1
|
Cruwys S, Hein P, Humphries B, Black D. Drug discovery and development in idiopathic pulmonary fibrosis: the changing landscape. Drug Discov Today 2024:104207. [PMID: 39396672 DOI: 10.1016/j.drudis.2024.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an area of high unmet clinical need and high research activity in the pharmaceutical and biotech industries. The two approved therapies, nintedanib and pirfenidone, have issues with efficacy and tolerability. Despite a considerable number of development programs reaching late-stage Phase 2b or 3 clinical trials, no drug other than nintedanib and pirfenidone has successfully demonstrated a benefit for patients. An analysis of these failures, and consideration of the trajectories of some of the current development projects, may offer novel paradigms for choosing modes-of-action and for the development of successful drugs.
Collapse
Affiliation(s)
- Simon Cruwys
- TherapeutAix UG, Juttastrasse 18, 52066 Aachen, Germany
| | - Peter Hein
- TherapeutAix UG, Juttastrasse 18, 52066 Aachen, Germany
| | - Bob Humphries
- TherapeutAix UG, Juttastrasse 18, 52066 Aachen, Germany
| | - Darcey Black
- TherapeutAix UG, Juttastrasse 18, 52066 Aachen, Germany.
| |
Collapse
|
2
|
Sailer MO, Neubacher D, Johnston C, Rogers J, Wiens M, Pérez-Pitarch A, Tartakovsky I, Marquard J, Laffel LM. Pharmacometrics-Enhanced Bayesian Borrowing for Pediatric Extrapolation - A Case Study of the DINAMO Trial. Ther Innov Regul Sci 2024:10.1007/s43441-024-00707-5. [PMID: 39373938 DOI: 10.1007/s43441-024-00707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Bayesian borrowing analyses have an important role in the design and analysis of pediatric trials. This paper describes use of a prespecified Pharmacometrics Enhanced Bayesian Borrowing (PEBB) analysis that was conducted to overcome an expectation for reduced statistical power in the pediatric DINAMO trial due to a greater than expected variability in the primary endpoint. The DINAMO trial assessed the efficacy and safety of an empagliflozin dosing regimen versus placebo and linagliptin versus placebo on glycemic control (change in HbA1c over 26 weeks) in young people with type 2 diabetes (T2D). Previously fitted pharmacokinetic and exposure-response models for empagliflozin and linagliptin based on available historical data in adult and pediatric patients with T2D were used to simulate participant data and derive the informative component of a Bayesian robust mixture prior distribution. External experts and representatives from the U.S. Food and Drug Administration provided recommendations to determine the effective sample size of the prior and the weight of the informative prior component. Separate exposure response-based Bayesian borrowing analyses for empagliflozin and linagliptin showed posterior mean and 95% credible intervals that were consistent with the trial results. Sensitivity analyses with a full range of alternative weights were also performed. The use of PEBB in this analysis combined advantages of mechanistic modeling of pharmacometric differences between adults and young people with T2D, with advantages of partial extrapolation through Bayesian dynamic borrowing. Our findings suggest that the described PEBB approach is a promising option to optimize the power for future pediatric trials.
Collapse
Affiliation(s)
- Martin Oliver Sailer
- Global Biostatistics & Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany.
| | - Dietmar Neubacher
- Global Biostatistics & Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | | | - James Rogers
- Metrum Research Group, Tariffville, CT, 06081, USA
| | | | - Alejandro Pérez-Pitarch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
- Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | | | - Jan Marquard
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, 06877, USA
| | - Lori M Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Milara J, Ribera P, Marín S, Montero P, Roger I, Tenor H, Cortijo J. Phosphodiesterase 4 is overexpressed in human keloids and its inhibition reduces fibroblast activation and skin fibrosis. Chem Biol Interact 2024; 402:111211. [PMID: 39197814 DOI: 10.1016/j.cbi.2024.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
There is a pressing medical need for improved treatments in skin fibrosis including keloids and hypertrophic scars (HTS). This study aimed to characterize the role of phosphodiesterase 4 (PDE4), specifically PDE4B in fibrotic skin remodeling in vitro and in vivo. In vitro, effects of PDE4A-D (Roflumilast) or PDE4B (siRNA) inhibition on TGFβ1-induced myofibroblast differentiation and dedifferentiation were studied in normal (NHDF) and keloid (KF) human dermal fibroblasts. In vivo, the role of PDE4 on HOCl-induced skin fibrosis in mice was addressed in preventive and therapeutic protocols. PDE4B (mRNA, protein) was increased in Keloid > HTS compared to healthy skin and in TGFβ-stimulated NHDF and KF. In Keloid > HTS, collagen Iα1, αSMA, TGFβ1 and NOX4 mRNA were all elevated compared to healthy skin confirming skin fibrosis. In vitro, inhibition of PDE4A-D and PDE4B similarly prevented TGFβ1-induced Smad3 and ERK1/2 phosphorylation and myofibroblast differentiation, elevated NOX4 protein and proliferation in NHDF. PDE4A-D inhibition enabled myofibroblast dedifferentiation and curbed TGFβ1-induced reactive oxygen species and fibroblast senescence. In KF PDE4A-D inhibition restrained TGFβ1-induced Smad3 and ERK1/2 phosphorylation, myofibroblast differentiation and senescence. Mechanistically, PDE4A-D inhibition rescued from TGFβ1-induced loss in PPM1A, a Smad3 phosphatase. In vivo, PDE4 inhibition mitigated HOCl-induced skin fibrosis in mice in preventive and therapeutic protocols. The current study provides novel evidence evolving rationale for PDE4 inhibitors in skin fibrosis (including keloids and HTS) and delivered evidence for a functional role of PDE4B in this fibrotic condition.
Collapse
Affiliation(s)
- Javier Milara
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Pharmacy Unit, University General Hospital Consortium of Valencia, Spain.
| | - Pilar Ribera
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| | - Severiano Marín
- Plastic Surgery Unit, University General Hospital Consortium, 46014, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Inés Roger
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | | | - Julio Cortijo
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| |
Collapse
|
4
|
Jin H, Park SY, Lee JE, Park H, Jeong M, Lee H, Cho J, Lee YS. GTSE1-driven ZEB1 stabilization promotes pulmonary fibrosis through the epithelial-to-mesenchymal transition. Mol Ther 2024:S1525-0016(24)00653-1. [PMID: 39342428 DOI: 10.1016/j.ymthe.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/06/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
G2 and S phase-expressed protein 1 (GTSE1) has been implicated in the development of pulmonary fibrosis (PF); however, its biological function, molecular mechanism, and potential clinical implications remain unknown. Here, we explored the genomic data of patients with idiopathic PF (IPF) and found that GTSE1 expression is elevated in their lung tissues, but rarely expressed in normal lung tissues. Thus, we explored the biological role and downstream events of GTSE1 using IPF patient tissues and PF mouse models. The comprehensive bioinformatics analyses suggested that the increase of GTSE1 in IPF is linked to the enhanced gene signature for the epithelial-to-mesenchymal transition (EMT), leading us to investigate the potential interaction between GTSE1 and EMT transcription factors. GTSE1 preferentially binds to the less stable form of zinc-finger E-box-binding homeobox 1 (ZEB1), the unphosphorylated form at Ser585, inhibiting ZEB1 degradation. Consistently, the ZEB1 protein level in IPF patient and PF mouse tissues correlates with the GTSE1 protein level and the amount of collagen accumulation, representing fibrosis severity. Collectively, our findings highlight the GTSE1-ZEB1 axis as a novel driver of the pathological EMT characteristic during PF development and progression, supporting further investigation into GTSE1-targeting approaches for PF treatment.
Collapse
Affiliation(s)
- Hee Jin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - So-Yeon Park
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea; Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Ji Eun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hangyeol Park
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Michaela Jeong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyukjin Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University Health System, Seoul 120-749, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
5
|
Boateng E, Bonilla-Martinez R, Ahlemeyer B, Garikapati V, Alam MR, Trompak O, Oruqaj G, El-Merhie N, Seimetz M, Ruppert C, Günther A, Spengler B, Karnati S, Baumgart-Vogt E. It takes two peroxisome proliferator-activated receptors (PPAR-β/δ and PPAR-γ) to tango idiopathic pulmonary fibrosis. Respir Res 2024; 25:345. [PMID: 39313791 PMCID: PMC11421181 DOI: 10.1186/s12931-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung epithelial phenotypes, fibroblast activation, and increased extracellular matrix deposition. Transforming growth factor-beta (TGF-β)1-induced Smad signaling and downregulation of peroxisomal genes are involved in the pathogenesis and can be inhibited by peroxisome proliferator-activated receptor (PPAR)-α activation. However, the three PPARs, that is PPAR-α, PPAR-β/δ, and PPAR-γ, are known to interact in a complex crosstalk. METHODS To mimic the pathogenesis of lung fibrosis, primary lung fibroblasts from control and IPF patients with comparable levels of all three PPARs were treated with TGF-β1 for 24 h, followed by the addition of PPAR ligands either alone or in combination for another 24 h. Fibrosis markers (intra- and extracellular collagen levels, expression and activity of matrix metalloproteinases) and peroxisomal biogenesis and metabolism (gene expression of peroxisomal biogenesis and matrix proteins, protein levels of PEX13 and catalase, targeted and untargeted lipidomic profiles) were analyzed after TGF-β1 treatment and the effects of the PPAR ligands were investigated. RESULTS TGF-β1 induced the expected phenotype; e.g. it increased the intra- and extracellular collagen levels and decreased peroxisomal biogenesis and metabolism. Agonists of different PPARs reversed TGF-β1-induced fibrosis even when given 24 h after TGF-β1. The effects included the reversals of (1) the increase in collagen production by repressing COL1A2 promoter activity (through PPAR-β/δ activation); (2) the reduced activity of matrix metalloproteinases (through PPAR-β/δ activation); (3) the decrease in peroxisomal biogenesis and lipid metabolism (through PPAR-γ activation); and (4) the decrease in catalase protein levels in control (through PPAR-γ activation) and IPF (through a combined activation of PPAR-β/δ and PPAR-γ) fibroblasts. Further experiments to explore the role of catalase showed that an overexpression of catalase protein reduced collagen production. Additionally, the beneficial effect of PPAR-γ but not of PPAR-β/δ activation on collagen synthesis depended on catalase activity and was thus redox-sensitive. CONCLUSION Our data provide evidence that IPF patients may benefit from a combined activation of PPAR-β/δ and PPAR-γ.
Collapse
Affiliation(s)
- Eistine Boateng
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Rocio Bonilla-Martinez
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Vannuruswamy Garikapati
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392, Giessen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Mohammad Rashedul Alam
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Omelyan Trompak
- Department of Internal Medicine VIII, Eberhard Karls University, 72076, Tübingen, Germany
| | - Gani Oruqaj
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Department of Internal Medicine II, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, 35392, Giessen, Germany
| | - Natalia El-Merhie
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, 35392, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Clemens Ruppert
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
- UGMLC Giessen Biobank, Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
- Center for Interstitial and Rare Lung Diseases, Department of Internal Medicine, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392, Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute for Anatomy and Cell Biology, Julius Maximilians University, 97070, Würzburg, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
6
|
Cottin V, Valenzuela C. Evidence from recent clinical trials in fibrotic interstitial lung diseases. Curr Opin Pulm Med 2024; 30:484-493. [PMID: 39114938 DOI: 10.1097/mcp.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
PURPOSE OF REVIEW Idiopathic pulmonary fibrosis (IPF) is the prototype of fibrosing interstitial lung diseases. It is mirrored by progressive pulmonary fibrosis (PPF), an umbrella term which characterizes disease behavior of various fibrotic interstitial lung diseases with irreversible progression, accounting for loss of lung function, exercise intolerance and respiratory failure leading to early mortality. Pirfenidone and nintedanib halve the decline in lung function but do not halt disease progression. RECENT FINDINGS Since the publication in 2014 of pivotal pirfenidone and nintedanib studies, a number of clinical trials were conducted, many of them did not reach their primary endpoints. In IPF, promising phase 2 trials were followed by large phase 3 trials that did not confirm a favorable efficacy to tolerability favorable profile, including those with ziritaxestat, an autotaxin-1 inhibitor, zinpentraxin-alpha (human recombinant pentraxin-2), and the monoclonal antibody pamrevlumab targeting connective tissue growth factor. Nevertheless, newer compounds that hold promise are currently being evaluated in phase 3 or phase 2b randomized controlled trials, including: nerandomilast, a preferential phosphodiesterase 4B inhibitor; admilparant, a lysophosphatidic acid receptor antagonist; inhaled treprostinil, a prostacyclin agonist; and bexotegrast, a dual-selective inhibitor of αvβ6 and αvβ1 integrins. Nerandomilast, admilparant, inhaled treprostinil, and inhaled AP01 (pirfenidone), are currently studied in patients with PPF. SUMMARY Despite recent frustrating negative results, there is a growing portfolio of candidate drugs developed in both IPF and PPF.
