
- Internal Medicine, Life Map Higher Learning Institute, Addis Ababa, ETH
| |
Collapse
|
16
|
Bouros I, Hill EM, Keeling MJ, Moore S, Thompson RN. Prioritising older individuals for COVID-19 booster vaccination leads to optimal public health outcomes in a range of socio-economic settings. PLoS Comput Biol 2024; 20:e1012309. [PMID: 39116038 PMCID: PMC11309497 DOI: 10.1371/journal.pcbi.1012309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
The rapid development of vaccines against SARS-CoV-2 altered the course of the COVID-19 pandemic. In most countries, vaccinations were initially targeted at high-risk populations, including older individuals and healthcare workers. Now, despite substantial infection- and vaccine-induced immunity in host populations worldwide, waning immunity and the emergence of novel variants continue to cause significant waves of infection and disease. Policy makers must determine how to deploy booster vaccinations, particularly when constraints in vaccine supply, delivery and cost mean that booster vaccines cannot be administered to everyone. A key question is therefore whether older individuals should again be prioritised for vaccination, or whether alternative strategies (e.g. offering booster vaccines to the individuals who have most contacts with others and therefore drive infection) can instead offer indirect protection to older individuals. Here, we use mathematical modelling to address this question, considering SARS-CoV-2 transmission in a range of countries with different socio-economic backgrounds. We show that the population structures of different countries can have a pronounced effect on the impact of booster vaccination, even when identical booster vaccination targeting strategies are adopted. However, under the assumed transmission model, prioritising older individuals for booster vaccination consistently leads to the most favourable public health outcomes in every setting considered. This remains true for a range of assumptions about booster vaccine supply and timing, and for different assumed policy objectives of booster vaccination.
Collapse
Affiliation(s)
- Ioana Bouros
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Edward M. Hill
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Matt J. Keeling
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sam Moore
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Robin N. Thompson
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Ip S, North TL, Torabi F, Li Y, Abbasizanjani H, Akbari A, Horne E, Denholm R, Keene S, Denaxas S, Banerjee A, Khunti K, Sudlow C, Whiteley WN, Sterne JAC, Wood AM, Walker V. Cohort study of cardiovascular safety of different COVID-19 vaccination doses among 46 million adults in England. Nat Commun 2024; 15:6085. [PMID: 39085208 PMCID: PMC11291640 DOI: 10.1038/s41467-024-49634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
The first dose of COVID-19 vaccines led to an overall reduction in cardiovascular events, and in rare cases, cardiovascular complications. There is less information about the effect of second and booster doses on cardiovascular diseases. Using longitudinal health records from 45.7 million adults in England between December 2020 and January 2022, our study compared the incidence of thrombotic and cardiovascular complications up to 26 weeks after first, second and booster doses of brands and combinations of COVID-19 vaccines used during the UK vaccination program with the incidence before or without the corresponding vaccination. The incidence of common arterial thrombotic events (mainly acute myocardial infarction and ischaemic stroke) was generally lower after each vaccine dose, brand and combination. Similarly, the incidence of common venous thrombotic events, (mainly pulmonary embolism and lower limb deep venous thrombosis) was lower after vaccination. There was a higher incidence of previously reported rare harms after vaccination: vaccine-induced thrombotic thrombocytopenia after first ChAdOx1 vaccination, and myocarditis and pericarditis after first, second and transiently after booster mRNA vaccination (BNT-162b2 and mRNA-1273). These findings support the wide uptake of future COVID-19 vaccination programs.
Collapse
Affiliation(s)
- Samantha Ip
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Teri-Louise North
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Fatemeh Torabi
- Population Data Science, Swansea University Medical School, Faculty of Medicine, Health, and Life Science, Swansea University, Swansea, Wales, UK
| | - Yangfan Li
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Hoda Abbasizanjani
- Population Data Science, Swansea University Medical School, Faculty of Medicine, Health, and Life Science, Swansea University, Swansea, Wales, UK
| | - Ashley Akbari
- Population Data Science, Swansea University Medical School, Faculty of Medicine, Health, and Life Science, Swansea University, Swansea, Wales, UK
| | - Elsie Horne
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rachel Denholm
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Health Data Research UK South-West, Bristol, UK
| | - Spencer Keene
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Spiros Denaxas
- Health Data Research UK, London, UK
- Institute of Health Informatics, University College London, London, UK
- University College London Hospitals Biomedical Research Centre, University College London, London, UK
- BHF Accelerator, London, UK
- British Heart Foundation Data Science Centre, Health Data Research UK, London, UK
| | - Amitava Banerjee
- Institute of Health Informatics, University College London, London, UK
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Cathie Sudlow
- British Heart Foundation Data Science Centre, Health Data Research UK, London, UK
| | - William N Whiteley
- British Heart Foundation Data Science Centre, Health Data Research UK, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jonathan A C Sterne
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Health Data Research UK South-West, Bristol, UK
| | - Angela M Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Data Science Centre, Health Data Research UK, London, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Venexia Walker
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, Bristol, UK
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Rashiti-Bytyçi A, White Johansson E, Kaçaniku-Gunga P, Danis K, Schoeps A, Dörre A, Fetaj F, Kalaveshi A. Estimation of COVID-19 vaccine effectiveness against infections and severe outcomes using routine surveillance data in Kosovo, July-September 2021. PLoS One 2024; 19:e0305629. [PMID: 39046982 PMCID: PMC11268608 DOI: 10.1371/journal.pone.0305629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND COVID-19 vaccines have proven effective against severe outcomes in many settings, yet vaccine effectiveness (VE) estimates remain lacking for Kosovo. We aimed to estimate VE against COVID-19 infections, hospitalisations, and deaths for one and two vaccine doses during the fourth pandemic wave in July-September 2021, the period when vaccination initially became widely available. METHODS We analysed routine surveillance data to define cases and vaccination status as partially (one dose) or completely (two doses) vaccinated. We used the screening method to calculate the proportion of cases with the outcomes vaccinated (PCV). The proportion of the population vaccinated (PPV) was based on numbers vaccinated and the Kosovo population estimate on 30/09/2021. RESULTS Between July-September 2021, 51,804 COVID-19 cases were reported in Kosovo with 9.3% of cases partially and 3.4% completely vaccinated. Estimated vaccine effectiveness for one dose was 93.1% (95%CI:92.9-93.2%) for infections, 90.3% (95%CI:88.8-91.7%) for hospitalisations, and 90.3% (95%CI:88.4-92.1%) for deaths. Estimated vaccine effectiveness for two doses was 97.8% (95%CI:97.6-97.9%) for infections, 94.5% (95%CI:93.3-95.6%) for hospitalisations, and 94.2% (95%CI: 93.7-96.5%) for deaths. CONCLUSIONS This study provides real-world evidence for COVID-19 vaccine effectiveness in Kosovo using routine administrative data sources and the screening method. COVID-19 vaccine effectiveness against infections and severe outcomes in Kosovo was higher with two vaccine doses than one dose, which is in accordance with findings from other study designs and settings. Using the screening method in our study reflects an important initial methodology for estimating vaccine effectiveness with routine surveillance that may be particularly important for low- and middle-income settings with less robust surveillance systems or fewer opportunities to conduct more robust vaccine effectiveness study designs.
Collapse
Affiliation(s)
- Albiona Rashiti-Bytyçi
- National Institute of Public Health, (NIPHK), Prishtina, Kosovo
- The Mediterranean and Black Sea Programme for Intervention Epidemiology Training (MediPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | | | - Kostas Danis
- The Mediterranean and Black Sea Programme for Intervention Epidemiology Training (MediPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Anja Schoeps
- Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute (RKI), Berlin, Germany
| | - Achim Dörre
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute (RKI), Berlin, Germany
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Fetije Fetaj
- National Institute of Public Health, (NIPHK), Prishtina, Kosovo
| | | |
Collapse
|
19
|
Woelfel S, Dütschler J, Junker D, König M, Leinenkugel G, Graf N, Krieger C, Truniger S, Franke A, Koller S, Metzger-Peter K, Oberholzer M, Frei N, Geissler N, Schaub P, Albrich WC, Friedrich M, Niess JH, Schneiderhan-Marra N, Dulovic A, Korte W, Bürgi JJ, Brand S. Systemic and Mucosal Immunogenicity of Monovalent XBB.1.5-Adapted COVID-19 mRNA Vaccines in Patients with Inflammatory Bowel Disease. Vaccines (Basel) 2024; 12:774. [PMID: 39066413 PMCID: PMC11281571 DOI: 10.3390/vaccines12070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Recently updated COVID-19 mRNA vaccines encode the spike protein of the omicron subvariant XBB.1.5 and are recommended for patients with inflammatory bowel disease (IBD) on immunosuppressive treatment. Nonetheless, their immunogenicity in patients with IBD against rapidly expanding virus variants remains unknown. This prospective multicenter cohort study is the first study to investigate the immunogenicity of XBB.1.5-adapted vaccines in patients with IBD. Systemic and mucosal antibodies targeting the receptor-binding domains (RBDs) of the omicron subvariants XBB.1.5, EG.5.1, and BA.2.86, as well as their neutralization were quantified before and two to four weeks after vaccination with monovalent XBB.1.5-adapted mRNA vaccines. Vaccination increased levels of serum anti-RBD IgG targeting XBB.1.5, EG.5.1, and BA.2.86 (1.9-fold, 1.8-fold, and 2.6-fold, respectively) and enhanced corresponding neutralization responses (2.3-fold, 3.1-fold, and 3.5-fold, respectively). Following vaccination, anti-TNF-treated patients had reduced virus neutralization compared to patients on treatments with other cellular targets. 11.1% and 16.7% of patients lacked EG.5.1 and BA.2.86 neutralization, respectively; all these patients received anti-TNF treatment. At mucosal sites, vaccination induced variant-specific anti-RBD IgG but failed to induce RBD-targeting IgA. Our findings provide a basis for future vaccine recommendations while highlighting the importance of frequent booster vaccine adaptation and the need for mucosal vaccination strategies in patients with IBD.
