1
|
Battisti P, Ykema MR, Kasal DN, Jennewein MF, Beaver S, Weight AE, Hanson D, Singh J, Bakken J, Cross N, Fusco P, Archer J, Reed S, Gerhardt A, Julander JG, Casper C, Voigt EA. A bivalent self-amplifying RNA vaccine against yellow fever and Zika viruses. Front Immunol 2025; 16:1569454. [PMID: 40364846 PMCID: PMC12069283 DOI: 10.3389/fimmu.2025.1569454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Yellow fever (YFV) and Zika (ZIKV) viruses cause significant morbidity and mortality, despite the existence of an approved YFV vaccine and the development of multiple ZIKV vaccine candidates to date. New technologies may improve access to vaccines against these pathogens. We previously described a nanostructured lipid carrier (NLC)-delivered self-amplifying RNA (saRNA) vaccine platform with excellent thermostability and immunogenicity, appropriate for prevention of tropical infectious diseases. Methods YFV and ZIKV prM-E antigen-expressing saRNA constructs were created using a TC-83 strain Venezuelan equine encephalitis virus-based replicon and complexed with NLC by simple mixing. Monovalent and bivalent vaccine formulations were injected intramuscularly into C57BL/6 mice and Syrian golden hamsters, and the magnitude, durability, and protective efficacy of the resulting immune responses were then characterized. Results and discussion Monovalent vaccines established durable neutralizing antibody responses to their respective flaviviral targets, with little evidence of cross-neutralization. Both vaccines additionally elicited robust antigen-reactive CD4+ and CD8+ T cell populations. Notably, humoral responses to YFV saRNA-NLC vaccination were comparable to those in YF-17D-vaccinated animals. Bivalent formulations established humoral and cellular responses against both viral targets, commensurate to those established by monovalent vaccines, without evidence of saRNA interference or immune competition. Finally, both monovalent and bivalent vaccines completely protected mice and hamsters against lethal ZIKV and YFV challenge. We present a bivalent saRNA-NLC vaccine against YFV and ZIKV capable of inducing robust and efficacious neutralizing antibody and cellular immune responses against both viruses. These data support the development of other multivalent saRNA-based vaccines against infectious diseases.
Collapse
Affiliation(s)
- Peter Battisti
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Matthew R. Ykema
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Darshan N. Kasal
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Madeleine F. Jennewein
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Samuel Beaver
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Abbie E. Weight
- Institute for Antiviral Research, Utah State University, Logan, UT, United States
| | - Derek Hanson
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Jasneet Singh
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Julie Bakken
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Noah Cross
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Pauline Fusco
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Jacob Archer
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Sierra Reed
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Alana Gerhardt
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Justin G. Julander
- Institute for Antiviral Research, Utah State University, Logan, UT, United States
| | - Corey Casper
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, United States
| | - Emily A. Voigt
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| |
Collapse
|
2
|
Cong H, Han X, Lv M, Chang Y, Wang X, Lei R. Integrated duplex reverse transcription-recombinase aided amplification (RT-RAA) and lateral flow assay (LFA) for rapid simultaneous detection of Zika virus and Japanese encephalitis virus in single reaction format. Talanta 2025; 294:128195. [PMID: 40315800 DOI: 10.1016/j.talanta.2025.128195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/06/2025] [Accepted: 04/20/2025] [Indexed: 05/04/2025]
Abstract
Zika virus (ZIKV) and Japanese encephalitis virus (JEV), two consequential mosquito-borne flaviviruses, induce severe systemic and neurotropic-encephalitic pathologies with overlapping symptoms profiles, complicating differential diagnosis in co-endemic regions. To address this critical challenge, we developed a dual reverse-transcription recombinase-aided amplification (RT-RAA) coupled with duplex lateral flow assay (LFA) platform for rapid, equipment-free co-detection of ZIKV and JEV in a single reaction tube. The assay achieved isothermal amplification at 39 °C within 40 min using a field-deployable incubator. The limit of detection (LOD) reached as low as 8.5 copies ZIKV RNA, and 1.1 copies JEV RNA in single pathogen detection, while 110 copies JEV RNA in co-detection mode. This technological advance bridges the critical sensitivity gap between lab-based PCR and conventional rapid tests, enabling first-line healthcare responders to conduct precision diagnostics in non-laboratory settings from rural clinics to mobile outbreak response units.
Collapse
Affiliation(s)
- Haolong Cong
- Center for Biosafety, Chinese Academy of Inspection and Quarantine, Sanya, 572024, China; Chinese Academy of Quality and Inspection & Testing, Beijing, 100176, China
| | - Xiaodong Han
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, China
| | - Mengyuan Lv
- School of Life and Health, Dalian University, Dalian, 116622, China
| | - Yutong Chang
- Chinese Academy of Quality and Inspection & Testing, Beijing, 100176, China
| | - Xinyi Wang
- School of Life and Health, Dalian University, Dalian, 116622, China.
| | - Rong Lei
- Center for Biosafety, Chinese Academy of Inspection and Quarantine, Sanya, 572024, China; Chinese Academy of Quality and Inspection & Testing, Beijing, 100176, China.
| |
Collapse
|
3
|
dos Santos ALS, Rosolen BB, Ferreira FC, Chiancone IS, Pereira SS, Pontes KFM, Traina E, Werner H, Granese R, Araujo Júnior E. Intrauterine Zika Virus Infection: An Overview of the Current Findings. J Pers Med 2025; 15:98. [PMID: 40137414 PMCID: PMC11943202 DOI: 10.3390/jpm15030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus of the family Flaviviridae. The association between ZIKV and microcephaly was first described in Brazil in 2015. The risk of vertical transmission occurs in pregnant women with or without symptoms, and the risk of malformation appears to be worse when infection occurs in the first and second trimesters of pregnancy. The rate of vertical transmission varies from 26 to 65%, and not all fetuses develop malformations. The incidence of malformations resulting from transmission is uncertain, ranging from 6-8% in the US to 40% in Brazil. Congenital ZIKV syndrome is a set of clinical manifestations that can affect the fetus of a mother infected with ZIKV. The manifestations are broad and nonspecific, including microcephaly, subcortical calcifications, ocular changes, congenital contractures, early hypertension, and pyramidal and extrapyramidal signs. Other findings such as growth restriction and fetal miscarriage/death may also occur. Our aim in this article is to review the literature on mosquito transmission, clinical presentation, serologic diagnosis, intrauterine transmission, pre- and postnatal imaging diagnostic findings, and short- and long-term follow-up.
Collapse
Affiliation(s)
- Ana Luiza Soares dos Santos
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Beatriz Bussi Rosolen
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Fernanda Curvelo Ferreira
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Isabella Samões Chiancone
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Stefany Silva Pereira
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Karina Felippe Monezi Pontes
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (K.F.M.P.); (E.T.)
- Service of Gynecology and Obstetrics, Ipiranga Hospital, São Paulo 04262-000, SP, Brazil
| | - Evelyn Traina
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (K.F.M.P.); (E.T.)
| | - Heron Werner
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22453-900, RJ, Brazil;
| | - Roberta Granese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, “G. Martino” University Hospital, 98100 Messina, Italy
| | - Edward Araujo Júnior
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (K.F.M.P.); (E.T.)
| |
Collapse
|
4
|
Nobre T, Fenner ALD, Araújo ELL, de Araújo WN, Roux E, Handschumacher P, Gurgel H, Dallago B, Hecht M, Hagström L, Ramalho WM, Nitz N. Seroprevalence of dengue, Zika, and chikungunya in São Sebastião, Brazil (2020-2021): a population-based survey. BMC Infect Dis 2025; 25:129. [PMID: 39871200 PMCID: PMC11773905 DOI: 10.1186/s12879-025-10516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Urban arboviruses pose a significant global burden, particularly in tropical regions like Brazil. São Sebastião, a lower-middle-class urban area just 26 km from the Brazilian capital, is an endemic area for dengue. However, asymptomatic cases may obscure the actual extent of the disease. In this study, we measured the seroprevalence of dengue, Zika virus, and chikungunya, and compared these findings with surveillance data. METHODS A cross-sectional study was conducted involving 1,535 households. ELISA serological tests were performed to detect IgM and IgG antibodies against dengue, Zika virus, and chikungunya. History of previous exposure to arboviruses, data on age, gender, and education level were collected through a questionnaire. Participants who tested positive for IgM and/or IgG were classified as soropositive. Statistical analyses included tests for normality, associations, mean comparisons, and correlations. Positive serological results were compared with cases captured by local epidemiological surveillance. RESULTS The study included 1,405 individuals, divided into two groups related to pre-pandemic and pandemic COVID-19 phases. Among participants, 0.7% to 28.8% self-reported history of dengue, Zika, or chikungunya. However, the estimated overall seroprevalence was 64.3% (95% CI: 61.8-66.7) for dengue virus, 51.4% (95% CI: 48.8-53.9) for Zika virus, and 5.4% (95% CI: 4.4-6.7) for chikungunya virus. Multiple arboviruses were noted at 4.0% (95% CI: 3.1-5.1). Advancing age and lower education were associated with higher exposure to arboviruses (p < 0.05). The estimated number of urban arboviral infections was 84 times higher than reported cases. CONCLUSIONS The large gap between seroprevalence estimates and cases captured by epidemiological surveillance suggests a silent circulation of arboviruses, highlighting the need for comprehensive serological surveys in endemic regions. Addressing these discrepancies is crucial for effective resource allocation and implementation of public health interventions.
Collapse
Affiliation(s)
- Tayane Nobre
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Federal District, Brasília, Brazil
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
| | - Andre Luiz Dutra Fenner
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
| | | | - Wildo Navegantes de Araújo
- Center of Tropical Medicine, University of Brasília, Brasília, Federal District, Brazil
- Institute of Health Technology Assessment of the National Council for Scientific and Technological Development (IATS/CNPq), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Emmanuel Roux
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
- ESPACE-DEV (IRD - Univ Montpellier - Univ Guyane - Univ Reunion - Univ Antilles - Univ Avignon - Univ Perpignan Via Domitia), Montpellier, France
| | - Pascal Handschumacher
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
- UMR SESSTIM (IRD - INSERM - Univ Aix-Marseille), Marseille, France
| | - Helen Gurgel
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
- Department of Geography, University of Brasília, Brasília, Federal District, Brazil
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Federal District, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Federal District, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Federal District, Brasília, Brazil
| | - Walter Massa Ramalho
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
- Center of Tropical Medicine, University of Brasília, Brasília, Federal District, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Federal District, Brasília, Brazil.
| |
Collapse
|
5
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
6
|
Li Q, Yang RH, Hu Y, Tang BB, Jiang YJ, Zheng CB, Song TZ. Zika virus infection induces glycometabolic disorder in northern pig-tailed macaques. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2527-2529. [PMID: 39235558 DOI: 10.1007/s11427-024-2663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 09/06/2024]
Affiliation(s)
- Qing Li
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren-Hua Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Yan Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei-Bei Tang
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-SU Joint Laboratory of Animal Model and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215021, China
| | - Ying-Jie Jiang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Qin C, Wang Y, Liu M, Liu J. Global burden and incidence trends of zika virus infection among women aged 15-49 years from 2011 to 2021: A systematic analysis. J Infect Public Health 2024; 17:102557. [PMID: 39353399 DOI: 10.1016/j.jiph.2024.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Zika virus (ZIKV) infection during pregnancy presents a significant health risk in women of reproductive age and their offspring due to severe neurological complications. It is meaningful to assess its global burden and temporal trends. METHODS This study extracted annual incidence cases and rates of ZIKV among women of reproductive age (15-49 years) between 2011 and 2021 from Global Burden of Diseases (GBD) 2021, including global level, 21 GBD regions, 5 socio-demographic index (SDI) regions, 7 age groups, and 204 countries and territories. Relative percent change in cases and estimated annual percentage change (EAPC) of incidence rates were used to quantify the temporal trends. RESULTS The incidence rate of ZIKV infection exhibited a pronounced peak in 2016 at 174.27 per 100,000 population, with an EAPC of 158.30 % from 2011 to 2016 and -51.86 % from 2016 to 2021 at 3.06 per 100,000 population. And only 5 out of the 21 GBD regions reported ZIKV infection in 2021, predominantly concentrated in Latin America and Caribbean. The outbreaks were primarily concentrated in low-middle and middle SDI regions. In 2021, at the global level, the incidence rates of ZIKV infection among women of reproductive age were similar across different age groups, ranging from 2.41 to 3.39 per 100,000 population. The proportion of ZIKV infection cases was slightly higher in women aged 25-29 and 30-34 years compared to other age groups in 2021, whereas a higher proportion of cases were observed in younger age groups in 2011 and 2016. CONCLUSIONS Women of reproductive age in Latin America and Caribbean continue to face the threat of ZIKV. Regions with lower SDI had a disproportionately severe burden. Future public health strategies should focus on high-risk areas and populations of reproductive age, enhancing surveillance, prevention, and education efforts to further mitigate the public health threat posed by ZIKV.