Collapse
Affiliation(s)
- Vincent Cottin
- Department of Respiratory Medicine, National Reference Centre for Rare Pulmonary Diseases, member of ERN-LUNG, Louis Pradel Hospital, Hospices Civils de Lyon
- UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| | - Claudia Valenzuela
- ILD Unit, Department of Respiratory Medicine, Hospital universitario de la Princesa, Universitad autónoma de Madrid, Spain
| |
Collapse
|
7
|
Spagnolo P, Maher TM. The future of clinical trials in idiopathic pulmonary fibrosis. Curr Opin Pulm Med 2024; 30:494-499. [PMID: 38963152 PMCID: PMC11377049 DOI: 10.1097/mcp.0000000000001099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
PURPOSE OF REVIEW Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a poor prognosis and limited therapeutic options. A multitude of promising compounds are currently being investigated; however, the design and conductance of late-phase clinical trials in IPF has proven particularly challenging. RECENT FINDINGS Despite promising phase 2 data, ziritaxestat, an autotaxin inhibitor, pentraxin-2, an endogenous protein that regulates wound healing and fibrosis, and pamrevlumab, a human monoclonal antibody against connective tissue growth factor, failed to show efficacy in phase 3 trials. Endpoint selection is critical for the design, execution, and success of clinical trials; recently, attention has been paid to the assessment of how patients feel, function, and survive with the aim of aligning scientific objectives and patient needs in IPF. External control arms are control patients that derive from historical randomized controlled trials, registries, or electronic health records. They are increasingly used to assess treatment efficacy in clinical trials owing to their potential to reduce study duration and cost and increase generalizability of findings. SUMMARY Advances in study design, end point selection and statistical analysis, and innovative strategies for more efficient enrolment of study participants have the potential to increase the likelihood of success of late-phase clinical trials in IPF.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Toby M. Maher
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
- Section of Inflammation, Repair and Development, Imperial College London National Heart and Lung Institute, London, UK
| |
Collapse
|
8
|
Bando M, Chiba H, Miyazaki Y, Suda T. Current challenges in the diagnosis and management of idiopathic pulmonary fibrosis in Japan. Respir Investig 2024; 62:785-793. [PMID: 38996779 DOI: 10.1016/j.resinv.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the archetypal interstitial lung disease. It is a chronic progressive condition that is challenging to manage as the clinical course of the disease is often difficult to predict. The prevalence of IPF is rising globally and in Japan, where it is estimated to affect 27 individuals per 100,000 of the population. Greater patient numbers and the poor prognosis associated with IPF diagnosis mean that there is a growing need for disease management approaches that can slow or even reverse disease progression and improve survival. Considerable progress has been made in recent years, with the approval of two antifibrotic therapies for IPF (pirfenidone and nintedanib), the availability of Japanese treatment guidelines, and the creation of global and Japanese disease registries. Despite this, significant unmet needs remain with respect to the diagnosis, treatment, and management of this complex disease. Each of these challenges will be discussed in this review, including making a timely and differential diagnosis of IPF, uptake and adherence to antifibrotic therapy, patient access to pulmonary rehabilitation, lung transplantation and palliative care, and optimal strategies for monitoring and staging disease progression, with a particular focus on the status in Japan. In addition, the review will reflect upon how ongoing research, clinical trials of novel therapies, and technologic advancements (including artificial intelligence, biomarkers, and genomic classification) may help address these challenges in the future.
Collapse
Affiliation(s)
- Masashi Bando
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Yasunari Miyazaki
- Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takafumi Suda
- Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
9
|
Aribindi K, Liu GY, Albertson TE. Emerging pharmacological options in the treatment of idiopathic pulmonary fibrosis (IPF). Expert Rev Clin Pharmacol 2024; 17:817-835. [PMID: 39192604 PMCID: PMC11441789 DOI: 10.1080/17512433.2024.2396121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive-fibrosing lung disease with a median survival of less than 5 years. Currently, two agents, pirfenidone and nintedanib are approved for this disease, and both have been shown to reduce the rate of decline in lung function in patients with IPF. However, both have significant adverse effects and neither completely arrest the decline in lung function. AREAS COVERED Thirty experimental agents with unique mechanisms of action that are being evaluated for the treatment of IPF are discussed. These agents work through various mechanisms of action, these include inhibition of transcription nuclear factor k-B on fibroblasts, reduced expression of metalloproteinase 7, the generation of more lysophosphatidic acids, blocking the effects of transforming growth factor ß, and reducing reactive oxygen species as examples of some unique mechanisms of action of these agents. EXPERT OPINION New drug development has the potential to expand the treatment options available in the treatment of IPF patients. It is expected that the adverse drug effect profiles will be more favorable than current agents. It is further anticipated that these new agents or combinations of agents will arrest the fibrosis, not just slow the fibrotic process.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
- Department of Medicine, Department of Veterans Affairs Northern California Health Care System, Mather, CA, USA
| | - Gabrielle Y Liu
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Timothy E Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
- Department of Medicine, Department of Veterans Affairs Northern California Health Care System, Mather, CA, USA
| |
Collapse
|
10
|
Reininger D, Fundel-Clemens K, Mayr CH, Wollin L, Laemmle B, Quast K, Nickolaus P, Herrmann FE. PDE4B inhibition by nerandomilast: Effects on lung fibrosis and transcriptome in fibrotic rats and on biomarkers in human lung epithelial cells. Br J Pharmacol 2024. [PMID: 39183442 DOI: 10.1111/bph.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND AND PURPOSE The PDE4 family is considered a prime target for therapeutic intervention in several fibro-inflammatory diseases. We have investigated the molecular mechanisms of nerandomilast (BI 1015550), a preferential PDE4B inhibitor. EXPERIMENTAL APPROACH In addition to clinically relevant parameters of idiopathic pulmonary fibrosis (IPF; lung function measurement/high-resolution computed tomography scan/AI-Ashcroft score), whole-lung homogenates from a therapeutic male Wistar rat model of pulmonary fibrosis were analysed by next-generation sequencing (NGS). Data were matched with public domain data derived from human IPF samples to investigate how well the rat model reflected human IPF. We scored the top counter-regulated genes following treatment with nerandomilast in human single cells and validated disease markers discovered in the rat model using a human disease-relevant in vitro assay of IPF. KEY RESULTS Nerandomilast improved the decline of lung function parameters in bleomycin-treated animals. In the NGS study, most transcripts deregulated by bleomycin treatment were normalised by nerandomilast treatment. Most notably, a significant number of deregulated transcripts that were identified in human IPF disease were also found in the animal model and reversed by nerandomilast. Mapping to single-cell data revealed the strongest effects on mesenchymal, epithelial and endothelial cell populations. In a primary human epithelial cell culture system, several disease-related (bio)markers were inhibited by nerandomilast in a concentration-dependent manner. CONCLUSIONS AND IMPLICATIONS This study further supports the available knowledge about the anti-inflammatory/antifibrotic mechanisms of nerandomilast and provides novel insights into the mode of action and signalling pathways influenced by nerandomilast treatment of lung fibrosis.
Collapse
Affiliation(s)
- Dennis Reininger
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Katrin Fundel-Clemens
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christoph H Mayr
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Lutz Wollin
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Baerbel Laemmle
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Karsten Quast
- Global Clinical Development & Operations, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Peter Nickolaus
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Franziska Elena Herrmann
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
11
|
Lancaster L, Cottin V, Ramaswamy M, Wuyts WA, Jenkins RG, Scholand MB, Kreuter M, Valenzuela C, Ryerson CJ, Goldin J, Kim GHJ, Jurek M, Decaris M, Clark A, Turner S, Barnes CN, Achneck HE, Cosgrove GP, Lefebvre ÉA, Flaherty KR. Bexotegrast in Patients with Idiopathic Pulmonary Fibrosis: The INTEGRIS-IPF Clinical Trial. Am J Respir Crit Care Med 2024; 210:424-434. [PMID: 38843105 PMCID: PMC11351797 DOI: 10.1164/rccm.202403-0636oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a rare and progressive disease that causes progressive cough, exertional dyspnea, impaired quality of life, and death. Objectives: Bexotegrast (PLN-74809) is an oral, once-daily, investigational drug in development for the treatment of IPF. Methods: This Phase-2a multicenter, clinical trial randomized participants with IPF to receive, orally and once daily, bexotegrast at 40 mg, 80 mg, 160 mg, or 320 mg, or placebo, with or without background IPF therapy (pirfenidone or nintedanib), in an approximately 3:1 ratio in each bexotegrast dose cohort, for at least 12 weeks. The primary endpoint was incidence of treatment-emergent adverse events (TEAEs). Exploratory efficacy endpoints included change from baseline in FVC, quantitative lung fibrosis (QLF) extent (%), and changes from baseline in fibrosis-related biomarkers. Measurements and Main Results: Bexotegrast was well tolerated, with similar rates of TEAEs in the pooled bexotegrast and placebo groups (62/89 [69.7%] and 21/31 [67.7%], respectively). Diarrhea was the most common TEAE; most participants with diarrhea also received nintedanib. Participants who were treated with bexotegrast experienced a reduction in FVC decline over 12 weeks compared with those who received placebo, with or without background therapy. A dose-dependent antifibrotic effect of bexotegrast was observed with QLF imaging, and a decrease in fibrosis-associated biomarkers was observed with bexotegrast versus placebo. Conclusions: Bexotegrast demonstrated a favorable safety and tolerability profile, up to 12 weeks for the doses studied. Exploratory analyses suggest an antifibrotic effect according to FVC, QLF imaging, and circulating levels of fibrosis biomarkers. Clinical trial registered with www.clinicaltrials.gov (NCT04396756).
Collapse
Affiliation(s)
- Lisa Lancaster
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases (Orphalung), Louis Pradel Hospital, ERN-LUNG, Lyon, France
- Claude Bernard University Lyon 1, UMR754, INRAE, Lyon, France
| | | | - Wim A. Wuyts
- Department of Pneumology, Unit for Interstitial Lung Diseases, University Hospitals Leuven, Leuven, Belgium
| | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mary Beth Scholand
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah Health, Salt Lake City, Utah
| | - Michael Kreuter
- Pneumology Department, Mainz Lung Center, Mainz University Medical Center and Marienhaus Clinic Mainz, Mainz, Germany
| | - Claudia Valenzuela
- ILD Unit, Pulmonology Department, Hospital Universitario de la Princesa, Autonoma de Madrid, Madrid, Spain
| | - Christopher J. Ryerson
- Department of Medicine and Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Goldin
- Department of Radiology, University of California, Los Angeles, California
- MedQIA LLC, Los Angeles, California
| | - Grace Hyun J. Kim
- Department of Radiology, University of California, Los Angeles, California
- MedQIA LLC, Los Angeles, California
| | - Marzena Jurek
- Pliant Therapeutics, Inc., South San Francisco, California; and
| | - Martin Decaris
- Pliant Therapeutics, Inc., South San Francisco, California; and
| | - Annie Clark
- Pliant Therapeutics, Inc., South San Francisco, California; and
| | - Scott Turner
- Pliant Therapeutics, Inc., South San Francisco, California; and
| | - Chris N. Barnes
- Pliant Therapeutics, Inc., South San Francisco, California; and
| | | | | | | | - Kevin R. Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Mattos WLLD, Khalil N, Spencer LG, Bonella F, Folz RJ, Rolf JD, Mogulkoc N, Lancaster LH, Jenkins RG, Lynch DA, Noble PW, Maher TM, Cottin V, Senger S, Horan GS, Greenberg S, Popmihajlov Z. Phase 2, Double-Blind, Placebo-controlled Trial of a c-Jun N-Terminal Kinase Inhibitor in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2024; 210:435-443. [PMID: 38484130 DOI: 10.1164/rccm.202310-1907oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/13/2024] [Indexed: 08/16/2024] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis is a fatal and progressive disease with limited treatment options. Objectives: We sought to assess the efficacy and safety of CC-90001, an oral inhibitor of c-Jun N-terminal kinase 1, in patients with idiopathic pulmonary fibrosis. Methods: In a Phase 2, randomized (1:1:1), double-blind, placebo-controlled study (ClinicalTrials.gov ID: NCT03142191), patients received CC-90001 (200 or 400 mg) or placebo once daily for 24 weeks. Background antifibrotic treatment (pirfenidone) was allowed. The primary endpoint was change in the percentage of predicted FVC (ppFVC) from baseline to Week 24; secondary endpoints included safety. Measurements and Main Results: In total, 112 patients received at least one dose of study drug. The study was terminated early because of a strategic decision made by the sponsor. Ninety-one patients (81%) completed the study. The least-squares mean changes from baseline in ppFVC at Week 24 were -3.1% (placebo), -2.1% (200 mg), and -1.0% (400 mg); the differences compared with placebo were 1.1% (200 mg; 95% confidence interval: -2.1, 4.3; P = 0.50) and 2.2% (400 mg; 95% confidence interval: -1.1, 5.4; P = 0.19). Adverse event frequency was similar in patients in the combined CC-90001 arms versus placebo. The most common adverse events were nausea, diarrhea, and vomiting, which were more frequent in patients in CC-90001 arms versus placebo. Fewer patients in the CC-90001 arms than in the placebo arm experienced cough and dyspnea. Conclusions: Treatment with CC-90001 over 24 weeks led to numerical improvements in ppFVC in patients with idiopathic pulmonary fibrosis compared with placebo. CC-90001 was generally well tolerated, which was consistent with previous studies. Clinical trial registered with www.clinicaltrials.gov (NCT03142191).
