1
|
Mennitti C, Sarno L, Calvanese M, Gentile A, Esposito G, Fulgione C, Orlandi G, Angelino A, Scamardella G, Barretta F, Fimiani F, Cesaro A, Borrelli P, Terracciano D, Pero R, Calabrò P, Frisso G, Guida M, Scudiero O. Preliminary study on the role of human defensins, interleukins and PCSK9 in early and late preeclampsia. Reprod Biol 2024; 24:100947. [PMID: 39232305 DOI: 10.1016/j.repbio.2024.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
The lack of reliable methods for preeclampsia (PE) early diagnosis limits the opportunities for timely prevention, diagnosis and treatment. This study aims to identify the alterations of biochemical parameters and the immune system activity to build a panel of markers that can support preeclampsia diagnosis. For this study, we recruited 30 pregnant women: 10 healthy pregnant women (CTR); 10 pregnant women with early preeclampsia (EP); 10 pregnant women with late preeclampsia (LP). We evaluated lipid profile and, by gene expression, we assessed PCSK9, IL-2, IL-6, IL-8, IL-10, TNF-α and TGF-β. Moreover, we evaluated both the serum and gene levels of the defensins HBD-1, HBD-2, HBD-4 and HNP-1. Our results showed an increase in gene expression levels of IL-6 and IL-8 in EP compared to LP (IL-6: median 11.7 vs 3.3, p = 0.005; IL-8: median 634.1 vs 214.1, p = 0.013) and to CTR (IL-6: median 11.7 vs 0.5, p < 0.001; IL-8: median 634.1 vs 225.6, p = 0.012), highlighting a massive activation of immune system in case of more severe preeclampsia. Furthermore, higher serum levels of HBD1 in LP compared to CTR (median: 278.8 vs 67.8, p = 0.005) and to EP (median: 278.8 vs 68.6, p = 0.001) might indicate that the same immune system puts in action protective actions to prevent adverse outcome in these cases. Finally, gene expression levels of PCSK9 decreased significantly in women with EP compared to controls and to LP (median: 0.2 vs 0.9, p = 0.010; median: 0.2 vs 1.2, p = 0.012), causing a decrease in circulating LDL-c necessary for the synthesis of placental hormones.
Collapse
Affiliation(s)
- Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Laura Sarno
- Department of Neurosciences, Reproductive Science and Dentistry, University of Naples Federico II, Naples, Italy.
| | - Mariella Calvanese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Alessandro Gentile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Giuseppina Esposito
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Caterina Fulgione
- Department of Neurosciences, Reproductive Science and Dentistry, University of Naples Federico II, Naples, Italy.
| | - Giuliana Orlandi
- Department of Neurosciences, Reproductive Science and Dentistry, University of Naples Federico II, Naples, Italy.
| | - Antonio Angelino
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Giulia Scamardella
- Department of Neurosciences, Reproductive Science and Dentistry, University of Naples Federico II, Naples, Italy.
| | - Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Ceinge Biotecnologie Avanzate Franco Salvatore S. C. a R. L., Naples, Italy.
| | - Fabio Fimiani
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli "V. Monaldi", Via Leonardo Bianchi snc, Naples 80131, Italy.
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Paola Borrelli
- Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy.
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy.
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Ceinge Biotecnologie Avanzate Franco Salvatore S. C. a R. L., Naples, Italy.
| | - Maurizio Guida
- Department of Neurosciences, Reproductive Science and Dentistry, University of Naples Federico II, Naples, Italy.
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Ceinge Biotecnologie Avanzate Franco Salvatore S. C. a R. L., Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy.
| |
Collapse
|
2
|
Shaffer Z, Romero R, Tarca AL, Galaz J, Arenas-Hernandez M, Gudicha DW, Chaiworapongsa T, Jung E, Suksai M, Theis KR, Gomez-Lopez N. The vaginal immunoproteome for the prediction of spontaneous preterm birth: A retrospective longitudinal study. eLife 2024; 13:e90943. [PMID: 38913421 PMCID: PMC11196114 DOI: 10.7554/elife.90943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes. Funding This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.
Collapse
Affiliation(s)
- Zachary Shaffer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, University of MichiganAnn ArborUnited States
- Department of Epidemiology and Biostatistics, Michigan State UniversityEast LansingUnited States
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Computer Science, Wayne State University College of EngineeringDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiagoChile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
3
|
Stachowska A, Kicińska AM, Kotulak-Chrząszcz A, Babińska A. Usefulness of the Sympto-Thermal Method with Standardized Cervical Mucus Assessment (InVivo Method) for Evaluating the Monthly Cycle in Women with Polycystic Ovary Syndrome (PCOS). Healthcare (Basel) 2024; 12:1108. [PMID: 38891183 PMCID: PMC11172004 DOI: 10.3390/healthcare12111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: FABMs (fertility awareness-based methods) are methods that rely on the observation of clinical signs related to fertility found in women, the so-called fertility bioindicators. They can be a valuable tool for diagnosing monthly cycle disorders and infertility, for example, among patients with PCOS (polycystic ovary syndrome). Until now, it has been difficult for women with PCOS to use FABM, due to the difficulty of describing fertility bioindicators and their disorders due to the biology of the syndrome. The new InVivo sympto-thermal method with standardized cervical mucus assessment may provide a valuable diagnostic and therapeutic tool for observing the monthly cycle in this group of women. (2) Methods: The monthly cycle was evaluated in a group of 32 women of reproductive age. A total of 108 monthly cycle observation cards were analyzed: 35 monthly cycle cards were collected from 18 women with PCOS, and 73 monthly cycle cards collected from 14 healthy women. In addition, 32 pairs of macroscopic and microscopic images were evaluated: 17 pairs from the study group (four subjects) and 15 pairs from women in the control group (six subjects). (3) Results: We showed that in the group of patients with PCOS, menstruation was longer (p = 0.000814), the number of mucus peaks was statistically higher (p = 0.040747), and the interquartile range (IQR) of the duration of the follicular phase (calculated according to the BBT) was significantly higher (8 days) compared to women in the control group. We also observed that among all the women studied, the microscopic image of cervical mucus correlated with the cycle phase described in the observation card, as determined by reference to the BBT chart, provided that it showed the correct features. (4) Conclusions: Systematic maintenance of monthly cycle observation charts using the InVivo method can be an important supplement to the medical history, as it allows for a thorough assessment of, among others, the timing of monthly bleeding, cervical mucus symptoms, BBT changes, and the duration of the follicular and luteal phases among both healthy and PCOS women.
Collapse
Affiliation(s)
- Aneta Stachowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdansk, Poland
| | - Aleksandra M. Kicińska
- Center for the Treatment of Infertility and Menstrual Cycle Disorders—InVivo Medical Clinic of Gdansk, 80-306 Gdansk, Poland;
| | - Anna Kotulak-Chrząszcz
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdansk, Poland;
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, 80-214 Gdansk, Poland;
| |
Collapse
|
4
|
Bruno MT, Caruso G, Torrisi E, Grimaldi R, Abate B, Luciani FS, Basile S, Panella MM. The Impact of Diagnosis of Human Papillomavirus (HPV) Infection and Electrosurgical Excision Procedure (LEEP) for Cervical Intraepithelial Neoplasia 3 (CIN3) on Women's Sexual Lives. Diagnostics (Basel) 2024; 14:911. [PMID: 38732325 PMCID: PMC11083130 DOI: 10.3390/diagnostics14090911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of the study was to assess sexual health in women who underwent Loop Electrosurgical Excisional Procedure (LEEP) for the treatment of cervical intraepithelial neoplasia 3 (CIN 3). One hundred thirty-one women were enrolled, and the Female Sexual Function Index (FSFI) questionnaire was administered before LEEP and 6 months after the procedure. In almost all of the participants, data revealed a statistically significant worsening in sexual quality of life after LEEP. Therefore, clinicians should be aware of these possible negative effects on sexual behavior, and provide women with appropriate, wide-ranging, and detailed counseling. The data obtained in the present study should help to plan appropriate counseling from communicating HPV diagnosis and medical treatment to CIN3 surgical procedure.
Collapse
Affiliation(s)
- Maria Teresa Bruno
- Department of General Surgery and Medical-Surgical Specialties, Gynecological Clinic, University of Catania, 95123 Catania, Italy (E.T.); (R.G.)
- Multidisciplinary Research Center in Papillomavirus Pathology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Caruso
- Department of General Surgery and Medical-Surgical Specialties, Gynecological Clinic, University of Catania, 95123 Catania, Italy (E.T.); (R.G.)
| | - Elena Torrisi
- Department of General Surgery and Medical-Surgical Specialties, Gynecological Clinic, University of Catania, 95123 Catania, Italy (E.T.); (R.G.)
| | - Raffaela Grimaldi
- Department of General Surgery and Medical-Surgical Specialties, Gynecological Clinic, University of Catania, 95123 Catania, Italy (E.T.); (R.G.)
| | - Biagio Abate
- Department of General Surgery and Medical-Surgical Specialties, Gynecological Clinic, University of Catania, 95123 Catania, Italy (E.T.); (R.G.)
| | - Francesco Saverio Luciani
- Methods and Models Department for the Economy, Territory and Finance, La Sapienza University of Rome, 00185 Rome, Italy;
| | - Susanna Basile
- Psychologist and Clinical Sexologist, 95123 Catania, Italy;
| | - Marco Marzio Panella
- Department of General Surgery and Medical-Surgical Specialties, Gynecological Clinic, University of Catania, 95123 Catania, Italy (E.T.); (R.G.)
- Multidisciplinary Research Center in Papillomavirus Pathology, University of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
Das S, Konwar BK. Influence of connatural factors in shaping vaginal microflora and ensuring its health. Arch Gynecol Obstet 2024; 309:871-886. [PMID: 37676318 DOI: 10.1007/s00404-023-07200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Vaginal canal (VC) is exposed to the external environment affected by habitual factors like hygiene and sexual behaviour as well as physiological factors like puberty, menstrual cycle, pregnancy, child birth and menopause. Healthy VC harbours beneficial microflora supported by vaginal epithelium and cervical fluid. Connatural antimicrobial peptide (AMPs) of female reproductive tract (FRT) conjunctly with these beneficial microbes provide protection from a large number of infectious diseases. Such infections may either be caused by native microbes of the VC or transitory microbes like bacteria or virus which are not a part of VC microflora. This review highlight's the role of hormones, enzymes, innate immunological factors, epithelial cells and vaginal mucus that support beneficial microbes over infectious ones thus, helping to maintain homeostasis in VC and further protect the FRT. We also discuss the prospective use of vaginal probiotics and AMPs against pathogens which can serve as a potential cure for vaginal infections.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, 784028, India.
| | - Bolin K Konwar
- Department of MBBT, Tezpur University, Napaam, Assam, 784028, India
| |
Collapse
|
6
|
Prodan-Barbulescu C, Bratosin F, Folescu R, Boeriu E, Popa ZL, Citu C, Ratiu A, Rosca O, Ilie AC. Analysis of Vaginal Microbiota Variations in the Third Trimester of Pregnancy and Their Correlation with Preterm Birth: A Case-Control Study. Microorganisms 2024; 12:417. [PMID: 38399821 PMCID: PMC10892439 DOI: 10.3390/microorganisms12020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
This study conducted a detailed analysis of the vaginal microbiota in pregnant women to explore its correlation with preterm birth (PTB) outcomes. The primary objective was to identify microbial variations associated with increased PTB risk. Secondary objectives included investigating how changes in microbial composition relate to the local immune environment and PTB. Utilizing a retrospective case-control design, the study involved pregnant women with liveborn infants between 2019 and 2023. In total, 89 women who delivered preterm and 106 term deliveries were included. Data collection focused on third-trimester vaginal cultures. Statistically significant differences were observed between the preterm and full-term groups in several areas. The median white blood cell count (10.2 × 103/mm3 vs. 7.6 × 103/mm3, p = 0.009) and neutrophil count (7.2 × 103/mm3 vs. 5.1 × 103/mm3, p < 0.001) were higher in the preterm group. Vaginal pH was also elevated in preterm births (5.6 vs. 4.4, p < 0.001), with a higher prevalence of bacterial vaginosis (29.2% vs. 12.3%, p = 0.001) as indicated by the Nugent Score. The study noted a significant association of PTB with the presence of Candida spp. (OR = 1.84, p = 0.018), Gardnerella vaginalis (OR = 2.29, p = 0.003), Mycoplasma hominis (OR = 1.97, p = 0.007), and Ureaplasma urealyticum (OR = 2.43, p = 0.001). Conversely, a reduction in Lactobacillus spp. correlated with a decreased PTB risk (OR = 0.46, p = 0.001). The study provides compelling evidence that specific vaginal microbiota components, particularly certain pathogenic bacteria and an altered Lactobacillus profile, are significantly associated with PTB risk. These findings highlight the potential of targeting microbial factors in strategies aimed at reducing PTB rates. Further research is necessary to fully understand the complex interplay between microbial dynamics, host immunity, and PTB outcomes.