Collapse
Affiliation(s)
- Chenyuan Qin
- School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yaping Wang
- School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Min Liu
- School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Jue Liu
- School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China; Institute for Global Health and Development, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China; National Health Commission Key Laboratory of Reproductive Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
8
|
Bisia M, Balatsos G, Beleri S, Tegos N, Zavitsanou E, LaDeau SL, Sotiroudas V, Patsoula E, Michaelakis A. Mitigating the Threat of Invasive Mosquito Species Expansion: A Comprehensive Entomological Surveillance Study on Kastellorizo, a Remote Greek Island. INSECTS 2024; 15:724. [PMID: 39336692 PMCID: PMC11432031 DOI: 10.3390/insects15090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
The expansion of the tiger mosquito, a vector that can transmit diseases such as dengue, chikungunya, and Zika virus, poses a growing threat to global health. This study focuses on the entomological surveillance of Kastellorizo, a remote Greek island affected by its expansion. This research employs a multifaceted approach, combining KAP survey (knowledge, attitude, practices), mosquito collection using adult traps and human landing catches, and morphological and molecular identification methods. Results from questionnaires reveal community awareness and preparedness gaps, emphasizing the need for targeted education. Mosquito collections confirm the presence of the Aedes albopictus, Aedes cretinus, and Culex pipiens mosquitoes, highlighting the importance of surveillance. This study underscores the significance of community engagement in entomological efforts and proposes a citizen science initiative for sustained monitoring. Overall, this research provides essential insights for developing effective mosquito control programs in remote island settings, thereby emphasizing the importance of adopting a One Health approach to mitigate the spread of vector-borne diseases.
Collapse
Affiliation(s)
- Marina Bisia
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| | - Georgios Balatsos
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| | - Stavroula Beleri
- Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 115 21 Athens, Greece; (S.B.); (N.T.); (E.P.)
| | - Nikolaos Tegos
- Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 115 21 Athens, Greece; (S.B.); (N.T.); (E.P.)
| | - Evangelia Zavitsanou
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| | | | - Vasilis Sotiroudas
- AgroSpeCom, 7th klm National Road Thessaloniki-Katerini, Kalochori, 570 09 Thessaloniki, Greece;
| | - Eleni Patsoula
- Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 115 21 Athens, Greece; (S.B.); (N.T.); (E.P.)
| | - Antonios Michaelakis
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| |
Collapse
|
9
|
Corzo-Gómez JC, Espinosa-Juárez JV, Ovando-Zambrano JC, Briones-Aranda A, Cruz-Salomón A, Esquinca-Avilés HA. A Review of Botanical Extracts with Repellent and Insecticidal Activity and Their Suitability for Managing Mosquito-Borne Disease Risk in Mexico. Pathogens 2024; 13:737. [PMID: 39338928 PMCID: PMC11435231 DOI: 10.3390/pathogens13090737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Among the main arboviruses affecting public health in tropical regions are dengue, zika, and chikungunya, transmitted mainly by mosquitoes of the Aedes genus, especially Aedes aegypti. In recent years, outbreaks have posed major challenges to global health, highlighting the need for integrated and innovative strategies for their control and prevention. Prevention strategies include the elimination of vectors and avoiding mosquito bites; this can be achieved through the use of bioinsecticides and repellents based on plant phytochemicals, as they offer sustainable, ecological, and low-cost alternatives. Mexico has a variety of plants from which both extracts and essential oils have been obtained which have demonstrated significant efficacy in repelling and/or killing insect vectors. This review examines the current knowledge on plant species found in Mexico which are promising options concerning synthetic compounds in terms of their repellent and insecticidal properties against mosquitoes of the genus Aedes and that are friendly to the environment and health.
Collapse
Affiliation(s)
- Josselin Carolina Corzo-Gómez
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Jose Carlos Ovando-Zambrano
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Alfredo Briones-Aranda
- Laboratorio de Farmacología, Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez 29050, Chiapas, Mexico;
| | - Abumalé Cruz-Salomón
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Héctor Armando Esquinca-Avilés
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| |
Collapse
|
10
|
Martelli CMT, Cortes F, Brandão-Filho SP, Turchi MD, de Souza WV, de Araújo TVB, Ximenes RADA, Miranda-Filho DDB. Clinical spectrum of congenital Zika virus infection in Brazil: Update and issues for research development. Rev Soc Bras Med Trop 2024; 57:e00301. [PMID: 39082517 PMCID: PMC11290870 DOI: 10.1590/0037-8682-0153-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
This review aimed to provide an update on the morphological and/or functional abnormalities related to congenital Zika virus (ZIKV) infection, based on primary data from studies conducted in Brazil since 2015. During the epidemic years (2015-2016), case series and pediatric cohort studies described several birth defects, including severe and/or disproportionate microcephaly, cranial bone overlap, skull collapse, congenital contractures (arthrogryposis and/or clubfoot), and visual and hearing abnormalities, as part of the spectrum of Congenital Zika Syndrome (CZS). Brain imaging abnormalities, mainly cortical atrophy, ventriculomegaly, and calcifications, serve as structural markers of CZS severity. Most case series and cohorts of microcephaly have reported the co-occurrence of epilepsy, dysphagia, orthopedic deformities, motor function impairment, cerebral palsy, and urological impairment. A previous large meta-analysis conducted in Brazil revealed that a confirmed ZIKV infection during pregnancy was associated with a 4% risk of microcephaly. Additionally, one-third of children showed at least one abnormality, predominantly identified in isolation. Studies examining antenatally ZIKV-exposed children without detectable abnormalities at birth reported conflicting neurodevelopmental results. Therefore, long-term follow-up studies involving pediatric cohorts with appropriate control groups are needed to address this knowledge gap. We recognize the crucial role of a national network of scientists collaborating with international research institutions in understanding the lifelong consequences of congenital ZIKV infection. Additionally, we highlight the need to provide sustainable resources for research and development to reduce the risk of future Zika outbreaks.
Collapse
Affiliation(s)
| | - Fanny Cortes
- Universidade de Pernambuco, Pós-Graduação em Ciências da Saúde, Recife, PE, Brasil
| | | | - Marilia Dalva Turchi
- Universidade Federal de Goiás, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Goiânia, GO, Brasil
| | - Wayner Vieira de Souza
- Instituto Aggeu Magalhães, Programa de Pós-Graduação em Saúde Pública, Recife, PE, Brasil
| | | | - Ricardo Arraes de Alencar Ximenes
- Universidade de Pernambuco, Pós-Graduação em Ciências da Saúde, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Medicina Tropical, Recife, PE, Brasil
| | | |
Collapse
|
11
|
Göbel S, Kazemi O, Ma J, Jordan I, Sandig V, Paulissen J, Kerstens W, Thibaut HJ, Reichl U, Dallmeier K, Genzel Y. Parallel Multifactorial Process Optimization and Intensification for High-Yield Production of Live YF17D-Vectored Zika Vaccine. Vaccines (Basel) 2024; 12:755. [PMID: 39066393 PMCID: PMC11281342 DOI: 10.3390/vaccines12070755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The live-attenuated yellow fever 17D strain is a potent vaccine and viral vector. Its manufacture is based on embryonated chicken eggs or adherent Vero cells. Both processes are unsuitable for rapid and scalable supply. Here, we introduce a high-throughput workflow to identify suspension cells that are fit for the high-yield production of live YF17D-based vaccines in an intensified upstream process. The use of an automated parallel ambr15 microbioreactor system for screening and process optimization has led to the identification of two promising cell lines (AGE1.CR.pIX and HEKDyn) and the establishment of optimized production conditions, which have resulted in a >100-fold increase in virus titers compared to the current state of the art using adherent Vero cells. The process can readily be scaled up from the microbioreactor scale (15 mL) to 1 L stirred tank bioreactors. The viruses produced are genetically stable and maintain their favorable safety and immunogenicity profile, as demonstrated by the absence of neurovirulence in suckling BALB/c mice and consistent seroprotection in AG129 mice. In conclusion, the presented workflow allows for the rapid establishment of a robust, scalable, and high-yield process for the production of live-attenuated orthoflavivirus vaccines, which outperforms current standards. The approach described here can serve as a model for the development of scalable processes and the optimization of yields for other virus-based vaccines that face challenges in meeting growing demands.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; (S.G.)
| | - Ozeir Kazemi
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery (MVVD), 3000 Leuven, Belgium; (K.D.)
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery (MVVD), 3000 Leuven, Belgium; (K.D.)
| | | | | | - Jasmine Paulissen
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Winnie Kerstens
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; (S.G.)
- Bioprocess Engineering, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery (MVVD), 3000 Leuven, Belgium; (K.D.)
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; (S.G.)
| |
Collapse
|
12
|
Sapkal G, Deshpande GR, Gupta N, Deshpande K, Sharma S, Tandale B, Srivastava R, Vidhate S, Khutwad K, Tilekar BN. Harmonization of Zika serological assays and comparative evaluation of two commercial ZIKA IgG ELISA kits. Diagn Microbiol Infect Dis 2024; 109:116238. [PMID: 38554539 DOI: 10.1016/j.diagmicrobio.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/27/2024] [Indexed: 04/01/2024]
Abstract
The interpretation for Zika virus serology results is challenging due to high antibody cross reactivity with other flaviviruses. This limits availability of reliable and accurate methods for serosurveillance studies to understand the disease burden. Therefore, we conducted study to harmonize anti-Zika IgG antibody detection assays with 1st WHO International Standard (16/352) and working standard (16/320) for anti-Zika virus antibody.Additionally, evaluated NuGenTMZIKA-IgG and NovaLisa®ZIKA virus IgG-Capture ELISA using a panel of 278 seraFurther, 106 samples positive for other-flavi viruses were taken for assessing cross-reactivity of the assay, all serums were further tested by Zika-PRNT. The results of this study indicates satisfactory performance of both the assays. Serological and neutralization assays were calibrated according to the international standards. This will help in understanding antibody dynamics in serosurveillance and vaccine studies. However the performance of the kits with possibilities of cross-reactivity will have to be verified by coupling ZIKV and DENV specific ELISA.