Collapse
Affiliation(s)
- Simon Woelfel
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig Maximilian University (LMU), 80333 Munich, Germany
| | - Joel Dütschler
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, 9400 Rorschach, Switzerland
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Marius König
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Georg Leinenkugel
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, 4002 Basel, Switzerland
| | - Nicole Graf
- Clinical Trials Unit, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Claudia Krieger
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Samuel Truniger
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, 9400 Rorschach, Switzerland
| | - Annett Franke
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, 9400 Rorschach, Switzerland
| | - Seraina Koller
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Katline Metzger-Peter
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, 4002 Basel, Switzerland
| | | | - Nicola Frei
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Nora Geissler
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Peter Schaub
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | | | - Werner C. Albrich
- Division of Infectious Diseases, Infection Prevention, & Travel Medicine, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Jan Hendrik Niess
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, 4002 Basel, Switzerland
- Gastroenterology Group, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | | | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Wolfgang Korte
- Center for Laboratory Medicine, 9001 St. Gallen, Switzerland
| | - Justus J. Bürgi
- Center for Laboratory Medicine, 9001 St. Gallen, Switzerland
| | - Stephan Brand
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| |
Collapse
|
20
|
Meijerink H, Veneti L, Kristoffersen AB, Danielsen AS, Stecher M, Starrfelt J. Estimating vaccine effectiveness against COVID-19 using cause-specific sick leave as an indicator: a nationwide population-based cohort study, Norway, July 2021 - December 2022. BMC Public Health 2024; 24:1861. [PMID: 38992631 PMCID: PMC11241785 DOI: 10.1186/s12889-024-19374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Due to changes in testing policy and increased use of rapid tests, other indicators for SARS-CoV-2 infections are needed to monitor vaccine effectiveness (VE). We aimed to estimate VE against COVID-19 sick leave (> 3 days, certified by a medical professional) among employed individuals (25-64-years-old) in Norway. METHODS We performed a nationwide cohort study by collating data from the Emergency preparedness register for COVID-19. We used adjusted Cox proportional hazard models with vaccine status as a time-varying covariate and presented results as adjusted hazard ratios (aHRs) with corresponding 95% confidence intervals. Separate models were run against sick leave and against SARS-CoV-2 infections during the Delta period (June-December 2021), and against sick leave during the Omicron period (January-December 2022) when SARS-CoV-2 PCR-testing was replaced by rapid self-tests and infections were underreported. RESULTS We included 2,236,419 individuals during the Delta period, of whom 73,776 (3.3%) had a reported infection and 54,334 (2.4%) were registered with sick leave. Of the 2,206,952 included individuals in the Omicron period, 300,140 (13.6%) were registered with sick leave. During the Delta period, 55% (26,611) of individuals who had registered sick leave also had a positive test, compared to 32% (96,445) during the Omicron period. The VE against sick leave during the Delta period followed a similar waning pattern to that against SARS-CoV-2 infections. After the second and third dose, the lowest aHRs were estimated for 2-7 days after vaccination for both sick leave (0.25; 95%CI 0.24-0.26 and 0.26; 95% CI 0.24-0.29) and infection ( 0.16; 95% CI 0.15-0.17 and 0.18; 95% CI 0.16-0.19) respectively. During the Omicron period, aHRs for sick leave were higher than during the Delta period, but the lowest aHRs were still found in 2-7 weeks after receiving the second (0.61; 95% CI 0.59-0.64) or third dose (0.63; 95% CI 0.62-0.64). CONCLUSION Our results showed that sick leave could be a relevant indicator for VE in the surveillance of COVID-19 and a finding that may be important in the surveillance of other respiratory infection.
Collapse
Affiliation(s)
- Hinta Meijerink
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway.
| | - Lamprini Veneti
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Anders Skyrud Danielsen
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Melanie Stecher
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
- Field Epidemiology Path (EPIET), European Centre for Disease Prevention and Control (ECDC), ECDC Fellowship Programme, Stockholm, Sweden
| | - Jostein Starrfelt
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
- Division for Social Statistics, Statistics Norway, Oslo, Norway
| |
Collapse
|
21
|
Lytton SD, Ghosh AK. SARS-CoV-2 Variants and COVID-19 in Bangladesh-Lessons Learned. Viruses 2024; 16:1077. [PMID: 39066238 PMCID: PMC11281597 DOI: 10.3390/v16071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The coronavirus infectious disease-2019 (COVID-19) in Bangladesh is a paradigm for how one of the most densely populated countries in the world, with 1270 people per square kilometer, managed to cope with the COVID-19 pandemic under extraordinary circumstances. This review highlights the SARS-CoV-2 variants in Bangladesh and the timeline of their detection in the context of the global experience with the management of vaccination and natural SARS-CoV-2 infection. The motivation to overcome the COVID-19 vaccine dilemma and track Bangladeshi SARS-CoV-2 sub-variants underscores the potential for a low-income country to excel in international medical science, despite having stressed health care services and limited availability of resources for SARS-CoV-2 testing and gene sequencing.
Collapse
Affiliation(s)
| | - Asish Kumar Ghosh
- Department of Virology, Dhaka Medical College Hospital, Dhaka 1000, Bangladesh;
| |
Collapse
|
22
|
d'Onofrio A, Iannelli M, Manfredi P, Marinoschi G. Epidemic control by social distancing and vaccination: Optimal strategies and remarks on the COVID-19 Italian response policy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6493-6520. [PMID: 39176405 DOI: 10.3934/mbe.2024283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
After the many failures in the control of the COVID-19 pandemic, identifying robust principles of epidemic control will be key in future preparedness. In this work, we propose an optimal control model of an age-of-infection transmission model under a two-phase control regime where social distancing is the only available control tool in the first phase, while the second phase also benefits from the arrival of vaccines. We analyzed the problem by an ad-hoc numerical algorithm under a strong hypothesis implying a high degree of prioritization to the protection of health from the epidemic attack, which we termed the "low attack rate" hypothesis. The outputs of the model were also compared with the data from the Italian COVID-19 experience to provide a crude assessment of the goodness of the enacted interventions prior to the onset of the Omicron variant.
Collapse
Affiliation(s)
- Alberto d'Onofrio
- Dipartimento di Matematica, Informatica e Geoscienze, Università di Trieste, Via Alfonso Valerio 12, Edificio H2bis, 34127 Trieste, Italy
| | - Mimmo Iannelli
- Department of Mathematics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Piero Manfredi
- Dipartimento di Economia e Management, University of Pisa, Via Ridolfi 10, 56124 Pisa, Italy
| | - Gabriela Marinoschi
- Gheorghe Mihoc-Caius Iacob Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Bucharest, Romania
| |
Collapse
|
23
|
Uemura K, Ono S, Michihata N, Yamana H, Yasunaga H. Duration of effectiveness of the COVID-19 vaccine in Japan: a retrospective cohort study using large-scale population-based registry data. BMC Infect Dis 2024; 24:648. [PMID: 38943060 PMCID: PMC11212202 DOI: 10.1186/s12879-024-09488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Most evidence of the waning of vaccine effectiveness is limited to a relatively short period after vaccination. METHODS Data obtained from a linked database of healthcare administrative claims and vaccination records maintained by the municipality of a city in the Kanto region of Japan were used in this study. The study period extended from April 1, 2020, to December 31, 2022. The duration of the effectiveness of the COVID-19 vaccine was analyzed using a time-dependent piecewise Cox proportional hazard model using the age, sex and history of cancer, diabetes, chronic obstructive pulmonary disease, asthma, chronic kidney disease, and cardiovascular disease as covariates. RESULTS Among the 174,757 eligible individuals, 14,416 (8.3%) were diagnosed with COVID-19 and 936 (0.54%) were hospitalized for COVID-19. Multivariate analysis based on the time-dependent Cox regression model with reference of non-vaccine group revealed a lower incidence of COVID-19 in the one-dose group (hazard ratio, 0.76 [95% confidence interval, 0.63-0.91]), two-dose (0.89 [0.85-0.93]), three-dose (0.80 [0.76-0.85]), four-dose (0.93 [0.88-1.00]), and five-dose (0.72 [0.62-0.84]) groups. A lower incidence of COVID-19-related hospitalization was observed in the one-dose group (0.42 [0.21-0.81]), two-dose (0.44 [0.35-0.56]), three-dose (0.38 [0.30-0.47]), four-dose (0.20 [0.14-0.28]), and five-dose (0.11 [0.014-0.86]) groups. Multivariable analyses based on the time-dependent piecewise Cox proportional hazard model with reference of non-vaccine group revealed significant preventive effects of the vaccine for 4 months for the incidence of COVID-19 and ≥ 6 months for hospitalization. CONCLUSIONS Vaccine effectiveness showed gradual attenuation with time after vaccination; however, protective effects against the incidence of COVID-19 and hospitalization were maintained for 4 months and ≥ 6 months, respectively. These results may aid in formulating routine vaccination plans after the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kohei Uemura
- Department of Biostatistics & Bioinformatics, Interfaculty Initiative in Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Sachiko Ono
- Department of Eat-loss Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuaki Michihata
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Hayato Yamana
- Data Science Center, Jichi Medical University, Shimotsuke, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology & Health Economics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Bean DJ, Monroe J, Liang YM, Borberg E, Senussi Y, Swank Z, Chalise S, Walt D, Weinberg J, Sagar M. Heterotypic immunity from prior SARS-CoV-2 infection but not COVID-19 vaccination associates with lower endemic coronavirus incidence. Sci Transl Med 2024; 16:eado7588. [PMID: 38865483 PMCID: PMC11565543 DOI: 10.1126/scitranslmed.ado7588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Immune responses from prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 vaccination mitigate disease severity, but they do not fully prevent subsequent infections, especially from genetically divergent strains. We examined the incidence of and immune differences against human endemic coronaviruses (eCoVs) as a proxy for response against future genetically heterologous coronaviruses (CoVs). We assessed differences in symptomatic eCoV and non-CoV respiratory disease incidence among those with known prior SARS-CoV-2 infection or previous COVID-19 vaccination but no documented SARS-CoV-2 infection or neither exposure. Retrospective cohort analyses suggest that prior SARS-CoV-2 infection, but not previous COVID-19 vaccination alone, associates with a lower incidence of subsequent symptomatic eCoV infection. There was no difference in non-CoV incidence, implying that the observed difference was eCoV specific. In a second cohort where both cellular and humoral immunity were measured, those with prior SARS-CoV-2 spike protein exposure had lower eCoV-directed neutralizing antibodies, suggesting that neutralization is not responsible for the observed decreased eCoV disease. The three groups had similar cellular responses against the eCoV spike protein and nucleocapsid antigens. However, CD8+ T cell responses to the nonstructural eCoV proteins nsp12 and nsp13 were higher in individuals with previous SARS-CoV-2 infection as compared with the other groups. This association between prior SARS-CoV-2 infection and decreased incidence of eCoV disease may therefore be due to a boost in CD8+ T cell responses against eCoV nsp12 and nsp13, suggesting that incorporation of nonstructural viral antigens in a future pan-CoV vaccine may improve vaccine efficacy.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Janet Monroe
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ella Borberg
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Zoe Swank
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Sujata Chalise
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - David Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
25
|
Ounsaneha W, Laosee O, Rattanapan C. Influence of Environmental Risk Exposure on the Determinants of COVID-19 Booster Vaccination in an Urban Thai Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:745. [PMID: 38928991 PMCID: PMC11204251 DOI: 10.3390/ijerph21060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to identify the influence of environmental risk exposure levels on the predictive factors of COVID-19 booster dose vaccination in an urban Thai population in the post-pandemic era. Six study locations, including the three provinces with the highest environmental risk levels and the three provinces with the lowest environmental risk levels, were selected by calculating the environmental risk exposure indexes. Participants from the capital district of each province were chosen via the simple random sampling technique and interviewed using a structured questionnaire. A total of 1315 individuals were included in a sample in this study, and the best predictors of booster dose vaccination were determined using multiple regression analysis. The results showed that a high level of environmental risk exposure occurred in the provinces with a high number of total days exceeding the limits set for PM10 and high rates of mortality for lung cancer. The number of COVID-19 booster vaccinations given amount to 43.4% of the population during the post-COVID-19 pandemic period. Our multivariate analysis indicated that individuals in the working age group (≥25 years old); those with higher education (diploma degree and above); full-time employment (government and private sectors); those with high monthly incomes (≥USD144.1); and those in areas with the lowest risk level of environmental exposure significantly contributed to the number of booster dose vaccinations given during the post-pandemic period. To summarize, the rate of COVID-19 booster dose vaccination acceptance in Thailand was influenced by socio-economic factors with environmental concerns. These findings improve our understating of both the global pandemic and how environmental exposure affects behavioral change patterns and could improve the effectiveness of post-pandemic management.