Collapse
Affiliation(s)
| | - Nasreen Khalil
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa G Spencer
- Aintree Chest Centre, Liverpool University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Rodney J Folz
- Division of Pulmonary, Critical Care and Sleep Medicine, Houston Methodist Research Institute, Houston, Texas
| | - J Douglass Rolf
- Kelowna Respiratory Clinic, Kelowna, British Columbia, Canada
| | - Nesrin Mogulkoc
- Department of Pulmonary Medicine, Ege University Hospital, Izmir, Turkey
| | - Lisa H Lancaster
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R Gisli Jenkins
- Imperial Biomedical Research Center and
- Royal Brompton and Harefield Hospital, London, United Kingdom
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Toby M Maher
- Interstitial Lung Disease Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vincent Cottin
- Department of Respiratory Medicine, Louis Pradel Hospital, Lyon, France
- University Claude Bernard Lyon 1, UMR 754, INRAE, Lyon, France
| | - Stefanie Senger
- Bristol Myers Squibb, Princeton, New Jersey; and
- Cytel Inc., Waltham, Massachusetts
| | | | | | | |
Collapse
|
13
|
Libra A, Sciacca E, Muscato G, Sambataro G, Spicuzza L, Vancheri C. Highlights on Future Treatments of IPF: Clues and Pitfalls. Int J Mol Sci 2024; 25:8392. [PMID: 39125962 PMCID: PMC11313529 DOI: 10.3390/ijms25158392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring of lung tissue, leading to death. Despite recent advancements in understanding its pathophysiology, IPF remains elusive, and therapeutic options are limited and non-curative. This review aims to synthesize the latest research developments, focusing on the molecular mechanisms driving the disease and on the related emerging treatments. Unfortunately, several phase 2 studies showing promising preliminary results did not meet the primary endpoints in the subsequent phase 3, underlying the complexity of the disease and the need for new integrated endpoints. IPF remains a challenging condition with a complex interplay of genetic, epigenetic, and pathophysiological factors. Ongoing research into the molecular keystones of IPF is critical for the development of targeted therapies that could potentially stop the progression of the disease. Future directions include personalized medicine approaches, artificial intelligence integration, growth in genetic insights, and novel drug targets.
Collapse
Affiliation(s)
- Alessandro Libra
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Enrico Sciacca
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Giuseppe Muscato
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Gianluca Sambataro
- Artroreuma s.r.l., Rheumatology Outpatient Clinic, 95030 Mascalucia, CT, Italy;
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| |
Collapse
|
14
|
Stowasser S, Cosgrove GP, White ES. Assessing How Patients Feel, Function, and Survive in Idiopathic Pulmonary Fibrosis: The Best Is the Enemy of the Good. Am J Respir Crit Care Med 2024; 210:367-368. [PMID: 38820300 PMCID: PMC11348970 DOI: 10.1164/rccm.202402-0337le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024] Open
Affiliation(s)
- Susanne Stowasser
- Boehringer Ingelheim International GmbH & Company, Ingelheim, Germany
| | | | - Eric S. White
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| |
Collapse
|
15
|
Su R, Narenmandula, Qiao X, Hu Q. PDE4B promotes the progression of gastric cancer via the PI3K/AKT/MYC pathway and immune infiltration. Am J Cancer Res 2024; 14:3451-3467. [PMID: 39113853 PMCID: PMC11301292 DOI: 10.62347/tyos8160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Phosphodiesterase 4B (PDE4B) is a key enzyme involved in regulating intracellular cyclic adenosine monophosphate levels and plays a significant role in the diagnosis, classification, treatment, and prognosis of various cancers. However, the role of PDE4B in gastric cancer (GC) remains unclear. We used the GEPIA2 (Gene Expression Profiling Interactive Analysis 2) database to analyze the differential expression level of PDE4B across tumor samples and verified our findings via qPCR and immunohistochemical analysis. We also analyzed the correlation between PDE4B expression levels and clinical pathological parameters, and prognosis, in the database. The effects of PDE4B on GC proliferation, migration, and invasion were evaluated through in vitro and in vivo experiments. Enrichment analysis was performed using bioinformatic tools, and results were validated by western blot analysis. The correlation between PDE4B expression and immune cell infiltration was investigated using bioinformatics tools. PDE4B is highly expressed in GC and is significantly associated with deep infiltration, distant metastasis, tumor, node, metastasis (TNM) stage, and preoperative CA199 levels. Over-expression of PDE4B promotes proliferation, clonal formation, migration, and invasion of GC cells and is associated with poor prognosis. PDE4B promotes the infiltration of immune cells into the tumor microenvironment (TME) and the phosphorylation of PI3K/AKT pathway, increasing MYC expression. PDE4B can serve as an independent prognostic biomarker for GC. We found that PDE4B can promote immune cell infiltration of the TME and mediate malignancy in gastric cancer through the PI3K/AKT/MYC pathway.
Collapse
Affiliation(s)
- Riya Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityNo. 74 Zhongshan Second Road, Yuexiu District, Guangzhou 510080, Guangdong, China
| | - Narenmandula
- School of Traditional Mongolian Medicine, Inner Mongolia Medical UniversityJinshan Development Zone, Hohhot 010110, Inner Mongolia, China
| | - Xiaojuan Qiao
- Department of Oncology, Affiliated Hospital of Inner Mongolia Medical UniversityNo. 1 Tongdao North Road, Hohhot 010050, Inner Mongolia, China
| | - Qun Hu
- Department of Oncology, Affiliated Hospital of Inner Mongolia Medical UniversityNo. 1 Tongdao North Road, Hohhot 010050, Inner Mongolia, China
| |
Collapse
|
16
|
Fuster-Martínez I, Calatayud S. The current landscape of antifibrotic therapy across different organs: A systematic approach. Pharmacol Res 2024; 205:107245. [PMID: 38821150 DOI: 10.1016/j.phrs.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Fibrosis is a common pathological process that can affect virtually all the organs, but there are hardly any effective therapeutic options. This has led to an intense search for antifibrotic therapies over the last decades, with a great number of clinical assays currently underway. We have systematically reviewed all current and recently finished clinical trials involved in the development of new antifibrotic drugs, and the preclinical studies analyzing the relevance of each of these pharmacological strategies in fibrotic processes affecting tissues beyond those being clinically studied. We analyze and discuss this information with the aim of determining the most promising options and the feasibility of extending their therapeutic value as antifibrotic agents to other fibrotic conditions.
Collapse
Affiliation(s)
- Isabel Fuster-Martínez
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia 46020, Spain.
| | - Sara Calatayud
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; CIBERehd (Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas), Spain.
| |
Collapse
|
17
|
Sciacca E, Muscato G, Spicuzza L, Fruciano M, Gili E, Sambataro G, Palmucci S, Vancheri C, Libra A. Pharmacological treatment in Idiopathic Pulmonary Fibrosis: current issues and future perspectives. Multidiscip Respir Med 2024; 19:982. [PMID: 38869027 PMCID: PMC11186439 DOI: 10.5826/mrm.2024.982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) represents a fibrotic interstitial lung disease characterized by uncertain etiology and poor prognosis. Over the years, the path to effective treatments has been marked by a series of advances and setbacks. The introduction of approved antifibrotic drugs, pirfenidone and nintedanib, marked a pivotal moment in the management of IPF. However, despite these advances, these drugs are not curative, although they can slow the natural progression of the disease. The history of drug therapy for IPF goes together with the increased understanding of the pathogenic mechanisms underlying the disease. Based on that, current research efforts continue to explore new therapies, possible personalized treatment strategies, drug combinations, and potential biomarkers for diagnosis and prognosis. In this review, we outline the route that led to the discover of the first effective therapies, ongoing clinical trials, and future directions in the search for more effective treatments.
Collapse
Affiliation(s)
- Enrico Sciacca
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Giuseppe Muscato
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Mary Fruciano
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Gianluca Sambataro
- Artroreuma s.r.l., Rheumatology outpatient Clinic, Mascalucia (CT), Italy
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Division of Rheumatology, Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University -Hospital Policlinico “G. Rodolico-San Marco”, Unità Operativa Semplice Dipartimentale di Imaging Polmonare e Tecniche Radiologiche Avanzate (UOSD IPTRA), Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Alessandro Libra
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Bahramifar A, Jafari RM, Sheibani M, Manavi MA, Rashidian A, Tavangar SM, Akbariani M, Mohammadi Hamaneh A, Goudarzi R, Shadboorestan A, Dehpour AR. Sumatriptan mitigates bleomycin-induced lung fibrosis in male rats: Involvement of inflammation, oxidative stress and α-SMA. Tissue Cell 2024; 88:102349. [PMID: 38492426 DOI: 10.1016/j.tice.2024.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung condition that produces symptoms including coughing which may cause by excessive accumulation of scar tissue inflammatory and oxidative stress exacerbation. Sumatriptan, utilized for migraine treatment as a selective 5-HT1B/1D receptor agonist, has demonstrated significant anti-inflammatory and antioxidant properties in multiple preclinical investigations. Operating primarily on serotonin receptors, sumatriptan leverages the diverse physiological functions of serotonin, playing a pivotal role in regulating both inflammation and oxidative stress which is particularly relevant in the context of IPF. MATERIALS & METHODS Thirty-five male Wistar rats were divided to five group, including: Sham (without IPF induction), control (BLM 5 mg/kg, intraperitoneally), and three fibrosis group with sumatriptan (0.5, 1, and 3 mg/kg, i.p. for 2 weeks) administration. IPF was induced by injection of BLM (single dose, 5 mg/kg intratracheally). Lung tissues were separated for measurement of myeloperoxidase (MPO) as an oxidative stress hallmark, and tumor necrosis factor-α (TNF-α), interleukin-1β (IL-β), and transforming growth factor-β (TGF-β) as inflammatory markers as well as alpha smooth muscle actin (α-SMA). Also, for histological investigations, tissue damages were assessed by Hematoxylin-eosin (H&E) and Masson's trichrome staining method. RESULTS BLM-induced fibrosis could increase α-SMA, MPO, TNF-α, IL-1β, and TGF-β, while treatment with sumatriptan has reversed the α-SMA, MPO, and IL-1β levels. Moreover, the results of H&E and Masson's trichrome staining indicated that sumatriptan (1 and 3 mg/kg) reduced tissue damages, alveolar wall thickness, collagen accumulation, and pulmonary fibrosis induced by BLM. CONCLUSION According to the data achieved from this study, Sumatriptan appears to have therapeutic benefits in IPF, possibly via reducing α-SMA as well as inflammation and the toxicity caused by oxidative stress.