Collapse
Affiliation(s)
- Gajanan Sapkal
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India.
| | | | - Nivedita Gupta
- Indian Council of Medical Research, New Delhi 110001,India
| | - Ketki Deshpande
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Sharada Sharma
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Babasaheb Tandale
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Rashi Srivastava
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Shankar Vidhate
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Kirtee Khutwad
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - B N Tilekar
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| |
Collapse
|
13
|
Summer M, Tahir HM, Ali S, Nawaz S, Abaidullah R, Mumtaz S, Ali A, Gormani AH. Nanobiopesticides as an Alternative and Sustainable Solution to Tackle Pest Outbreaks. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 2024; 96. [DOI: 10.2317/0022-8567-96.4.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Saira Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
14
|
Pei L, Hickman HD. T Cell Surveillance during Cutaneous Viral Infections. Viruses 2024; 16:679. [PMID: 38793562 PMCID: PMC11126121 DOI: 10.3390/v16050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The skin is a complex tissue that provides a strong physical barrier against invading pathogens. Despite this, many viruses can access the skin and successfully replicate in either the epidermal keratinocytes or dermal immune cells. In this review, we provide an overview of the antiviral T cell biology responding to cutaneous viral infections and how these responses differ depending on the cellular targets of infection. Much of our mechanistic understanding of T cell surveillance of cutaneous infection has been gained from murine models of poxvirus and herpesvirus infection. However, we also discuss other viral infections, including flaviviruses and papillomaviruses, in which the cutaneous T cell response has been less extensively studied. In addition to the mechanisms of successful T cell control of cutaneous viral infection, we highlight knowledge gaps and future directions with possible impact on human health.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
15
|
Hall DR, Johnson RM, Kwon H, Ferdous Z, Laredo-Tiscareño SV, Blitvich BJ, Brackney DE, Smith RC. Mosquito immune cells enhance dengue and Zika virus dissemination in Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587950. [PMID: 38617257 PMCID: PMC11014501 DOI: 10.1101/2024.04.03.587950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Mosquito-borne viruses cause more than 400 million annual infections and place over half of the world's population at risk. Despite this importance, the mechanisms by which arboviruses infect the mosquito host and disseminate to tissues required for transmission are not well understood. Here, we provide evidence that mosquito immune cells, known as hemocytes, play an integral role in the dissemination of dengue virus (DENV) and Zika virus (ZIKV) in the mosquito Aedes aegypti. We establish that phagocytic hemocytes are a focal point for virus infection and demonstrate that these immune cell populations facilitate virus dissemination to the ovaries and salivary glands. Additional transfer experiments confirm that virus-infected hemocytes confer a virus infection to non-infected mosquitoes more efficiently than free virus in acellular hemolymph, revealing that hemocytes are an important tropism to enhance virus dissemination in the mosquito host. These data support a "trojan horse" model of virus dissemination where infected hemocytes transport virus through the hemolymph to deliver virus to mosquito tissues required for transmission and parallels vertebrate systems where immune cell populations promote virus dissemination to secondary sites of infection. In summary, this study significantly advances our understanding of virus infection dynamics in mosquitoes and highlights conserved roles of immune cells in virus dissemination across vertebrate and invertebrate systems.
Collapse
Affiliation(s)
- David R. Hall
- Interdepartmental Program in Genetics and Genomics, Iowa State University, Ames, Iowa
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa
| | - Rebecca M. Johnson
- Center for Vector-Borne and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Hyeogsun Kwon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa
| | - Zannatul Ferdous
- Center for Vector-Borne and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | | | - Bradley J. Blitvich
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa
| | - Doug E. Brackney
- Center for Vector-Borne and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa
| |
Collapse
|
16
|
Chen Y, Song Y, Zhu X, Dong CM, Chen M. Design and Update of Multifunctional Polypeptides and Their Applications for the Prevention of Viral Infections and Cancer Immunotherapies. POLYM REV 2024; 64:528-574. [DOI: 10.1080/15583724.2023.2281462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Accepted: 11/04/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yingying Song
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai, P. R. China
| |
Collapse
|
17
|
Rodrigues MMDS, Júnior AMP, Fukutani ER, Bergamaschi KB, Araújo-Pereira M, Salgado VR, de Queiroz ATL. The impact of ZIKV infection on gene expression in neural cells over time. PLoS One 2024; 19:e0290209. [PMID: 38512822 PMCID: PMC10956780 DOI: 10.1371/journal.pone.0290209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 03/23/2024] Open
Abstract
Zika virus (ZIKV) outbreak caused one of the most significant medical emergencies in the Americas due to associated microcephaly in newborns. To evaluate the impact of ZIKV infection on neuronal cells over time, we retrieved gene expression data from several ZIKV-infected samples obtained at different time point post-infection (pi). Differential gene expression analysis was applied at each time point, with more differentially expressed genes (DEG) identified at 72h pi. There were 5 DEGs (PLA2G2F, TMEM71, PKD1L2, UBD, and TNFAIP3 genes) across all timepoints, which clearly distinguished between infected and healthy samples. The highest expression levels of all five genes were identified at 72h pi. Taken together, our results indicate that ZIKV infection greatly impacts human neural cells at early times of infection, with peak perturbation observed at 72h pi. Our analysis revealed that all five DEGs, in samples of ZIKV-infected human neural stem cells, remained highly upregulated across the timepoints evaluated. Moreover, despite the pronounced inflammatory host response observed throughout infection, the impact of ZIKV is variable over time. Finally, the five DEGs identified herein play prominent roles in infection, and could serve to guide future investigations into virus-host interaction, as well as constitute targets for therapeutic drug development.
Collapse
Affiliation(s)
| | | | - Eduardo Rocha Fukutani
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | - Mariana Araújo-Pereira
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | - Artur Trancoso Lopo de Queiroz
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| |
Collapse
|
18
|
Yuan H, Rao J, Zhang J, Ye J, Cao S, Chen H, Song Y. Japanese encephalitis virus inhibits superinfection of Zika virus in cells by the NS2B protein. J Virol 2024; 98:e0185923. [PMID: 38411948 PMCID: PMC10949844 DOI: 10.1128/jvi.01859-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/11/2024] [Indexed: 02/28/2024] Open
Abstract
Superinfection exclusion (SIE) is a phenomenon in which a preexisting infection prevents a secondary infection. SIE has been described for several flaviviruses, such as West Nile virus vs Nhumirim virus and Dengue virus vs yellow fever virus. Zika virus (ZIKV) is an emerging flavivirus posing threats to human health. The SIE between ZIKV and Japanese encephalitis virus (JEV) is investigated in this study. Our results demonstrate for the first time that JEV inhibits ZIKV infection in both mammalian and mosquito cells, whether co-infects or subsequently infects after ZIKV. The exclusion effect happens at the stage of ZIKV RNA replication. Further studies show that the expression of JEV NS2B protein is sufficient to inhibit the replication of ZIKV, and the outer membrane region of NS2B (46-103 aa) is responsible for this SIE. JEV infection and NS2B expression also inhibit the infection of the vesicular stomatitis virus. In summary, our study characterized a SIE caused by JEV NS2B. This may have potential applications in the prevention and treatment of ZIKV or other RNA viruses.IMPORTANCEThe reemerged Zika virus (ZIKV) has caused severe symptoms in humans and poses a continuous threat to public health. New vaccines or antiviral agents need to be developed to cope with possible future pandemics. In this study, we found that infection of Japanese encephalitis virus (JEV) or expression of NS2B protein well inhibited the replication of ZIKV. It is worth noting that both the P3 strain and vaccine strain SA14-14-2 of JEV exhibited significant inhibitory effects on ZIKV. Additionally, the JEV NS2B protein also had an inhibitory effect on vesicular stomatitis virus infection, suggesting that it may be a broad-spectrum antiviral factor. These findings provide a new way of thinking about the prevention and treatment of ZIKV.
Collapse
Affiliation(s)
- Honggen Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingwei Rao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Kitro A, Imad HA, Pisutsan P, Matsee W, Sirikul W, Sapbamrer R, Rapheal E, Fernandez S, Cotrone TS, Farmer AR, Hunsawong T, Silachamroon U, Chatapat L, Olanwijitwong J, Salee P, Anderson KB, Piyaphanee W. Seroprevalence of dengue, Japanese encephalitis and Zika among long-term expatriates in Thailand. J Travel Med 2024; 31:taae022. [PMID: 38335250 DOI: 10.1093/jtm/taae022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Travel to Southeast Asia increases the likelihood of acquiring mosquito-borne Flavivirus infections such as dengue (DENV), Japanese encephalitis (JEV) and Zika viruses (ZIKV). Expatriates are long-term travellers who have a higher risk of mosquito-borne illness at their destination country. The purpose of this study was to evaluate the seroprevalence of DENV, JEV and ZIKV infections and the determinants contributing to seropositivity among expatriates living in Thailand. METHODS A cross-sectional study was performed from December 2017 to February 2020. Expatriates from non-Flavivirus endemic countries were recruited. 5 mL of blood was collected for DENV 1-4, JEV and ZIKV antibody testing by plaque reduction neutralization test (PRNT50). Individuals with vaccination histories or diagnoses for dengue, Japanese encephalitis, yellow fever and tick-borne encephalitis were excluded. RESULTS Among 254 participants, most participants (83.1%) were male, the mean age was 65 years and the median duration of stay in Thailand was 6 years. Seroprevalence rate of any Flavivirus, non-specific DENV, DENV1-4, JEV and ZIKV were 34.3, 30.7, 20.5, 18.1, 18.9, 10.6, 4.7 and 2.8%, respectively. The presence of neutralizing antibodies against DENV1-4 positively correlates with the duration of stay in Thailand. DENV seropositivity was associated with living in urban areas (aOR 2.75, 95% CI 1.36-5.57). Expatriates were unlikely to have detectable anti-JEV antibodies regardless of time spent in a JEV-endemic area. No risk factors were identified that were significantly associated with JEV or ZIKV seropositivity. Only 48.4% received pre-travel counselling services, while only 18.9% visited a travel medicine specialist. CONCLUSIONS A high proportion (34.3%) of long-term expatriates living in Thailand were seropositive for flavivirus, mainly from dengue (30.7%). To minimize risk, travel medicine practitioners should provide adequate pre-travel health risk information on mosquito-borne flavivirus infection and offer advice on mosquito bite prevention strategies. Dengue vaccine might be considered in high-risk travellers such as long-term expatriate.