Collapse
Affiliation(s)
- Weerawat Ounsaneha
- Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage Pathumthani Province, Klong Nuang, Klong Luang, Pathumthani 13180, Thailand;
| | - Orapin Laosee
- ASEAN Institute for Health Development, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73710, Thailand;
| | - Cheerawit Rattanapan
- ASEAN Institute for Health Development, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73710, Thailand;
| |
Collapse
|
26
|
Mimura W, Ishiguro C, Terada-Hirashima J, Matsunaga N, Sato S, Kawazoe Y, Maeda M, Murata F, Fukuda H. Effectiveness of BNT162b2 Against Infection, Symptomatic Infection, and Hospitalization Among Older Adults Aged ≥65 Years During the Delta Variant Predominance in Japan: The VENUS Study. J Epidemiol 2024; 34:278-285. [PMID: 37743530 PMCID: PMC11078592 DOI: 10.2188/jea.je20230106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND We evaluated the effectiveness of the BNT162b2 vaccine against infection, symptomatic infection, and hospitalization in older people during the Delta-predominant period (July 1 to September 30, 2021). METHODS We performed a population-based cohort study in an older adult population aged ≥65 years using data from the Vaccine Effectiveness, Networking, and Universal Safety Study conducted from January 1, 2019, to September 30, 2021, in Japan. We matched BNT162b2-vaccinated and -unvaccinated individuals in a 1:1 ratio on the date of vaccination of the vaccinated individual. We evaluated the effectiveness of the vaccine against infection, symptomatic infection, and coronavirus disease (COVID-19)-related hospitalization by comparing the vaccinated and unvaccinated groups. We estimated the risk ratio and risk difference using the Kaplan-Meier method with inverse probability weighting. The vaccine effectiveness was calculated as (1 - risk ratio) × 100%. RESULTS The study included 203,574 matched pairs aged ≥65 years. At 7 days after the second dose, the vaccine effectiveness of BNT162b2 against infection, symptomatic infection, and hospitalization was 78.1% (95% confidence interval [CI], 65.2-87.8%), 79.1% (95% CI, 64.6-88.9%), and 93.5% (95% CI, 83.7-100%), respectively. CONCLUSION BNT162b2 was highly effective against infection, symptomatic infection, and hospitalization in Japan's older adult population aged ≥65 years during the Delta-predominant period.
Collapse
Affiliation(s)
- Wataru Mimura
- Section of Clinical Epidemiology, Department of Data Science, Center for Clinical Sciences, National Center for Global Health and Medicine
| | - Chieko Ishiguro
- Section of Clinical Epidemiology, Department of Data Science, Center for Clinical Sciences, National Center for Global Health and Medicine
| | - Junko Terada-Hirashima
- Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital
| | | | - Megumi Maeda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences
| | - Fumiko Murata
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences
| | - Haruhisa Fukuda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences
| |
Collapse
|
27
|
Prasad V, Haslam A. COVID-19 vaccines: history of the pandemic's great scientific success and flawed policy implementation. Monash Bioeth Rev 2024; 42:28-54. [PMID: 38459404 PMCID: PMC11368972 DOI: 10.1007/s40592-024-00189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/10/2024]
Abstract
The COVID-19 vaccine has been a miraculous, life-saving advance, offering staggering efficacy in adults, and was developed with astonishing speed. The time from sequencing the virus to authorizing the first COVID-19 vaccine was so brisk even the optimists appear close-minded. Yet, simultaneously, United States' COVID-19 vaccination roll-out and related policies have contained missed opportunities, errors, run counter to evidence-based medicine, and revealed limitations in the judgment of public policymakers. Misplaced utilization, contradictory messaging, and poor deployment in those who would benefit most-the elderly and high-risk-alongside unrealistic messaging, exaggeration, and coercion in those who benefit least-young, healthy Americans-is at the heart. It is important to consider the history of COVID-19 vaccines to identify where we succeeded and where we failed, and the effects that these errors may have more broadly on vaccination hesitancy and routine childhood immunization programs in the decades to come.
Collapse
Affiliation(s)
- Vinay Prasad
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16 St, 2 Fl, San Francisco, CA, 94158, USA.
| | - Alyson Haslam
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16 St, 2 Fl, San Francisco, CA, 94158, USA
| |
Collapse
|
28
|
Pierre CN, Adams LE, Higgins JS, Anasti K, Goodman D, Mielke D, Stanfield-Oakley S, Powers JM, Li D, Rountree W, Wang Y, Edwards RJ, Alam SM, Ferrari G, Tomaras GD, Haynes BF, Baric RS, Saunders KO. Non-neutralizing SARS-CoV-2 N-terminal domain antibodies protect mice against severe disease using Fc-mediated effector functions. PLoS Pathog 2024; 20:e1011569. [PMID: 38900807 PMCID: PMC11218955 DOI: 10.1371/journal.ppat.1011569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/02/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing, yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of NTD non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate NTD non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb prophylactic infusion did not suppress infectious viral titers in the lung as potently as neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection from SARS-CoV-2 infection. For therapeutic administration of antibodies, non-nAb effector functions contributed to virus suppression and lessening of lung discoloration, but the presence of neutralization was required for optimal protection from disease. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.
Collapse
Affiliation(s)
- Camille N. Pierre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lily E. Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jaclyn S. Higgins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Dieter Mielke
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sherry Stanfield-Oakley
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - John M. Powers
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
29
|
Niessen FA, Bruijning-Verhagen PCJL, Bonten MJM, Knol MJ. Vaccine effectiveness against COVID-19 related hospital admission in the Netherlands by medical risk condition: A test-negative case-control study. Vaccine 2024; 42:3397-3403. [PMID: 38688804 DOI: 10.1016/j.vaccine.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Vaccination remains crucial in reducing COVID-19 hospitalizations and mitigating the strain on healthcare systems. We conducted a multicenter study to assess vaccine effectiveness (VE) of primary and booster vaccination against hospitalization and to identify subgroups with reduced VE. METHODS From March to July 2021 and October 2021 to January 2022, a test-negative case-control study was conducted in nine Dutch hospitals. The study included adults eligible for COVID-19 vaccination who were hospitalized with respiratory symptoms. Cases tested positive for SARS-CoV-2 within 14 days prior to or 48 h after admission, while controls tested negative. Logistic regression was used to calculate VE, adjusting for calendar week, sex, age, nursing home residency and comorbidity. We explored COVID-19 case characteristics and whether there are subgroups with less effective protection by vaccination against COVID-19 hospitalization. RESULTS Between October 2021 to January 2022, when the Delta variant was dominant, 335 cases and 277 controls were included. VE of primary and booster vaccination was 78 % (95 % CI: 65-86), and 89 % (95 % CI: 69-96), respectively. Using data from both study periods, including 700 cases and 511 controls, VE of primary vaccination was significantly reduced in those aged 60+ and patients with malignancy, chronic cardiac disease or an immunocompromising condition. CONCLUSION Although VE against hospitalization was 78% and increased to 89% after boosting during the Delta-dominant study period, VE was lower in certain high risk groups, for which indirect protection or other protective measures might be of added importance.
Collapse
Affiliation(s)
- F A Niessen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - P C J L Bruijning-Verhagen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - M J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - M J Knol
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
30
|
Musa S, Merdrignac L, Skocibusic S, Nedic R, Cilovic-Lagarija S, Kissling E. BBIBP-CorV vaccine effectiveness against COVID-19 in patients aged 60 years and older during the Delta-dominant period in the Federation of Bosnia and Herzegovina, a test-negative case-control study. Vaccine 2024; 42:3467-3473. [PMID: 38644077 DOI: 10.1016/j.vaccine.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
COVID-19 vaccine uptake in the Federation of Bosnia and Herzegovina (FBiH) accelerated in the second half of 2021, with greater vaccine availability. In this study, we estimated the vaccine effectiveness (VE) of complete primary series BBIBP-CorV vaccine against COVID-19 in patients aged 60 years and older, during the Delta-dominant period, using a test-negative case-control design. Surveillance sites were 11 primary health care centers (PHC) collecting patient data from October 1, 2021, to January 4, 2022, retrospectively according to a common protocol. In total, we included 1711 participants in the analysis: 933 cases and 778 controls. Of the 933 cases, 508 (54.4 %) had mild and 425 (45.6 %) had moderate to severe disease presentation. We observed no effectiveness against mild COVID-19. Overall vaccine effectiveness was 65.0 % (95 %CI: 40.1-79.5) against moderate to severe COVID-19. In time since vaccination analysis, VE was 78.7 % (95 % CI: 54.8-89.9) in patients who received their last dose < 90 days before onset; 66.0 % (95 % CI: -0.5-88.5) in those 90-119 days before onset; 42.1 % (95 % CI: -88.6-82.3) in those 120-149 days before onset and 45.0 % (95 % CI: -94.0-84.4) in those ≥ 150 days before onset. In our study, two doses of BBIBP-CorV provided considerable protection against moderate to severe COVID-19 in older adults, highest within 3 months after second dose, during the Delta-dominant period. Point estimates declined thereafter, suggesting a need for additional doses.