Collapse
Affiliation(s)
- Ayda Bahramifar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Pharmacology, School of Medicine, Indiana University, Indianapolis, USA
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Mohammadi Hamaneh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, CA, United States
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medicine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
MacIsaac S, Somboonviboon D, Scallan C, Kolb M. Treatment of idiopathic pulmonary fibrosis: an update on emerging drugs in phase II & III clinical trials. Expert Opin Emerg Drugs 2024; 29:177-186. [PMID: 38588523 DOI: 10.1080/14728214.2024.2340723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating lung disease with poor prognosis. Although two antifibrotics have been approved in the past decade there are no curative therapies. AREAS COVERED This review highlights the current landscape of IPF research in the development of novel compounds for the treatment of IPF while also evaluating repurposed medications and their role in the management of IPF. The literature search includes studies found on PubMed, conference abstracts, and press releases until March 2024. EXPERT OPINION Disease progression in IPF is driven by a dysregulated cycle of microinjury, aberrant wound healing, and propagating fibrosis. Current drug development focuses on attenuating fibrotic responses via multiple pathways. Phosphodiesterase 4 inhibitors (PDE4i), lysophosphatidic acid (LPA) antagonists, dual-selective inhibitor of αvβ6 and αvβ1 integrins, and the prostacyclin agonist Treprostinil have had supportive phase II clinical trial results in slowing decline in forced vital capacity (FVC) in IPF. Barriers to drug development specific to IPF include the lack of a rodent model that mimics IPF pathology, the nascent understanding of the role of genetics affecting development of IPF and response to treatment, and the lack of a validated biomarker to monitor therapeutic response in patients with IPF. Successful treatment of IPF will likely include a multi-targeted approach anchored in precision medicine.
Collapse
Affiliation(s)
- Sarah MacIsaac
- Firestone Institute for Respiratory Health - Division of Respirology, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Division of Respirology, Dalhousie University, Halifax Infirmary, Halifax Nova Scotia, Canada
| | - Dujrath Somboonviboon
- Firestone Institute for Respiratory Health - Division of Respirology, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Division of Pulmonary and Critical Care, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Ciaran Scallan
- Firestone Institute for Respiratory Health - Division of Respirology, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health - Division of Respirology, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
20
|
Naqvi M, Hannah J, Lawrence A, Myall K, West A, Chaudhuri N. Antifibrotic therapy in progressive pulmonary fibrosis: a review of recent advances. Expert Rev Respir Med 2024; 18:397-407. [PMID: 39039699 DOI: 10.1080/17476348.2024.2375420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Progressive pulmonary fibrosis (PPF) is a manifestation of a heterogenous group of underlying interstitial lung disease (ILD) diagnoses, defined as non-idiopathic pulmonary fibrosis (IPF) progressive fibrotic ILD meeting at least two of the following criteria in the previous 12 months: worsening respiratory symptoms, absolute decline in forced vital capacity (FVC) more than or equal to 5% and/or absolute decline in diffusing capacity for carbon monoxide (DLCO) more than or equal to 10% and/or radiological progression. AREAS COVERED The authors subjectively reviewed a synthesis of literature from PubMed to identify recent advances in the diagnosis and characterisation of PPF, treatment recommendations, and management challenges. This review provides a comprehensive summary of recent advances and highlights future directions for the diagnosis, management, and treatment of PPF. EXPERT OPINION Recent advances in defining the criteria for PPF diagnosis and licensing of treatment are likely to support further characterisation of the PPF patient population and improve our understanding of prevalence. The diagnosis of PPF remains challenging with the need for a specialised ILD multidisciplinary team (MDT) approach. The evidence base supports the use of immunomodulatory therapy to treat inflammatory ILDs and antifibrotic therapy where PPF develops. Treatment needs to be tailored to the specific underlying disease and determined on a case-by-case basis.
Collapse
Affiliation(s)
- Marium Naqvi
- Guy's and St Thomas' NHS Trust, Guy's Hospital, London, UK
| | - Jennifer Hannah
- Department of Rheumatology, Kings' College Hospitals NHS Trust, Orpington Hospital, Orpington, UK
| | | | - Katherine Myall
- Department of Respiratory Medicine, King's College London, London, UK
| | - Alex West
- Guy's and St Thomas' NHS Trust, Guy's Hospital, London, UK
| | - Nazia Chaudhuri
- Department of Health and Life Sciences, School of Medicine, Ulster University, Derry-Londonderry, UK
| |
Collapse
|
21
|
Lee SY. Using Bayesian statistics in confirmatory clinical trials in the regulatory setting: a tutorial review. BMC Med Res Methodol 2024; 24:110. [PMID: 38714936 PMCID: PMC11077897 DOI: 10.1186/s12874-024-02235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Bayesian statistics plays a pivotal role in advancing medical science by enabling healthcare companies, regulators, and stakeholders to assess the safety and efficacy of new treatments, interventions, and medical procedures. The Bayesian framework offers a unique advantage over the classical framework, especially when incorporating prior information into a new trial with quality external data, such as historical data or another source of co-data. In recent years, there has been a significant increase in regulatory submissions using Bayesian statistics due to its flexibility and ability to provide valuable insights for decision-making, addressing the modern complexity of clinical trials where frequentist trials are inadequate. For regulatory submissions, companies often need to consider the frequentist operating characteristics of the Bayesian analysis strategy, regardless of the design complexity. In particular, the focus is on the frequentist type I error rate and power for all realistic alternatives. This tutorial review aims to provide a comprehensive overview of the use of Bayesian statistics in sample size determination, control of type I error rate, multiplicity adjustments, external data borrowing, etc., in the regulatory environment of clinical trials. Fundamental concepts of Bayesian sample size determination and illustrative examples are provided to serve as a valuable resource for researchers, clinicians, and statisticians seeking to develop more complex and innovative designs.
Collapse
Affiliation(s)
- Se Yoon Lee
- Department of Statistics, Texas A &M University, 3143 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
22
|
Lee C, Kwak SH, Han J, Shin JH, Yoo B, Lee YS, Park JS, Lim BJ, Lee JG, Kim YS, Kim SY, Bae SH. Repositioning of ezetimibe for the treatment of idiopathic pulmonary fibrosis. Eur Respir J 2024; 63:2300580. [PMID: 38359963 PMCID: PMC11096666 DOI: 10.1183/13993003.00580-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND We previously identified ezetimibe, an inhibitor of Niemann-Pick C1-like intracellular cholesterol transporter 1 and European Medicines Agency-approved lipid-lowering agent, as a potent autophagy activator. However, its efficacy against pulmonary fibrosis has not yet been evaluated. This study aimed to determine whether ezetimibe has therapeutic potential against idiopathic pulmonary fibrosis. METHODS Primary lung fibroblasts isolated from both humans and mice were employed for mechanistic in vitro experiments. mRNA sequencing of human lung fibroblasts and gene set enrichment analysis were performed to explore the therapeutic mechanism of ezetimibe. A bleomycin-induced pulmonary fibrosis mouse model was used to examine in vivo efficacy of the drug. Tandem fluorescent-tagged microtubule-associated protein 1 light chain 3 transgenic mice were used to measure autophagic flux. Finally, the medical records of patients with idiopathic pulmonary fibrosis from three different hospitals were reviewed retrospectively, and analyses on survival and lung function were conducted to determine the benefits of ezetimibe. RESULTS Ezetimibe inhibited myofibroblast differentiation by restoring the mechanistic target of rapamycin complex 1-autophagy axis with fine control of intracellular cholesterol distribution. Serum response factor, a potential autophagic substrate, was identified as a primary downstream effector in this process. Similarly, ezetimibe ameliorated bleomycin-induced pulmonary fibrosis in mice by inhibiting mechanistic target of rapamycin complex 1 activity and increasing autophagic flux, as observed in mouse lung samples. Patients with idiopathic pulmonary fibrosis who regularly used ezetimibe showed decreased rates of all-cause mortality and lung function decline. CONCLUSION Our study presents ezetimibe as a potential novel therapeutic for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Chanho Lee
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- These authors contributed equally to this work
| | - Se Hyun Kwak
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
- These authors contributed equally to this work
| | - Jisu Han
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hye Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byunghun Yoo
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Seol Lee
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Su Park
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- These authors contributed equally to this work
| | - Soo Han Bae
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- These authors contributed equally to this work
| |
Collapse
|
23
|
Struebing A, McKibbon C, Ruan H, Mackay E, Dennis N, Velummailum R, He P, Tanaka Y, Xiong Y, Springford A, Rosenlund M. Augmenting external control arms using Bayesian borrowing: a case study in first-line non-small cell lung cancer. J Comp Eff Res 2024; 13:e230175. [PMID: 38573331 PMCID: PMC11036906 DOI: 10.57264/cer-2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Aim: This study aimed to improve comparative effectiveness estimates and discuss challenges encountered through the application of Bayesian borrowing (BB) methods to augment an external control arm (ECA) constructed from real-world data (RWD) using historical clinical trial data in first-line non-small-cell lung cancer (NSCLC). Materials & methods: An ECA for a randomized controlled trial (RCT) in first-line NSCLC was constructed using ConcertAI Patient360™ to assess chemotherapy with or without cetuximab, in the bevacizumab-inappropriate subpopulation. Cardinality matching was used to match patient characteristics between the treatment arm (cetuximab + chemotherapy) and ECA. Overall survival (OS) was assessed as the primary outcome using Cox proportional hazards (PH). BB was conducted using a static power prior under a Weibull PH parameterization with borrowing weights from 0.0 to 1.0 and augmentation of the ECA from a historical control trial. Results: The constructed ECA yielded a higher overall survival (OS) hazard ratio (HR) (HR = 1.53; 95% CI: 1.21-1.93) than observed in the matched population of the RCT (HR = 0.91; 95% CI: 0.73-1.13). The OS HR decreased through the incorporation of BB (HR = 1.30; 95% CI: 1.08-1.54, borrowing weight = 1.0). BB was applied to augment the RCT control arm via a historical control which improved the precision of the observed HR estimate (1.03; 95% CI: 0.86-1.22, borrowing weight = 1.0), in comparison to the matched population of the RCT alone. Conclusion: In this study, the RWD ECA was unable to successfully replicate the OS estimates from the matched population of the selected RCT. The inability to replicate could be due to unmeasured confounding and variations in time-periods, follow-up and subsequent therapy. Despite these findings, we demonstrate how BB can improve precision of comparative effectiveness estimates, potentially aid as a bias assessment tool and mitigate challenges of traditional methods when appropriate external data sources are available.
Collapse
Affiliation(s)
| | | | - Haoyao Ruan
- Cytel Inc., Toronto, Ontario, M5J, 2P1, Canada
| | - Emma Mackay
- Cytel Inc., Toronto, Ontario, M5J, 2P1, Canada
| | | | | | - Philip He
- Daiichi Sankyo, Inc., Basking Ridge, NJ 07920, USA
| | - Yoko Tanaka
- Daiichi Sankyo, Inc., Basking Ridge, NJ 07920, USA
| | - Yan Xiong
- Daiichi Sankyo, Inc., Basking Ridge, NJ 07920, USA
| | | | - Mats Rosenlund
- Daiichi Sankyo Europe, Munich, 81379, Germany
- Department of Learning, Informatics, Management & Ethics (LIME), Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
24
|
Liu J, Wang F, Hong Y, Luo F. Bibliometric analysis of the pirfenidone and nintedanib in interstitial lung diseases. Heliyon 2024; 10:e29266. [PMID: 38655311 PMCID: PMC11036012 DOI: 10.1016/j.heliyon.2024.e29266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Background At the beginning of 21st century, reclassification of fibrosing interstitial lung diseases (ILD) scored academic concerning, and then propelled development. Decade before, pifenidone and nintedanib were approved for idiopathic pulmonary fibrosis, but no more drugs are yet available. To evaluate the development traits of pirfenidone and nintedanib in fibrosing ILD, including the influential country, institution, authors, keywords, and the major problems or the priorities of the field emerge and evolve, bibliometric analysis was used to summarize and draw scientific knowledge maps. Methods We confined the words to "pirfenidone", "nintedanib", "pulmonary fibrosis", and "lung disease, interstitial". Publications were retrieved from the Web of Science Core Collection on February 24, 2024 with the search strategies. Citespace and VOSviewer were adopted for bibliometric analysis. Results For the knowledge map of pirfenidone, a total of 4359 authors from 279 institutions in 58 countries/regions contributed to 538 studies. The United States and Italy are way ahead. Genentech Inc and the University of Turin are the institutions with the strongest influence. AM J RESP CRIT CARE is the maximized influential periodical. Raghu G was the most frequently co-cited scholar. keywords cluster demonstrated that vital capacity, safety, outcome, effectiveness, acute exacerbation, pathway, cell, collagen were the hotspots. The burst timeline of hotspots and references revealed academic transitions of pirfenidone-related studies. About the knowledge map of nintedanib, 3297 authors from 238 institutions in 47 countries/regions published 374 studies. Japan, the United States, and Italy are the most productive countries. Boehringer Ingelheim is the overriding productive institution. New ENGL J MED have important roles in reporting milestones of nintedanib. Richeldi L carried numerous capital publications to support the anti-fibrotic effect of nintedanib. From the network of co-occurrence keywords, idiopathic pulmonary fibrosis, efficacy, and safety were the hotspots. Nintedanib for systemic sclerosis-related ILD and progressive pulmonary fibrosis is the hotspot with sharp evolution recently. Conclusions We summarized and showed developmental alterations of pirfenidone and nintedanib in fibrosing ILD through bibliographic index-based analysis. Our findings showed just dozen years sharp development period of pirfenidone and nintedanib in ILD, and identifies potential partners for interested researchers. The burst of hotspots demonstrated the evolvement of research priorities and major problems, and we observed the transition of keywords from experimental terms like mouse, bleomycin, cell, pathway, collagen, gene expression, to clinical terms including efficacy, safety, survival, acute exacerbation, and progressive pulmonary fibrosis. In the future, exploration about disparity models of drug administration, differences between early and later initiate anti-fibrotic therapy, both short-term and long-term efficacy of pirfenidone and nintedanib in fibrosing ILD, specifically in connective disease associate ILD would be emphatically concerned by pulmonologists.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yiwen Hong
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Ma J, Li G, Wang H, Mo C. Comprehensive review of potential drugs with anti-pulmonary fibrosis properties. Biomed Pharmacother 2024; 173:116282. [PMID: 38401514 DOI: 10.1016/j.biopha.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease characterized by the accumulation of scar tissue in the lungs, which leads to impaired lung function and reduced quality of life. The prognosis for idiopathic pulmonary fibrosis (IPF), which is the most common form of pulmonary fibrosis, is generally poor. The median survival for patients with IPF is estimated to be around 3-5 years from the time of diagnosis. Currently, there are two approved drugs (Pirfenidone and Nintedanib) for the treatment of IPF. However, Pirfenidone and Nintedanib are not able to reverse or cure pulmonary fibrosis. There is a need for new pharmacological interventions that can slow or halt disease progression and cure pulmonary fibrosis. This review aims to provide an updated overview of current and future drug interventions for idiopathic pulmonary fibrosis, and to summarize possible targets of potential anti-pulmonary fibrosis drugs, providing theoretical support for further clinical combination therapy or the development of new drugs.