Collapse
Affiliation(s)
- Amornphat Kitro
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental and Occupational Medicine Excellence Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hisham Ahmed Imad
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Center for Infectious Disease Education and Research, Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Suita 565-0871, Japan
| | - Phimphan Pisutsan
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wasin Matsee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Data Analytics and Knowledge Synthesis for Health Care, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental and Occupational Medicine Excellence Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Erica Rapheal
- School of Public Health, University of Minnesota, Minnesota, MN 55414, USA
| | - Stefan Fernandez
- Department of Virology, US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Thomas S Cotrone
- Department of Virology, US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Aaron R Farmer
- Department of Virology, US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Taweewun Hunsawong
- Department of Virology, US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Udomsak Silachamroon
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Lapakorn Chatapat
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jutarmas Olanwijitwong
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Parichat Salee
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kathryn B Anderson
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Watcharapong Piyaphanee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
20
|
Tafesh-Edwards G, Eleftherianos I. The Drosophila melanogaster prophenoloxidase system participates in immunity against Zika virus infection. Eur J Immunol 2023; 53:e2350632. [PMID: 37793051 PMCID: PMC10841153 DOI: 10.1002/eji.202350632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Drosophila melanogaster relies on an evolutionarily conserved innate immune system to protect itself from a wide range of pathogens, making it a convenient genetic model to study various human pathogenic viruses and host antiviral immunity. Here we explore for the first time the contribution of the Drosophila phenoloxidase (PO) system to host survival and defenses against Zika virus (ZIKV) infection by analyzing the role of mutations in the three prophenoloxidase (PPO) genes in female and male flies. We show that only PPO1 and PPO2 genes contribute to host survival and appear to be upregulated following ZIKV infection in Drosophila. Also, we present data suggesting that a complex regulatory system exists between Drosophila PPOs, potentially allowing for a sex-dependent compensation of PPOs by one another or other immune responses such as the Toll, Imd, and JAK/STAT pathways. Furthermore, we show that PPO1 and PPO2 are essential for melanization in the hemolymph and the wound site in flies upon ZIKV infection. Our results reveal an important role played by the melanization pathway in response to ZIKV infection, hence highlighting the importance of this pathway in insect host defense against viral pathogens and potential vector control strategies to alleviate ZIKV outbreaks.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
21
|
Smith TC, Espinoza DO, Zhu Y, Cardona-Ospina JA, Bowman NM, Becker-Dreps S, Rouphael N, Rodriguez-Morales AJ, Bucardo F, Edupuganti S, Premkumar L, Mulligan MJ, de Silva AM, Collins MH. Natural infection by Zika virus but not DNA vaccination consistently elicits antibodies that compete with two potently neutralising monoclonal antibodies targeting distinct epitopes. EBioMedicine 2023; 98:104875. [PMID: 37983984 PMCID: PMC10694573 DOI: 10.1016/j.ebiom.2023.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Autochthonous transmission of Zika virus (ZIKV) has been reported in 87 countries since 2015. Although most infections are mild, there is risk of Guillain-Barré syndrome and adverse pregnancy outcomes. Vaccines are urgently needed to prevent Zika, but sufficient understanding of humoral responses and tools to assess ZIKV-specific immunity are lacking. METHODS We developed a blockade-of-binding (BOB) ELISA using A9E and G9E, two strongly neutralising ZIKV-specific monoclonal antibodies, which do not react with dengue virus. Receiver operating characteristic curve analysis assessed A9E and G9E BOB serodiagnostic performance. BOB was then applied to samples from a surveillance cohort in Risaralda, Colombia, and phase 1 ZIKV vaccine trial samples, comparing results against traditional serologic tests. FINDINGS In the validation sample set (n = 120), A9E BOB has a sensitivity of 93.5% (95% CI: 79.3, 98.9) and specificity 97.8 (95% CI: 92.2, 99.6). G9E BOB had a sensitivity of 100% (95% CI: 89.0, 100.0) and specificity 100% (95% CI: 95.9, 100). Serum from natural infections consistently tested positive in these assays for up to one year, and reactivity tracks well with ZIKV infection status among sera from endemic areas with complicated flavivirus exposures. Interestingly, a leading ZIKV vaccine candidate elicited minimal BOB reactivity despite generating neutralising antibody responses. INTERPRETATION In conclusion, A9E and G9E BOB assays are sensitive and specific assays for detecting antibodies elicited by recent or remote ZIKV infections. Given the additional ability of these BOB assays to detect immune responses that target different epitopes, further development of these assays is well justified for applications including flavivirus surveillance, translational vaccinology research and as potential serologic correlates of protective immunity against Zika. FUNDING R21 AI129532 (PI: S. Becker-Dreps), CDCBAA 2017-N-18041 (PI: A. M. de Silva), Thrasher Fund (PI: M. H. Collins), K22 AI137306 (PI: M. H. Collins).
Collapse
Affiliation(s)
- Teresa C Smith
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Daniel O Espinoza
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yerun Zhu
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jaime A Cardona-Ospina
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia; Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
| | - Natalie M Bowman
- Division of Infectious Diseases, Department of Medicine, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia; Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Filemon Bucardo
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua-León, León, Nicaragua
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
22
|
Wang Q, Yang J, Li X, Wang W, Wu Y, Li Z, Huang X. HSPA13 modulates type I interferon antiviral pathway and NLRP3 inflammasome to restrict dengue virus infection in macrophages. Int Immunopharmacol 2023; 124:110988. [PMID: 37776769 DOI: 10.1016/j.intimp.2023.110988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Dengue virus (DENV) is a type of arthropod-borne Flavivirus, which leads to a series of serious diseases like dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). DENV has a devastating health and economic impact worldwide. However, there are no suitable drugs to combat the virus. Here we reported that HSPA13, also known as stress chaperone (STCH), is a member of the HSP70 family and is a key regulator of type I interferon (IFN-I) and pro-inflammatory responses during DENV infection. HSPA13 expression was increased in macrophages infected with DENV or other Flaviviruses like Zika virus (ZIKV), Yellow fever virus (YFV) and Japanese encephalitis virus (JEV). Further, HSPA13 suppressed the replication of DENV and other Flaviviruses (ZIKV, JEV, YFV), which exhibited broad-spectrum antiviral effects. On the one hand, HSPA13 promoted production of IFN-β and interferon-stimulated genes (ISGs, such as ISG15, OAS and IFIT3) by interacting with RIG-I and up-regulating RIG-I expression during DENV infection. On the other hand, HSPA13 enhanced NLRP3 inflammasome activation and IL-1β secretion by interacting with ASC in DENV infection. We identified HSPA13 as a potential anti-DENV target. Our results provide clues for the development of antiviral drugs against DENV based on HSPA13 and reveal novel drug target against Flaviviruses.
Collapse
Affiliation(s)
- Qiaohua Wang
- Foshan Fourth People's Hospital, Foshan, China; Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jingwen Yang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wei Wang
- Foshan Fourth People's Hospital, Foshan, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhijian Li
- Foshan Fourth People's Hospital, Foshan, China.
| | - Xi Huang
- Foshan Fourth People's Hospital, Foshan, China; Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.
| |
Collapse
|
23
|
Isoe J, Simington CJ, Oscherwitz ME, Peterson AJ, Rascón AA, Massani BB, Miesfeld RL, Riehle MA. Characterization of essential eggshell proteins from Aedes aegypti mosquitoes. BMC Biol 2023; 21:214. [PMID: 37833714 PMCID: PMC10576393 DOI: 10.1186/s12915-023-01721-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Up to 40% of the world population live in areas where mosquitoes capable of transmitting the dengue virus, including Aedes aegypti, coexist with humans. Understanding how mosquito egg development and oviposition are regulated at the molecular level may provide new insights into novel mosquito control strategies. Previously, we identified a protein named eggshell organizing factor 1 (EOF1) that when knocked down with RNA interference (RNAi) resulted in non-melanized and fragile eggs that did not contain viable embryos. RESULTS In this current study, we performed a comprehensive RNAi screen of putative A. aegypti eggshell proteins to identify additional proteins that interact with intracellular EOF1. We identified several proteins essential for eggshell formation in A. aegypti and characterized their phenotypes through a combination of molecular and biochemical approaches. We found that Nasrat, Closca, and Polehole structural proteins, together with the Nudel serine protease, are indispensable for eggshell melanization and egg viability. While all four proteins are predominantly expressed in ovaries of adult females, Nudel messenger RNA (mRNA) expression is highly upregulated in response to blood feeding. Furthermore, we identified four additional secreted eggshell enzymes that regulated mosquito eggshell formation and melanization. These enzymes included three dopachrome-converting enzymes (DCEs) and one cysteine protease. All eight of these eggshell proteins were essential for proper eggshell formation. Interestingly, their eggshell surface topologies in response to RNAi did not phenocopy the effect of RNAi-EOF1, suggesting that additional mechanisms may influence how EOF1 regulates eggshell formation and melanization. CONCLUSIONS While our studies did not identify a definitive regulator of EOF1, we did identify eight additional proteins involved in mosquito eggshell formation that may be leveraged for future control strategies.
Collapse
Affiliation(s)
- Jun Isoe
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Carter J Simington
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
- Present address: Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA94720, USA
| | - Max E Oscherwitz
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
- Present address: Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Alyssa J Peterson
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Alberto A Rascón
- Department of Chemistry, San José State University, San José, CA, 95192, USA
- Present address: School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Brooke B Massani
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Roger L Miesfeld
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Michael A Riehle
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
24
|
Bao M, Waitkus J, Liu L, Chang Y, Xu Z, Qin P, Chen J, Du K. Micro- and nanosystems for the detection of hemorrhagic fever viruses. LAB ON A CHIP 2023; 23:4173-4200. [PMID: 37675935 DOI: 10.1039/d3lc00482a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Jacob Waitkus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Yu Chang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Zhiheng Xu
- Department of Industrial Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
25
|
Gupta N, Kodan P, Baruah K, Soneja M, Biswas A. Zika virus in India: past, present and future. QJM 2023; 116:644-649. [PMID: 31642501 DOI: 10.1093/qjmed/hcz273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne flavivirus that presents with acute febrile illness associated with rash, arthralgia and conjunctivitis. After years of sporadic reports in Africa, the three major outbreaks of this disease occurred in Yap Islands (2007), French Polynesia (2013-14) and South Americas (2015-16). Although, serological surveys suggested the presence of ZIKV in India in 1950s, cross-reactivity could not be ruled out. The first four proven cases of ZIKV from India were reported in 2017. This was followed by major outbreaks in the states of Rajasthan and Madhya Pradesh in 2018. Fortunately, the outbreaks in India were not associated with neurological complications. These outbreaks in India highlighted the spread of this disease beyond geographical barriers owing to the growing globalization, increased travel and ubiquitous presence of its vector, the Aedes mosquito. In this review, we discuss the epidemiology, clinical features and management of ZIKV in India.
Collapse
Affiliation(s)
- N Gupta
- From the Department of Medicine, All India Institute of Medical Sciences, 3rd Floor, Teaching Block, New Delhi 110029
| | - P Kodan
- From the Department of Medicine, All India Institute of Medical Sciences, 3rd Floor, Teaching Block, New Delhi 110029
| | - K Baruah
- National Vector Borne Disease Control Programme, Ministry of Health and Family Welfare, Government of India, 22 Shyam Nath Marg, New Delhi 110054, India
| | - M Soneja
- From the Department of Medicine, All India Institute of Medical Sciences, 3rd Floor, Teaching Block, New Delhi 110029
| | - A Biswas
- From the Department of Medicine, All India Institute of Medical Sciences, 3rd Floor, Teaching Block, New Delhi 110029
| |
Collapse
|
26
|
Ternovoi VA, Shvalov AN, Kartashov MY, Ponomareva EP, Tupota NL, Khoroshavin YA, Bayandin RB, Gladysheva AV, Mikryukova TP, Tregubchak TV, Loktev VB. The Viromes of Mosquitoes from the Natural Landscapes of Western Siberia. Viruses 2023; 15:1896. [PMID: 37766302 PMCID: PMC10537626 DOI: 10.3390/v15091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The metagenomic analysis of mosquitoes allows for the genetic characterization of mosquito-associated viruses in different regions of the world. This study applied a metagenomic approach to identify novel viral sequences in seven species of mosquitoes collected from the Novosibirsk region of western Siberia. Using NGS sequencing, we identified 15 coding-complete viral polyproteins (genomes) and 15 viral-like partial sequences in mosquitoes. The complete sequences for novel viruses or the partial sequences of capsid proteins, hypothetical viral proteins, and RdRps were used to identify their taxonomy. The novel viral sequences were classified within the orders Tymovirales and Picornavirales and the families Partitiviridae, Totiviridae, Tombusviridae, Iflaviridae, Nodaviridae, Permutotetraviridae, and Solemoviridae, with several attributed to four unclassified RNA viruses. Interestingly, the novel putative viruses and viral sequences were mainly associated with the mosquito Coquillettidia richardii. This study aimed to increase our understanding of the viral diversity in mosquitoes found in the natural habitats of Siberia, which is characterized by very long, snowy, and cold winters.