Collapse
Affiliation(s)
- Catalin Prodan-Barbulescu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- IInd Surgery Clinic, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Department I, Discipline of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Felix Bratosin
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Roxana Folescu
- Department of Family Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Estera Boeriu
- Department of Pediatrics, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Zoran Laurentiu Popa
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (Z.L.P.); (C.C.); (A.R.)
| | - Cosmin Citu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (Z.L.P.); (C.C.); (A.R.)
| | - Adrian Ratiu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (Z.L.P.); (C.C.); (A.R.)
| | - Ovidiu Rosca
- Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Adrian Cosmin Ilie
- Department III Functional Sciences, Division of Public Health and Management, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| |
Collapse
|
7
|
Laskou A, Znalesniak EB, Harder S, Schlüter H, Jechorek D, Langer K, Strecker C, Matthes C, Tchaikovski SN, Hoffmann W. Different Forms of TFF3 in the Human Endocervix, including a Complex with IgG Fc Binding Protein (FCGBP), and Further Aspects of the Cervico-Vaginal Innate Immune Barrier. Int J Mol Sci 2024; 25:2287. [PMID: 38396964 PMCID: PMC10888570 DOI: 10.3390/ijms25042287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
TFF3 is a typical secretory poplypeptide of mucous epithelia belonging to the trefoil factor family (TFF) of lectins. In the intestine, respiratory tract, and saliva, TFF3 mainly exists as a high-molecular-mass complex with IgG Fc binding protein (FCGBP), which is indicative of a role in mucosal innate immunity. For the first time, we identified different forms of TFF3 in the endocervix, i.e., monomeric and homodimeric TFF3, as well as a high-molecular-mass TFF3-FCGBP complex; the latter also exists in a hardly soluble form. Immunohistochemistry co-localized TFF3 and FCGBP. Expression analyses of endocervical and post-menopausal vaginal specimens revealed a lack of mucin and TFF3 transcripts in the vaginal specimens. In contrast, genes encoding other typical components of the innate immune defense were expressed in both the endocervix and vagina. Of note, FCGBP is possibly fucosylated. Endocervical specimens from transgender individuals after hormonal therapy showed diminished expression, particularly of FCGBP. Furthermore, mucus swabs from the endocervix and vagina were analyzed concerning TFF3, FCGBP, and lysozyme. It was the aim of this study to illuminate several aspects of the cervico-vaginal innate immune barrier, which is clinically relevant as bacterial and viral infections are also linked to infertility, pre-term birth and cervical cancer.
Collapse
Affiliation(s)
- Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Eva B. Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Kathrin Langer
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Carina Strecker
- Department of Gynecology and Obstetrics, Otto-von-Guericke University Magdeburg, Gerhart-Hauptmann-Str. 35, 39108 Magdeburg, Germany
| | - Claudia Matthes
- Department of Gynecology and Obstetrics, Otto-von-Guericke University Magdeburg, Gerhart-Hauptmann-Str. 35, 39108 Magdeburg, Germany
| | - Svetlana N. Tchaikovski
- Department of Gynecology and Obstetrics, Otto-von-Guericke University Magdeburg, Gerhart-Hauptmann-Str. 35, 39108 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
8
|
Salmanov AG, Strakhovetska YV, Leshchova OD, Artyomenko V, Korniyenko SM, Rud VO, Nastradina NM, Kokhanov IV. Endometritis after hysteroscopic procedures in Ukraine: results a multicenter study. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:187-193. [PMID: 38592977 DOI: 10.36740/wlek202402101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVE Aim: To determine the current prevalence of endometritis after hysteroscopic procedures and antimicrobial resistance of responsible pathogens in Ukraine. PATIENTS AND METHODS Materials and Methods: Multicenter prospective cohort study was conducted from January 2020 to December 2022 in fifteen hospitals from twelve regions of Ukraine. Definitions of endometritis were adapted from the Centers for Disease Control and Prevention's National Healthcare Safety Network. Antibiotic susceptibility was done by the disc diffusion test as recommended by EUCAST. RESULTS Results: Among 13,872 patients with hysteroscopic procedures, 1027 (7.4%) endometritis were observed. Of these cases, 0.4% were detected after diagnostic hysteroscopy, and 7.0% were detected after operative hysteroscopy. Of all endometritis cases, 64.2% were detected after hospital discharge. The most commonly reported bacterial species were Escherichia coli (24.3%), followed by Enterobacter spp. (12.7%), Enterococcus spp. (8.3%), Pseudomonas aeruginosa (8.1%), Serratia marcescens (6.8%), Staphylococcus aureus (5.9%), Proteus mirabilis (5.8%), Klebsiella oxytoca (5.1%), Stenotrophomonas maltophilia (4.5%), Klebsiella pneumoniae (4.1%). A significant proportion of patients were affected by endometritis caused by bacteria developed resistance to several antimicrobials, varying widely depending on the bacterial species, antimicrobial group, and geographical region of Ukraine. CONCLUSION Conclusions: Our data suggest a high prevalence of endometritis after hysteroscopic procedures. Risk for endometritis was higher after operative hysteroscopy compared with diagnostic hysteroscopy. Many most of patients were affected by endometritis caused by bacteria developed resistance to several antimicrobials. These data underscore the importance of tracking antimicrobial resistance of responsible pathogens of HAIs in hospitals.
Collapse
Affiliation(s)
- Aidyn G Salmanov
- 1SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE; INSTITUTE OF PEDIATRICS, OBSTETRICS AND GYNECOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | | | - Olha D Leshchova
- PRIVATE ESTABLISHMENT OF HIGHER EDUCATION "DNIPRO INSTITUTE OF MEDICINE AND PUBLIC HEALTH", DNIPRO, UKRAINE
| | | | | | - Victor O Rud
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | | | - Igor V Kokhanov
- SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE
| |
Collapse
|
9
|
Tantengco OAG, Menon R. Effects of Ureaplasma parvum infection in the exosome biogenesis-related proteins in ectocervical epithelial cells. Am J Reprod Immunol 2024; 91:e13803. [PMID: 38282606 PMCID: PMC10827354 DOI: 10.1111/aji.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 01/30/2024] Open
Abstract
Ureaplasma parvum is a mycoplasma commonly associated with female reproductive pathologies, such as preterm birth and infertility. It can survive intracellularly and utilize exosomes to propagate infection and its virulence factors. This study explored the differential protein composition of exosomes derived from normal and U. parvum-infected cells. We also investigated the impact of U. parvum on exosome biogenesis in ectocervical epithelial cells. Ectocervical epithelial (ECTO) cells were infected with U. parvum, and immunocytochemical staining was performed using U. parvum-specific marker multiple banded antigen (mba) and exosome marker CD9. NanoLC-MS/MS analysis was conducted to identify differentially expressed proteins in exosomes. Ingenuity Pathway Analysis (IPA) was performed to identify affected canonical pathways and biological functions associated with the protein cargo of exosomes. Western blot analysis of ECTO cells validated the proteomic findings in ECTO cells. U. parvum exhibited colonization of ECTO cells and colocalization with CD9-positive intraluminal vesicles. Proteomic analysis revealed decreased protein abundance and distinct protein profiles in exosomes derived from U. parvum-infected ECTO cells. Differentially expressed proteins were associated with clathrin-mediated endocytosis and various signaling pathways indicative of infection, inflammation, and cell death processes. Additionally, U. parvum infection altered proteins involved in exosome biogenesis. In ECTO cells, U. parvum infection significantly decreased clathrin, ALIX, CD9, and CD63 and significantly increased TSG101, Rab5, Rab35, and UGCG. These findings contribute to our understanding of the infection mechanism and shed light on the importance of exosome-mediated communication in the pathophysiology of diseases affecting the cervix, such as cervicitis and preterm birth.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
10
|
Wada Y, Takahashi H, Ogoyama M, Horie K, Suzuki H, Usui R, Jwa SC, Ohkuchi A, Fujiwara H. Uterine cervical conisation and chorioamnionitis: A nationwide observational study. BJOG 2023. [PMID: 37957809 DOI: 10.1111/1471-0528.17718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE To investigate whether conisation increases chorioamnionitis (CAM) and assess whether this risk differs between preterm and term periods. Furthermore, we estimated mediation effects of CAM between conisation and preterm birth (PTB). DESIGN A nationwide observational study. SETTING Japan. POPULATION Singleton pregnant women derived from the perinatal registry database of the Japan Society of Obstetrics and Gynaecology between 2013 and 2019. METHODS The association between a history of conisation and clinical CAM was examined using a multivariable logistic regression model with multiple imputation. We conducted mediation analysis to estimate effects of CAM on PTB following conisation. MAIN OUTCOME MEASURES Clinical CAM. RESULTS Of 1 500 206 singleton pregnant women, 6961 (0.46%) underwent conisation and 1 493 245 (99.5%) did not. Clinical CAM occurred in 150 (2.2%) and 11 484 (0.8%) women with and without conisation, respectively. Conisation was associated with clinical CAM (odds ratio [OR] 3.09; 95% confidence interval (CI) 2.63-3.64; p < 0.001) (risk difference 1.57%; 95% CI 1.20-1.94). The association was detected among 171 440 women with PTB (OR 3.09; 95% CI 2.57-3.71), whereas it was not significant among 1 328 284 with term birth (OR 0.88; 95% CI 0.58-1.34). OR of total effect of conisation on PTB was 2.71, OR of natural indirect effect (effect explained by clinical CAM) was 1.04, and OR of natural direct effect (effect unexplained by clinical CAM) was 2.61. The proportion mediated was 5.9%. CONCLUSIONS Conisation increased CAM occurrence. Obstetricians should be careful regarding CAM in women with conisation, especially in preterm period. Bacterial infections may be an important cause of PTB after conisation.