Collapse
Affiliation(s)
- Sanjin Musa
- Institute for Public Health of the Federation of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina; Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina.
| | | | - Sinisa Skocibusic
- Institute for Public Health of the Federation of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
| | - Rozalija Nedic
- Institute for Public Health of the Federation of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
| | - Seila Cilovic-Lagarija
- Institute for Public Health of the Federation of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
| | | |
Collapse
|
31
|
Stanley AM, Aksyuk AA, Wilkins D, Green JA, Lan D, Shoemaker K, Tieu HV, Sobieszczyk ME, Falsey AR, Kelly EJ. Seasonal human coronavirus humoral responses in AZD1222 (ChaAdOx1 nCoV-19) COVID-19 vaccinated adults reveal limited cross-immunity. Front Immunol 2024; 15:1401728. [PMID: 38827749 PMCID: PMC11143795 DOI: 10.3389/fimmu.2024.1401728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Background Immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now widespread; however, the degree of cross-immunity between SARS-CoV-2 and endemic, seasonal human coronaviruses (HCoVs) remains unclear. Methods SARS-CoV-2 and HCoV cross-immunity was evaluated in adult participants enrolled in a US sub-study in the phase III, randomized controlled trial (NCT04516746) of AZD1222 (ChAdOx1 nCoV-19) primary-series vaccination for one-year. Anti-HCoV spike-binding antibodies against HCoV-229E, HCoV-HKU1, HCoV-OC43, and HCoV-NL63 were evaluated in participants following study dosing and, in the AZD1222 group, after a non-study third-dose booster. Timing of SARS-CoV-2 seroconversion (assessed via anti-nucleocapsid antibody levels) and incidence of COVID-19 were evaluated in those who received AZD1222 primary-series by baseline anti-HCoV titers. Results We evaluated 2,020/21,634 participants in the AZD1222 group and 1,007/10,816 in the placebo group. At the one-year data cutoff (March 11, 2022) mean duration of follow up was 230.9 (SD: 106.36, range: 1-325) and 94.3 (74.12, 1-321) days for participants in the AZD1222 (n = 1,940) and placebo (n = 962) groups, respectively. We observed little elevation in anti-HCoV humoral titers post study-dosing or post-boosting, nor evidence of waning over time. The occurrence and timing of SARS-CoV-2 seroconversion and incidence of COVID-19 were not largely impacted by baseline anti-HCoV titers. Conclusion We found limited evidence for cross-immunity between SARS-CoV-2 and HCoVs following AZD1222 primary series and booster vaccination. Susceptibility to future emergence of novel coronaviruses will likely persist despite a high prevalence of SARS-CoV-2 immunity in global populations.
Collapse
Affiliation(s)
- Ann Marie Stanley
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Anastasia A. Aksyuk
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Deidre Wilkins
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Justin A. Green
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Dongmei Lan
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Kathryn Shoemaker
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Hong-Van Tieu
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian Columbia University Irving Medical Center, New York, NY, United States
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, United States
| | - Ann R. Falsey
- Department of Medicine, Infectious Diseases, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Infectious Disease, Rochester Regional Health, Rochester, NY, United States
| | - Elizabeth J. Kelly
- Formerly Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
32
|
Garcia-Vidal E, Calba I, Riveira-Muñoz E, García E, Clotet B, Serra-Mitjà P, Cabrera C, Ballana E, Badia R. Nucleotide-Binding Oligomerization Domain 1 (NOD1) Agonists Prevent SARS-CoV-2 Infection in Human Lung Epithelial Cells through Harnessing the Innate Immune Response. Int J Mol Sci 2024; 25:5318. [PMID: 38791357 PMCID: PMC11121681 DOI: 10.3390/ijms25105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The lung is prone to infections from respiratory viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). A challenge in combating these infections is the difficulty in targeting antiviral activity directly at the lung mucosal tract. Boosting the capability of the respiratory mucosa to trigger a potent immune response at the onset of infection could serve as a potential strategy for managing respiratory infections. This study focused on screening immunomodulators to enhance innate immune response in lung epithelial and immune cell models. Through testing various subfamilies and pathways of pattern recognition receptors (PRRs), the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family was found to selectively activate innate immunity in lung epithelial cells. Activation of NOD1 and dual NOD1/2 by the agonists TriDAP and M-TriDAP, respectively, increased the number of IL-8+ cells by engaging the NF-κB and interferon response pathways. Lung epithelial cells showed a stronger response to NOD1 and dual NOD1/2 agonists compared to control. Interestingly, a less-pronounced response to NOD1 agonists was noted in PBMCs, indicating a tissue-specific effect of NOD1 in lung epithelial cells without inducing widespread systemic activation. The specificity of the NOD agonist pathway was confirmed through gene silencing of NOD1 (siRNA) and selective NOD1 and dual NOD1/2 inhibitors in lung epithelial cells. Ultimately, activation induced by NOD1 and dual NOD1/2 agonists created an antiviral environment that hindered SARS-CoV-2 replication in vitro in lung epithelial cells.
Collapse
Affiliation(s)
| | - Ignasi Calba
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | | | | | - Bonaventura Clotet
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- University of Vic—Central University of Catalonia (UVic-UCC), 08500 Vic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Pere Serra-Mitjà
- Pulmonology and Allergy Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Barcelona, Spain;
| | - Cecilia Cabrera
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Ester Ballana
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Roger Badia
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
33
|
Hoover CM, Estus E, Kwan A, Raymond K, Sreedharan T, León T, Jain S, Shete PB. California's COVID-19 Vaccine Equity Policy: Cases, Hospitalizations, And Deaths Averted In Affected Communities. Health Aff (Millwood) 2024; 43:632-640. [PMID: 38709962 DOI: 10.1377/hlthaff.2023.01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In March 2021, California implemented a vaccine equity policy that prioritized COVID-19 vaccine allocation to communities identified as least advantaged by an area-based socioeconomic measure, the Healthy Places Index. We conducted quasi-experimental and counterfactual analyses to estimate the effect of this policy on COVID-19 vaccination, case, hospitalization, and death rates. Among prioritized communities, vaccination rates increased 28.4 percent after policy implementation. Furthermore, an estimated 160,892 COVID-19 cases, 10,248 hospitalizations, and 679 deaths in the least-advantaged communities were averted by the policy. Despite these improvements, the share of COVID-19 cases, hospitalizations, and deaths in prioritized communities remained elevated. These estimates were robust in sensitivity analyses that tested exchangeability between prioritized communities and those not prioritized by the policy; model specifications; and potential temporal confounders, including prior infections. Correcting for disparities by strategically allocating limited resources to the least-advantaged or most-affected communities can reduce the impacts of COVID-19 and other diseases but might not eliminate health disparities.
Collapse
Affiliation(s)
- Christopher M Hoover
- Christopher M. Hoover , California Department of Public Health (CDPH), Richmond, California
| | | | - Ada Kwan
- Ada Kwan, University of California San Francisco, San Francisco, California
| | | | | | | | | | - Priya B Shete
- Priya B. Shete, University of California San Francisco and CDPH, Richmond, California
| |
Collapse
|
34
|
Powell AA, Dowell AC, Moss P, Ladhani SN. Current state of COVID-19 in children: 4 years on. J Infect 2024; 88:106134. [PMID: 38432584 DOI: 10.1016/j.jinf.2024.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Children have been disproportionately affected by the COVID-19 pandemic. Despite evidence of a very low risk of severe disease, children were subjected to extensive lockdown, restriction and mitigation measures, including school closures, to control the rapid spread of SARS-CoV-2 in most parts of the world. In this review we summarise the UK experience of COVID-19 in children four years into the largest and longest pandemic of this century. We address the risks of SARS-CoV-2 infection, immunity, transmission, severity and outcomes in children. We also assess the implementation, uptake, effectiveness and impact of COVID-19 vaccination, as well as the emergence, evolution and near disappearance of PIMS-TS (paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2) and current understanding of long COVID in children. This review consolidates current knowledge on childhood COVID-19 and emphasises the importance of continued research and the need for research-driven public health actions and policy decisions, especially in the context of new variants and future vaccines.
Collapse
Affiliation(s)
- Annabel A Powell
- Public Health Programmes, UK Health Security Agency, London, UK.
| | - Alexander C Dowell
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Shamez N Ladhani
- Public Health Programmes, UK Health Security Agency, London, UK; Paediatric Infectious Diseases Research Group, St. George's University of London, London, UK
| |
Collapse
|
35
|
Kirsebom FCM, Andrews N, Stowe J, Dabrera G, Ramsay M, Lopez Bernal J. Effectiveness of the Sanofi/GSK (VidPrevtyn Beta) and Pfizer-BioNTech (Comirnaty Original/Omicron BA.4-5) bivalent vaccines against hospitalisation in England. EClinicalMedicine 2024; 71:102587. [PMID: 38618208 PMCID: PMC11015482 DOI: 10.1016/j.eclinm.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Background The Sanofi/GSK AS03-adjuvanted (VidPrevtyn Beta) vaccine and the Pfizer-BioNTech mRNA (Comirnaty Original/Omicron BA.4-5) bivalent vaccine were offered to adults aged 75 years and over in England from 3rd April 2023. This is the first time an adjuvanted COVID-19 vaccine has been administered as part of a UK COVID-19 vaccination programme. In clinical trials, antibody levels generated were comparable with mRNA vaccines but there are no real-world data on the effectiveness or duration of protection. Methods We used a test-negative case-control study design to estimate the incremental vaccine effectiveness of the Sanofi/GSK and Pfizer bivalent BA.4-5 boosters against hospitalisation amongst those aged 75 years and older in England. Cases (those testing positive) and controls (those testing negative) were identified from the national COVID-19 PCR testing data undertaken in hospital settings. The study period included tests from 3rd April 2023 to 27th August 2023. Tests were linked to the COVID-19 vaccination register and to the national hospital admission database, restricting to those with an acute respiratory infection coded in the primary diagnosis field. Vaccine effectiveness was estimated using multivariable logistic regression amongst those who had last received an autumn 2022 booster given at least 3 months prior. The test result was the outcome and vaccination status the exposure. Analyses were adjusted for week of test, gender, age, clinical risk group status, care home resident status, region, index of multiple deprivation, ethnicity, influenza vaccination status and recent COVID-19 positivity. Findings There were 14,169 eligible tests from hospitalised individuals aged 75 years and older; 3005 cases (positive tests) and 11,164 controls (negative tests). Effectiveness was highest in the period 9-13 days post vaccination for both manufacturers at about 50%; 43.7% (95% CI, 20.1-60.3%) and 56.1% (95% CI, 25.2-74.2%) for Sanofi/GSK and Pfizer BA.4-5, respectively. There was evidence of waning with a reduction to about 30% for both manufacturers after 5-9 weeks. The longest time interval post vaccination for which we were able to estimate effectiveness was 10+ weeks post vaccination, at which point vaccine effectiveness was 17.6% (95% CI, -3.6 to 34.5%) and 37.9% (95% CI, 13.2-55.5%) for the Sanofi/GSK and Pfizer BA.4-5 boosters, respectively. Interpretation Both boosters provided good protection against hospitalisation amongst older adults. The finding that the adjuvanted vaccine targeting the distant Beta strain had similar effectiveness to the bivalent mRNA vaccine targeting more closely matched Omicron sub-lineages is notable and highlights the need for further real-world studies into the effectiveness of vaccines from different vaccine platforms and formulations in the presence of matched and unmatched strains. Funding No external funding.