Collapse
Affiliation(s)
- Vladimir A. Ternovoi
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
| | - Alexander N. Shvalov
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
| | - Mikhail Yu. Kartashov
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Eugenia P. Ponomareva
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
| | - Natalia L. Tupota
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
| | - Yuri A. Khoroshavin
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
| | - Roman B. Bayandin
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
| | - Anastasia V. Gladysheva
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
| | - Tamara P. Mikryukova
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
| | - Tatyana V. Tregubchak
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
| | - Valery B. Loktev
- State Research Center Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, 630559 Koltsovo, Russia (M.Y.K.); (E.P.P.); (N.L.T.); (Y.A.K.); (R.B.B.); (A.V.G.); (T.P.M.); (T.V.T.)
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| |
Collapse
|
27
|
Carvalho T, Landim MG, Lima MLD, Bittar C, Faria BCDAO, Rahal P, de Lima MCF, Junior VFDV, Joanitti GA, Calmon MF. Synthesis of copaiba (Copaifera officinalis) oil nanoemulsion and the potential against Zika virus: An in vitro study. PLoS One 2023; 18:e0283817. [PMID: 37676868 PMCID: PMC10484457 DOI: 10.1371/journal.pone.0283817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/19/2023] [Indexed: 09/09/2023] Open
Abstract
Zika virus (ZIKV) has spread all over the world since its major outbreak in 2015. This infection has been recognized as a major global health issue due to the neurological complications related to ZIKV infection, such as Guillain-Barré Syndrome and Zika virus Congenital Syndrome. Currently, there are no vaccines or specific treatments for ZIKV infection, which makes the development of specific therapies for its treatment very important. Several studies have been developed to analyze the potential of compounds against ZIKV, with the aim of finding new promising treatments. Herein, we evaluate the ability of a copaiba (Copaifera officinalis) oil nanoemulsion (CNE) to inhibit ZIKV. First, the highest non-cytotoxic concentration of 180 μg/mL was chosen since this concentration maintains 80% cell viability up to 96h after treatment with CNE in VERO cells resulted from MTT assay. The intracellular uptake assay was performed, and confirmed the internalization of the nanoemulsion in cells at all times analyzed. VERO cells were infected with ZIKV and simultaneously treated with CNE and the nanoformulation without oil (ENE) at the highest non-toxic concentration. The results evaluated by plaque assay revealed a viral inhibition of 80% for CNE and 70% for ENE. A dose-dependence assay revealed that the CNE treatment demonstrated a dose-dependent response in the viral RNA levels, whereas all ENE tested concentrations exhibited a similar degree of reduction. Taken together, our results suggest CNE as a promising nano-sized platform to be further studied for antiviral treatments.
Collapse
Affiliation(s)
- Tamara Carvalho
- Department of Biology, São Paulo State University—UNESP, Rua Cristóvão Colombo, São José do Rio Preto, Brazil
| | - Marcela Guimarães Landim
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Campus Universitário – Centro Metropolitano, Ceilândia Sul, Brasília, Federal District, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Maria Letícia Duarte Lima
- Department of Biology, São Paulo State University—UNESP, Rua Cristóvão Colombo, São José do Rio Preto, Brazil
| | - Cíntia Bittar
- Department of Biology, São Paulo State University—UNESP, Rua Cristóvão Colombo, São José do Rio Preto, Brazil
| | - Beatriz Carvalho de Araújo Oliveira Faria
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Campus Universitário – Centro Metropolitano, Ceilândia Sul, Brasília, Federal District, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University—UNESP, Rua Cristóvão Colombo, São José do Rio Preto, Brazil
| | | | | | - Graziella Anselmo Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Campus Universitário – Centro Metropolitano, Ceilândia Sul, Brasília, Federal District, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Marilia Freitas Calmon
- Department of Biology, São Paulo State University—UNESP, Rua Cristóvão Colombo, São José do Rio Preto, Brazil
| |
Collapse
|
28
|
Chen Q, Li N, Zeng S, Wu S, Luo X, Zhang S, Zhu L, Wu J, Xie T, Bai S, Zhang H, Jiang Z, Lin S, Wu N, Jiang Y, Fang S, Wang X, Shu Y, Luo H. ZIKV infection differentially affects the transcriptional profiles in HTR8 and U251 cells. Virus Res 2023; 334:199166. [PMID: 37390859 PMCID: PMC10410584 DOI: 10.1016/j.virusres.2023.199166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
The mechanism by which Zika virus (ZIKV) causes severe birth defects in pregnant women remains unclear. Cell tropisms in placenta and brain play a crucial role in ZIKV pathogenesis, leading to congenital Zika syndrome (CZS). To identify the host factors involved in ZIKV infection, we compared the transcriptional profiles of ZIKV-infected human first-trimester placental trophoblast cells HTR8/SVneo and a human glioblastoma astrocytoma cell line U251. Our results demonstrated that ZIKV exhibited lower rates of mRNA replication and protein expression in HTR8 than in U251 cells, while showing a higher release of infectious viral particles. However, a greater number of differentially expressed genes (DEGs) were found in ZIKV-infected U251 cells than in ZIKV-infected HTR8 cells. Several of these DEGs were enriched in distinct biological processes related to the characteristics of each cell type that may contribute to foetal damage. Both cell types exhibited activation of common interferons, inflammatory cytokines, and chemokine production upon ZIKV infection. Moreover, the neutralization of tumour necrosis factor-alpha (TNF-α) promoted ZIKV infection in both trophoblasts and glioblastoma astrocytoma cells. Overall, we identified multiple DEGs associated with ZIKV pathogenesis.
Collapse
Affiliation(s)
- Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shike Zeng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Huizhou Municipal Central Hospital, Huizhou 516001, PR China
| | - Shu Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen 518172, PR China
| | - Xin Luo
- The Emergency Department, Eighth People's Hospital of Nanyang City, Nanyang 473000, PR China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Shaoxing Center for Disease Control and Prevention, Shaoxing 312075, PR China
| | - Ting Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shaohui Bai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hao Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhiyuan Jiang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shaoli Lin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, PR China
| | - Ying Jiang
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, PR China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, PR China
| | - Xin Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, PR China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, PR China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, PR China.
| |
Collapse
|
29
|
Kasbergen LMR, Nieuwenhuijse DF, de Bruin E, Sikkema RS, Koopmans MPG. The increasing complexity of arbovirus serology: An in-depth systematic review on cross-reactivity. PLoS Negl Trop Dis 2023; 17:e0011651. [PMID: 37738270 PMCID: PMC10550177 DOI: 10.1371/journal.pntd.0011651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/04/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Diagnosis of arbovirus infection or exposure by antibody testing is becoming increasingly difficult due to global expansion of arboviruses, which induce antibodies that may (cross-)react in serological assays. We provide a systematic review of the current knowledge and knowledge gaps in differential arbovirus serology. The search included Medline, Embase and Web of Science databases and identified 911 publications which were reduced to 102 after exclusion of studies not providing data on possible cross-reactivity or studies that did not meet the inclusion criteria regarding confirmation of virus exposure of reference population sets. Using a scoring system to further assess quality of studies, we show that the majority of the selected papers (N = 102) provides insufficient detail to support conclusions on specificity of serological outcomes with regards to elucidating antibody cross-reactivity. Along with the lack of standardization of assays, metadata such as time of illness onset, vaccination, infection and travel history, age and specificity of serological methods were most frequently missing. Given the critical role of serology for diagnosis and surveillance of arbovirus infections, better standards for reporting, as well as the development of more (standardized) specific serological assays that allow discrimination between exposures to multiple different arboviruses, are a large global unmet need.
Collapse
Affiliation(s)
| | - David F. Nieuwenhuijse
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Reina S. Sikkema
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Graham M, Zhang P. Cryo-electron tomography to study viral infection. Biochem Soc Trans 2023; 51:1701-1711. [PMID: 37560901 PMCID: PMC10578967 DOI: 10.1042/bst20230103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Developments in cryo-electron microscopy (cryo-EM) have been interwoven with the study of viruses ever since its first applications to biological systems. Following the success of single particle cryo-EM in the last decade, cryo-electron tomography (cryo-ET) is now rapidly maturing as a technology and catalysing great advancement in structural virology as its application broadens. In this review, we provide an overview of the use of cryo-ET to study viral infection biology, discussing the key workflows and strategies used in the field. We highlight the vast body of studies performed on purified viruses and virus-like particles (VLPs), as well as discussing how cryo-ET can characterise host-virus interactions and membrane fusion events. We further discuss the importance of in situ cellular imaging in revealing previously unattainable details of infection and highlight the need for validation of high-resolution findings from purified ex situ systems. We give perspectives for future developments to achieve the full potential of cryo-ET to characterise the molecular processes of viral infection.
Collapse
Affiliation(s)
- Miles Graham
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, U.K
| |
Collapse
|
31
|
Zheng N, Vilela AM, Deshpande S. How scared are Americans of the Zika virus? The role of threat, efficacy, and third-person perception to induce protective behaviors. Health Mark Q 2023; 40:289-308. [PMID: 35775882 DOI: 10.1080/07359683.2022.2092376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study examines how public perception of threat and efficacy (on self and others) influence their tendency to take preventive action against the Zika virus by surveying 1,152 U.S. adults in Texas and Florida. Findings show that individuals were likely to take protective actions when they: (1) saw a high risk of the disease (high threat) and were confident about their ability to reduce the danger (high efficacy); and (2) perceived others as having a high risk (high threat), but lacked the ability to reduce the danger (low efficacy). Further, the study discusses practical implications for the design of public health campaigns.
Collapse
Affiliation(s)
- Nan Zheng
- School of Media Arts and Design, James Madison University, Harrisonburg, VA, USA
| | - Alexandra M Vilela
- School of Media Arts and Design, James Madison University, Harrisonburg, VA, USA
| | - Sameer Deshpande
- Social Marketing at Griffith, Griffith University, Nathan, Australia
| |
Collapse
|
32
|
Ayusso GM, Lima MLD, da Silva Sanches PR, Santos IA, Martins DOS, da Conceição PJP, Carvalho T, da Costa VG, Bittar C, Merits A, Santos-Filho NA, Cilli EM, Jardim ACG, de Freitas Calmon M, Rahal P. The Dimeric Peptide (KKYRYHLKPF) 2K Shows Broad-Spectrum Antiviral Activity by Inhibiting Different Steps of Chikungunya and Zika Virus Infection. Viruses 2023; 15:v15051168. [PMID: 37243254 DOI: 10.3390/v15051168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.
Collapse
Affiliation(s)
- Gabriela Miranda Ayusso
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| | - Maria Letícia Duarte Lima
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| | | | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil
| | - Daniel Oliveira Silva Martins
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil
| | | | - Tamara Carvalho
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| | - Cíntia Bittar
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Andres Merits
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia
| | | | - Eduardo Maffud Cilli
- Institute of Chemistry, São Paulo State University, Araraquara 14800-060, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil
| | - Marilia de Freitas Calmon
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| | - Paula Rahal
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|
33
|
Rosado LEP, Martelli CMT, Brickley EB, Gomes MBF, de Toledo Lima T, da Costa PSS, de Ávila MP, Viggiano MB, do Amaral WN, de Rezende Feres VC, Fiaccadori FS, de Sene Amancio Zara AL, Ferreira-Lopes A, Turchi MD. Risk of adverse pregnancy and infant outcomes associated with prenatal Zika virus infection: a post-epidemic cohort in Central-West Brazil. Sci Rep 2023; 13:7335. [PMID: 37147405 PMCID: PMC10161159 DOI: 10.1038/s41598-023-33334-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
This study aimed to estimate the risks of adverse infant outcomes in the first year of life related to prenatal Zika virus (ZIKV) exposure. A prospective cohort of pregnant women with rash was recruited in Central-West Brazil in a post-epidemic period (January 2017 to April 2019). We evaluated participants' medical histories and performed ZIKV diagnostic testing using molecular (reverse transcription polymerase chain reaction [RT-PCR]) and serologic (immunoglobulin [Ig]M and plaque reduction neutralization tests [PRNT90]) assays. The ZIKV-positive group included both RT-PCR-confirmed cases as well as IgM and/or PRNT90-positive probable cases. Children were evaluated at birth and in the first 12 months of life. Transfontanellar ultrasound, central nervous system computed tomography, eye fundoscopy and retinography were performed. We estimated the absolute risk and 95% confidence interval (95% CI) of adverse infant outcomes among confirmed prenatally ZIKV-exposed children. Among 81 pregnant women with rash, 43 (53.1%) were ZIKV infected. The absolute risk of microcephaly among offspring of ZIKV-infected pregnant women was 7.0% (95% CI: 1.5-19.1), including the two cases of microcephaly detected prenatally and one detected postnatally. In total, 54.5% (95% CI: 39.8-68.7) of children in the ZIKV-exposed group had at least one ophthalmic abnormality, with the most frequent abnormalities being focal pigmentary mottling and chorioretinal atrophy or scarring. Our findings reinforce the importance of long-term monitoring of prenatally ZIKV-exposed children born apparently asymptomatic for Congenital Zika Syndrome.