Collapse
Affiliation(s)
- Yoshimitsu Wada
- Department of Obstetrics and Gynaecology, Jichi Medical University, Tochigi, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynaecology, Jichi Medical University, Tochigi, Japan
| | - Manabu Ogoyama
- Department of Obstetrics and Gynaecology, Jichi Medical University, Tochigi, Japan
| | - Kenji Horie
- Department of Obstetrics and Gynaecology, Jichi Medical University, Tochigi, Japan
| | - Hirotada Suzuki
- Department of Obstetrics and Gynaecology, Jichi Medical University, Tochigi, Japan
| | - Rie Usui
- Department of Obstetrics and Gynaecology, Jichi Medical University, Tochigi, Japan
| | - Seung Chik Jwa
- Department of Obstetrics and Gynaecology, Jichi Medical University, Tochigi, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynaecology, Jichi Medical University, Tochigi, Japan
| | - Hiroyuki Fujiwara
- Department of Obstetrics and Gynaecology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
11
|
Ruiz-Durán S, Tenorio CM, Vico-Zúñiga I, Manzanares S, Puertas-Prieto A, Altmäe S, Vargas E. Microenvironment of the Lower Reproductive Tract: Focus on the Cervical Mucus Plug. Semin Reprod Med 2023; 41:200-208. [PMID: 38262442 DOI: 10.1055/s-0043-1778661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The female lower reproductive tract microbiota is a complex ecosystem comprising various microorganisms that play a pivotal role in maintaining women's reproductive well-being. During pregnancy, the vaginal microbiota undergoes dynamic changes that are important for a successful gestation. This review summarizes the implications of the cervical mucus plug microenvironment and its profound impact on reproductive health. Further, the symbiotic relationship between the vaginal microbiome and the cervical mucus plug is highlighted, with a special emphasis on how this natural barrier serves as a guardian against ascending infections. Understanding this complex host-microbes interplay could pave the way for innovative approaches to improve women's reproductive health and fertility.
Collapse
Affiliation(s)
- Susana Ruiz-Durán
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Celia M Tenorio
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Irene Vico-Zúñiga
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Sebastián Manzanares
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Alberto Puertas-Prieto
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Signe Altmäe
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Vargas
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| |
Collapse
|
12
|
Sedaghat MH, Behnia M, Abouali O. Nanoparticle Diffusion in Respiratory Mucus Influenced by Mucociliary Clearance: A Review of Mathematical Modeling. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37184652 DOI: 10.1089/jamp.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Background: Inhalation and deposition of particles in human airways have attracted considerable attention due to importance of particulate pollutants, transmission of infectious diseases, and therapeutic delivery of drugs at targeted areas. We summarize current state-of-the art research in particle deposition on airway surface liquid (ASL) influenced by mucociliary clearance (MCC) by identifying areas that need further investigation. Methodology: We aim to review focus on governing and constitutive equations describing MCC geometry followed by description of mathematical modeling of ciliary forces, mucus rheology properties, and numerical approaches to solve modified time-dependent Navier-Stokes equations. We also review mathematical modeling of particle deposition in ASL influenced by MCC, particle transport in ASL in terms of Eulerian and Lagrangian approaches, and discuss the corresponding mass transport issues in this layer. Whenever required, numerical predictions are contrasted with the pertinent experimental data. Results: Results indicate that mean mucus and periciliary liquid velocities are strongly influenced by mucus rheological characteristics as well as ciliary abnormalities. However, most of the currently available literature on mucus fiber spacing, ciliary beat frequency, and particle surface chemistry is based on particle deposition on ASL by considering a fixed value of ASL velocity. The effects of real ASL flow regimes on particle deposition in this layer are limited. In addition, no other study is available on modeling nonhomogeneous and viscoelastic characteristics of mucus layer on ASL drug delivery. Conclusion: Simplification of assumptions on governing equations of drug delivery in ASL influenced by MCC leads to imposing some limitations on numerical results.
Collapse
Affiliation(s)
- Mohammad Hadi Sedaghat
- Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
| | - Mehrdad Behnia
- University of Central Florida School of Medicine, Orlando, Florida, USA
| | - Omid Abouali
- Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
13
|
Liu X, Si S, Huang L, Zhang M, Chen W, Wang L, Yu Y. Vaginal flora during pregnancy and subsequent risk of preterm birth or prelabor rupture of membranes: a nested case-control study from China. BMC Pregnancy Childbirth 2023; 23:244. [PMID: 37046188 PMCID: PMC10091657 DOI: 10.1186/s12884-023-05564-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The findings of the association of vaginal flora with preterm birth (PTB) or prelabor rupture of membranes (PROM) were conflicts. Moreover, vaginal flora was different by ethnicity and the evidence from China was limited. METHODS This study was a nested case control study, based on Yiwu birth cohort. We assessed vaginal microbiota in the second or third trimester, using 16S rDNA Amplicon Sequencing and explored the association between the diversity and composition of vaginal flora and PTB or PROM. RESULTS We finally included 144 pregnant women. In present study, the alpha diversity of TPROM (Term prelabor rupture of membranes) samples was lower than that of full term samples (Chao1 index: P < 0.05). When we further categorized PTB (Preterm birth) into SPB (PTB without PROM) and PPROM (Preterm prelabor rupture of membranes), there was no difference between SPB and full term. In addition, we found that the proportion of PCoA2 in TPROM group was different from that in full term group and preterm group. The difference between groups was significant according to anosim analysis (R = 0.059, P < 0.001). With LEfSe (Linear discriminant analysis Effect Size) analysis, we found that the abundance of Lactobacillus in the vaginal flora of pregnant women with preterm birth was the highest (P = 0.003). CONCLUSION In Chinese pregnant women, the alpha diversity in TPROM group was significantly lower than that in both PTB and full term group. However, there was no difference between PTB and full term. Lactobacillus was the most abundant in preterm birth group. More studies should be conducted to confirm our findings.
Collapse
Affiliation(s)
- Xiaomei Liu
- Department of Gynecology and Obstetrics, Yiwu Maternal and Children Hospital, Yiwu, China
- Department of Science and Education, Yiwu Maternal and Children Hospital, Yiwu, China
| | - Shuting Si
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Huang
- Department of Gynecology and Obstetrics, Yiwu Maternal and Children Hospital, Yiwu, China
| | - Meiliang Zhang
- Department of Gynecology and Obstetrics, Yiwu Maternal and Children Hospital, Yiwu, China
| | - Wenya Chen
- Department of Science and Education, Yiwu Maternal and Children Hospital, Yiwu, China
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunxian Yu
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Public Health, and Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Zhu B, Tao Z, Edupuganti L, Serrano MG, Buck GA. Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health. Microbiol Mol Biol Rev 2022; 86:e0018121. [PMID: 36222685 PMCID: PMC9769908 DOI: 10.1128/mmbr.00181-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microbiome of the female reproductive tract defies the convention that high biodiversity is a hallmark of an optimal ecosystem. Although not universally true, a homogeneous vaginal microbiome composed of species of Lactobacillus is generally associated with health, whereas vaginal microbiomes consisting of other taxa are generally associated with dysbiosis and a higher risk of disease. The past decade has seen a rapid advancement in our understanding of these unique biosystems. Of particular interest, substantial effort has been devoted to deciphering how members of the microbiome of the female reproductive tract impact pregnancy, with a focus on adverse outcomes, including but not limited to preterm birth. Herein, we review recent research efforts that are revealing the mechanisms by which these microorganisms of the female reproductive tract influence gynecologic and reproductive health of the female reproductive tract.
Collapse
Affiliation(s)
- Bin Zhu
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhi Tao
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Laahirie Edupuganti
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Myrna G. Serrano
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gregory A. Buck
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
15
|
Shapiro RL, DeLong K, Zulfiqar F, Carter D, Better M, Ensign LM. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Adv Drug Deliv Rev 2022; 191:114543. [PMID: 36208729 PMCID: PMC9940824 DOI: 10.1016/j.addr.2022.114543] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
Vaginal drug delivery systems are often preferred for treating a variety of diseases and conditions of the female reproductive tract (FRT), as delivery can be more targeted with less systemic side effects. However, there are many anatomical and biological barriers to effective treatment via the vaginal route. Further, biocompatibility with the local tissue and microbial microenvironment is desired. A variety of in vitro and ex vivo models are described herein for evaluating the physicochemical properties and toxicity profile of vaginal drug delivery systems. Deciding whether to utilize organoids in vitro or fresh human cervicovaginal mucus ex vivo requires careful consideration of the intended use and the formulation characteristics. Optimally, in vitro and ex vivo experimentation will inform or predict in vivo performance, and examples are given that describe utilization of a range of methods from in vitro to in vivo. Lastly, we highlight more advanced model systems for other mucosa as inspiration for the future in model development for the FRT.
Collapse
Affiliation(s)
- Rachel L Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Departments of Gynecology and Obstetrics, Infectious Diseases, and Oncology, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Izadifar Z, Sontheimer-Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, Gulati A, Mahajan G, Kim S, LoGrande NT, Naziripour A, Ingber DE. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev 2022; 191:114542. [PMID: 36179916 DOI: 10.1016/j.addr.2022.114542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
The surfaces of human internal organs are lined by a mucus layer that ensures symbiotic relationships with commensal microbiome while protecting against potentially injurious environmental chemicals, toxins, and pathogens, and disruption of this layer can contribute to disease development. Studying mucus biology has been challenging due to the lack of physiologically relevant human in vitro models. Here we review recent progress that has been made in the development of human organ-on-a-chip microfluidic culture models that reconstitute epithelial tissue barriers and physiologically relevant mucus layers with a focus on lung, colon, small intestine, cervix and vagina. These organ-on-a-chip models that incorporate dynamic fluid flow, air-liquid interfaces, and physiologically relevant mechanical cues can be used to study mucus composition, mechanics, and structure, as well as investigate its contributions to human health and disease with a level of biomimicry not possible in the past.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | | | - Bob A Lubamba
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Cicely Fadel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Alican Ozkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Queeny Dasgupta
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Amir Bein
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Seongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Arash Naziripour
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02115, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United Kingdom.
| |
Collapse
|
17
|
Haddad LB, Herring GB, Mehta CC, Staple T, Young MR, Govindaraj S, Velu V, Smith AK. Evaluating the impact of three progestin-based hormonal contraceptive methods on immunologic changes in the female genital tract and systemically (CHIME Study): a prospective cohort study protocol. BMC Womens Health 2022; 22:456. [PMID: 36401326 PMCID: PMC9673204 DOI: 10.1186/s12905-022-02053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/05/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Gonadal hormones can modify immune function, which may impact susceptibility to infectious diseases, including Human Immunodeficiency Virus (HIV). There is limited knowledge about how hormonal contraceptives (HC) influence the immune response during the course of use. The CHIME study aims to evaluate the effect of long-acting progestin-based hormonal contraceptives (depot medroxyprogesterone acetate, etonogestrel implant, and levonorgestrel intrauterine device) on immunologic changes in the female genital tract (FGT) and systemic compartment. METHODS CHIME is an observational cohort study where participants attend 2 visits prior to initiating the HC method of their choice, and then attend 6 visits over 12 months with biological sampling (vaginal swabs, cervicovaginal lavage, cytobrush and blood) for immunological, bacteriological, and virological analyses at each visit. Immune profiling will be evaluated by multi-color flow cytometry to determine how different T-cell subsets, in particular the CD4 T-cell subsets, change during the course of contraceptive use and whether they have different profiles in the FGT compared to the systemic compartment. The study aims are (1) to characterize the alterations in FGT and systemic immune profiles associated with three long-acting progestin-only HC and (2) to evaluate the vaginal microenvironment, determined by 16 s rRNA sequencing, as an individual-level risk factor and moderator of genital and systemic immune profile changes following exposure to three commonly used HC. Data collection started in March 2019 and is scheduled to be completed in October 2024. DISCUSSION The CHIME study aims to contribute to the body of research designed to evaluate the comparative impact of three long-acting progestin-only HC on innate and adaptive immune functions to understand how immunologic effects alter STI and HIV susceptibility.