Collapse
Affiliation(s)
| | - Nick Andrews
- UK Health Security Agency, London, United Kingdom
- NIHR Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julia Stowe
- UK Health Security Agency, London, United Kingdom
| | | | - Mary Ramsay
- UK Health Security Agency, London, United Kingdom
- NIHR Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jamie Lopez Bernal
- UK Health Security Agency, London, United Kingdom
- NIHR Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine, London, United Kingdom
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, United Kingdom
| |
Collapse
|
36
|
Willem L, Abrams S, Franco N, Coletti P, Libin PJK, Wambua J, Couvreur S, André E, Wenseleers T, Mao Z, Torneri A, Faes C, Beutels P, Hens N. The impact of quality-adjusted life years on evaluating COVID-19 mitigation strategies: lessons from age-specific vaccination roll-out and variants of concern in Belgium (2020-2022). BMC Public Health 2024; 24:1171. [PMID: 38671366 PMCID: PMC11047051 DOI: 10.1186/s12889-024-18576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND When formulating and evaluating COVID-19 vaccination strategies, an emphasis has been placed on preventing severe disease that overburdens healthcare systems and leads to mortality. However, more conventional outcomes such as quality-adjusted life years (QALYs) and inequality indicators are warranted as additional information for policymakers. METHODS We adopted a mathematical transmission model to describe the infectious disease dynamics of SARS-COV-2, including disease mortality and morbidity, and to evaluate (non)pharmaceutical interventions. Therefore, we considered temporal immunity levels, together with the distinct transmissibility of variants of concern (VOCs) and their corresponding vaccine effectiveness. We included both general and age-specific characteristics related to SARS-CoV-2 vaccination. Our scenario study is informed by data from Belgium, focusing on the period from August 2021 until February 2022, when vaccination for children aged 5-11 years was initially not yet licensed and first booster doses were administered to adults. More specifically, we investigated the potential impact of an earlier vaccination programme for children and increased or reduced historical adult booster dose uptake. RESULTS Through simulations, we demonstrate that increasing vaccine uptake in children aged 5-11 years in August-September 2021 could have led to reduced disease incidence and ICU occupancy, which was an essential indicator for implementing non-pharmaceutical interventions and maintaining healthcare system functionality. However, an enhanced booster dose regimen for adults from November 2021 onward could have resulted in more substantial cumulative QALY gains, particularly through the prevention of elevated levels of infection and disease incidence associated with the emergence of Omicron VOC. In both scenarios, the need for non-pharmaceutical interventions could have decreased, potentially boosting economic activity and mental well-being. CONCLUSIONS When calculating the impact of measures to mitigate disease spread in terms of life years lost due to COVID-19 mortality, we highlight the impact of COVID-19 on the health-related quality of life of survivors. Our study underscores that disease-related morbidity could constitute a significant part of the overall health burden. Our quantitative findings depend on the specific setup of the interventions under review, which is open to debate or should be contextualised within future situations.
Collapse
Affiliation(s)
- Lander Willem
- Department of Family Medicine and Population Health, Antwerp, Belgium.
- Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium.
| | - Steven Abrams
- Department of Family Medicine and Population Health, Antwerp, Belgium
- Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Nicolas Franco
- Data Science Institute, Hasselt University, Hasselt, Belgium
- Namur Institute for Complex Systems (naXys) and Department of Mathematics, University of Namur, Namur, Belgium
| | - Pietro Coletti
- Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Pieter J K Libin
- Data Science Institute, Hasselt University, Hasselt, Belgium
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Rega Institute for Medical Research, Clinical and Epidemiological Virology, University of Leuven, Leuven, Belgium
| | - James Wambua
- Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Simon Couvreur
- Department of Epidemiology and public health, Sciensano, Brussel, Belgium
| | - Emmanuel André
- National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, University of Leuven, Leuven, Belgium
| | - Zhuxin Mao
- Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium
| | - Andrea Torneri
- Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Christel Faes
- Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Philippe Beutels
- Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium
- School of Public Health and Community Medicine, The University of New South Wales, Sydney, Australia
| | - Niel Hens
- Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium
- Data Science Institute, Hasselt University, Hasselt, Belgium
| |
Collapse
|
37
|
Messina NL, Germano S, McElroy R, Bonnici R, Grubor-Bauk B, Lynn DJ, McDonald E, Nicholson S, Perrett KP, Pittet LF, Rudraraju R, Stevens NE, Subbarao K, Curtis N. Specific and off-target immune responses following COVID-19 vaccination with ChAdOx1-S and BNT162b2 vaccines-an exploratory sub-study of the BRACE trial. EBioMedicine 2024; 103:105100. [PMID: 38663355 PMCID: PMC11058726 DOI: 10.1016/j.ebiom.2024.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic led to the rapid development and deployment of several highly effective vaccines against SARS-CoV-2. Recent studies suggest that these vaccines may also have off-target effects on the immune system. We sought to determine and compare the off-target effects of the adenovirus vector ChAdOx1-S (Oxford-AstraZeneca) and modified mRNA BNT162b2 (Pfizer-BioNTech) vaccines on immune responses to unrelated pathogens. METHODS Prospective sub-study within the BRACE trial. Blood samples were collected from 284 healthcare workers before and 28 days after ChAdOx1-S or BNT162b2 vaccination. SARS-CoV-2-specific antibodies were measured using ELISA, and whole blood cytokine responses to specific (SARS-CoV-2) and unrelated pathogen stimulation were measured by multiplex bead array. FINDINGS Both vaccines induced robust SARS-CoV-2 specific antibody and cytokine responses. ChAdOx1-S vaccination increased cytokine responses to heat-killed (HK) Candida albicans and HK Staphylococcus aureus and decreased cytokine responses to HK Escherichia coli and BCG. BNT162b2 vaccination decreased cytokine response to HK E. coli and had variable effects on cytokine responses to BCG and resiquimod (R848). After the second vaccine dose, BNT162b2 recipients had greater specific and off-target cytokine responses than ChAdOx1-S recipients. INTERPRETATION ChAdOx1-S and BNT162b2 vaccines alter cytokine responses to unrelated pathogens, indicative of potential off-target effects. The specific and off-target effects of these vaccines differ in their magnitude and breadth. The clinical relevance of these findings is uncertain and needs further study. FUNDING Bill & Melinda Gates Foundation, National Health and Medical Research Council, Swiss National Science Foundation and the Melbourne Children's. BRACE trial funding is detailed in acknowledgements.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | - Susie Germano
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Rebecca McElroy
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Rhian Bonnici
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Ellie McDonald
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kirsten P Perrett
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Population Allergy Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Allergy and Immunology, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Laure F Pittet
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Paediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Natalie E Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Elizabeth Street, Melbourne, VIC, Australia
| | - Nigel Curtis
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
38
|
Yin Q, Liu W, Jiang Y, Feng Q, Wang X, Dou H, Liu Z, He F, Fan Y, Jiao B, Jiao B. Comprehensive genomic analysis of the SARS-CoV-2 Omicron variant BA.2.76 in Jining City, China, 2022. BMC Genomics 2024; 25:378. [PMID: 38632523 PMCID: PMC11022347 DOI: 10.1186/s12864-024-10246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE This study aims to analyze the molecular characteristics of the novel coronavirus (SARS-CoV-2) Omicron variant BA.2.76 in Jining City, China. METHODS Whole-genome sequencing was performed on 87 cases of SARS-CoV-2 infection. Evolutionary trees were constructed using bioinformatics software to analyze sequence homology, variant sites, N-glycosylation sites, and phosphorylation sites. RESULTS All 87 SARS-CoV-2 whole-genome sequences were classified under the evolutionary branch of the Omicron variant BA.2.76. Their similarity to the reference strain Wuhan-Hu-1 ranged from 99.72 to 99.74%. In comparison to the reference strain Wuhan-Hu-1, the 87 sequences exhibited 77-84 nucleotide differences and 27 nucleotide deletions. A total of 69 amino acid variant sites, 9 amino acid deletions, and 1 stop codon mutation were identified across 18 proteins. Among them, the spike (S) protein exhibited the highest number of variant sites, and the ORF8 protein showed a Q27 stop mutation. Multiple proteins displayed variations in glycosylation and phosphorylation sites. CONCLUSION SARS-CoV-2 continues to evolve, giving rise to new strains with enhanced transmission, stronger immune evasion capabilities, and reduced pathogenicity. The application of high-throughput sequencing technologies in the epidemic prevention and control of COVID-19 provides crucial insights into the evolutionary and variant characteristics of the virus at the genomic level, thereby holding significant implications for the prevention and control of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Qiang Yin
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Wei Liu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Yajuan Jiang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Qiang Feng
- Department of Laboratory, Rencheng Center for Disease Control and Prevention, Jining, China
| | - Xiaoyu Wang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Huixin Dou
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Zanzan Liu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Feifei He
- Computer Information Technology, Northern Arizona University, Arizona, USA
| | - Yingying Fan
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China.
| | - Baihai Jiao
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China.
| |
Collapse
|
39
|
Zhang X, Luo F, Zhang H, Guo H, Zhou J, Li T, Chen S, Song S, Shen M, Wu Y, Gao Y, Han X, Wang Y, Hu C, Zhao X, Guo H, Zhang D, Lu Y, Wang W, Wang K, Tang N, Jin T, Ding M, Luo S, Lin C, Lu T, Lu B, Tian Y, Yang C, Cheng G, Yang H, Jin A, Ji X, Gong R, Chiu S, Huang A. Prophylactic efficacy of an intranasal spray with 2 synergetic antibodies neutralizing Omicron. JCI Insight 2024; 9:e171034. [PMID: 38587080 PMCID: PMC11128199 DOI: 10.1172/jci.insight.171034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUNDAs Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODSThe applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTSThe 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSIONThese results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATIONwww.chictr.org.cn, ChiCTR2200066525.FUNDINGThe National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).