Collapse
Affiliation(s)
- Luiza Emylce Pela Rosado
- Graduate Program in Tropical Medicine and Public Health of the Federal University of Goias, Goiânia, Brazil
- Obstetrics Department, Maternal and Infant Hospital of Goias State, Goiânia, Brazil
| | | | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Maria Barbara Franco Gomes
- Graduate Program in Health Sciences of the Federal University of Goias, Goiânia, Brazil
- Pediatric Department, Maternal and Infant Hospital of Goias State, Goiânia, Brazil
| | - Talita de Toledo Lima
- Graduate Program in Health Sciences of the Federal University of Goias, Goiânia, Brazil
- Reference Center in Ophthalmology of the Federal University of Goias, Goiânia, Brazil
| | | | - Marcos Pereira de Ávila
- Reference Center in Ophthalmology of the Federal University of Goias, Goiânia, Brazil
- Retina and Vitreous Department, School of Medicine, Federal University of Goias, Goiânia, Brazil
| | | | | | | | - Fabiola Souza Fiaccadori
- Virology Department, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Brazil
| | | | | | - Marilia Dalva Turchi
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Brazil.
| |
Collapse
|
34
|
Capra D, DosSantos MF, Sanz CK, Acosta Filha LG, Nunes P, Heringer M, Ximenes-da-Silva A, Pessoa L, de Mattos Coelho-Aguiar J, da Fonseca ACC, Mendes CB, da Rocha LS, Devalle S, Niemeyer Soares Filho P, Moura-Neto V. Pathophysiology and mechanisms of hearing impairment related to neonatal infection diseases. Front Microbiol 2023; 14:1162554. [PMID: 37125179 PMCID: PMC10140533 DOI: 10.3389/fmicb.2023.1162554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The inner ear, the organ of equilibrium and hearing, has an extraordinarily complex and intricate arrangement. It contains highly specialized structures meticulously tailored to permit auditory processing. However, hearing also relies on both peripheral and central pathways responsible for the neuronal transmission of auditory information from the cochlea to the corresponding cortical regions. Understanding the anatomy and physiology of all components forming the auditory system is key to better comprehending the pathophysiology of each disease that causes hearing impairment. In this narrative review, the authors focus on the pathophysiology as well as on cellular and molecular mechanisms that lead to hearing loss in different neonatal infectious diseases. To accomplish this objective, the morphology and function of the main structures responsible for auditory processing and the immune response leading to hearing loss were explored. Altogether, this information permits the proper understanding of each infectious disease discussed.
Collapse
Affiliation(s)
- Daniela Capra
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos F. DosSantos
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Odontologia (PPGO), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolina K. Sanz
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lionete Gall Acosta Filha
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Priscila Nunes
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Manoela Heringer
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Luciana Pessoa
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Juliana de Mattos Coelho-Aguiar
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Carolina Carvalho da Fonseca
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | | | - Sylvie Devalle
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Paulo Niemeyer Soares Filho
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Van Rompay KK, Coffey LL, Yee JL, Singapuri A, Stuart J, Lanteri MC, Maria FS, Lu K, Singh I, Bakkour S, Stone M, Williamson PC, Muench MO, Busch MP, Simmons G. Plasma transfusion-transmission of Zika virus in mice and macaques. Transfusion 2023; 63:574-585. [PMID: 36621777 PMCID: PMC10134791 DOI: 10.1111/trf.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Zika virus (ZIKV) epidemics with infections in pregnant women are associated with severe neurological disease in newborns. Although an arbovirus, ZIKV is also blood transfusion-transmitted (TT). Greater knowledge of the efficiency of ZIKV TT would aid decisions on testing and pathogen reduction technologies (PRT). STUDY DESIGN AND METHODS Plasma units from ZIKV RNA-reactive blood donors were used to study infectivity in vitro, in mice, and in macaques. Furthermore, plasma units were subjected to PRT using amotosalen/ultraviolet light A (A/UVA) before transfusion. RESULTS In vitro infectivity of ZIKV RNA-reactive plasma varied between 100 and 1000 international units (IU) of ZIKV RNA. Immunodeficient mice were more sensitive with as low as 32 IU sufficient to infect 50% of mice. 50-5500 IU of RNA led to TT in macaques using dose escalation of three different RNA-positive, seronegative plasma units. In contrast, RNA-reactive units collected postseroconversion were not infectious in macaques, even at a dose of 9 million IU RNA. After A/UVA PRT, transfusion of plasma containing up to 18 million IU was no longer infectious in vitro and did not result in ZIKV TT in macaques. CONCLUSION Significant risks of ZIKV TT are likely confined to a relatively short viremic window before seroconversion, and that sensitive nucleic acid amplification testing likely identifies the majority of infectious plasma. PRT was demonstrated to be effective at preventing ZIKV TT. Considering that there is no approved ZIKV vaccine, these data are relevant to mitigate the risk of TT during the future ZIKV outbreaks.
Collapse
Affiliation(s)
- Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, CA, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - JoAnn L. Yee
- California National Primate Research Center, University of California, Davis, CA, United States of America
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - Jackson Stuart
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | | | | | - Kai Lu
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Inderdeep Singh
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Sonia Bakkour
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | | | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
36
|
Conway MJ, Haslitt DP, Swarts BM. Targeting Aedes aegypti Metabolism with Next-Generation Insecticides. Viruses 2023; 15:469. [PMID: 36851683 PMCID: PMC9964334 DOI: 10.3390/v15020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV), zika virus (ZIKV), and other emerging infectious diseases of concern. A key disease mitigation strategy is vector control, which relies heavily on the use of insecticides. The development of insecticide resistance poses a major threat to public health worldwide. Unfortunately, there is a limited number of chemical compounds available for vector control, and these chemicals can have off-target effects that harm invertebrate and vertebrate species. Fundamental basic science research is needed to identify novel molecular targets that can be exploited for vector control. Next-generation insecticides will have unique mechanisms of action that can be used in combination to limit selection of insecticide resistance. Further, molecular targets will be species-specific and limit off-target effects. Studies have shown that mosquitoes rely on key nutrients during multiple life cycle stages. Targeting metabolic pathways is a promising direction that can deprive mosquitoes of nutrition and interfere with development. Metabolic pathways are also important for the virus life cycle. Here, we review studies that reveal the importance of dietary and stored nutrients during mosquito development and infection and suggest strategies to identify next-generation insecticides with a focus on trehalase inhibitors.
Collapse
Affiliation(s)
- Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Douglas P. Haslitt
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
37
|
Ma X, Jia Y, Yuan J, Tang QJ, Gao WC, Zhou GF, Yang RH, Pang W, Zheng CB. Inhibiting cardiac autophagy suppresses Zika virus replication. J Med Virol 2023; 95:e28483. [PMID: 36625392 DOI: 10.1002/jmv.28483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Zika Virus (ZIKV) infection is a global threat. Other than the congenital neurological disorders it causes, ZIKV infection has been reported to induce cardiac complications. However, the precise treatment plans are unclear. Thus, illustrating the pathogenic mechanism of ZIKV in the heart is critical to providing effective prevention and treatment of ZIKV infection. The mechanism of autophagy has been reported recently in Dengue virus infection. Whether or not autophagy participates in ZIKV infection and its role remains unrevealed. This study successfully established the in vitro cardiomyocytes and in vivo mouse models of ZIKV infection to investigate the involvement of autophagy in ZIKV infection. The results showed that ZIKV infection is both time and gradient-dependent. The key autophagy protein, LC3B, increased remarkably after ZIKV infection. Meanwhile, autophagic flux was detected by immunofluorescence. Applying autophagy inhibitors decreased the LC3B levels. Furthermore, the number of viral copies was quantified to evaluate the influence of autophagy during infection. We found that autophagy was actively involved in the ZIKV infection and the inhibition of autophagy could effectively reduce the viral copies, suggesting a potential intervention strategy for reducing ZIKV infection and the undesired complications caused by ZIKV.
Collapse
Affiliation(s)
- Xin Ma
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Yinnong Jia
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Jing Yuan
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Qiu-Ju Tang
- Chinese Academy of Sciences, Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Shenzhen, People's Republic of China
| | - Wen-Cong Gao
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Guang-Feng Zhou
- Key Laboratory of Animal Models and Human Diseases Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ren-Hua Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Diseases Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chang-Bo Zheng
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
38
|
Sun N, Zhang RR, Song GY, Cai Q, Aliyari SR, Nielsen-Saines K, Jung JU, Yang H, Cheng G, Qin CF. SERTAD3 induces proteasomal degradation of ZIKV capsid protein and represents a therapeutic target. J Med Virol 2023; 95:e28451. [PMID: 36594413 PMCID: PMC9975044 DOI: 10.1002/jmv.28451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne RNA virus that belongs to the Flaviviridae family. While flavivirus replication is known to occur in the cytoplasm, a significant portion of the viral capsid protein localizes to the nucleus during infection. However, the role of the nuclear capsid is less clear. Herein, we demonstrated SERTA domain containing 3 (SERTAD3) as an antiviral interferon stimulatory gene product had an antiviral ability to ZIKV but not JEV. Mechanistically, we found that SERTAD3 interacted with the capsid protein of ZIKV in the nucleolus and reduced capsid protein abundance through proteasomal degradation. Furthermore, an eight amino acid peptide of SERTAD3 was identified as the minimum motif that binds with ZIKV capsid protein. Remarkably, the eight amino acids synthetic peptide from SERTAD3 significantly prevented ZIKV infection in culture and pregnant mouse models. Taken together, these findings not only reveal the function of SERTAD3 in promoting proteasomal degradation of a specific viral protein but also provide a promising host-targeted therapeutic strategy against ZIKV infection.
Collapse
Affiliation(s)
- Nina Sun
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guang-Yuan Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Qiaomei Cai
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Saba R. Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Karin Nielsen-Saines
- Division of Pediatric Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Heng Yang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Basic Medicine, Anhui Medical University, Hefei, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Factors Affecting Arbovirus Midgut Escape in Mosquitoes. Pathogens 2023; 12:pathogens12020220. [PMID: 36839492 PMCID: PMC9963182 DOI: 10.3390/pathogens12020220] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Arboviral diseases spread by mosquitoes cause significant morbidity and mortality throughout much of the world. The treatment and prevention of these diseases through medication and vaccination is often limited, which makes controlling arboviruses at the level of the vector ideal. One way to prevent the spread of an arbovirus would be to stop its vector from developing a disseminated infection, which is required for the virus to make its way to the saliva of the mosquito to be potentially transmitted to a new host. The midgut of the mosquito provides one such opportunity to stop an arbovirus in its tracks. It has been known for many years that in certain arbovirus-vector combinations, or under certain circumstances, an arbovirus can infect and replicate in the midgut but is unable to escape from the tissue to cause disseminated infection. This situation is known as a midgut escape barrier. If we better understand why this barrier occurs, it might aid in the development of more informed control strategies. In this review, we discuss how the midgut escape barrier contributes to virus-vector specificity and possible mechanisms that may allow this barrier to be overcome in successful virus-vector combinations. We also discuss several of the known factors that either increase or decrease the likelihood of midgut escape.