Collapse
Affiliation(s)
- Jie Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; The Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gang Li
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Han Wang
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Center for RNA Science and Therapeutics, School of Medicine, Cleveland, OH, USA
| | - Chunheng Mo
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Li Y, Jiang C, Zhu W, Lu S, Yu H, Meng L. Exploring therapeutic targets for molecular therapy of idiopathic pulmonary fibrosis. Sci Prog 2024; 107:368504241247402. [PMID: 38651330 PMCID: PMC11036936 DOI: 10.1177/00368504241247402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive interstitial lung disease with a poor prognosis. Idiopathic pulmonary fibrosis is characterized by repeated alveolar epithelial damage leading to abnormal repair. The intercellular microenvironment is disturbed, leading to continuous activation of fibroblasts and myofibroblasts, deposition of extracellular matrix, and ultimately fibrosis. Moreover, pulmonary fibrosis was also found as a COVID-19 complication. Currently, two drugs, pirfenidone and nintedanib, are approved for clinical therapy worldwide. However, they can merely slow the disease's progression rather than rescue it. These two drugs have other limitations, such as lack of efficacy, adverse effects, and poor pharmacokinetics. Consequently, a growing number of molecular therapies have been actively developed. Treatment options for IPF are becoming increasingly available. This article reviews the research platform, including cell and animal models involved in molecular therapy studies of idiopathic pulmonary fibrosis as well as the promising therapeutic targets and their development progress during clinical trials. The former includes patient case/control studies, cell models, and animal models. The latter includes transforming growth factor-beta, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, lysophosphatidic acid, interleukin-13, Rho-associated coiled-coil forming protein kinase family, and Janus kinases/signal transducers and activators of transcription pathway. We mainly focused on the therapeutic targets that have not only entered clinical trials but were publicly published with their clinical outcomes. Moreover, this work provides an outlook on some promising targets for further validation of their possibilities to cure the disease.
Collapse
Affiliation(s)
- Yue Li
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- First Department of Respiratory Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Congshan Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Shemin Lu
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Hongchuan Yu
- First Department of Respiratory Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
27
|
Xing Y, Hou Y, Fan T, Gao R, Feng X, Li B, Pang J, Guo W, Shu T, Li J, Yang J, Mao Q, Luo Y, Qi X, Yang P, Liang C, Zhao H, Chen W, Wang J, Wang C. Endothelial phosphodiesterase 4B inactivation ameliorates endothelial-to-mesenchymal transition and pulmonary hypertension. Acta Pharm Sin B 2024; 14:1726-1741. [PMID: 38572107 PMCID: PMC10985131 DOI: 10.1016/j.apsb.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 04/05/2024] Open
Abstract
Pulmonary hypertension (PH) is a fatal disorder characterized by pulmonary vascular remodeling and obstruction. The phosphodiesterase 4 (PDE4) family hydrolyzes cyclic AMP (cAMP) and is comprised of four subtypes (PDE4A-D). Previous studies have shown the beneficial effects of pan-PDE4 inhibitors in rodent PH; however, this class of drugs is associated with side effects owing to the broad inhibition of all four PDE4 isozymes. Here, we demonstrate that PDE4B is the predominant PDE isozyme in lungs and that it was upregulated in rodent and human PH lung tissues. We also confirmed that PDE4B is mainly expressed in the lung endothelial cells (ECs). Evaluation of PH in Pde4b wild type and knockout mice confirmed that Pde4b is important for the vascular remodeling associated with PH. In vivo EC lineage tracing demonstrated that Pde4b induces PH development by driving endothelial-to-mesenchymal transition (EndMT), and mechanistic studies showed that Pde4b regulates EndMT by antagonizing the cAMP-dependent PKA-CREB-BMPRII axis. Finally, treating PH rats with a PDE4B-specific inhibitor validated that PDE4B inhibition has a significant pharmacological effect in the alleviation of PH. Collectively, our findings indicate a critical role for PDE4B in EndMT and PH, prompting further studies of PDE4B-specific inhibitors as a therapeutic strategy for PH.
Collapse
Affiliation(s)
- Yanjiang Xing
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300051, China
| | - Yangfeng Hou
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Tianfei Fan
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Ran Gao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaohang Feng
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Bolun Li
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Junling Pang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Wenjun Guo
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ting Shu
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300051, China
| | - Jinqiu Li
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jie Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qilong Mao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ya Luo
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xianmei Qi
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Chaoyang Liang
- Department of Lung Transplantation, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China–Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Hongmei Zhao
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Wenhui Chen
- Department of Lung Transplantation, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China–Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300051, China
| | - Chen Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
28
|
Habibi Razi F, Mohammad Jafari R, Manavi MA, Sheibani M, Rashidian A, Tavangar SM, Beighmohammadi MT, Dehpour AR. Ivermectin ameliorates bleomycin-induced lung fibrosis in male rats by inhibiting the inflammation and oxidative stress. Immunopharmacol Immunotoxicol 2024; 46:183-191. [PMID: 38224264 DOI: 10.1080/08923973.2023.2298895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a pulmonary fibrotic disease characterized by a poor prognosis, which its pathogenesis involves the accumulation of abnormal fibrous tissue, inflammation, and oxidative stress. Ivermectin, a positive allosteric modulator of GABAA receptor, exerts anti-inflammatory and antioxidant properties in preclinical studies. The present study investigates the potential protective effects of ivermectin treatment in rats against bleomycin-induced IPF. MATERIALS AND METHODS The present study involved 42 male Wistar rats, which were divided into five groups: control (without induction of IPF), bleomycin (IPF-induced by bleomycin 2.5 mg/kg, by intratracheal administration), and three fibrosis groups receiving ivermectin (0.5, 1, and 3 mg/kg). lung tissues were harvested for measurement of oxidative stress [via myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH)] and inflammatory markers (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], and transforming growth factor-β [TGF-β]). Histological assessments of tissue damage were performed using hematoxylin-eosin (H&E) and Masson's trichrome staining methods. RESULTS The induction of fibrosis via bleomycin was found to increase levels of MPO as well as TNF-α, IL-1β, and TGF-β while decrease SOD activity and GSH level. Treatment with ivermectin at a dosage of 3 mg/kg was able to reverse the effects of bleomycin-induced fibrosis on these markers. In addition, results from H&E and Masson's trichrome staining showed that ivermectin treatment at this same dose reduced tissue damage and pulmonary fibrosis. CONCLUSION The data obtained from this study indicate that ivermectin may have therapeutic benefits for IPF, likely due to its ability to reduce inflammation and mitigate oxidative stress-induced toxicity.
Collapse
Affiliation(s)
- Fatemeh Habibi Razi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Pharmacology, School of Medicine, Indiana university, Indianapolis, USA
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Sofia C, Comes A, Sgalla G, Richeldi L. Promising advances in treatments for the management of idiopathic pulmonary fibrosis. Expert Opin Pharmacother 2024; 25:717-725. [PMID: 38832823 DOI: 10.1080/14656566.2024.2354460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Following the INPULSIS and ASCEND studies, leading to the first two approved antifibrotic therapies for patients with IPF, ongoing investigations are firmly exploring novel agents for a targeted effective and better tolerated therapy able to improve the natural history of the disease. AREAS COVERED This review aims to analyze recent advances in pharmacological research of IPF, discussing the currently available treatments and the novel drugs under investigation in phase 3 trials, with particular emphasis on BI 1015550 and inhaled treprostinil. The literature search utilized Medline and Clinicaltrials.org databases. Critical aspects of clinical trial design in IPF are discussed in light of recently completed phase III studies. EXPERT OPINION While randomized clinical trials in IPF are currently underway, future objectives should explore potential synergistic benefits when combining novel molecules with the existing therapies and identify more specific molecular targets. Moreover, refining the study design represent another crucial goal. The aim of the pharmacological research will be not only stabilizing but also potentially reversing the fibrotic changes in IPF.
Collapse
Affiliation(s)
- Carmelo Sofia
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessia Comes
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Sgalla
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
30
|
Lozinski BM, Ghorbani S, Yong VW. Biology of neurofibrosis with focus on multiple sclerosis. Front Immunol 2024; 15:1370107. [PMID: 38596673 PMCID: PMC11002094 DOI: 10.3389/fimmu.2024.1370107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Tissue damage elicits a wound healing response of inflammation and remodeling aimed at restoring homeostasis. Dysregulation of wound healing leads to accumulation of effector cells and extracellular matrix (ECM) components, collectively termed fibrosis, which impairs organ functions. Fibrosis of the central nervous system, neurofibrosis, is a major contributor to the lack of neural regeneration and it involves fibroblasts, microglia/macrophages and astrocytes, and their deposited ECM. Neurofibrosis occurs commonly across neurological conditions. This review describes processes of wound healing and fibrosis in tissues in general, and in multiple sclerosis in particular, and considers approaches to ameliorate neurofibrosis to enhance neural recovery.
Collapse
Affiliation(s)
| | | | - V. Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Fortier SM, Walker NM, Penke LR, Baas JD, Shen Q, Speth JM, Huang SK, Zemans RL, Bennett AM, Peters-Golden M. MAPK phosphatase 1 inhibition of p38α within lung myofibroblasts is essential for spontaneous fibrosis resolution. J Clin Invest 2024; 134:e172826. [PMID: 38512415 PMCID: PMC11093610 DOI: 10.1172/jci172826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Fibrosis following tissue injury is distinguished from normal repair by the accumulation of pathogenic and apoptosis-resistant myofibroblasts (MFs), which arise primarily by differentiation from resident fibroblasts. Endogenous molecular brakes that promote MF dedifferentiation and clearance during spontaneous resolution of experimental lung fibrosis may provide insights that could inform and improve the treatment of progressive pulmonary fibrosis in patients. MAPK phosphatase 1 (MKP1) influences the cellular phenotype and fate through precise and timely regulation of MAPK activity within various cell types and tissues, yet its role in lung fibroblasts and pulmonary fibrosis has not been explored. Using gain- and loss-of-function studies, we found that MKP1 promoted lung MF dedifferentiation and restored the sensitivity of these cells to apoptosis - effects determined to be mainly dependent on MKP1's dephosphorylation of p38α MAPK (p38α). Fibroblast-specific deletion of MKP1 following peak bleomycin-induced lung fibrosis largely abrogated its subsequent spontaneous resolution. Such resolution was restored by treating these transgenic mice with the p38α inhibitor VX-702. We conclude that MKP1 is a critical antifibrotic brake whose inhibition of pathogenic p38α in lung fibroblasts is necessary for fibrosis resolution following lung injury.