Collapse
Affiliation(s)
- Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Feiyang Luo
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Junhui Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Li
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Shaohong Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Song
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Meiying Shen
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Xiaojian Han
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yingming Wang
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Chao Hu
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | | | | | | | - Yuchi Lu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | | | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tengchuan Jin
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Shuhui Luo
- Mindao Haoyue Co., Ltd., Chongqing, China
| | - Cuicui Lin
- Mindao Haoyue Co., Ltd., Chongqing, China
| | | | - Bingxia Lu
- Mindao Haoyue Co., Ltd., Chongqing, China
| | - Yang Tian
- Mindao Haoyue Co., Ltd., Chongqing, China
| | | | | | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
- Institute of Life Sciences, and
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Montagud AC, Llenas-García J, Moragues R, Pérez-Bernabeu A, Alcocer Pertegal MJ, García Gómez FJ, Gamayo Serna AM, García Morante H, Caballero P, Tuells J. Prevalence of neutralizing antibodies against SARS-CoV-2 using a rapid serological test in health workers of a Spanish Department of Health in Alicante (Spain) before the booster dose of the vaccine. Rev Clin Esp 2024; 224:197-203. [PMID: 38423384 DOI: 10.1016/j.rceng.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
AIM To study the prevalence of neutralizing antibodies in healthcare workers and healthcare support personnel after the administration of the second dose of the BNT162b2 vaccine (Pfizer-BioNTech). MATERIALS AND METHODS In December 2021, we undertook a study in the Health Department in Orihuela, Alicante (Spain), which consists of 1500 workers. We collected demographic variables about the study participants, and we performed a "point-of-care" immunochromatography test to measure the presence of neutralizing antibodies (OJABIO® SARS-CoV-2 Neutralizing Antibody Detection Kit, manufactured by Wenzhou OJA Biotechnology Co., Ltd. Wenzhou, Zhejiang, China) before the administration of the third dose of the vaccine. RESULTS We obtained complete information about 964 (64%) workers, which consisted of 290 men and 674 women. The average age was 45,8 years (min. 18, max. 68) and the average time since the last dose of the vaccine was 40,5 weeks (min. 1,71, max. 47,71). A total of 131 participants (13,5%) had suffered infection by SARS-CoV-2 confirmed using RT-PCR. The proportion of participants who showed presence of neutralizing antibodies was 38,5%. In the multivariable analysis, the time since the last dose of the vaccine (aOR week: 1,07; 95%CI: 1,04; 1,09) and previous infection by SARS-CoV-2 (aOR: 3,7; 95CI: 2,39; 5,63) showed a statistically significant association with the presence of neutralizing antibodies. CONCLUSIONS The time since the administration of the last dose of the vaccine and the previous infection by SARS-CoV-2 determined the presence of neutralizing antibodies in 38,5% of the healthcare workers and support workers.
Collapse
Affiliation(s)
- A C Montagud
- Laboratorio de Inmunología, Plataforma Oncológica, Hospital QuironSalud Torrevieja. Torrevieja, Alicante, Spain
| | - J Llenas-García
- Servicio de Medicina Interna, Hospital Vega Baja. Orihuela, Alicante, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Elche, Alicante, Spain; Fundación para la Promoción de la Salud e Investigación Biomédica de Valencia, FISABIO, Valencia, Spain
| | - R Moragues
- Departamento de Enfermería Comunitaria, Medicina Preventiva, Salud Pública e Historia de la Ciencia, Universidad de Alicante, Alicante, Spain
| | - A Pérez-Bernabeu
- Servicio de Medicina Interna, Hospital Vega Baja. Orihuela, Alicante, Spain; Fundación para la Promoción de la Salud e Investigación Biomédica de Valencia, FISABIO, Valencia, Spain
| | - M J Alcocer Pertegal
- Dirección de Enfermería de Atención Primaria. Departamento de Salud de Orihuela, Orihuela, Alicante, Spain
| | - F J García Gómez
- Dirección de Enfermería Hospitalaria, Hospital Vega Baja. Orihuela, Alicante, Spain
| | - A M Gamayo Serna
- Dirección de Enfermería Hospitalaria, Hospital Vega Baja. Orihuela, Alicante, Spain
| | - H García Morante
- Servicio de Medicina Interna, Hospital Vega Baja. Orihuela, Alicante, Spain; Fundación para la Promoción de la Salud e Investigación Biomédica de Valencia, FISABIO, Valencia, Spain
| | - P Caballero
- Departamento de Enfermería Comunitaria, Medicina Preventiva, Salud Pública e Historia de la Ciencia, Universidad de Alicante, Alicante, Spain
| | - J Tuells
- Departamento de Enfermería Comunitaria, Medicina Preventiva, Salud Pública e Historia de la Ciencia, Universidad de Alicante, Alicante, Spain; Instituto de Salud e Investigación Biomédica de Alicante, (ISABIAL), Alicante, Spain.
| |
Collapse
|
41
|
Chen CL, Teng CK, Chen WC, Liang SJ, Tu CY, Shih HM, Cheng WJ, Lin YC, Hsueh PR. Clinical characteristics and treatment outcomes among the hospitalized elderly patients with COVID-19 during the late pandemic phase in central Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:257-268. [PMID: 38326193 DOI: 10.1016/j.jmii.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND There is a lack of information regarding outcomes of elderly patients hospitalized with COVID-19 following the widespread use of COVID-19 vaccines and antiviral agents. METHODS A retrospective study was conducted between January and August 2022, enrolling patients aged 65 years or older. Patients were categorized into two groups: 'old' (65-79 years) and 'oldest-old' (80 years or more). Multivariate regression was employed to identify independent prognostic factors for in-hospital mortality. RESULTS A total of 797 patients were enrolled, including 428 old and 369 oldest-old patients. In each subgroup, 66.6 % and 59.6 % of patients received at least one dose of the COVID-19 vaccine, respectively. Approximately 40 % of the patients received oral antiviral agents either before or upon hospital admission. A greater percentage of the oldest-old patients received remdesivir (53.4 % versus 39.7 %, p < 0.001), dexamethasone (49.3 % versus 36.7 %, p < 0.001), and tocilizumab (10.0 % versus 6.8 %, p < 0.001) than old patients. The mortality rate was comparable between the two age subgroups (14 % versus 15.2 %). Independent predictors of in-hospital mortality included disease severity and comorbidities such as end-stage renal disease (ESRD), cirrhosis, solid tumours, and haematologic malignancies. Ageing was not correlated with increased in-hospital mortality across all comorbidity subgroups. CONCLUSIONS In the later stages of the pandemic, with widespread vaccination and advancements in COVID-19 treatments, outcomes for hospitalized elderly and oldest-old patients with COVID-19 have improved. The influence of age on in-hospital mortality has diminished, while comorbidities such as ESRD, cirrhosis, solid tumours, and hematologic malignancies have been associated with mortality.
Collapse
Affiliation(s)
- Chieh-Lung Chen
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chi-Kang Teng
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Cheng Chen
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Department of Education, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Jye Liang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Yen Tu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Mo Shih
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Public Health, China Medical University, Taichung, Taiwan
| | - Wan-Ju Cheng
- Department of Public Health, China Medical University, Taichung, Taiwan; Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan; National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chao Lin
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan.
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
42
|
Singh AK, Panigrahi MK, Pradhan SK, Pal D, Subba SH, Patro BK, Behera BK, Mishra B, Behera B, Mohapatra PR, Bhuniya S, Bal SK, Sarkar S, Pillai JSK, Mohanty S, Gitanjali B. Clinico-Epidemiological Characteristics of Healthcare Workers with SARS-CoV-2 Infection during the First and Second Waves in a Teaching Hospital from Eastern India: A Comparative Analysis. Hosp Top 2024; 102:84-95. [PMID: 35852422 DOI: 10.1080/00185868.2022.2096523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this retrospective observational study, we have performed a comparative analysis of the demographic, clinical and epidemiological characteristics of the HCWs affected with SARS-CoV-2 infection during first two waves in India. The overall prevalence of SARS-CoV-2 infection among HCWs was found to be 15.24% (14.20-16.33) and 23.38% (22.14-25.65) during first and second waves respectively. The second wave showed an adjusted odds ratio of 0.04(0.02-0.07) and 2.09(1.49-2.93) for hospitalization and being symptomatic, respectively. We detected significantly higher level of C-reactive protein (CRP) among admitted HCWs during the second wave (5.10 -14.60 mg/dl) as compared to the first wave (2.00 - 2.80 mg/dl). Our study found the relative risk of SARS-CoV-2 reinfection among HCWs during the second wave to be 0.68 [0.57-0.82, p < 0.001)]. Although, the prevalence of SARS CoV-2 infection and risk of being symptomatic was higher during second wave, the risk of hospitalization was less when compared with the first wave.
Collapse
Affiliation(s)
- Arvind Kumar Singh
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Manoj Kumar Panigrahi
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Somen Kumar Pradhan
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Debkumar Pal
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sonu H Subba
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Binod Kumar Patro
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Binod Kumar Behera
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Baijayantimala Mishra
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Bijayini Behera
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Prasanta Raghab Mohapatra
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sourin Bhuniya
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Shakti Kumar Bal
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Saurav Sarkar
- Department of Ear Nose Throat, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Jawahar S K Pillai
- Department of Hospital Administration, All India Institute of Medical Sciences, Bhubaneswar, India
| | | | | |
Collapse
|
43
|
Meeraus W, Joy M, Ouwens M, Taylor KS, Venkatesan S, Dennis J, Tran TN, Dashtban A, Fan X, Williams R, Morris T, Carty L, Kar D, Hoang U, Feher M, Forbes A, Jamie G, Hinton W, Sanecka K, Byford R, Anand SN, Hobbs FDR, Clifton DA, Pollard AJ, Taylor S, de Lusignan S. AZD1222 effectiveness against severe COVID-19 in individuals with comorbidity or frailty: The RAVEN cohort study. J Infect 2024; 88:106129. [PMID: 38431156 DOI: 10.1016/j.jinf.2024.106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Despite being prioritized during initial COVID-19 vaccine rollout, vulnerable individuals at high risk of severe COVID-19 (hospitalization, intensive care unit admission, or death) remain underrepresented in vaccine effectiveness (VE) studies. The RAVEN cohort study (NCT05047822) assessed AZD1222 (ChAdOx1 nCov-19) two-dose primary series VE in vulnerable populations. METHODS Using the Oxford-Royal College of General Practitioners Clinical Informatics Digital Hub, linked to secondary care, death registration, and COVID-19 datasets in England, COVID-19 outcomes in 2021 were compared in vaccinated and unvaccinated individuals matched on age, sex, region, and multimorbidity. RESULTS Over 4.5 million AZD1222 recipients were matched (mean follow-up ∼5 months); 68% were ≥50 years, 57% had high multimorbidity. Overall, high VE against severe COVID-19 was demonstrated, with lower VE observed in vulnerable populations. VE against hospitalization was higher in the lowest multimorbidity quartile (91.1%; 95% CI: 90.1, 92.0) than the highest quartile (80.4%; 79.7, 81.1), and among individuals ≥65 years, higher in the 'fit' (86.2%; 84.5, 87.6) than the frailest (71.8%; 69.3, 74.2). VE against hospitalization was lowest in immunosuppressed individuals (64.6%; 60.7, 68.1). CONCLUSIONS Based on integrated and comprehensive UK health data, overall population-level VE with AZD1222 was high. VEs were notably lower in vulnerable groups, particularly the immunosuppressed.