Collapse
|
40
|
Park G, Park H, Park SC, Jang M, Yoon J, Ahn JH, Lee T. Recent Developments in DNA-Nanotechnology-Powered Biosensors for Zika/Dengue Virus Molecular Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:361. [PMID: 36678114 PMCID: PMC9864780 DOI: 10.3390/nano13020361] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are highly contagious and lethal mosquito-borne viruses. Global warming is steadily increasing the probability of ZIKV and DENV infection, and accurate diagnosis is required to control viral infections worldwide. Recently, research on biosensors for the accurate diagnosis of ZIKV and DENV has been actively conducted. Moreover, biosensor research using DNA nanotechnology is also increasing, and has many advantages compared to the existing diagnostic methods, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). As a bioreceptor, DNA can easily introduce a functional group at the 5' or 3' end, and can also be used as a folded structure, such as a DNA aptamer and DNAzyme. Instead of using ZIKV and DENV antibodies, a bioreceptor that specifically binds to viral proteins or nucleic acids has been fabricated and introduced using DNA nanotechnology. Technologies for detecting ZIKV and DENV can be broadly divided into electrochemical, electrical, and optical. In this review, advances in DNA-nanotechnology-based ZIKV and DENV detection biosensors are discussed.
Collapse
Affiliation(s)
- Goeun Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- TL Bioindustry, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
41
|
Mac PA, Airiohuodion PE, Zubair S, Tadele M, Aighobahi JO, Anyaike C, Kroeger A, Panning M. Antibody seropositivity and endemicity of chikungunya and Zika viruses in Nigeria. ANIMAL DISEASES 2023; 3:7. [PMID: 36968287 PMCID: PMC10034229 DOI: 10.1186/s44149-023-00070-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/16/2023] [Indexed: 03/25/2023] Open
Abstract
Mosquito-borne infections are of global health concern because of their rapid spread and upsurge, which creates a risk for coinfections. chikungunya virus (CHIKV), an arbovirus disease transmitted by Aedes aegypti or A. albopictus, and malaria, a parasitic disease transmitted by Anopheles gambiae, are prevalent in Nigeria and neighbouring countries, but their burden and possible coinfections are poorly understood. In this study, we investigated the antibody seropositivity and endemicity of chikungunya and Zika viruses (ZIKV) in three regions of Nigeria. A cross-sectional sero-survey was conducted on 871 participants. Samples were collected from outpatients by simple random sampling. Analyses of the samples were performed using recomLine Tropical Fever for the presence of antibody serological marker IgG immunoblot with CHIKV VLP (virus like particle), ZIKV NS1 and ZIKV Equad according to manufacturers’ instructions and malaria RDT for malaria parasite. There was a significantly higher antibody seropositivity against CHIKV in the central region than in the northern and southern regions (69.5%, 291/419), while ZIKV-seropositivity (22.4%, 34/152) and CHIKV-ZIKV co-circulating antibody seropositivity (17.8%, 27/152) were notably higher in the southern region than in the central and northern regions. This investigation revealed an unexpectedly high antibody seropositivity and concealed endemicity of CHIKV and ZIKV in three Nigerian regions. The seropositivity of detectable antibodies differed among the three geographical locations.
Collapse
Affiliation(s)
- Peter Asaga Mac
- Institute of Virology, University Medical Freiburg, Hermann Herder Str, 11, 79104 Freiburg, Germany
| | - Philomena E. Airiohuodion
- grid.3575.40000000121633745World Health Organization, Special Programme for Research and Training in Tropical Diseases (TDR), Avenue Appia 20, 1211 Geneva 27, Switzerland
| | - Shaistha Zubair
- grid.3575.40000000121633745World Health Organization, WHO/NTD Unit, Avenue Appia 20, 1211 Geneva 27, Switzerland
- grid.449054.80000 0004 0426 5233Maldives National University, Buruzu, Magu, Male, Maldives
| | - Markos Tadele
- grid.463251.70000 0001 2195 6683Ethiopian Institute Of Agricultural Research/EIAR, Addis Ababa, Ethiopia
| | - Jude, O. Aighobahi
- Icon Clinical Research, Heinrich-Hertz Starsse 26, 63225 Langen Hessen, Berlin, Germany
| | - Chukwuma Anyaike
- grid.434433.70000 0004 1764 1074Federal Ministry of Health, National Tuberculosis and Leprosy ControlProgramme, Abuja, Nigeria
| | - Axel Kroeger
- grid.5963.9Centre for Medicine and Society, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, University Medical Freiburg, Hermann Herder Str, 11, 79104 Freiburg, Germany
| |
Collapse
|
42
|
Evolution and emergence of mosquito-borne viruses of medical importance: towards a routine metagenomic surveillance approach. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467423000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Abstract
During the last two decades, the world has witnessed the emergence and re-emergence of arthropod-borne viruses, better known as arboviruses. The close contact between sylvatic, rural and peri-urban vector species and humans has been mainly determined by the environment-modifying human activity. The resulting interactions have led to multiple dead-end host infections and have allowed sylvatic arboviruses to eventually adapt to new vectors and hosts, contributing to the establishment of urban transmission cycles of some viruses with enormous epidemiologic impact. The metagenomic next-generation sequencing (NGS) approach has allowed obtaining unbiased sequence information of millions of DNA and RNA molecules from clinical and environmental samples. Robust bioinformatics tools have enabled the assembly of individual sequence reads into contigs and scaffolds partially or completely representing the genomes of the microorganisms and viruses being present in biological samples of clinical relevance. In this review, we describe the different ecological scenarios for the emergence of viral diseases, the virus adaptation process required for the establishment of a new transmission cycle and the usefulness of NGS and computational methods for the discovery and routine genomic surveillance of mosquito-borne viruses in their ecosystems.
Collapse
|
43
|
Leon KE, Khalid MM, Flynn RA, Fontaine KA, Nguyen TT, Kumar GR, Simoneau CR, Tomar S, Jimenez-Morales D, Dunlap M, Kaye J, Shah PS, Finkbeiner S, Krogan NJ, Bertozzi C, Carette JE, Ott M. Nuclear accumulation of host transcripts during Zika Virus Infection. PLoS Pathog 2023; 19:e1011070. [PMID: 36603024 PMCID: PMC9847913 DOI: 10.1371/journal.ppat.1011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/18/2023] [Accepted: 12/17/2022] [Indexed: 01/06/2023] Open
Abstract
Zika virus (ZIKV) infects fetal neural progenitor cells (NPCs) causing severe neurodevelopmental disorders in utero. Multiple pathways involved in normal brain development are dysfunctional in infected NPCs but how ZIKV centrally reprograms these pathways remains unknown. Here we show that ZIKV infection disrupts subcellular partitioning of host transcripts critical for neurodevelopment in NPCs and functionally link this process to the up-frameshift protein 1 (UPF1). UPF1 is an RNA-binding protein known to regulate decay of cellular and viral RNAs and is less expressed in ZIKV-infected cells. Using infrared crosslinking immunoprecipitation and RNA sequencing (irCLIP-Seq), we show that a subset of mRNAs loses UPF1 binding in ZIKV-infected NPCs, consistent with UPF1's diminished expression. UPF1 target transcripts, however, are not altered in abundance but in subcellular localization, with mRNAs accumulating in the nucleus of infected or UPF1 knockdown cells. This leads to diminished protein expression of FREM2, a protein required for maintenance of NPC identity. Our results newly link UPF1 to the regulation of mRNA transport in NPCs, a process perturbed during ZIKV infection.
Collapse
Affiliation(s)
- Kristoffer E. Leon
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Medical Scientist Training Program, University of California, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Mir M. Khalid
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Ryan A. Flynn
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Krystal A. Fontaine
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Thong T. Nguyen
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - G. Renuka Kumar
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Camille R. Simoneau
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Sakshi Tomar
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David Jimenez-Morales
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Mariah Dunlap
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Julia Kaye
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Priya S. Shah
- Departments of Chemical Engineering and Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Steven Finkbeiner
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, United States of America
- Departments of Neurology and Physiology, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Carolyn Bertozzi
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
44
|
Friedman-Klabanoff DJ, Birkhold M, Short MT, Wilson TR, Meneses CR, Lacsina JR, Oliveira F, Kamhawi S, Valenzuela JG, Hunsberger S, Mateja A, Stoloff G, Pleguezuelos O, Memoli MJ, Laurens MB. Safety and immunogenicity of AGS-v PLUS, a mosquito saliva peptide vaccine against arboviral diseases: A randomized, double-blind, placebo-controlled Phase 1 trial. EBioMedicine 2022; 86:104375. [PMID: 36436281 PMCID: PMC9700263 DOI: 10.1016/j.ebiom.2022.104375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Immunity to mosquito salivary proteins could provide protection against multiple mosquito-borne diseases and significantly impact public health. We evaluated the safety and immunogenicity of AGS-v PLUS, a mosquito salivary peptide vaccine, in healthy adults 18-50 years old. METHODS We conducted a randomized, double-blind, placebo-controlled Phase 1 study of AGS-v PLUS administered subcutaneously on Days 1 and 22 at the Center for Vaccine Development and Global Health, Baltimore, MD, USA. Participants were block randomized 1:1:1:1:1 to two doses saline placebo, two doses AGS-v PLUS, AGS-v PLUS/ISA-51 and saline placebo, two doses AGS-v PLUS/ISA-51, or two doses AGS-v PLUS/Alhydrogel. Primary endpoints were safety (all participants receiving ≥1 injection) and antibody and cytokine responses (all participants with day 43 samples), analysed by intention to treat. FINDINGS Between 26 August 2019 and 25 February 2020, 51 participants were enrolled and randomized, 11 into the single dose AGS-v PLUS/ISA-51 group and ten in other groups. Due to COVID-19, 15 participants did not return for day 43 samplings. Participants experienced no treatment-emergent or serious adverse events. All solicited symptoms in 2/10 placebo recipients and 22/41 AGS-v PLUS recipients after dose one and 1/10 placebo recipients and 22/41 AGS-v PLUS recipients after dose two were mild/moderate except for one severe fever the day after vaccination (placebo group). Only injection site pain was more common in vaccine groups (15/51 after dose 1 and 11/51 after dose 2) versus placebo. Compared to placebo, all vaccine groups had significantly greater fold change in anti-AGS-v PLUS IgG and IFN-ɣ from baseline. INTERPRETATION AGS-v PLUS had favourable safety profile and induced robust immune responses. Next steps will determine if findings translate into clinical efficacy against mosquito-borne diseases. FUNDING UK Department of Health and Social Care.