Collapse
Affiliation(s)
- Sean M. Fortier
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Natalie M. Walker
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Loka R. Penke
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jared D. Baas
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Qinxue Shen
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jennifer M. Speth
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven K. Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Raghu G, Ghazipura M, Fleming TR, Aronson KI, Behr J, Brown KK, Flaherty KR, Kazerooni EA, Maher TM, Richeldi L, Lasky JA, Swigris JJ, Busch R, Garrard L, Ahn DH, Li J, Puthawala K, Rodal G, Seymour S, Weir N, Danoff SK, Ettinger N, Goldin J, Glassberg MK, Kawano-Dourado L, Khalil N, Lancaster L, Lynch DA, Mageto Y, Noth I, Shore JE, Wijsenbeek M, Brown R, Grogan D, Ivey D, Golinska P, Karimi-Shah B, Martinez FJ. Meaningful Endpoints for Idiopathic Pulmonary Fibrosis (IPF) Clinical Trials: Emphasis on 'Feels, Functions, Survives'. Report of a Collaborative Discussion in a Symposium with Direct Engagement from Representatives of Patients, Investigators, the National Institutes of Health, a Patient Advocacy Organization, and a Regulatory Agency. Am J Respir Crit Care Med 2024; 209:647-669. [PMID: 38174955 DOI: 10.1164/rccm.202312-2213so] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) carries significant mortality and unpredictable progression, with limited therapeutic options. Designing trials with patient-meaningful endpoints, enhancing the reliability and interpretability of results, and streamlining the regulatory approval process are of critical importance to advancing clinical care in IPF. Methods: A landmark in-person symposium in June 2023 assembled 43 participants from the US and internationally, including patients with IPF, investigators, and regulatory representatives, to discuss the immediate future of IPF clinical trial endpoints. Patient advocates were central to discussions, which evaluated endpoints according to regulatory standards and the FDA's 'feels, functions, survives' criteria. Results: Three themes emerged: 1) consensus on endpoints mirroring the lived experiences of patients with IPF; 2) consideration of replacing forced vital capacity (FVC) as the primary endpoint, potentially by composite endpoints that include 'feels, functions, survives' measures or FVC as components; 3) support for simplified, user-friendly patient-reported outcomes (PROs) as either components of primary composite endpoints or key secondary endpoints, supplemented by functional tests as secondary endpoints and novel biomarkers as supportive measures (FDA Guidance for Industry (Multiple Endpoints in Clinical Trials) available at: https://www.fda.gov/media/162416/download). Conclusions: This report, detailing the proceedings of this pivotal symposium, suggests a potential turning point in designing future IPF clinical trials more attuned to outcomes meaningful to patients, and documents the collective agreement across multidisciplinary stakeholders on the importance of anchoring IPF trial endpoints on real patient experiences-namely, how they feel, function, and survive. There is considerable optimism that clinical care in IPF will progress through trials focused on patient-centric insights, ultimately guiding transformative treatment strategies to enhance patients' quality of life and survival.
Collapse
Affiliation(s)
- Ganesh Raghu
- Center for Interstitial Lung Diseases, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Department of Laboratory Medicine and Pathology, and
| | - Marya Ghazipura
- ZS Associates, Global Health Economics and Outcomes Research, New York, New York
- Division of Epidemiology and
- Division of Biostatistics, Department of Population Health, New York University Langone Health, New York, New York
| | - Thomas R Fleming
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Kerri I Aronson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jürgen Behr
- Department of Medicine V, LMU University Hospital, Ludwig-Maximilians-University Munich, Member of the German Center for Lung Research, Munich, Germany
| | | | - Kevin R Flaherty
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ella A Kazerooni
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Division of Cardiothoracic Radiology, Department of Radiology, University of Michigan Health System, Detroit, Michigan
| | - Toby M Maher
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Luca Richeldi
- Divisione di Medicina Polmonare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Joseph A Lasky
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | | | - Robert Busch
- Division of Pulmonology, Allergy, and Critical Care, Office of Immunology and Inflammation, and
| | - Lili Garrard
- Division of Biometrics III, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, and
| | - Dong-Hyun Ahn
- Division of Biometrics III, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, and
| | - Ji Li
- Division of Clinical Outcome Assessment, Office of Drug Evaluation Sciences, Office of New Drugs, and
| | - Khalid Puthawala
- Division of Pulmonology, Allergy, and Critical Care, Office of Immunology and Inflammation, and
| | - Gabriela Rodal
- Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Sally Seymour
- Division of Pulmonology, Allergy, and Critical Care, Office of Immunology and Inflammation, and
| | - Nargues Weir
- Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Sonye K Danoff
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Neil Ettinger
- Division of Pulmonary Medicine, St. Luke's Hospital, Chesterfield, Missouri
| | - Jonathan Goldin
- Department of Radiology, University of California, Los Angeles, Los Angeles, California
| | - Marilyn K Glassberg
- Department of Medicine, Stritch School of Medicine, Loyola Chicago, Chicago, Illinois
| | - Leticia Kawano-Dourado
- Hcor Research Institute - Hcor Hospital, São Paolo, Brazil
- Pulmonary Division, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | - Nasreen Khalil
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Lancaster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Vanderbilt University, Nashville, Tennessee
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - Yolanda Mageto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Baylor University, Dallas, Texas
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | | | - Marlies Wijsenbeek
- Centre of Interstitial Lung Diseases, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Robert Brown
- Patient representative and patient living with IPF, Lovettsville, Virginia
| | - Daniel Grogan
- Patient representative and patient living with IPF, Charlottesville, Virginia; and
| | - Dorothy Ivey
- Patient representative and patient living with IPF, Richmond, Virginia
| | - Patrycja Golinska
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Banu Karimi-Shah
- Division of Pulmonology, Allergy, and Critical Care, Office of Immunology and Inflammation, and
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
33
|
Arshad M, Athar ZM, Hiba T. Current and Novel Treatment Modalities of Idiopathic Pulmonary Fibrosis. Cureus 2024; 16:e56140. [PMID: 38618480 PMCID: PMC11015429 DOI: 10.7759/cureus.56140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) presents a clinical challenge characterized by progressive fibrosis and destruction of lung tissue. Despite recent advancements, including antifibrotic medications like pirfenidone and nintedanib, IPF remains a chronic and often fatal condition with limited treatment options. This article provides an overview of the current treatment modalities for IPF and explores the need for new therapeutic approaches. Antifibrotic medications have shown efficacy in slowing disease progression but are not curative and may not be suitable for all patients. Ongoing research focuses on emerging therapies such as stem cell therapy, immunomodulatory agents, and novel pharmacological targets like phosphodiesterase 4B (PDE4B) inhibitors. While these treatments offer promise, there remains an unmet need for effective therapies capable of halting or reversing fibrotic lung damage.
Collapse
Affiliation(s)
| | | | - Tasneem Hiba
- Internal Medicine, BronxCare Health System, Bronx, USA
| |
Collapse
|
34
|
Montesi SB, Gomez CR, Beers M, Brown R, Chattopadhyay I, Flaherty KR, Garcia CK, Gomperts B, Hariri LP, Hogaboam CM, Jenkins RG, Kaminski N, Kim GHJ, Königshoff M, Kolb M, Kotton DN, Kropski JA, Lasky J, Magin CM, Maher TM, McCormick M, Moore BB, Nickerson-Nutter C, Oldham J, Podolanczuk AJ, Raghu G, Rosas I, Rowe SM, Schmidt WT, Schwartz D, Shore JE, Spino C, Craig JM, Martinez FJ. Pulmonary Fibrosis Stakeholder Summit: A Joint NHLBI, Three Lakes Foundation, and Pulmonary Fibrosis Foundation Workshop Report. Am J Respir Crit Care Med 2024; 209:362-373. [PMID: 38113442 PMCID: PMC10878386 DOI: 10.1164/rccm.202307-1154ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
Despite progress in elucidation of disease mechanisms, identification of risk factors, biomarker discovery, and the approval of two medications to slow lung function decline in idiopathic pulmonary fibrosis and one medication to slow lung function decline in progressive pulmonary fibrosis, pulmonary fibrosis remains a disease with a high morbidity and mortality. In recognition of the need to catalyze ongoing advances and collaboration in the field of pulmonary fibrosis, the NHLBI, the Three Lakes Foundation, and the Pulmonary Fibrosis Foundation hosted the Pulmonary Fibrosis Stakeholder Summit on November 8-9, 2022. This workshop was held virtually and was organized into three topic areas: 1) novel models and research tools to better study pulmonary fibrosis and uncover new therapies, 2) early disease risk factors and methods to improve diagnosis, and 3) innovative approaches toward clinical trial design for pulmonary fibrosis. In this workshop report, we summarize the content of the presentations and discussions, enumerating research opportunities for advancing our understanding of the pathogenesis, treatment, and outcomes of pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Christian R. Gomez
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael Beers
- Pulmonary and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Brown
- Program in Neurotherapeutics, University of Massachusetts Chan Medical School, Worchester, Massachusetts
| | | | | | - Christine Kim Garcia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine and
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Cory M. Hogaboam
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Grace Hyun J. Kim
- Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, and
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Melanie Königshoff
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martin Kolb
- Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph Lasky
- Pulmonary Fibrosis Foundation, Chicago, Illinois
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Chelsea M. Magin
- Department of Bioengineering
- Department of Pediatrics
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | - Toby M. Maher
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | | | - Anna J. Podolanczuk
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, New York
| | - Ganesh Raghu
- Division of Pulmonary, Sleep and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Ivan Rosas
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas; and
| | - Steven M. Rowe
- Department of Medicine and
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - David Schwartz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - J. Matthew Craig
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, New York
| |
Collapse
|
35
|
D’Agnano V, Mariniello DF, Ruotolo M, Quarcio G, Moriello A, Conte S, Sorrentino A, Sanduzzi Zamparelli S, Bianco A, Perrotta F. Targeting Progression in Pulmonary Fibrosis: An Overview of Underlying Mechanisms, Molecular Biomarkers, and Therapeutic Intervention. Life (Basel) 2024; 14:229. [PMID: 38398739 PMCID: PMC10890660 DOI: 10.3390/life14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Interstitial lung diseases comprise a heterogenous range of diffuse lung disorders, potentially resulting in pulmonary fibrosis. While idiopathic pulmonary fibrosis has been recognized as the paradigm of a progressive fibrosing interstitial lung disease, other conditions with a progressive fibrosing phenotype characterized by a significant deterioration of the lung function may lead to a burden of significant symptoms, a reduced quality of life, and increased mortality, despite treatment. There is now evidence indicating that some common underlying biological mechanisms can be shared among different chronic fibrosing disorders; therefore, different biomarkers for disease-activity monitoring and prognostic assessment are under evaluation. Thus, understanding the common pathways that induce the progression of pulmonary fibrosis, comprehending the diversity of these diseases, and identifying new molecular markers and potential therapeutic targets remain highly crucial assignments. The purpose of this review is to examine the main pathological mechanisms regulating the progression of fibrosis in interstitial lung diseases and to provide an overview of potential biomarker and therapeutic options for patients with progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Michela Ruotolo
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Alessandro Moriello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Stefano Conte
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Antonio Sorrentino
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | | | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| |
Collapse
|
36
|
Gregor J, Adir Y, Šterclová M, Mogulkoc N, Kramer MR, Doubková M, Plačková M, Müller V, Studnicka M, Žurková M, Lacina L, Lewandowska K, Bartoš V, Ovesná P, Májek O, Koziar Vašáková M. The Impact of Switching to a Second Antifibrotic in Patients With Idiopathic Pulmonary Fibrosis: A Retrospective Multicentre Study From the EMPIRE Registry. Arch Bronconeumol 2024; 60:80-87. [PMID: 38160169 DOI: 10.1016/j.arbres.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Most patients with idiopathic pulmonary fibrosis (IPF) treated with antifibrotics (AF) have progressive disease despite treatment. A switch of AF may improve survival, but evidence from randomised controlled trials is missing. We aimed to evaluate the efficacy of an AF switch on survival and FVC decline in patients from the European MultiPartner IPF registry (EMPIRE). METHODS The study included 612 patients who discontinued the first antifibrotic therapy. Patients were grouped and analysed from two perspectives: (1) whether they had received a second antifibrotic treatment after the discontinuation of the first therapy, and (2) a reason for discontinuation of the first AF - "lack of efficacy" (LE) and "intolerance" (INT). RESULTS While 263 (43%) of 612 patients received no second AF ("non-switched"), 349 (57%) patients switched. Overall survival was higher in patients who received a second AF (median 50 vs. 29 months; adjusted HR 0.64, P=0.023). Similarly, the annual FVC decline was significantly reduced in switched patients: -98ml/y in switched and -172ml/y in non-switched patients (P=0.023), respectively. The switched patients had similar risk for mortality in both LE and INT groups (adjusted HR 0.95, P=0.85). The high impact of switching on survival was demonstrated in LE patients (adjusted HR 0.27, P<0.001). CONCLUSION The patients without a second AF had significantly shorter overall survival. Our analysis suggests the importance of switching patients with an ineffective first AF therapy to a second AF therapy.