Collapse
Affiliation(s)
- Wilhelmine Meeraus
- Medical Evidence, Vaccines & Immune Therapies, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Mark Joy
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Mario Ouwens
- Medical & Payer Evidence Statistics, BioPharmaceuticals Medical, AstraZeneca, Mölndal, Sweden
| | - Kathryn S Taylor
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Sudhir Venkatesan
- Medical & Payer Evidence Statistics, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | | | - Trung N Tran
- Biopharmaceutical Medicine Respiratory and Immunology, AstraZeneca, Gaithersburg, MD, USA
| | - Ashkan Dashtban
- Institute of Health Informatics, University College London, London, UK
| | - Xuejuan Fan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Robert Williams
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Tamsin Morris
- Medical and Scientific Affairs, BioPharmaceuticals Medical, AstraZeneca, London, UK
| | - Lucy Carty
- Medical & Payer Evidence Statistics, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Debasish Kar
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Uy Hoang
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Michael Feher
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Anna Forbes
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Gavin Jamie
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - William Hinton
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Kornelia Sanecka
- Medical Evidence, Vaccines & Immune Therapies, BioPharmaceuticals Medical, AstraZeneca, Warsaw, Poland
| | - Rachel Byford
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Sneha N Anand
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - F D Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - David A Clifton
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sylvia Taylor
- Medical Evidence, Vaccines & Immune Therapies, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Simon de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; Royal College of General Practitioners Research and Surveillance Centre, London, UK.
| |
Collapse
|
44
|
Horvath VJ, Békeffy M, Németh Z, Szelke E, Fazekas-Pongor V, Hajdu N, Svébis MM, Pintér J, Domján BA, Mészáros S, Körei AE, Kézdi Á, Kocsis I, Kristóf K, Kempler P, Rozgonyi F, Takács I, Tabák AG. The effect of COVID-19 vaccination status on all-cause mortality in patients hospitalised with COVID-19 in Hungary during the delta wave of the pandemic. GeroScience 2024; 46:1881-1894. [PMID: 37755581 PMCID: PMC10828407 DOI: 10.1007/s11357-023-00931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
The high mortality of patients with coronavirus disease 2019 (COVID-19) is effectively reduced by vaccination. However, the effect of vaccination on mortality among hospitalised patients is under-researched. Thus, we investigated the effect of a full primary or an additional booster vaccination on in-hospital mortality among patients hospitalised with COVID-19 during the delta wave of the pandemic. This retrospective cohort included all patients (n = 430) admitted with COVID-19 at Semmelweis University Department of Medicine and Oncology in 01/OCT/2021-15/DEC/2021. Logistic regression models were built with COVID-19-associated in-hospital/30 day-mortality as outcome with hierarchical entry of predictors of vaccination, vaccination status, measures of disease severity, and chronic comorbidities. Deceased COVID-19 patients were older and presented more frequently with cardiac complications, chronic kidney disease, and active malignancy, as well as higher levels of inflammatory markers, serum creatinine, and lower albumin compared to surviving patients (all p < 0.05). However, the rates of vaccination were similar (52-55%) in both groups. Based on the fully adjusted model, there was a linear decrease of mortality from no/incomplete vaccination (ref) through full primary (OR 0.69, 95% CI: 0.39-1.23) to booster vaccination (OR 0.31, 95% CI 0.13-0.72, p = 0.006). Although unadjusted mortality was similar among vaccinated and unvaccinated patients, this was explained by differences in comorbidities and disease severity. In adjusted models, a full primary and especially a booster vaccination improved survival of patients hospitalised with COVID-19 during the delta wave of the pandemic. Our findings may improve the quality of patient provider discussions at the time of admission.
Collapse
Affiliation(s)
- Viktor J Horvath
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary.
| | - Magdolna Békeffy
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Emese Szelke
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Semmelweis University Faculty of Medicine, Budapest, Hungary
| | - Noémi Hajdu
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Márk M Svébis
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - József Pintér
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Beatrix A Domján
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Szilvia Mészáros
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Anna E Körei
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Árpád Kézdi
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Ibolya Kocsis
- Department of Laboratory Medicine, Semmelweis University Faculty of Medicine, Budapest, Hungary
| | - Katalin Kristóf
- Department of Laboratory Medicine, Semmelweis University Faculty of Medicine, Budapest, Hungary
| | - Péter Kempler
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Ferenc Rozgonyi
- Department of Laboratory Medicine, Semmelweis University Faculty of Medicine, Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
| | - Adam G Tabák
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, 2/a Korányi S. Str, 1083, Budapest, Hungary
- Department of Public Health, Semmelweis University Faculty of Medicine, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
| |
Collapse
|
45
|
Townsley H, Gahir J, Russell TW, Greenwood D, Carr EJ, Dyke M, Adams L, Miah M, Clayton B, Smith C, Miranda M, Mears HV, Bailey C, Black JRM, Fowler AS, Crawford M, Wilkinson K, Hutchinson M, Harvey R, O’Reilly N, Kelly G, Goldstone R, Beale R, Papineni P, Corrah T, Gilson R, Caidan S, Nicod J, Gamblin S, Kassiotis G, Libri V, Williams B, Gandhi S, Kucharski AJ, Swanton C, Bauer DLV, Wall EC. COVID-19 in non-hospitalised adults caused by either SARS-CoV-2 sub-variants Omicron BA.1, BA.2, BA.4/5 or Delta associates with similar illness duration, symptom severity and viral kinetics, irrespective of vaccination history. PLoS One 2024; 19:e0294897. [PMID: 38512960 PMCID: PMC10956747 DOI: 10.1371/journal.pone.0294897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/11/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND SARS-CoV-2 variant Omicron rapidly evolved over 2022, causing three waves of infection due to sub-variants BA.1, BA.2 and BA.4/5. We sought to characterise symptoms and viral loads over the course of COVID-19 infection with these sub-variants in otherwise-healthy, vaccinated, non-hospitalised adults, and compared data to infections with the preceding Delta variant of concern (VOC). METHODS In a prospective, observational cohort study, healthy vaccinated UK adults who reported a positive polymerase chain reaction (PCR) or lateral flow test, self-swabbed on alternate weekdays until day 10. We compared participant-reported symptoms and viral load trajectories between infections caused by VOCs Delta and Omicron (sub-variants BA.1, BA.2 or BA.4/5), and tested for relationships between vaccine dose, symptoms and PCR cycle threshold (Ct) as a proxy for viral load using Chi-squared (χ2) and Wilcoxon tests. RESULTS 563 infection episodes were reported among 491 participants. Across infection episodes, there was little variation in symptom burden (4 [IQR 3-5] symptoms) and duration (8 [IQR 6-11] days). Whilst symptom profiles differed among infections caused by Delta compared to Omicron sub-variants, symptom profiles were similar between Omicron sub-variants. Anosmia was reported more frequently in Delta infections after 2 doses compared with Omicron sub-variant infections after 3 doses, for example: 42% (25/60) of participants with Delta infection compared to 9% (6/67) with Omicron BA.4/5 (χ2 P < 0.001; OR 7.3 [95% CI 2.7-19.4]). Fever was less common with Delta (20/60 participants; 33%) than Omicron BA.4/5 (39/67; 58%; χ2 P = 0.008; OR 0.4 [CI 0.2-0.7]). Amongst infections with an Omicron sub-variants, symptoms of coryza, fatigue, cough and myalgia predominated. Viral load trajectories and peaks did not differ between Delta, and Omicron, irrespective of symptom severity (including asymptomatic participants), VOC or vaccination status. PCR Ct values were negatively associated with time since vaccination in participants infected with BA.1 (β = -0.05 (CI -0.10-0.01); P = 0.031); however, this trend was not observed in BA.2 or BA.4/5 infections. CONCLUSION Our study emphasises both the changing symptom profile of COVID-19 infections in the Omicron era, and ongoing transmission risk of Omicron sub-variants in vaccinated adults. TRIAL REGISTRATION NCT04750356.
Collapse
Affiliation(s)
- Hermaleigh Townsley
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| | - Joshua Gahir
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| | - Timothy W. Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Matala Dyke
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| | - Lorin Adams
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Murad Miah
- The Francis Crick Institute, London, United Kingdom
| | | | - Callie Smith
- The Francis Crick Institute, London, United Kingdom
| | | | | | - Chris Bailey
- The Francis Crick Institute, London, United Kingdom
| | - James R. M. Black
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | | | | | | | | | - Ruth Harvey
- The Francis Crick Institute, London, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | | | - Gavin Kelly
- The Francis Crick Institute, London, United Kingdom
| | | | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK)
| | | | - Tumena Corrah
- London Northwest University Healthcare NHS Trust, London, United Kingdom
| | - Richard Gilson
- Camden and North West London NHS Community Trust, London, United Kingdom
| | - Simon Caidan
- The Francis Crick Institute, London, United Kingdom
| | - Jerome Nicod
- The Francis Crick Institute, London, United Kingdom
| | | | - George Kassiotis
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St Mary’s Hospital, Imperial College London, London, United Kingdom
| | - Vincenzo Libri
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Bryan Williams
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Sonia Gandhi
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | - Adam J. Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Charles Swanton
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | - David L. V. Bauer
- The Francis Crick Institute, London, United Kingdom
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK)
| | - Emma C. Wall
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| |
Collapse
|
46
|
Lederman Z, Corcos S. The duty of care and the right to be cared for: is there a duty to treat the unvaccinated? MEDICINE, HEALTH CARE, AND PHILOSOPHY 2024; 27:81-91. [PMID: 38180693 PMCID: PMC10904556 DOI: 10.1007/s11019-023-10186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 01/06/2024]
Abstract
Vaccine hesitancy or refusal has been one of the major obstacles to herd immunity against Covid-19 in high-income countries and one of the causes for the emergence of variants. The refusal of people who are eligible for vaccination to receive vaccination creates an ethical dilemma between the duty of healthcare professionals (HCPs) to care for patients and their right to be taken care of. This paper argues for an extended social contract between patients and society wherein vaccination against Covid-19 is conceived as essential for the protection of the right of healthcare providers to be taken care of. Thus, a duty of care is only valid when those who can receive vaccination actually receive it. Whenever that is not the case, the continuing functioning of HCPs can only be perceived as supererogatory and not obligatory.