Collapse
Affiliation(s)
- Lisa B Haddad
- Center for Biomedical Research, Population Council, New York, NY, USA
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, 101 Woodruff Circle NE, GA, 30322, Atlanta, USA
| | - Gina Bailey Herring
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Grady Infectious Disease Program, Grady Health System, Atlanta, GA, USA
| | - C Christina Mehta
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 101 Woodruff Circle NE, Atlanta, GA, 30322, USA
| | - Tyree Staple
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, 101 Woodruff Circle NE, GA, 30322, Atlanta, USA
| | - Marisa R Young
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, 101 Woodruff Circle NE, GA, 30322, Atlanta, USA
| | - Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, 101 Woodruff Circle NE, GA, 30322, Atlanta, USA.
| |
Collapse
|
18
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
19
|
Tantengco OAG, Richardson LS, Radnaa E, Kammala AK, Kim S, Medina PMB, Han A, Menon R. Modeling ascending Ureaplasma parvum infection through the female reproductive tract using vagina-cervix-decidua-organ-on-a-chip and feto-maternal interface-organ-on-a-chip. FASEB J 2022; 36:e22551. [PMID: 36106554 PMCID: PMC9500016 DOI: 10.1096/fj.202200872r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 09/02/2023]
Abstract
Genital mycoplasmas can break the cervical barrier and cause intraamniotic infection and preterm birth. This study developed a six-chamber vagina-cervix-decidua-organ-on-a-chip (VCD-OOC) that recapitulates the female reproductive tract during pregnancy with culture chambers populated by vaginal epithelial cells, cervical epithelial and stromal cells, and decidual cells. Cells cultured in VCD-OOC were characterized by morphology and immunostaining for cell-specific markers. We transferred the media from the decidual cell chamber of the VCD-OOC to decidual cell chamber in feto-maternal interface organ-on-a-chip (FMi-OOC), which contains the fetal membrane layers. An ascending Ureaplasma parvum infection was created in VCD-OOC. U. parvum was monitored for 48 h post-infection with their cytotoxicity (LDH assay) and inflammatory effects (multiplex cytokine assay) in the cells tested. An ascending U. parvum infection model of PTB was developed using CD-1 mice. The cell morphology and expression of cell-specific markers in the VCD-OOC mimicked those seen in lower genital tract tissues. U. parvum reached the cervical epithelial cells and decidua within 48 h and did not cause cell death in VCD-OOC or FMi-OOC cells. U. parvum infection promoted minimal inflammation, while the combination of U. parvum and LPS promoted massive inflammation in the VCD-OOC and FMi-OOC cells. In the animal model, U. parvum vaginal inoculation of low-dose U. parvum did not result in PTB, and even a high dose had only some effects on PTB (20%). However, intra-amniotic injection of U. parvum resulted in 67% PTB. We report the colonization of U. parvum in various cell types; however, inconsistent, and low-grade inflammation across multiple cell types suggests poor immunogenicity induced by U. parvum.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Paul Mark B. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
20
|
Sun M, Geng H, Bai J, Feng J, Xu N, Liu Y, Liu X, Liu G. Characterization of cervical canal and vaginal bacteria in pregnant women with cervical incompetence. Front Microbiol 2022; 13:986326. [PMID: 36246259 PMCID: PMC9556877 DOI: 10.3389/fmicb.2022.986326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Vaginal and cervical canal bacteria are associated with women’s health and pregnancy outcomes. Here, we compared their composition and characteristics in 37 reproductive-aged Chinese women including 24 pregnant women with cervical incompetence (vaginal and cervical canal bacteria formed Groups A and B, respectively) and 13 healthy pregnant women (vaginal and cervical canal bacteria formed Groups C and D, respectively) using high-throughput sequencing of the V4 region of 16S rRNA gene. The results of alpha and beta diversity analysis, respectively, indicated no statistical differences between Groups A and B (p = 0.32, 0.06), nor Groups B and D (p = 0.69, 0.74); however, differences were found between Groups C and D (p = 0.02, 0.01) and between Groups A and C (p = 0.04, 0.02). PLS-DA analysis showed that the individuals from each group were irregularly distributed according to their clade. Lactobacillus, Bifidobacterium and Ureaplasma were the dominant genera in all groups. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSts) analysis identified 31 Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs associated with the bacterial communities from the four groups, including membrane transport, folding, sorting and degradation, xenobiotics biodegradation and metabolism, and nucleotide metabolism. We further determined relationships between pregnancy outcomes (Apgar scores) and certain bacterial species. A significant positive correlation was found between Apgar scores and Actinomyces neuii and Anoxybacillus flavithermus in the vagina and cervical canal of pregnant women with cervical incompetence while Bacteroides plebeius, Bifidobacterium pseudopodium and Staphylococcus petrasii in the cervical canal displayed negative correlations with Apgar scores. Moreover, Clostridium fimetarium, Methanobacterium congolense, Pseudomonas chlororaphis, and Psychrobacter nivimaris in the vagina were negatively correlated with Apgar scores. These bacteria may serve as potential biomarkers, however, additional research is warranted to verify their role in clinical outcomes.
Collapse
Affiliation(s)
- Meiguo Sun
- Department of Obstertrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huiwu Geng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui,China
| | - Jingjing Bai
- Department of Obstertrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiahui Feng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui,China
| | - Na Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui,China
| | - Yunlong Liu
- Department of Obstertrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui,China
- Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Zhengzhou, Henan, China
- *Correspondence: Xiaoying Liu,
| | - Gang Liu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui,China
- Gang Liu,
| |
Collapse
|
21
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
22
|
Antimicrobial Peptides in Early-Life Host Defense, Perinatal Infections, and Necrotizing Enterocolitis—An Update. J Clin Med 2022; 11:jcm11175074. [PMID: 36079001 PMCID: PMC9457252 DOI: 10.3390/jcm11175074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Host defense against early-life infections such as chorioamnionitis, neonatal sepsis, or necrotizing enterocolitis (NEC) relies primarily on innate immunity, in which antimicrobial peptides (AMPs) play a major role. AMPs that are important for the fetus and neonate include α and β defensins, cathelicidin LL-37, antiproteases (elafin, SLPI), and hepcidin. They can be produced by the fetus or neonate, the placenta, chorioamniotic membranes, recruited neutrophils, and milk-protein ingestion or proteolysis. They possess antimicrobial, immunomodulating, inflammation-regulating, and tissue-repairing properties. AMPs are expressed as early as the 13th week and increase progressively through gestation. Limited studies are available on AMP expression and levels in the fetus and neonate. Nevertheless, existing evidence supports the role of AMPs in pathogenesis of chorioamnionitis, neonatal sepsis, and NEC, and their association with disease severity. This suggests a potential role of AMPs in diagnosis, prevention, prognosis, and treatment of sepsis and NEC. Herein, we present an overview of the antimicrobial and immunomodulating properties of human AMPs, their sources in the intrauterine environment, fetus, and neonate, and their changes during pre- and post-natal infections and NEC. We also discuss emerging data regarding the potential utility of AMPs in early-life infections, as diagnostic or predictive biomarkers and as therapeutic alternatives or adjuncts to antibiotic therapy considering the increase of antibiotic resistance in neonatal intensive care units.
Collapse
|
23
|
Diagnostic and Therapeutic Potential for HNP-1, HBD-1 and HBD-4 in Pregnant Women with COVID-19. Int J Mol Sci 2022; 23:ijms23073450. [PMID: 35408809 PMCID: PMC8998699 DOI: 10.3390/ijms23073450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/27/2023] Open
Abstract
Pregnancy is characterized by significant immunological changes and a cytokine profile, as well as vitamin deficiencies that can cause problems for the correct development of a fetus. Defensins are small antimicrobial peptides that are part of the innate immune system and are involved in several biological activities. Following that, this study aims to compare the levels of various cytokines and to investigate the role of defensins between pregnant women with confirmed COVID-19 infection and pregnant women without any defined risk factor. TNF-α, TGF-β, IL-2 and IL-10, β-defensins, have been evaluated by gene expression in our population. At the same time, by ELISA assay IL-6, IL-8, defensin alpha 1, defensin beta 1 and defensin beta 4 have been measured. The data obtained show that mothers affected by COVID-19 have an increase in pro-inflammatory factors (TNF-α, TGF-β, IL-2, IL-6, IL-8) compared to controls; this increase could generate a sort of “protection of the fetus” from virus attacks. Contemporarily, we have an increase in the anti-inflammatory cytokine IL-10 and an increase in AMPs, which highlights how the mother’s body is responding to the viral attack. These results allow us to hypothesize a mechanism of “trafficking” of antimicrobial peptides from the mother to the fetus that would help the fetus to protect itself from the infection in progress.
Collapse
|
24
|
Olmos-Ortiz A, Hernández-Pérez M, Flores-Espinosa P, Sedano G, Helguera-Repetto AC, Villavicencio-Carrisoza Ó, Valdespino-Vazquez MY, Flores-Pliego A, Irles C, Rivas-Santiago B, Moreno-Verduzco ER, Díaz L, Zaga-Clavellina V. Compartmentalized Innate Immune Response of Human Fetal Membranes against Escherichia coli Choriodecidual Infection. Int J Mol Sci 2022; 23:ijms23062994. [PMID: 35328414 PMCID: PMC8949057 DOI: 10.3390/ijms23062994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/29/2022] Open
Abstract
An infectious process into the uterine cavity represents a major endangered condition that compromises the immune privilege of the maternal-fetal unit and increases the risk for preterm birth (PTB) and premature rupture of membranes (PROM). Fetal membranes are active secretors of antimicrobial peptides (AMP), which limit bacterial growth, such as Escherichia coli. Nevertheless, the antibacterial responses displayed by chorioamniotic membranes against a choriodecidual E. coli infection have been briefly studied. The objective of this research was to characterize the profile of synthesis, activity, and spatial distribution of a broad panel of AMPs produced by fetal membranes in response to E. coli choriodecidual infection. Term human chorioamniotic membranes were mounted in a two independent compartment model in which the choriodecidual region was infected with live E. coli (1 × 105 CFU/mL). Amnion and choriodecidual AMP tissue levels and TNF-α and IL-1β secretion were measured by the enzyme-linked immunosorbent assay. The passage of bacterium through fetal membranes and their effect on structural continuity was followed for 24 h. Our results showed that E. coli infection caused a progressive mechanical disruption of the chorioamniotic membranes and an activated inflammatory environment. After the challenge, the amnion quickly (2-4 h) induced production of human beta defensins (HBD)-1, HBD-2, and LL-37. Afterwards (8-24 h), the amnion significantly produced HBD-1, HBD-2, HNP-1-3, S100A7, sPLA2, and elafin, whereas the choriodecidua induced LL-37 synthesis. Therefore, we noticed a temporal- and tissue-specific pattern regulation of the synthesis of AMPs by infected fetal membranes. However, fetal membranes were not able to contain the collagen degradation or the bacterial growth and migration despite the battery of produced AMPs, which deeply increases the risk for PTB and PROM. The mixture of recombinant HBDs at low concentrations resulted in increased bactericidal activity compared to each HBD alone in vitro, encouraging further research to study AMP combinations that may offer synergy to control drug-resistant infections in the perinatal period.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Mayra Hernández-Pérez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Gabriela Sedano
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Óscar Villavicencio-Carrisoza
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | | | - Arturo Flores-Pliego
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico; (A.O.-O.); (M.H.-P.); (P.F.-E.); (G.S.); (A.C.H.-R.); (Ó.V.-C.); (A.F.-P.)