Collapse
Affiliation(s)
- Jakub Gregor
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Martina Šterclová
- Department of Respiratory Medicine, Thomayer University Hospital, Prague, Czech Republic
| | - Nesrin Mogulkoc
- Department of Chest Diseases, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Martina Doubková
- Department of Pulmonary Diseases and Tuberculosis, Faculty of Medicine, Masaryk University and University Hospital Brno, Czech Republic
| | - Martina Plačková
- Department of Pneumology, University Hospital Ostrava, Czech Republic
| | - Veronika Müller
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Michael Studnicka
- Department of Respiratory Medicine, Paracelsus Medical University Salzburg, Austria
| | - Monika Žurková
- Department of Respiratory Medicine, University Hospital Olomouc, Czech Republic
| | - Ladislav Lacina
- Department of Pneumology and Thoracic Surgery, Hospital Na Bulovce, Prague, Czech Republic
| | - Katarzyna Lewandowska
- First Department of Pulmonary Diseases, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Vladimír Bartoš
- Department of Pneumology, University Hospital Hradec Králové, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondřej Májek
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
37
|
Kubota-Ishida N, Kaji C, Matsumoto S, Wakabayashi T, Matsuhira T, Okura I, Cho N, Isshiki S, Kumura K, Tabata Y. ME3183, a novel phosphodiesterase-4 inhibitor, exhibits potent anti-inflammatory effects and is well tolerated in a non-clinical study. Eur J Pharmacol 2024; 962:176202. [PMID: 37996010 DOI: 10.1016/j.ejphar.2023.176202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are expected to exhibit efficacy against inflammatory diseases due to their broad pharmacological activity. The launched PDE4 inhibitors apremilast, crisaborole, and roflumilast have not exhibited sufficient inhibitory potential due to poor margins of effectiveness and tolerability. In this report, we describe the non-clinical efficacy, brain translocation, and vomit-inducing effects of ME3183 compared with apremilast. ME3183 showed extensive cytokine suppression in vitro studies using human peripheral blood mononuclear cells and T cells. ME3183 also significantly suppressed skin inflammation in a chronic oxazolone-induced dermatitis model and showed antipruritic effects in a substance P-induced mouse pruritus model. In these in vitro and in vivo studies, ME3183 also significantly suppressed cytokines, and focusing on tumor necrosis factor-α as a psoriasis-related cytokine and interleukin-4 as an atopic dermatitis-related cytokine, ME3183 potently inhibited both cytokines. ME3183 showed in vivo efficacy at lower doses than apremilast. The brain distribution of ME3183 was sufficiently low in mice and rats. The effective dose of ME3183 for emesis was similar to that of apremilast in ferrets. Given its high-potency inhibitory effects, ME3183 would have a wide margin of efficacy and tolerability. These wide margins demonstrate the effectiveness of ME3183 in treating many inflammatory diseases, such as psoriasis and atopic dermatitis. An on-going phase 2 trial is expected to further demonstrate the efficacy and safety of ME3183.
Collapse
Affiliation(s)
- Natsuki Kubota-Ishida
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan.
| | - Chizuko Kaji
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Shogo Matsumoto
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Tsubasa Wakabayashi
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Takashi Matsuhira
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Iori Okura
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Naoki Cho
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Satoshi Isshiki
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Ko Kumura
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Yuji Tabata
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| |
Collapse
|
38
|
Guo Y, Zhou J, Wang Y, Wu X, Mou Y, Song X. Cell type-specific molecular mechanisms and implications of necroptosis in inflammatory respiratory diseases. Immunol Rev 2024; 321:52-70. [PMID: 37897080 DOI: 10.1111/imr.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Necroptosis is generally considered as an inflammatory cell death form. The core regulators of necroptotic signaling are receptor-interacting serine-threonine protein kinases 1 (RIPK1) and RIPK3, and the executioner, mixed lineage kinase domain-like pseudokinase (MLKL). Evidence demonstrates that necroptosis contributes profoundly to inflammatory respiratory diseases that are common public health problem. Necroptosis occurs in nearly all pulmonary cell types in the settings of inflammatory respiratory diseases. The influence of necroptosis on cells varies depending upon the type of cells, tissues, organs, etc., which is an important factor to consider. Thus, in this review, we briefly summarize the current state of knowledge regarding the biology of necroptosis, and focus on the key molecular mechanisms that define the necroptosis status of specific cell types in inflammatory respiratory diseases. We also discuss the clinical potential of small molecular inhibitors of necroptosis in treating inflammatory respiratory diseases, and describe the pathological processes that engage cross talk between necroptosis and other cell death pathways in the context of respiratory inflammation. The rapid advancement of single-cell technologies will help understand the key mechanisms underlying cell type-specific necroptosis that are critical to effectively treat pathogenic lung infections and inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jin Zhou
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
| |
Collapse
|
39
|
Edwards D, Best N, Crawford J, Zi L, Shelton C, Fowler A. Using Bayesian Dynamic Borrowing to Maximize the Use of Existing Data: A Case-Study. Ther Innov Regul Sci 2024; 58:1-10. [PMID: 37910271 PMCID: PMC10764450 DOI: 10.1007/s43441-023-00585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Bayesian Dynamic Borrowing (BDB) designs are being increasingly used in clinical drug development. These methods offer a mathematically rigorous and robust approach to increase efficiency and strengthen evidence by integrating existing trial data into a new clinical trial. The regulatory acceptability of BDB is evolving and varies between and within regulatory agencies. This paper describes how BDB can be used to design a new randomised clinical trial including external data to supplement the planned sample size and discusses key considerations related to data re-use and BDB in drug development programs. A case-study illustrating the planning and evaluation of a BDB approach to support registration of a new medicine with the Center for Drug Evaluation in China will be presented. Key steps and considerations for the use of BDB will be discussed and evaluated, including how to decide whether it is appropriate to borrow external data, which external data can be re-used, the weight to put on the external data and how to decide if the new study has successfully demonstrated treatment benefit.
Collapse
Affiliation(s)
- Dawn Edwards
- GSK, 980 Great West Road, Brentford, TW8 9GS, Middlesex, UK.
| | - N Best
- GSK, 980 Great West Road, Brentford, TW8 9GS, Middlesex, UK
| | - J Crawford
- GSK, 980 Great West Road, Brentford, TW8 9GS, Middlesex, UK
| | | | | | - A Fowler
- GSK, 980 Great West Road, Brentford, TW8 9GS, Middlesex, UK
| |
Collapse
|
40
|
Di Stefano F, Rodrigues C, Galtier S, Guilleminot S, Robert V, Gasparini M, Saint-Hilary G. Incorporation of healthy volunteers data on receptor occupancy into a phase II proof-of-concept trial using a Bayesian dynamic borrowing design. Biom J 2023; 65:e2200305. [PMID: 37888795 DOI: 10.1002/bimj.202200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/09/2023] [Accepted: 07/23/2023] [Indexed: 10/28/2023]
Abstract
Receptor occupancy in targeted tissues measures the proportion of receptors occupied by a drug at equilibrium and is sometimes used as a surrogate of drug efficacy to inform dose selection in clinical trials. We propose to incorporate data on receptor occupancy from a phase I study in healthy volunteers into a phase II proof-of-concept study in patients, with the objective of using all the available evidence to make informed decisions. A minimal physiologically based pharmacokinetic modeling is used to model receptor occupancy in healthy volunteers and to predict it in the patients of a phase II proof-of-concept study, taking into account the variability of the population parameters and the specific differences arising from the pathological condition compared to healthy volunteers. Then, given an estimated relationship between receptor occupancy and the clinical endpoint, an informative prior distribution is derived for the clinical endpoint in both the treatment and control arms of the phase II study. These distributions are incorporated into a Bayesian dynamic borrowing design to supplement concurrent phase II trial data. A simulation study in immuno-inflammation demonstrates that the proposed design increases the power of the study while maintaining a type I error at acceptable levels for realistic values of the clinical endpoint.
Collapse
Affiliation(s)
- Fulvio Di Stefano
- Dipartimento di Scienze Matematiche (DISMA) "Giuseppe Luigi Lagrange,", Politecnico di Torino, Torino, Italy
| | - Christelle Rodrigues
- Department of Quantitative Pharmacology, Institut de Recherches Internationales Servier, Suresnes, France
| | - Stephanie Galtier
- Department of Clinical Statistics, Institut de Recherches Internationales Servier, Suresnes, France
| | - Sandrine Guilleminot
- Department of Quantitative Pharmacology, Institut de Recherches Internationales Servier, Suresnes, France
| | - Veronique Robert
- Department of Clinical Statistics, Institut de Recherches Internationales Servier, Suresnes, France
| | - Mauro Gasparini
- Dipartimento di Scienze Matematiche (DISMA) "Giuseppe Luigi Lagrange,", Politecnico di Torino, Torino, Italy
| | - Gaelle Saint-Hilary
- Dipartimento di Scienze Matematiche (DISMA) "Giuseppe Luigi Lagrange,", Politecnico di Torino, Torino, Italy
- Department of Statistical Methodology, Saryga, Tournus, France
| |
Collapse
|
41
|
Koudstaal T, Funke-Chambour M, Kreuter M, Molyneaux PL, Wijsenbeek MS. Pulmonary fibrosis: from pathogenesis to clinical decision-making. Trends Mol Med 2023; 29:1076-1087. [PMID: 37716906 DOI: 10.1016/j.molmed.2023.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/18/2023]
Abstract
Pulmonary fibrosis (PF) encompasses a spectrum of chronic lung diseases that progressively impact the interstitium, resulting in compromised gas exchange, breathlessness, diminished quality of life (QoL), and ultimately respiratory failure and mortality. Various diseases can cause PF, with their underlying causes primarily affecting the lung interstitium, leading to their referral as interstitial lung diseases (ILDs). The current understanding is that PF arises from abnormal wound healing processes triggered by various factors specific to each disease, leading to excessive inflammation and fibrosis. While significant progress has been made in understanding the molecular mechanisms of PF, its pathogenesis remains elusive. This review provides an in-depth exploration of the latest insights into PF pathophysiology, diagnosis, treatment, and future perspectives.
Collapse
Affiliation(s)
- Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Departments of Pneumology, Mainz University Medical Center and of Pulmonary, Critical Care & Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Philip L Molyneaux
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Marlies S Wijsenbeek
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Blauvelt A, Langley RG, Gordon KB, Silverberg JI, Eyerich K, Sommer MOA, Felding J, Warren RB. Next Generation PDE4 Inhibitors that Selectively Target PDE4B/D Subtypes: A Narrative Review. Dermatol Ther (Heidelb) 2023; 13:3031-3042. [PMID: 37924462 PMCID: PMC10689637 DOI: 10.1007/s13555-023-01054-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
For decades, topical corticosteroids have been the mainstay of treatment for mild-to-moderate inflammatory skin diseases, even though only short-term use is approved for these agents and systemic inflammation is not addressed. Increased understanding of the immunopathogenesis of these conditions, especially for psoriasis and atopic dermatitis, has facilitated the development of antibody-based drugs that neutralize single key cytokines or their associated receptors, such as interleukin (IL)-17A/F, IL-23, and IL-17RA in psoriasis and IL-13 and IL-4Rα in atopic dermatitis. However, oral therapy is still preferred by many patients owing to the ease of use and needle-free administration. Phosphodiesterase 4 (PDE4) inhibitors have been approved for both oral and topical use for inflammatory skin diseases. In this review, we present a summary of an emerging class of selective PDE4B/D inhibitors under clinical development and compare the differences in selectivity of this new generation of PDE4 inhibitors with the less selective currently approved PDE4 inhibitors.