Collapse
Affiliation(s)
- Zohar Lederman
- Department of Emergency Medicine, LKS Medical Faculty, University of Hong Kong, Hong Kong, Hong Kong.
| | | |
Collapse
|
47
|
Bouchnita A, Bi K, Fox SJ, Meyers LA. Projecting Omicron scenarios in the US while tracking population-level immunity. Epidemics 2024; 46:100746. [PMID: 38367285 DOI: 10.1016/j.epidem.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Throughout the COVID-19 pandemic, changes in policy, shifts in behavior, and the emergence of new SARS-CoV-2 variants spurred multiple waves of transmission. Accurate assessments of the changing risks were vital for ensuring adequate healthcare capacity, designing mitigation strategies, and communicating effectively with the public. Here, we introduce a model of COVID-19 transmission and vaccination that provided rapid and reliable projections as the BA.1, BA.4 and BA.5 variants emerged and spread across the US. For example, our three-week ahead national projection of the early 2021 peak in COVID-19 hospitalizations was only one day later and 11.6-13.3% higher than the actual peak, while our projected peak in mortality was two days earlier and 0.22-4.7% higher than reported. We track population-level immunity from prior infections and vaccination in terms of the percent reduction in overall susceptibility relative to a completely naive population. As of October 1, 2022, we estimate that the US population had a 36.52% reduction in overall susceptibility to the BA.4/BA.5 variants, with 61.8%, 15.06%, and 23.54% of immunity attributable to infections, primary series vaccination, and booster vaccination, respectively. We retrospectively projected the potential impact of expanding booster coverage starting on July 15, 2022, and found that a five-fold increase in weekly boosting rates would have resulted in 70% of people over 65 vaccinated by Oct 10, 2022 and averted 25,000 (95% CI: 14,400-35,700) deaths during the BA.4/BA.5 surge. Our model provides coherent variables for tracking population-level immunity in the increasingly complex landscape of variants and vaccines and enables robust simulations of plausible scenarios for the emergence and mitigation of novel COVID variants.
Collapse
Affiliation(s)
- Anass Bouchnita
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Kaiming Bi
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Spencer J Fox
- Department of Epidemiology & Biostatistics, University of Georgia, Athens, GA 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Lauren Ancel Meyers
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
48
|
Feola S, Chiaro J, Fusciello M, Russo S, Kleino I, Ylösmäki L, Kekäläinen E, Hästbacka J, Pekkarinen PT, Ylösmäki E, Capone S, Folgori A, Raggioli A, Boni C, Tiezzi C, Vecchi A, Gelzo M, Kared H, Nardin A, Fehlings M, Barban V, Ahokas P, Viitala T, Castaldo G, Pastore L, Porter P, Pesonen S, Cerullo V. PeptiVAX: A new adaptable peptides-delivery platform for development of CTL-based, SARS-CoV-2 vaccines. Int J Biol Macromol 2024; 262:129926. [PMID: 38331062 DOI: 10.1016/j.ijbiomac.2024.129926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a threat to public health and the global economy, necessitating the development of various vaccination strategies. Mutations in the SPIKE protein gene, a crucial component of mRNA and adenovirus-based vaccines, raised concerns about vaccine efficacy, prompting the need for rapid vaccine updates. To address this, we leveraged PeptiCRAd, an oncolytic vaccine based on tumor antigen decorated oncolytic adenoviruses, creating a vaccine platform called PeptiVAX. First, we identified multiple CD8 T-cell epitopes from highly conserved regions across coronaviruses, expanding the range of T-cell responses to non-SPIKE proteins. We designed short segments containing the predicted epitopes presented by common HLA-Is in the global population. Testing the immunogenicity, we characterized T-cell responses to candidate peptides in peripheral blood mononuclear cells (PBMCs) from pre-pandemic healthy donors and ICU patients. As a proof of concept in mice, we selected a peptide with epitopes predicted to bind to murine MHC-I haplotypes. Our technology successfully elicited peptide-specific T-cell responses, unaffected by the use of unarmed adenoviral vectors or adeno-based vaccines encoding SPIKE. In conclusion, PeptiVAX represents a fast and adaptable SARS-CoV-2 vaccine delivery system that broadens T-cell responses beyond the SPIKE protein, offering potential benefits for vaccine effectiveness.
Collapse
Affiliation(s)
- Sara Feola
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland
| | - Manlio Fusciello
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland
| | - Salvatore Russo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland
| | - Iivari Kleino
- Turku Bioscience Centre, University of Turku and Åbo Akademi University Turku, Turku, Finland
| | | | - Eliisa Kekäläinen
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; HUSLAB Clinical Microbiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Hästbacka
- HUSLAB Clinical Microbiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkka T Pekkarinen
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Division of Intensive Care Medicine, Department of Anaesthesiology and Intensive Care, University of Helsinki and Helsinki University Hospital, Finland
| | - Erkko Ylösmäki
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Disease and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Disease and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | - Tapani Viitala
- Pharmaceutical Biophysics Research Group, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II", S. Pansini 5, Italy
| | - Paul Porter
- Valo Therapeutics Oy, Helsinki, Finland; School of Nursing, Curtin University, GPO Box U 1987, Perth, WA 6845, Australia
| | | | - Vincenzo Cerullo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, 00790 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, 00710 Helsinki, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, postal code Haartmaninkatu 8, University of Helsinki, 00290 Helsinki, Finland; Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, FI-00014 Helsinki, Finland; Institute for Molecular Medicine Finland, FIMM, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II", S. Pansini 5, Italy.
| |
Collapse
|
49
|
Nealon J, Mefsin YM, McMenamin ME, Ainslie KE, Cowling BJ. Reported effectiveness of COVID-19 monovalent booster vaccines and hybrid immunity against mild and severe Omicron disease in adults: A systematic review and meta-regression analysis. Vaccine X 2024; 17:100451. [PMID: 38379667 PMCID: PMC10877401 DOI: 10.1016/j.jvacx.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Background Waning of COVID-19 vaccine efficacy/effectiveness (VE) has been observed across settings and epidemiological contexts. We conducted a systematic review of COVID-19 VE studies and performed a meta-regression analysis to improve understanding of determinants of waning. Methods Systematic review of PubMed, medRxiv and the WHO-International Vaccine Access Center database summarizing VE studies on 31 December 2022. Studies were those presenting primary adult VE data from hybrid immunity or third/fourth mRNA COVID-19 monovalent vaccine doses [due to limited data with other vaccines] against Omicron, compared with unvaccinated individuals or individuals eligible for corresponding booster doses but who did not receive them. We used meta-regression models, adjusting for confounders, with weeks since vaccination as a restricted cubic spline, to estimate VE over time since vaccination. Results We identified 55 eligible studies reporting 269 VE estimates. Most estimates (180/269; 67 %) described effectiveness of third dose vaccination; with 48 (18 %) and 41 (15 %) describing hybrid immunity and fourth dose effectiveness, respectively, mostly (200; 74 %) derived from test-negative design studies. Most estimates (176/269; 65 %) reported VE compared with unvaccinated comparison groups. Estimated VE against mild outcomes declined following third dose vaccination from 62 % (95 % CI: 58 % - 66 %) after 4 weeks to 48 % (41 % - 55 %) after 20 weeks. Fourth dose VE against mild COVID-19 declined from 48 % (41 % - 56 %) after 4 weeks to 47 % (19 % - 65 %) after 20 weeks. VE for severe outcomes was higher and declined in the three-dose group from 90 % (87 % - 92 %) after 4 weeks to 70 % (65 - 74 %) after 20 weeks. Conclusions Time-since vaccination is an important determinant of booster dose VE, a finding which may support seasonal COVID-19 booster doses. Integration of VE and immunological parameters - and longer-term data including from other vaccine types - are needed to better-understand determinants of clinical protection.
Collapse
Affiliation(s)
- Joshua Nealon
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yonatan M Mefsin
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Martina E. McMenamin
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kylie E.C. Ainslie
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Benjamin J. Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| |
Collapse
|
50
|
Zhang L, Yang J, Su R, Lan X, Song M, Zhang L, Xu J. Willingness to receive the second booster of COVID-19 vaccine among older adults with cancer: a stratified analysis in four provinces of China. Front Public Health 2024; 12:1298070. [PMID: 38454989 PMCID: PMC10917962 DOI: 10.3389/fpubh.2024.1298070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
Background Despite the elevated COVID-19 risk for older adults with cancer, vaccine hesitancy poses a significant barrier to their immunization. Intriguingly, there is limited research on the prevalence of willingness to receive the second booster dose and associated determinants in older adults with cancer. Objective Our objective was to ascertain the level of awareness about COVID-19 vaccines and to uncover the factors influencing the willingness to receive the second booster among Chinese cancer patients aged 65 years and over. Methods To achieve our objective, we conducted a multicenter cross-sectional study in four tertiary hospitals from four provinces of China. This involved using a Health Belief Model (HBM) based self-administered questionnaire and medical records. Subsequently, we employed multivariable logistic regression to identify factors influencing the second COVID-19 booster vaccine willingness. Results Our results showed that among 893 eligible participants, 279 (31.24%) were aged 65 years and over, and 614 (68.76%) were younger. Interestingly, the willingness to receive the second COVID-19 booster vaccine was 34.1% (95/279) (OR: 1.043, 95% CI: 0.858, 1.267) in participants aged 65 years and over, which was similar to participants aged under 65 years (34.1% vs. 35.5%, p = 0.673). Furthermore, our findings revealed that a positive attitude toward the booster and recommendations from healthcare providers and family members were positively associated with vaccine willingness. Conversely, perceptions of negative impacts on cancer control and vaccine accessibility regarding the second COVID-19 booster were inversely related to the outcome event (all p < 0.05). Conclusion Our study concludes with the finding of a low willingness toward the second COVID-19 booster in Chinese cancer patients, particularly in the older adults, a fact which warrants attention. This reluctance raises their risk of infection and potential for severe outcomes. Consequently, we recommend using media and community outreach to dispel misconceptions, promote the booster's benefits, and encourage vaccine discussions with healthcare providers and family members.
Collapse
Affiliation(s)
- Liangyuan Zhang
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Epidemiology, China Medical University, Shenyang, Liaoning, China
| | - Jianzhou Yang
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| | - Rila Su
- Cancer Center of Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Xinquan Lan
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Epidemiology, China Medical University, Shenyang, Liaoning, China
| | - Moxin Song
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Epidemiology, China Medical University, Shenyang, Liaoning, China
| | - Lei Zhang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Junjie Xu
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|