| | - Claudine Irles
- Departamento de Fisiología y Desarrollo Celular, INPer, Mexico City 11000, Mexico;
| | | | | | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, INPer, Mexico City 11000, Mexico;
- Correspondence: ; Tel.: +52-55-5520-9900 (ext. 478)
| |
Collapse
|
25
|
Tantengco OAG, Menon R. Breaking Down the Barrier: The Role of Cervical Infection and Inflammation in Preterm Birth. Front Glob Womens Health 2022; 2:777643. [PMID: 35118439 PMCID: PMC8803751 DOI: 10.3389/fgwh.2021.777643] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/27/2021] [Indexed: 01/06/2023] Open
Abstract
Approximately 40% of cases of spontaneous preterm birth (sPTB) are associated with ascending intrauterine infections. The cervix serves as a physical and immunological gatekeeper, preventing the ascent of microorganisms from the vagina to the amniotic cavity. The cervix undergoes remodeling during pregnancy. It remains firm and closed from the start until the late third trimester of pregnancy and then dilates and effaces to accommodate the passage of the fetus during delivery. Remodeling proceeds appropriately and timely to maintain the pregnancy until term delivery. However, risk factors, such as acute and chronic infection and local inflammation in the cervix, may compromise cervical integrity and result in premature remodeling, predisposing to sPTB. Previous clinical studies have established bacterial (i.e., chlamydia, gonorrhea, mycoplasma, etc.) and viral infections (i.e., herpesviruses and human papillomaviruses) as risk factors of PTB. However, the exact mechanism leading to PTB is still unknown. This review focuses on: (1) the epidemiology of cervical infections in pregnant patients; (2) cellular mechanisms that may explain the association of cervical infections to premature cervical ripening and PTB; (3) endogenous defense mechanisms of the cervix that protect the uterine cavity from infection and inflammation; and (4) potential inflammatory biomarkers associated with cervical infection that can serve as prognostic markers for premature cervical ripening and PTB. This review will provide mechanistic insights on cervical functions to assist in managing cervical infections during pregnancy.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Ramkumar Menon
| |
Collapse
|
26
|
Spatial configuration of charge and hydrophobicity tune particle transport through mucus. Biophys J 2022; 121:277-287. [PMID: 34951982 PMCID: PMC8790233 DOI: 10.1016/j.bpj.2021.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/26/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023] Open
Abstract
Mucus is a selectively permeable hydrogel that protects wet epithelia from pathogen invasion and poses a barrier to drug delivery. Determining the parameters of a particle that promote or prevent passage through mucus is critical, as it will enable predictions about the mucosal passage of pathogens and inform the design of therapeutics. The effect of particle net charge and size on mucosal transport has been characterized using simple model particles; however, predictions of mucosal passage remain challenging. Here, we utilize rationally designed peptides to examine the integrated contributions of charge, hydrophobicity, and spatial configuration on mucosal transport. We find that net charge does not entirely predict transport. Specifically, for cationic peptides, the inclusion of hydrophobic residues and the position of charged and hydrophobic residues within the peptide impact mucosal transport. We have developed a simple model of mucosal transport that predicts how previously unexplored amino acid sequences achieve slow versus fast passage through mucus. This model may be used as a basis to predict transport behavior of natural peptide-based particles, such as antimicrobial peptides or viruses, and assist in the engineering of synthetic sequences with desired transport properties.
Collapse
|
27
|
Artym J, Zimecki M. Antimicrobial and Prebiotic Activity of Lactoferrin in the Female Reproductive Tract: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9121940. [PMID: 34944756 PMCID: PMC8699013 DOI: 10.3390/biomedicines9121940] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Women’s intimate health depends on several factors, such as age, diet, coexisting metabolic disorders, hormonal equilibrium, sexual activity, drug intake, contraception, surgery, and personal hygiene. These factors may affect the homeostasis of the internal environment of the genital tract: the vulva, vagina and cervix. This equilibrium is dependent on strict and complex mutual interactions between epithelial cells, immunocompetent cells and microorganisms residing in this environment. The microbiota of the genital tract in healthy women is dominated by several species of symbiotic bacteria of the Lactobacillus genus. The bacteria inhibit the growth of pathogenic microorganisms and inflammatory processes by virtue of direct and multidirectional antimicrobial action and, indirectly, by the modulation of immune system activity. For the homeostasis of the genital tract ecosystem, antimicrobial and anti-inflammatory peptides, as well as proteins secreted by mucus cells into the cervicovaginal fluid, have a fundamental significance. Of these, a multifunctional protein known as lactoferrin (LF) is one of the most important since it bridges innate and acquired immunity. Among its numerous properties, particular attention should be paid to prebiotic activity, i.e., exerting a beneficial action on symbiotic microbiota of the gastrointestinal and genital tract. Such activity of LF is associated with the inhibition of bacterial and fungal infections in the genital tract and their consequences, such as endometritis, pelvic inflammation, urinary tract infections, miscarriage, premature delivery, and infection of the fetus and newborns. The aim of this article is to review the results of laboratory as well as clinical trials, confirming the prebiotic action of LF on the microbiota of the lower genital tract.
Collapse
|
28
|
Endometrial Microbiome and Women’s Reproductive Health – Review of the Problem Endometrial Microbiome and Reproductive Health. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, unlike in the past, the endometrial cavity is not considered to be sterile. The endometrium is supposed to be dominated by Lactobacilli, but also their deficiency can be found in the reproductive tract of asymptomatic healthy women. Sometimes the endometrial microbiome is dominated by various pathological microorganisms, and this can lead to various conditions as chronic endometritis, chorioamnionitis and preterm birth. Their presence causes uterine inflammation and infection, release of pro-inflammatory molecules, uterine contractions, disruption of cervical barrier, premature rupture of membranes. Uterine dysbiosis is associated with recurrent implantation failure and recurrent miscarriages. As the microbiome is important for maintaining immunological homeostasis at the level of gastrointestinal tract Lactobacilli may play a similar function at the level of uterus. The lactobacillus-dominated uterine microbiome is of great importance for maintaining a hostile uterine microenvironment, embryo implantation, early pregnancy development and normal pregnancy outcome.
Collapse
|
29
|
Mhlekude B, Lenman A, Sidoyi P, Joseph J, Kruppa J, Businge CB, Mdaka ML, Konietschke F, Pich A, Gerold G, Goffinet C, Mall AS. The barrier functions of crude cervical mucus plugs against HIV-1 infection in the context of cell-free and cell-to-cell transmission. AIDS 2021; 35:2105-2117. [PMID: 34155151 PMCID: PMC8505157 DOI: 10.1097/qad.0000000000003003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The cervical mucus plugs are enriched with proteins of known immunological functions. We aimed to characterize the anti-HIV-1 activity of the cervical mucus plugs against a panel of different HIV-1 strains in the contexts of cell-free and cell-associated virus. DESIGN A cohort of consenting HIV-1-negative and HIV-1-positive pregnant women in labour was recruited from Mthatha General Hospital in the Eastern Cape province of South Africa, from whom the cervical mucus plugs were collected in 6 M guanidinium chloride with protease inhibitors and transported to our laboratories at -80 °C. METHODS Samples were centrifuged to remove insoluble material and dialysed before freeze--drying and subjecting them to the cell viability assays. The antiviral activities of the samples were studied using luminometric reporter assays and flow cytometry. Time-of-addition and BlaM-Vpr virus-cell fusion assays were used to pin-point the antiviral mechanisms of the cervical mucus plugs, before proteomic profiling using liquid chromatography-tandem mass spectrometry. RESULTS The proteinaceous fraction of the cervical mucus plugs exhibited anti-HIV-1 activity with inter-individual variations and some degree of specificity among different HIV-1 strains. Cell-associated HIV-1 was less susceptible to inhibition by the potent samples whenever compared with the cell-free HIV-1. The samples with high antiviral potency exhibited a distinct proteomic profile when compared with the less potent samples. CONCLUSION The crude cervical mucus plugs exhibit anti-HIV-1 activity, which is defined by a specific proteomic profile.
Collapse
Affiliation(s)
- Baxolele Mhlekude
- University of Cape Town, Department of Surgery, Groote Schuur Hospital, Observatory, South Africa
- TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Institute of Experimental Virology, Hannover
- Charité – Universitätsmedizin Berlin, Institute of Virology, Charité Campus Mitte
- Berlin Institute of Health, Berlin, Germany
| | - Annasara Lenman
- TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Institute of Experimental Virology, Hannover
| | - Phikolomzi Sidoyi
- Faculty of Health Sciences, School of Medicine, Walter Sisulu University, Mthatha, South Africa
| | - Jim Joseph
- Department of Human Biology, Walter Sisulu University, Mthatha, South Africa
| | - Jochen Kruppa
- Charité – Universitätsmedizin Berlin, Institut für Biometrie und Klinische Epidemiologie, Charité Campus Mitte, Berlin, Germany
| | | | - Mana Lungisa Mdaka
- Department of Obstetrics and Gynaecology, Walter Sisulu University/Nelson Mandela Academic Hospital
| | - Frank Konietschke
- Berlin Institute of Health, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Institut für Biometrie und Klinische Epidemiologie, Charité Campus Mitte, Berlin, Germany
| | - Andreas Pich
- Hannover Medical School, Institute of Toxicology, Core Facility Proteomics, Hannover
| | - Gisa Gerold
- TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Institute of Experimental Virology, Hannover
- Umeå University, Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå, Sweden
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Christine Goffinet
- TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Institute of Experimental Virology, Hannover
- Charité – Universitätsmedizin Berlin, Institute of Virology, Charité Campus Mitte
- Berlin Institute of Health, Berlin, Germany
| | - Anwar Suleman Mall
- University of Cape Town, Department of Surgery, Groote Schuur Hospital, Observatory, South Africa
| |
Collapse
|
30
|
Brokaw A, Furuta A, Dacanay M, Rajagopal L, Adams Waldorf KM. Bacterial and Host Determinants of Group B Streptococcal Vaginal Colonization and Ascending Infection in Pregnancy. Front Cell Infect Microbiol 2021; 11:720789. [PMID: 34540718 PMCID: PMC8446444 DOI: 10.3389/fcimb.2021.720789] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Group B streptococcus (GBS) is a gram-positive bacteria that asymptomatically colonizes the vaginal tract. However, during pregnancy maternal GBS colonization greatly predisposes the mother and baby to a wide range of adverse outcomes, including preterm birth (PTB), stillbirth, and neonatal infection. Although many mechanisms involved in GBS pathogenesis are partially elucidated, there is currently no approved GBS vaccine. The development of a safe and effective vaccine that can be administered during or prior to pregnancy remains a principal objective in the field, because current antibiotic-based therapeutic strategies do not eliminate all cases of invasive GBS infections. Herein, we review our understanding of GBS disease pathogenesis at the maternal-fetal interface with a focus on the bacterial virulence factors and host defenses that modulate the outcome of infection. We follow GBS along its path from an asymptomatic colonizer of the vagina to an invasive pathogen at the maternal-fetal interface, noting factors critical for vaginal colonization, ascending infection, and vertical transmission to the fetus. Finally, at each stage of infection we emphasize important host-pathogen interactions, which, if targeted therapeutically, may help to reduce the global burden of GBS.