Collapse
Affiliation(s)
- Andrew Blauvelt
- Oregon Medical Research Center, 9495 SW Locust Street, Suite G, Portland, OR, 97223, USA.
| | - Richard G Langley
- Division of Clinical Dermatology and Cutaneous Science, Department of Medicine, Dalhousie University and Nova Scotia Health, Halifax, Canada
| | - Kenneth B Gordon
- Froedtert Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jonathan I Silverberg
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kilian Eyerich
- Technical University of Munich, Munich, Germany
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Morten O A Sommer
- UNION Therapeutics A/S, Hellerup, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark (DTU), Lyngby, Denmark
| | | | - Richard B Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Selvarajah B, Platé M, Chambers RC. Pulmonary fibrosis: Emerging diagnostic and therapeutic strategies. Mol Aspects Med 2023; 94:101227. [PMID: 38000335 DOI: 10.1016/j.mam.2023.101227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Fibrosis is the concluding pathological outcome and major cause of morbidity and mortality in a number of common chronic inflammatory, immune-mediated and metabolic diseases. The progressive deposition of a collagen-rich extracellular matrix (ECM) represents the cornerstone of the fibrotic response and culminates in organ failure and premature death. Idiopathic pulmonary fibrosis (IPF) represents the most rapidly progressive and lethal of all fibrotic diseases with a dismal median survival of 3.5 years from diagnosis. Although the approval of the antifibrotic agents, pirfenidone and nintedanib, for the treatment of IPF signalled a watershed moment for the development of anti-fibrotic therapeutics, these agents slow but do not halt disease progression or improve quality of life. There therefore remains a pressing need for the development of effective therapeutic strategies. In this article, we review emerging therapeutic strategies for IPF as well as the pre-clinical and translational approaches that will underpin a greater understanding of the key pathomechanisms involved in order to transform the way we diagnose and treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Brintha Selvarajah
- Oncogenes and Tumour Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Manuela Platé
- Department of Respiratory Medicine (UCL Respiratory), Division of Medicine, University College London, UK
| | - Rachel C Chambers
- Department of Respiratory Medicine (UCL Respiratory), Division of Medicine, University College London, UK.
| |
Collapse
|
44
|
Kim JS, Montesi SB, Adegunsoye A, Humphries SM, Salisbury ML, Hariri LP, Kropski JA, Richeldi L, Wells AU, Walsh S, Jenkins RG, Rosas I, Noth I, Hunninghake GM, Martinez FJ, Podolanczuk AJ. Approach to Clinical Trials for the Prevention of Pulmonary Fibrosis. Ann Am Thorac Soc 2023; 20:1683-1693. [PMID: 37703509 PMCID: PMC10704236 DOI: 10.1513/annalsats.202303-188ps] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Affiliation(s)
- John S. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Ayodeji Adegunsoye
- Department of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | | | - Margaret L. Salisbury
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, and
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Luca Richeldi
- Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Athol U. Wells
- Department of Radiology, and
- Interstitial Lung Disease Service, Royal Brompton Hospital, London, United Kingdom
| | - Simon Walsh
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ivan Rosas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Gary M. Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Anna J. Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
45
|
Doi H, Atsumi J, Baratz D, Miyamoto Y. A Phase I Study of TRK-250, a Novel siRNA-Based Oligonucleotide, in Patients with Idiopathic Pulmonary Fibrosis. J Aerosol Med Pulm Drug Deliv 2023; 36:300-308. [PMID: 37738329 DOI: 10.1089/jamp.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Purpose: TRK-250 is a novel single-stranded oligonucleotide carrying a human Transforming growth factor-beta 1-targeting siRNA motif tethered by two proline linkers. Nonclinical studies have shown that TRK-250 may have potency to prevent the progression of pulmonary fibrosis. Herein, a phase I study was conducted to investigate the safety and pharmacokinetics (PKs) of TRK-250 in patients with idiopathic pulmonary fibrosis (IPF). Method: In the phase I study, 34 IPF patients were partially randomized to receive a placebo or TRK-250 in 4 single doses of 2, 10, 30, and 60 mg or multiple rising doses of 10, 30, and 60 mg once per week for 4 weeks by oral inhalation. For both the single- and multiple-dose studies, the primary endpoint was safety, and the secondary endpoint was PKs. Result: In all IPF patients who orally inhaled TRK-250, no significant drug-related adverse events (AEs) were observed. The AEs were mild or moderate, except for one severe case with acute exacerbation. One of the more common AEs was coughing. One patient discontinued treatment before the last dose because of coughing. There were no medically important findings related to safety endpoints based on clinical laboratory data (clinical chemistry, hematology, or urinalysis), vital signs data, electrocardiogram data, physical examination findings, pulse oximetry data, spirometry data, or diffusing capacity of the lung for carbon monoxide data. All the bioanalytical results of PKs in the blood were below the lower limit of quantification. Conclusions: Both the single and multiple doses of TRK-250 were safe and well tolerated in this first study done in IPF patients. Furthermore, TRK-250 was not detected in the systemic circulation following inhalation, indicating low or virtually nonexistent systemic exposure. This study is registered at ClinicalTrials.gov with identifier number NCT03727802.
Collapse
Affiliation(s)
- Hiroyuki Doi
- Clinical Research Department, Toray Industries, Inc., Tokyo, Japan
| | - Jun Atsumi
- Clinical Research Department, Toray Industries, Inc., Tokyo, Japan
| | | | - Yohei Miyamoto
- Clinical Research Department, Toray Industries, Inc., Tokyo, Japan
| |
Collapse
|
46
|
Sofia C, Comes A, Sgalla G, Richeldi L. An update on emerging drugs for the treatment of idiopathic pulmonary fibrosis: a look towards 2023 and beyond. Expert Opin Emerg Drugs 2023; 28:283-296. [PMID: 37953604 DOI: 10.1080/14728214.2023.2281416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Currently approved drug treatments for idiopathic pulmonary fibrosis (IPF), pirfenidone and nintedanib, have been shown to slow lung function decline and improve clinical outcomes. Since significant advances in the understanding of pathogenetic mechanisms in IPF, novel potential agents are being tested to identify new targeted and better tolerated therapeutic strategies. AREAS COVERED This review describes the evidence from IPF phase II and III clinical trials that have been completed or are ongoing in recent years. The literature search was performed using Medline and Clinicaltrials.org databases. Particular attention is paid to the new inhibitor of phosphodiesterase 4B (BI 1015550), being studied in a more advanced research phase. Some emerging critical issues of the pharmacological research are highlighted considering the recent outstanding failures of several phase III trials. EXPERT OPINION An exponential number of randomized clinical trials are underway testing promising new molecules to increase treatment choices for patients with IPF and improve patients' quality of life. The next goals should aim at a deeper understanding of the pathogenic pathways of the disease with the challenging goal of being able not only to stabilize but also to reverse the ongoing fibrotic process in patients with IPF.
Collapse
Affiliation(s)
- Carmelo Sofia
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alessia Comes
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giacomo Sgalla
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
47
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
48
|
Higuchi T, Takagi K, Tochimoto A, Ichimura Y, Hirose H, Sawada T, Shibata N, Harigai M, Kawaguchi Y. Antifibrotic effect of apremilast in systemic sclerosis dermal fibroblasts and bleomycin-induced mouse model. Sci Rep 2023; 13:19378. [PMID: 37938601 PMCID: PMC10632419 DOI: 10.1038/s41598-023-46737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Phosphodiesterase (PDE) 4 inhibitors have been reported to suppress the progression of dermal fibrosis in patients with systemic sclerosis (SSc); however, the precise mechanisms remain to be elucidated. Therefore, we conducted experiments focusing on the antifibrotic and anti-inflammatory effects of apremilast using dermal fibroblasts derived from patients with SSc and an SSc mouse model. Dermal fibroblasts derived from healthy controls and patients with SSc were incubated with apremilast in the presence or absence of 10 ng/ml transforming growth factor (TGF)-β1 for the measurement of intracellular cAMP levels and evaluation of mRNA and protein expression. A bleomycin-induced dermal fibrosis mouse model was used to evaluate the inhibitory effects of apremilast on the progression of dermal fibrosis. Intracellular cAMP levels were significantly reduced in dermal fibroblasts derived from patients with SSc compared with those derived from healthy controls. Apremilast reduced the mRNA expression of profibrotic markers and the protein expression of type I collagen and Cellular Communication Network Factor 2 (CCN2) in dermal fibroblasts. Additionally, apremilast inhibited the progression of dermal fibrosis in mice, partly by acting on T cells. These results suggest that apremilast may be a potential candidate for treating dermal fibrosis in SSc.
Collapse
Affiliation(s)
- Tomoaki Higuchi
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
- Division of Multidisciplinary Management of Rheumatic Diseases, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Kae Takagi
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Akiko Tochimoto
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yuki Ichimura
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hikaru Hirose
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Tatsuo Sawada
- Department of Pathology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Masayoshi Harigai
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Bonella F, Spagnolo P, Ryerson C. Current and Future Treatment Landscape for Idiopathic Pulmonary Fibrosis. Drugs 2023; 83:1581-1593. [PMID: 37882943 PMCID: PMC10693523 DOI: 10.1007/s40265-023-01950-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/27/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains a disease with poor survival. The pathogenesis is complex and encompasses multiple molecular pathways. The first-generation antifibrotics pirfenidone and nintedanib, approved more than 10 years ago, have been shown to reduce the rate of progression, increase the length of life for patients with IPF, and work for other fibrotic lung diseases. In the last two decades, most clinical trials on IPF have failed to meet the primary endpoint and an urgent unmet need remains to identify agents or treatment strategies that can stop disease progression. The pharmacotherapeutic landscape for IPF is moving forward with a number of new drugs currently in clinical development, mostly in phase I and II trials, while only a few phase III trials are running. Since our understanding of IPF pathogenesis is still limited, we should keep focusing our efforts to deeper understand the mechanisms underlying this complex disease and their reflection on clinical phenotypes. This review discusses the key pathogenetic concepts for the development of new antifibrotic agents, presents the newest data on approved therapies, and summarizes new compounds currently in clinical development. Finally, future directions in antifibrotics development are discussed.
Collapse
Affiliation(s)
- Francesco Bonella
- Pneumology Department, Center for Interstitial and Rare Lung Diseases, Ruhrlandklinik University Hospital, University of Duisburg Essen, Essen, Germany.
| | - Paolo Spagnolo
- Cardiac, Thoracic and Vascular, Sciences and Public Health, University of Padova School of Medicine and Surgery, Padua, Italy
| | - Chris Ryerson
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Kolloli A, Ramasamy S, Kumar R, Nisa A, Kaplan G, Subbian S. A phosphodiesterase-4 inhibitor reduces lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Front Immunol 2023; 14:1270414. [PMID: 37854602 PMCID: PMC10580809 DOI: 10.3389/fimmu.2023.1270414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection involves pulmonary inflammation that can progress to acute respiratory distress syndrome, a primary cause of lung damage/fibrosis in patients with Coronavirus Disease-2019 (COVID-19). Currently, there is no efficacious therapy available to alleviate lung fibrosis in COVID-19 cases. In this proof-of-concept study, we evaluated the effect of CC-11050, a small molecule phosphodiesterase-4 inhibitor, in dampening lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Methods Following intranasal inoculation with SARS-CoV-2/WA- 1/2000 strain, hamsters were treated with CC-11050 or placebo by gavage from day-1 until day-16 post-infection (dpi). Animals were monitored for body weight changes, virus titers, histopathology, fibrotic remodeling, cellular composition in the lungs between 2 and 16 dpi. Results We observed significant reduction in lung viral titer with concomitant reduction in inflammation and fibrotic remodeling in CC-11050 treated hamsters compared to untreated animals. The reductions in immunopathologic manifestations were associated with significant downregulation of inflammatory and fibrotic remodeling gene expression, reduced infiltration of activated monocytes, granulocytes, and reticular fibroblasts in CC-11050 treated animals. Cellular studies indicate a link between TNF-α and fibrotic remodeling during CC-11050 therapy. Discussion These findings suggest that CC-11050 may be a potential host-directed therapy to dampen inflammation and fibrosis in COVID-19 cases.
Collapse
Affiliation(s)
- Afsal Kolloli
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Annuurun Nisa
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Gilla Kaplan
- University of Cape Town, Cape Town, South Africa
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|