Collapse
Affiliation(s)
- DeAnna J Friedman-Klabanoff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Megan Birkhold
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mara T Short
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Timothy R Wilson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Claudio R Meneses
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joshua R Lacsina
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sally Hunsberger
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Allyson Mateja
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | - Matthew J Memoli
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Jung HG, Cho H, Kim M, Jung H, Bak Y, Lee SY, Seo HY, Son YM, Woo H, Yoon G, Kim SJ, Oh JW. Influence of Zika virus 3'-end sequence and nonstructural protein evolution on the viral replication competence and virulence. Emerg Microbes Infect 2022; 11:2447-2465. [PMID: 36149812 PMCID: PMC9621255 DOI: 10.1080/22221751.2022.2128433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Zika virus (ZIKV) has been circulating in human networks over 70 years since its first appearance in Africa, yet little is known about whether the viral 3'-terminal sequence and nonstructural (NS) protein diverged genetically from ancient ZIKV have different effects on viral replication and virulence in currently prevailing Asian lineage ZIKV. Here we show, by a reverse genetics approach using an infectious cDNA clone for a consensus sequence (Con1) of ZIKV, which represents Asian ZIKV strains, and another clone derived from the MR766 strain isolated in Uganda, Africa in 1947, that the 3'-end sequence -UUUCU-3' homogeneously present in MR766 genome and the -GUCU-3' sequence strictly conserved in Asian ZIKV isolates are functionally equivalent in viral replication and gene expression. By gene swapping experiments using the two infectious cDNA clones, we show that the NS1-5 proteins of MR766 enhance replication competence of ZIKV Con1. The Con1, which was less virulent than MR766, acquired severe bilateral hindlimb paralysis when its NS1-5 genes were replaced by the counterparts of MR766 in type I interferon receptor (IFNAR1)-deficient A129 mice. Moreover, MR766 NS5 RNA-dependent RNA polymerase (RdRp) alone also rendered the Con1 virulent, despite there being no difference in RdRp activity between MR766 and Con1 NS5 proteins. By contrast, the Con1 derivatives expressing MR766 Nsps, like Con1, did not develop severe disease in wild-type mice treated with an IFNAR1 blocking antibody. Together, our findings uncover an unprecedented role for ZIKV NS proteins in determining viral pathogenicity in immunocompromised hosts.
Collapse
Affiliation(s)
- Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hee Cho
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Haewon Jung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeonju Bak
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Se-Young Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Han Young Seo
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Yu-Min Son
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hawon Woo
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Gone Yoon
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
46
|
Genomic Characterization of Twelve Lytic Bacteriophages Infecting Midgut Bacteria of Aedes aegypti. Curr Microbiol 2022; 79:385. [DOI: 10.1007/s00284-022-03092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
47
|
Vaziri S, Pour SH, Akrami-Mohajeri F. Zika virus as an emerging arbovirus of international public health concern. Osong Public Health Res Perspect 2022; 13:341-351. [DOI: 10.24171/j.phrp.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Zika virus (ZIKV) was identified in 1947 in a rhesus monkey during an investigation of the yellow fever virus in the Zika Forest of Uganda; it was also isolated later from humans in Nigeria. The main distribution areas of ZIKV were the African mainland and South-East Asia in the 1980s, Micronesia in 2007, and more recently the Americas in 2014. ZIKV belongs to the Flaviviridae family and Flavivirus genus. ZIKV infection, which is transmitted by Aedes mosquitoes, is an emerging arbovirus disease. The clinical symptoms of ZIKV infection are fever, headache, rashes, arthralgia, and conjunctivitis, which clinically resemble dengue fever syndrome. Sometimes, ZIKV infection has been associated with Guillain-Barré syndrome and microcephaly. At the end of 2015, following an increase in cases of ZIKV infection associated with Guillain-Barré syndrome and microcephaly in newborns in Brazil, the World Health Organization declared a global emergency. Therefore, considering the global distribution and pathogenic nature of this virus, the current study aimed at reviewing the virologic features, transmission patterns, clinical manifestations, diagnosis, treatment, and prevention of ZIKV infection.
Collapse
|
48
|
Guo Y, Guo J, Li Y. Wolbachia wPip Blocks Zika Virus Transovarial Transmission in Aedes albopictus. Microbiol Spectr 2022; 10:e0263321. [PMID: 35894613 PMCID: PMC9603370 DOI: 10.1128/spectrum.02633-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/14/2022] [Indexed: 01/04/2023] Open
Abstract
Wolbachia is being developed as a biological tool to suppress mosquito populations and/or interfere with their transmitted viruses. Adult males with an artificial Wolbachia infection have been released, successfully yielding population suppression in multiple field trials. The main characteristic of the artificial Wolbachia-infected mosquitoes used in the suppression program is the lower vector competence than that in native infected/uninfected mosquitoes in horizontal and vertical transmission. Our previous studies have demonstrated that the Aedes albopictus HC line infected with a trio of Wolbachia strains exhibited almost complete blockade of dengue virus (DENV) and Zika virus (ZIKV) in horizontal and vertical transmission. However, the extent to which Wolbachia inhibits virus transovarial transmission is unknown since no studies have been performed to determine whether Wolbachia protects ovarian cells against viral infection. Here, we employed ovarian cells of the Ae. albopictus GUA (a wild-type mosquito line superinfected with two native Wolbachia strains, wAlbA and wAlbB), HC, and GT lines (tetracycline-cured, Wolbachia-uninfected mosquitoes), which exhibit key traits, and compared them to better understand how Wolbachia inhibits ZIKV transovarial transmission. Our results showed that the infection rate of adult GT progeny was significantly higher than that of GUA progeny during the first and second gonotrophic cycles. In contrast, the infection rates of adult GT and GUA progeny were not significantly different during the third gonotrophic cycle. All examined adult HC progeny from three gonotrophic cycles were negative for ZIKV infection. A strong negative linear correlation existed between Wolbachia density and ZIKV load in the ovaries of mosquitoes. Although there is no obvious coexistence area in the ovaries for Wolbachia and ZIKV, host immune responses may play a role in Wolbachia blocking ZIKV expansion and maintenance in the ovaries of Ae. albopictus. These results will aid in understanding Wolbachia-ZIKV interactions in mosquitoes. IMPORTANCE Area-wide application of Wolbachia to suppress mosquito populations and their transmitted viruses has achieved success in multiple countries. However, the mass release of Wolbachia-infected male mosquitoes involves a potential risk of accidentally releasing fertile females. In this study, we employed ovarian cells of the Ae. albopictus GUA, HC, and GT lines, which exhibit key traits, and compared them to better understand how Wolbachia inhibits ZIKV transovarial transmission. Our results showed an almost complete blockade of ZIKV transmission in HC female mosquitoes. Wolbachia in natively infected GUA mosquitoes negative affected ZIKV, and this interference was shown by slightly lower loads than those in HC mosquitoes. Overall, our work helps show how Wolbachia blocks ZIKV expansion and maintenance in the ovaries of Ae. albopictus and aids in understanding Wolbachia-ZIKV interactions in mosquitoes.
Collapse
Affiliation(s)
- Yan Guo
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong, China
| | - Jiatian Guo
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yifeng Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong, China
| |
Collapse
|
49
|
Wu Y, Yang R, Wu Q, Huang M, Shu B, Wu W, Sun B, Xia J, Chen X, Liao Y. Trace Analysis of Emerging Virus: An Ultrasensitive ECL-Scan Imaging System for Viral Infectious Disease. ACS OMEGA 2022; 7:37499-37508. [PMID: 36312431 PMCID: PMC9609065 DOI: 10.1021/acsomega.2c04280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Emerging infectious diseases have brought a huge impact on human society in recent years. The outbreak of Zika virus (ZIKV) in the Americas resulted in a large number of babies born with microcephaly. More seriously, the Coronavirus Disease 2019 (COVID-19) was globally spread and caused immeasurable damages. Thus, the monitoring of highly pathogenic viruses is important to prevent and control emerging infectious diseases. Herein, a dendritic polymer probe-amplified ECL-scan imaging system was constructed to realize trace analysis of viral emerging infectious diseases. A dendritic polymer probe was employed as the efficient signal emitter component that could generate an amplified ECL signal on the integrated chip, and the signal was detected by a single-photon level charge coupled device-based ECL-scan imaging system. With this strategy, the ZIKV in a complex system of blood, urine, and saliva was detected. The results indicated that a high sensitivity of 50 copies and superior specificity were achieved. Furthermore, this strategy realized highly sensitive detection (10 copies) of the S and N protein gene sequence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov2) and spiked pseudovirus samples. Thus, the dendritic polymer probe-amplified ECL-scan imaging system suitably met the strict clinical requirements for trace analysis of an emerging virus, and thus has the potential to serve as a paradigm for monitoring emerging infectious diseases.
Collapse
Affiliation(s)
- Yunxia Wu
- Department
of Burn Surgery & Department of Clinical Laboratory, First People’s Hospital of Foshan, Foshan 528000, China
| | - Ronghua Yang
- Department
of Burn and Plastic Surgery, Guangzhou First
People’s Hospital, Guangzhou 510180, China
| | - Qikang Wu
- Department
of Burn Surgery & Department of Clinical Laboratory, First People’s Hospital of Foshan, Foshan 528000, China
| | - Mingxing Huang
- Department
of Infectious Disease, Fifth Affiliated
Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Bowen Shu
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, China
| | - Wenjie Wu
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, China
| | - Baoqing Sun
- Guangzhou
Institute of Respiratory Health, State Key Laboratory of Respiratory
Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jinyu Xia
- Department
of Infectious Disease, Fifth Affiliated
Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xiaodong Chen
- Department
of Burn Surgery & Department of Clinical Laboratory, First People’s Hospital of Foshan, Foshan 528000, China
| | - Yuhui Liao
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, China
- Department
of Infectious Disease, Fifth Affiliated
Hospital of Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
50
|
Campos KB, Alomar AA, Eastmond BH, Obara MT, Alto BW. Brazilian Populations of Aedes aegypti Resistant to Pyriproxyfen Exhibit Lower Susceptibility to Infection with Zika Virus. Viruses 2022; 14:v14102198. [PMID: 36298753 PMCID: PMC9606930 DOI: 10.3390/v14102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Zika virus (ZIKV) infection has caused devastating consequences in Brazil as infections were associated with neurological complications in neonates. Aedes aegypti is the primary vector of ZIKV, and the evolution of insecticide resistance (IR) in this species can compromise control efforts. Although relative levels of phenotypic IR in mosquitoes can change considerably over time, its influence on vector competence for arboviruses is unclear. Pyriproxyfen (PPF)-resistant populations of Ae. aegypti were collected from five municipalities located in Northeast of Brazil, which demonstrated different resistance levels; low (Serrinha, Brumado), moderate (Juazeiro do Norte, Itabuna), and high (Quixadá). Experimental per os infection using ZIKV were performed with individuals from these populations and with an insecticide susceptible strain (Rockefeller) to determine their relative vector competence for ZIKV. Although all populations were competent to transmit ZIKV, mosquitoes derived from populations with moderate to high levels of IR exhibited similar or lower susceptibility to ZIKV infection than those from populations with low IR or the susceptible strain. These observations suggest an association between IR and arbovirus infection, which may be attributable to genetic hitchhiking. The use of PPF to control Brazilian Ae. aegypti may be associated with an indirect benefit of reduced susceptibility to infection, but no changes in disseminated infection and transmission of ZIKV among PPF-resistant phenotypes.
Collapse
Affiliation(s)
- Kauara Brito Campos
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th SE, Vero Beach, FL 32962, USA
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília 70910-900, Brazil
- Coordenação Geral de Vigilância de Aboviroses, Secretaria de Vigilância em Saúde, Ministério da Saúde, Edifício PO 700, SRTV 702, Via W 5 Norte, Brasília 70723-040, Brazil
| | - Abdullah A. Alomar
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th SE, Vero Beach, FL 32962, USA
| | - Bradley H. Eastmond
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th SE, Vero Beach, FL 32962, USA
| | - Marcos Takashi Obara
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília 70910-900, Brazil
| | - Barry W. Alto
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th SE, Vero Beach, FL 32962, USA
- Correspondence:
| |
Collapse
|