Collapse
Affiliation(s)
- Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Matthew Dacanay
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States.,Department of Obstetrics and Gynecology, University of Washington and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Son GH, Lee JJ, Kim Y, Lee KY. The Role of Antimicrobial Peptides in Preterm Birth. Int J Mol Sci 2021; 22:ijms22168905. [PMID: 34445608 PMCID: PMC8396209 DOI: 10.3390/ijms22168905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are short cationic amphipathic peptides with a wide range of antimicrobial properties and play an important role in the maintenance of immune homeostasis by modulating immune responses in the reproductive tract. As intra-amniotic infection and microbial dysbiosis emerge as common causes of preterm births (PTBs), a better understanding of the AMPs involved in the development of PTB is essential. The altered expression of AMPs has been reported in PTB-related clinical presentations, such as preterm labor, intra-amniotic infection/inflammation, premature rupture of membranes, and cervical insufficiency. Moreover, it was previously reported that dysregulation of AMPs may affect the pregnancy prognosis. This review aims to describe the expression of AMPs associated with PTBs and to provide new perspectives on the role of AMPs in PTB.
Collapse
Affiliation(s)
- Ga-Hyun Son
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Korea;
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24523, Korea; (J.-J.L.); (Y.K.)
- Correspondence: ; Tel.: +82-2-6960-1205
| | - Jae-Jun Lee
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24523, Korea; (J.-J.L.); (Y.K.)
- Departments of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon 24523, Korea
| | - Youngmi Kim
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24523, Korea; (J.-J.L.); (Y.K.)
| | - Keun-Young Lee
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Korea;
| |
Collapse
|
32
|
Vagios S, Mitchell CM. Mutual Preservation: A Review of Interactions Between Cervicovaginal Mucus and Microbiota. Front Cell Infect Microbiol 2021; 11:676114. [PMID: 34327149 PMCID: PMC8313892 DOI: 10.3389/fcimb.2021.676114] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
At mucosal surfaces throughout the body mucus and mucins regulate interactions between epithelia and both commensal and pathogenic bacteria. Although the microbes in the female genital tract have been linked to multiple reproductive health outcomes, the role of cervicovaginal mucus in regulating genital tract microbes is largely unexplored. Mucus-microbe interactions could support the predominance of specific bacterial species and, conversely, commensal bacteria can influence mucus properties and its influence on reproductive health. Herein, we discuss the current evidence for both synergistic and antagonistic interactions between cervicovaginal mucus and the female genital tract microbiome, and how an improved understanding of these relationships could significantly improve women’s health.
Collapse
Affiliation(s)
- Stylianos Vagios
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Boston, MA, United States
| | - Caroline M Mitchell
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Boston, MA, United States
| |
Collapse
|
33
|
Ding C, Yu Y, Zhou Q. Bacterial Vaginosis: Effects on reproduction and its therapeutics. J Gynecol Obstet Hum Reprod 2021; 50:102174. [PMID: 34087449 DOI: 10.1016/j.jogoh.2021.102174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/10/2021] [Accepted: 05/28/2021] [Indexed: 01/11/2023]
Abstract
Bacterial Vaginosis (BV) is the most common vaginal infection. A large amount of evidence shows that the anatomical scope of BV's pathogenic effect is far beyond the lower reproductive tract. BV is closely related to adverse reproductive outcomes, which may be due to the infection of the vaginal flora ascending to the upper genital tract. In addition, the incidence of BV is relatively high in infertile women. The vaginal microbiome also plays an important role in women's health and diseases. For most women, the normal vaginal microbiota is dominated by Lactobacillus, which can maintain a healthy vaginal environment by producing lactic acid, H2O2 and bacteriocin, etc. BV is characterized by the imbalanced vaginal flora. It changes the acidic environment that is normally dominated by Lactobacillus, and causes an overgrowth of anaerobic and facultative anaerobic bacteria such as Gardnerella vaginalis and Atopobium vaginae. Studies have shown that bacterial infections in the vagina can spread to upper genital tract and cause adverse fertility outcome. Therefore, early diagnosis and therapeutics of symptomatic BV is helpful to improve the outcome of poor fertility.
Collapse
Affiliation(s)
- Chuanfeng Ding
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China; Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China; Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Chawanpaiboon S, Titapant V, Anuwutnavin S, Kanjanapongporn A, Pooliam J. Identifying the barriers to universal cervical length screening for preterm birth prevention at a tertiary hospital in Thailand (patient's perspectives): implementation research. Arch Gynecol Obstet 2021; 304:1179-1188. [PMID: 33783615 DOI: 10.1007/s00404-021-06045-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To identify patient perspectives of barriers to cervical length screening to prevent preterm births. METHODS In Phase I of this prospective descriptive implementation study, 40 pregnant women of up to 24 week gestation were interviewed. Phase II comprised questionnaire development and data validation. The questionnaire was subsequently administered to 400 participants in Phase III. RESULTS Most participants (74.3%) realised preterm babies have complications and high care costs (53%). They recognised that premature-birth risk identification enables appropriate pregnancy care (93.8%), but they were unaware that cervical length measurements indicate the risk (59.5%). The participants who were aware wanted to be examined (63.5%) because of concern about preterm birth (95.8%). Husbands were reported to influence decision-making about screening (81.3%) and subsequent treatment (42.5%). If the associated costs were subsidised, the majority of participants (67.3%) would undergo screening. CONCLUSION Physicians do not explain ways to prevent preterm births. Government policy on preventing preterm births is not well established. Screening and treatment costs are major barriers. TRIAL REGISTRATION Thai Clinical Trials Registry (TCTR) number: TCTR20190813003.
Collapse
Affiliation(s)
- Saifon Chawanpaiboon
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Vitaya Titapant
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sanitra Anuwutnavin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Attapol Kanjanapongporn
- Department of Social Sciences, Faculty of Social Sciences and Humanities, Mahidol University, Bangkok, 10700, Thailand
| | - Julaporn Pooliam
- Clinical Epidemiological Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
35
|
Gudisa R, Goyal K, Gupta P, Singh MP. Localized and Systemic Immune Response in Human Reproductive Tract. Front Cell Infect Microbiol 2021; 11:649893. [PMID: 33859953 PMCID: PMC8042290 DOI: 10.3389/fcimb.2021.649893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Sexually transmitted infections (STIs) are one of the significant causes of morbidity and mortality among adolescents and adults across the globe and encompass all the infections transmitted via person-to-person sexual contact. In spite of the widespread approach being used, STIs remain under-reported and many infections have taken an epidemic turn. The biggest roadblock in this is the unraveled basis of immunopathology of these infections, hindering the discovery of potential targets for immunization. Thereby, it is of utmost significance to decipher the hidden basis of these STIs to control the increasing epidemic of less commonly studied STIs. A complex interplay between innate immune defenses, with resident microbiota and mucosal immune response serves as the basis of therapeutic approaches, by targeting the vital steps of this dynamic interaction. The characterization of pathogen-specific antibodies to significant immunogenic molecules may divulge the conceivable protective effects.
Collapse
Affiliation(s)
| | | | | | - Mini P. Singh
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
36
|
IgGFc-binding protein in pregnancies complicated by spontaneous preterm delivery: a retrospective cohort study. Sci Rep 2021; 11:6107. [PMID: 33731725 PMCID: PMC7969627 DOI: 10.1038/s41598-021-85473-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
To determine the IgGFc-binding protein (FcgammaBP) concentration in amniotic and cervical fluids in preterm prelabor rupture of membranes (PPROM) and preterm labor with intact membranes (PTL) and to assess the diagnostic indices of FcgammaBP to predict intra-amniotic infection (the presence of both microbial invasion of the amniotic cavity and intra-amniotic inflammation). In this study, we included 170 and 79 women with PPROM and PTL, respectively. Paired cervical and amniotic fluid samples were obtained using a Dacron polyester swab and transabdominal amniocentesis, respectively. The FcgammaBP concentrations in the samples were assessed using an enzyme-linked immunosorbent assay. The presence of intra-amniotic infection was associated with elevated FcgammaBP concentrations in pregnancies with PPROM and PTL [PPROM—presence: 86 ng/mL vs. absence: 13 ng/mL, p < 0.0001, area under receiver operating characteristic curve (AUC) = 0.94; PTL—presence: 140 ng/mL vs. absence: 22 ng/mL, p < 0.0001, AUC = 0.86]. In cervical fluid, the concentrations of FcgammaBP were elevated in the presence of intra-amniotic infection in pregnancies with PPROM only (presence: 345 ng/mL vs. absence: 60 ng/mL, p < 0.0001, AUC = 0.93). FcgammaBP in amniotic fluid might be a marker of intra-amniotic infection in women with both PPROM and PTL However, in cervical fluid, it is only observed in women with PPROM.
Collapse
|
37
|
Para R, Romero R, Miller D, Panaitescu B, Varrey A, Chaiworapongsa T, Hassan SS, Hsu CD, Gomez-Lopez N. Human β-defensin-3 participates in intra-amniotic host defense in women with labor at term, spontaneous preterm labor and intact membranes, and preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2020; 33:4117-4132. [PMID: 30999788 PMCID: PMC6800590 DOI: 10.1080/14767058.2019.1597047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 01/16/2023]
Abstract
Objective: Human β-defensin-3 (HBD-3) has a broad spectrum of antimicrobial activity, and activity and, therefore, plays a central role in host defense mechanisms against infection. Herein, we determined whether HBD-3 was a physiological constituent of amniotic fluid during midtrimester and at term and whether the concentration of this defensin was increased in amniotic fluid of women with spontaneous preterm labor and intact membranes and those with preterm prelabor rupture of membranes (pPROM) with intra-amniotic inflammation or intra-amniotic infection.Methods: Amniotic fluid was collected from 219 women in the following groups: (1) midtrimester who delivered at term (n = 35); (2) with or without spontaneous labor at term (n = 50); (3) spontaneous preterm labor with intact membranes who delivered at term (n = 29); (4) spontaneous preterm labor with intact membranes who delivered preterm with or without intra-amniotic inflammation or intra-amniotic infection (n = 69); and (5) pPROM with or without intra-amniotic infection (n = 36). Amniotic fluid HBD-3 concentrations were determined using a sensitive and specific ELISA kit.Results: (1) HBD-3 is a physiological constituent of amniotic fluid; (2) the amniotic fluid concentration of HBD-3 did not change with gestational age (midtrimester versus term not in labor); (3) amniotic fluid concentrations of HBD-3 were higher in women with spontaneous labor at term than in those without labor; (4) in the absence of intra-amniotic inflammation, amniotic fluid concentrations of HBD-3 were similar between women with spontaneous preterm labor who delivered preterm and those who delivered at term; (5) among patients with spontaneous preterm labor who delivered preterm, amniotic fluid concentrations of HBD-3 were greater in women with intra-amniotic infection than in those without this clinical condition; (6) among patients with spontaneous preterm labor, amniotic fluid concentrations of HBD-3 were higher in women with intra-amniotic inflammation or intra-amniotic infection who delivered preterm than in those without these clinical conditions who delivered at term; and (7) women with pPROM and intra-amniotic infection had higher median amniotic fluid concentrations of HBD-3 than those without this clinical condition.Conclusion: Human β-defensin-3 is a physiological constituent of amniotic fluid and increases during the process of labor at term. Amniotic fluid concentrations of HBD-3 were increased in women with spontaneous preterm labor with intact membranes or pPROM with intra-amniotic inflammation or intra-amniotic infection, indicating that this defensin participates in the host defense mechanisms in the amniotic cavity against microorganisms or danger signals. These findings provide insight into the soluble host defense mechanisms against intra-amniotic inflammation and intra-amniotic infection.
Collapse
Affiliation(s)
- Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
38
|
Lacroix G, Gouyer V, Gottrand F, Desseyn JL. The Cervicovaginal Mucus Barrier. Int J Mol Sci 2020; 21:ijms21218266. [PMID: 33158227 PMCID: PMC7663572 DOI: 10.3390/ijms21218266] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
Preterm births are a global health priority that affects 15 million babies every year worldwide. There are no effective prognostic and therapeutic strategies relating to preterm delivery, but uterine infections appear to be a major cause. The vaginal epithelium is covered by the cervicovaginal mucus, which is essential to health because of its direct involvement in reproduction and functions as a selective barrier by sheltering the beneficial lactobacilli while helping to clear pathogens. During pregnancy, the cervical canal is sealed with a cervical mucus plug that prevents the vaginal flora from ascending toward the uterine compartment, which protects the fetus from pathogens. Abnormalities of the cervical mucus plug and bacterial vaginosis are associated with a higher risk of preterm delivery. This review addresses the current understanding of the cervicovaginal mucus and the cervical mucus plug and their interactions with the microbial communities in both the physiological state and bacterial vaginosis, with a focus on gel-forming mucins. We also review the current state of knowledge of gel-forming mucins contained in mouse cervicovaginal mucus and the mouse models used to study bacterial vaginosis.
Collapse
|
39
|
Elevation of cervical C-X-C motif chemokine ligand 10 levels is associated with HIV-1 acquisition in pregnant and postpartum women. AIDS 2020; 34:1725-1733. [PMID: 32701583 DOI: 10.1097/qad.0000000000002613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the relationship between cervical cytokine/chemokine concentrations and HIV-1 acquisition in peripartum Kenyan women. DESIGN Nested case-control study. METHODS Women participating in a prospective study of peripartum HIV acquisition in Kenya (the Mama Salama Study), were tested for HIV-1 at 1-3 month intervals during pregnancy and through 9 months postpartum. Cases positive for HIV-1 RNA during follow-up (N = 14), were matched 3 : 1 with HIV-negative controls (N = 42) based on age, marital status, partner HIV-1 status, transactional sex, and timing of cervical swab collection. Concentrations of five cytokines (IL-1β, IL-6, IL-10, IFNγ, and TNFα) and four chemokines (IL-8, C-X-C motif chemokine ligand 10 (CXCL10), macrophage inflammatory protein-1 α, and macrophage inflammatory protein-1 β) were measured from cervical swabs collected at the visit prior to HIV-1 diagnosis (cases) or matched gestational/postpartum time (controls). Cytokine/chemokine concentrations were compared between cases and controls using Wilcoxon rank-sum tests. Principal component analysis was used to create a summary score for closely correlated cytokines/chemokines. Associations with HIV-1 acquisition were analyzed using conditional logistic regression. Path analysis was used to evaluate hypothesized relationships between CXCL10, vaginal washing, Nugent score, and HIV-1 acquisition. RESULTS Conditional logistic regression analysis demonstrated an association between increased concentrations of CXCL10 and HIV-1 acquisition (odds ratio = 1.74, 95% confidence interval 1.04, 2.93; P = 0.034). Path analysis confirmed a positive independent association between higher concentrations of CXCL10 and HIV-1 acquisition (path coefficient = 0.37, 95% confidence interval 0.15, 0.59; P < 0.001). CONCLUSION HIV-1 acquisition was associated with increased cervical concentrations of CXCL10 in pregnant and postpartum women.
Collapse
|
40
|
Fang J, Chen L, Chen Z, Jiang X, Pan M. Association of the vaginal microbiota with pregnancy outcomes in Chinese women after cervical cerclage. Reprod Biomed Online 2020; 41:698-706. [PMID: 32855065 DOI: 10.1016/j.rbmo.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
RESEARCH QUESTION The study aimed to investigate the relationship between risk factors associated with vaginal microbiota and outcomes of cervical cerclage. DESIGN A retrospective cohort study of singleton pregnancies with cervical cerclage was conducted. Before cerclage, participants underwent a vaginal microbiota assay, including morphological examination and functional vaginal microecological analysis using a vaginitis multi-test kit. The chi-squared test and logistic and linear regression analyses were performed to evaluate the associations of various risk factors with maternal and neonatal outcomes. RESULTS Eighty-five participants were included. The mean interval between cerclage and delivery was 69.4 ± 36.7 days, and 12 (14.1%) of newborns died. A higher grade of vaginal cleanliness, a higher pH, a lower abundance of Lactobacillus spp., a higher sialidase-positive percentage, a higher positive percentage of clue cells, a higher lactobacillary grade, a higher Nugent score and a higher rate of microecological dysbiosis were significantly associated with a poor neonatal outcome and shorter cerclage to delivery intervals (P < 0.001-0.041). Furthermore, sialidase positivity was associated with the highest risk of cervical cerclage failure (odds ratio [OR] 10.469; 95% confidence interval [CI] 1.096-36.087), followed by the presence of bulging membranes (OR 6.400; 95% CI 0.428-15.641) and vaginal microbiota dysbiosis (OR 6.038; 95% CI 0.173-17.072). CONCLUSIONS An absence of Lactobacillus spp. and some functional factors of vaginal microbiota are potential risk factors that predict subsequent cerclage failure. These findings indicate the potential clinical utility of these factors to predict cervical cerclage failure for managing patient expectations and providing improved postoperative surveillance.
Collapse
Affiliation(s)
- Jiaoning Fang
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Lihua Chen
- Department of Gynecologics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhiwei Chen
- Department of Gynecologics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaoxiang Jiang
- Department of Gynecologics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Mian Pan
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
41
|
Suff N, Karda R, Diaz JA, Ng J, Baruteau J, Perocheau D, Taylor PW, Alber D, Buckley SMK, Bajaj-Elliott M, Waddington SN, Peebles D. Cervical Gene Delivery of the Antimicrobial Peptide, Human β-Defensin (HBD)-3, in a Mouse Model of Ascending Infection-Related Preterm Birth. Front Immunol 2020; 11:106. [PMID: 32117260 PMCID: PMC7026235 DOI: 10.3389/fimmu.2020.00106] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
Approximately 40% of preterm births are preceded by microbial invasion of the intrauterine space; ascent from the vagina being the most common pathway. Within the cervical canal, antimicrobial peptides and proteins (AMPs) are important components of the cervical barrier which help to prevent ascending vaginal infection. We investigated whether expression of the AMP, human β-defensin-3 (HBD3), in the cervical mucosa of pregnant mice could prevent bacterial ascent from the vagina into the uterine cavity. An adeno-associated virus vector containing both the HBD3 gene and GFP transgene (AAV8 HBD3.GFP) or control AAV8 GFP, was administered intravaginally into E13.5 pregnant mice. Ascending infection was induced at E16.5 using bioluminescent Escherichia coli (E. coli K1 A192PP-lux2). Bioluminescence imaging showed bacterial ascent into the uterine cavity, inflammatory events that led to premature delivery and a reduction in pups born alive, compared with uninfected controls. Interestingly, a significant reduction in uterine bioluminescence in the AAV8 HBD3.GFP-treated mice was observed 24 h post-E. coli infection, compared to AAV8 GFP treated mice, signifying reduced bacterial ascent in AAV8 HBD3.GFP-treated mice. Furthermore, there was a significant increase in the number of living pups in AAV HBD3.GFP-treated mice. We propose that HBD3 may be a potential candidate for augmenting cervical innate immunity to prevent ascending infection-related preterm birth and its associated neonatal consequences.
Collapse
Affiliation(s)
- Natalie Suff
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
- Preterm Birth Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
- Preterm Birth Group, Department of Women and Children's Health, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Rajvinder Karda
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Joanne Ng
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Julien Baruteau
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
- Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Dany Perocheau
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Peter W. Taylor
- University College London School of Pharmacy, London, United Kingdom
| | - Dagmar Alber
- Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Suzanne M. K. Buckley
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Mona Bajaj-Elliott
- Preterm Birth Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
- Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Simon N. Waddington
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
- SA/MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Donald Peebles
- Preterm Birth Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
42
|
Sheldon IM, Molinari PCC, Ormsby TJR, Bromfield JJ. Preventing postpartum uterine disease in dairy cattle depends on avoiding, tolerating and resisting pathogenic bacteria. Theriogenology 2020; 150:158-165. [PMID: 31973964 DOI: 10.1016/j.theriogenology.2020.01.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 12/15/2022]
Abstract
Up to forty percent of dairy cows develop metritis or endometritis when pathogenic bacteria infect the uterus after parturition. However, resilient cows remain healthy even when exposed to the same pathogens. Here, we provide a perspective on the mechanisms that dairy cows use to prevent postpartum uterine disease. We suggest that resilient cows prevent the development of uterine disease using the three complementary defensive strategies of avoiding, tolerating and resisting infection with pathogenic bacteria. Avoidance maintains health by limiting the exposure to pathogens. Avoidance mechanisms include intrinsic behaviors to reduce the risk of infection by avoiding pathogens or infected animals, perhaps signaled by the fetid odor of uterine disease. Tolerance improves health by limiting the tissue damage caused by the pathogens. Tolerance mechanisms include neutralizing bacterial toxins, protecting cells against damage, enhancing tissue repair, and reprogramming metabolism. Resistance improves health by limiting the pathogen burden. Resistance mechanisms include inflammation driven by innate immunity and adaptive immunity, with the aim of killing and eliminating pathogenic bacteria. Farmers can also help cows prevent the development of postpartum uterine disease by avoiding trauma to the genital tract, reducing stress, and feeding animals appropriately during the transition period. Understanding the mechanisms of avoidance, tolerance and resistance to pathogens will inform strategies to generate resilient animals and prevent uterine disease.
Collapse
Affiliation(s)
- I Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom.
| | - Paula C C Molinari
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611-0910, United States
| | - Thomas J R Ormsby
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611-0910, United States
| |
Collapse
|
43
|
Mei C, Yang W, Wei X, Wu K, Huang D. The Unique Microbiome and Innate Immunity During Pregnancy. Front Immunol 2019; 10:2886. [PMID: 31921149 PMCID: PMC6929482 DOI: 10.3389/fimmu.2019.02886] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
A successful pregnancy depends on not only the tolerance of the fetal immune system by the mother but also resistance against the threat of hazardous microorganisms. Infection with pathogenic microorganisms during pregnancy may lead to premature delivery, miscarriage, growth restriction, neonatal morbidity, and other adverse outcomes. Moreover, the host also has an intact immune system to avoid these adverse outcomes. It is important to note the presence of normal bacteria in the maternal reproductive tract and the principal role of the maternal-placental-fetal interaction in antimicrobial immunity. Previous studies mainly focused on maternal infection during pregnancy. However, this review summarizes the new views on the study of the maternal microbiome and expounds the innate immune defense mechanism of the maternal vagina and decidua as well as how cytotrophoblasts and syncytiotrophoblasts recognize and kill bacteria in the placenta. Fetal immune systems, thought to be weak, also exhibit an immune defense function that is indispensable for maintaining the safety of the fetus. The skin, lungs, and intestines of the fetus during pregnancy constitute the main immune barriers. These findings will provide a new understanding of the effects of normal microbial flora and how the host resists harmful microbes during pregnancy. We believe that it may also contribute to the reference on the clinical prevention and treatment of gestational infection to avoid adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Chunlei Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wei
- Second Affiliated Hospital of Jinlin University, Changchun, China
| | - Kejia Wu
- Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Romero R, Gomez-Lopez N, Winters AD, Jung E, Shaman M, Bieda J, Panaitescu B, Pacora P, Erez O, Greenberg JM, Ahmad MM, Hsu CD, Theis KR. Evidence that intra-amniotic infections are often the result of an ascending invasion - a molecular microbiological study. J Perinat Med 2019; 47:915-931. [PMID: 31693497 PMCID: PMC7147941 DOI: 10.1515/jpm-2019-0297] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022]
Abstract
Background Microbial invasion of the amniotic cavity resulting in intra-amniotic infection is associated with obstetrical complications such as preterm labor with intact or ruptured membranes, cervical insufficiency, as well as clinical and histological chorioamnionitis. The most widely accepted pathway for intra-amniotic infection is the ascension of microorganisms from the lower genital tract. However, hematogenous dissemination of microorganisms from the oral cavity or intestine, retrograde seeding from the peritoneal cavity through the fallopian tubes, and introduction through invasive medical procedures have also been suggested as potential pathways for intra-amniotic infection. The primary reason that an ascending pathway is viewed as most common is that the microorganisms most often detected in the amniotic fluid are those that are typical inhabitants of the vagina. However, thus far, no studies have shown that microorganisms in the amniotic cavity are simultaneously present in the vagina of the woman from which they were isolated. The objective of the study was to determine the frequency with which microorganisms isolated from women with intra-amniotic infection are also present in the lower genital tract. Methods This was a cross-sectional study of women with intra-amniotic infection with intact membranes. Intra-amniotic infection was defined as a positive culture and elevated concentrations of interleukin-6 (IL-6) (>2.6 ng/mL) in amniotic fluid and/or acute histologic chorioamnionitis and funisitis. Microorganisms isolated from bacterial cultures of amniotic fluid were taxonomically identified through matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and 16S ribosomal RNA (rRNA) gene sequencing. Vaginal swabs were obtained at the time of amniocentesis for the identification of microorganisms in the lower genital tract. The overall bacterial profiles of amniotic fluids and vaginal swabs were characterized through 16S rRNA gene sequencing. The bacterial profiles of vaginal swabs were interrogated for the presence of bacteria cultured from amniotic fluid and for the presence of prominent (>1% average relative abundance) operational taxonomic units (OTUs) within the overall 16S rRNA gene bacterial profiles of amniotic fluid. Results (1) A total of 75% (6/8) of women had bacteria cultured from their amniotic fluid that are typical residents of the vaginal ecosystem. (2) A total of 62.5% (5/8) of women with bacteria cultured from their amniotic fluid also had these bacteria present in their vagina. (3) The microorganisms cultured from amniotic fluid and also detected in the vagina were Ureaplasma urealyticum, Escherichia coli, and Streptococcus agalactiae. (4) 16S rRNA gene sequencing revealed that the amniotic fluid of women with intra-amniotic infection had bacterial profiles dominated by Sneathia, Ureaplasma, Prevotella, Lactobacillus, Escherichia, Gardnerella, Peptostreptococcus, Peptoniphilus, and Streptococcus, many of which had not been cultured from the amniotic fluid samples. (5) Seventy percent (7/10) of the prominent (>1% average relative abundance) OTUs found in amniotic fluid were also prominent in the vagina. Conclusion The majority of women with intra-amniotic infection had bacteria cultured from their amniotic fluid that were typical vaginal commensals, and these bacteria were detected within the vagina at the time of amniocentesis. Molecular microbiological interrogation of amniotic fluid from women with intra-amniotic infection revealed that the bacterial profiles of amniotic fluid were largely consistent with those of the vagina. These findings indicate that ascension from the lower genital tract is the primary pathway for intra-amniotic infection.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrew D. Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Majid Shaman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Janine Bieda
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Maternity Department “D,” Division of Obstetrics and Gynecology, Soroka University Medical Center School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan M. Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Madison M. Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
45
|
Uterine cervix as a fundamental part of the pathogenesis of pregnancy loss associated with ascending placentitis in mares. Theriogenology 2019; 145:167-175. [PMID: 31732164 DOI: 10.1016/j.theriogenology.2019.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/14/2022]
Abstract
Anatomical and molecular changes in the cervical barrier in women are a fundamental part of the pathogenesis of pregnancy loss associated with chorioamnionitis. However, there is little information regarding changes in the cervix associated with ascending infection in pregnant mares. To better characterize morphological and molecular changes in the cervix during placentitis, we examined full thickness histology and mRNA expression for a number of inflammatory and endocrine factors in the mucosa and stroma of the cervix of mares (n = 5) after experimental induction of placentitis via transcervical inoculation with Streptococcus equi ssp zooepidemicus at approximately 290d of gestation. Gestationally age-matched mares (n = 4) served as controls. Target transcripts included steroid receptors (PGR, ESR1 and 2), OXTR, prostaglandins synthases and receptors (PTGS1, PTGS2, PGES, PGFS, PTGER2 and PTGER4), cytokines (IL1b, IL6, CLCX8, IL10 and TNFα) and acute phase proteins (SAA). Histologically, a marked modification in the cervical epithelia and stroma was characterizing cervicitis. Additionally, the mRNA expression of IL1β, IL6, CXCL8, SAA and PTGS2 was greater (P < 0.05) in both mucosa and stroma of the inoculated mares; whereas TNFα, IL10 and PGES were upregulated (P < 0.05) only in the cervical mucosa. Progesterone receptor, ESR1 and PTGER4 were upregulated in the cervical stroma of placentitis mares. In conclusion, the cervical response to placentitis was characterized by an upregulation of inflammatory cytokines that was accompanied by induction of PTGS2 and PGES. Further, receptors known to be associated with relaxation of the cervix in other species (ESR1 and PTGER4) were upregulated in the cervical stroma of placentitis mares. These findings indicate that the cervix is not only a physical barrier but that it has an active role in the pathogenesis of ascending placentitis.
Collapse
|
46
|
Abstract
This review underlines the important role that obstetricians play in the prevention of retinopathy of prematurity. Efforts predominately focus on predicting which pregnant women are at highest risk of preterm birth, instigating treatments to prevent pre-eclampsia, fetal growth restriction and maternal infection which could lead to iatrogenic or spontaneous preterm birth, and optimizing care when preterm birth is inevitable. More broadly, optimizing maternal health pre-conception through stopping smoking, improving diet, reducing obesity with its associated gestational diabetes, and treating hypertension may reduce preterm birth and other pregnancy complications. This is a message that all healthcare professionals including obstetricians, neonatologists and GPs, nursing and midwifery staff need to communicate all women and men who are contemplating having a baby.
Collapse
Affiliation(s)
- Lindsay M Kindinger
- Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, WC1E 6HX, UK.
| | - Anna L David
- Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, WC1E 6HX, UK
| |
Collapse
|
47
|
Vornhagen J, Quach P, Santana-Ufret V, Alishetti V, Brokaw A, Armistead B, Qing Tang H, MacDonald JW, Bammler TK, Adams Waldorf KM, Uldbjerg N, Rajagopal L. Human Cervical Mucus Plugs Exhibit Insufficiencies in Antimicrobial Activity Towards Group B Streptococcus. J Infect Dis 2019; 217:1626-1636. [PMID: 29425317 DOI: 10.1093/infdis/jiy076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/05/2018] [Indexed: 01/31/2023] Open
Abstract
Preterm birth is a leading cause of neonatal mortality and lacks an effective therapy. Ascending microbial infections from the lower genital tract lead to infection of the placenta, amniotic fluid, and fetus causing preterm birth or stillbirth. Directly in the path of an ascending infection is the cervical mucus plug (CMP), a dense mucoid structure in the cervical canal with potential antimicrobial properties. In this study, we aimed to define the components of CMP responsible for antimicrobial activity against a common lower genital tract organism associated with preterm birth and stillbirths, namely, group B streptococcus (GBS). Using a quantitative proteomic approach, we identified antimicrobial factors in CMPs that were collected from healthy human pregnancies. However, we noted that the concentration of antimicrobial peptides present in the human CMPs were insufficient to directly kill GBS, and antimicrobial activity, when observed, was due to antibiotics retained in the CMPs. Despite this insufficiency, CMP proteins were able to activate leukocytes in whole blood resulting in increased rates of bacterial killing, suggesting a role for the CMP in enhancing complement-mediated killing or leukocyte activation. This study provides new insight into how the human CMP may limit ascending bacterial infection.
Collapse
Affiliation(s)
- Jay Vornhagen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington.,Department of Global Health, University of Washington, Seattle
| | - Phoenicia Quach
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington
| | - Verónica Santana-Ufret
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington
| | - Varchita Alishetti
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle
| | - Blair Armistead
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington.,Department of Pediatrics, University of Washington, Seattle.,Department of Global Health, University of Washington, Seattle
| | - Hai Qing Tang
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Skejby, Denmark
| | - James W MacDonald
- Environmental and Occupational Health Sciences, University of Washington, Seattle
| | - Theo K Bammler
- Environmental and Occupational Health Sciences, University of Washington, Seattle
| | - Kristina M Adams Waldorf
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington.,Department of Obstetrics and Gynecology, University of Washington, Seattle.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle.,Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Skejby, Denmark
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle.,Department of Pediatrics, University of Washington, Seattle.,Department of Global Health, University of Washington, Seattle
| |
Collapse
|
48
|
Shor S, Zimerman A, Maymon R, Kovo M, Wolf M, Wiener I, Bar J, Melcer Y. Combined therapy with vaginal progesterone, Arabin cervical pessary and cervical cerclage to prevent preterm delivery in high-risk women. J Matern Fetal Neonatal Med 2019; 34:2154-2158. [PMID: 31438741 DOI: 10.1080/14767058.2019.1659771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Preterm birth is the leading cause of perinatal morbidity and mortality. Vaginal progesterone cervical cerclage and Arabin cervical pessary are considered as preventive treatments in women at risk for preterm birth. However, there is less evidence as to which of these interventions is the preferred management. The current study aims was to compare the outcome of pregnancy in women with a short cervical length managed with 4 different treatment protocols: therapy with vaginal progesterone, cervical cerclage and an Arabin cervical pessary (group A), Arabin cervical pessary and vaginal progesterone (group B), cervical cerclage and vaginal progesterone (group C), or vaginal progesterone alone (group D). METHODS A retrospective cohort study of singleton pregnancies managed in three tertiary medical centers between September 2011 and December 2017. RESULTS In the study period, 286 pregnant women underwent vaginal ultrasonography between 15 and 29 weeks gestation. They all had a short cervical length (≤25 mm). Of these, 18 (6.3%), 120 (41.9%), 38 (13.3%) and 110 (38.5%) patients received treatment classifying them into groups A, B, C, and D, respectively. A significantly higher rate of patients in group A had either a history of cervical incompetence (44.4 versus 9.2 versus 7.9 and 0.9%, respectively, p = .0001) or a cervical procedure (61.1 versus 37.5 versus 28.9 and 27.3%, respectively, p = .027) compared to patients in group B, C, and D. Despite having a shorter cervical length at recruitment in group A (median (range); 14.5 (0-25) versus 15 (0-25) versus 15.5 (0-25) and 19 (2-25) mm, respectively, p = .002) the rate of spontaneous preterm delivery <37-week gestation was similar across groups (44.4 versus 32.5 versus 36.8 versus 32.7%, respectively, p = .665). CONCLUSION A combined rescue therapy involving vaginal progesterone, cervical cerclage, and Arabin cervical pessary emerges as a promising management strategy in pregnant women who have a short cervical length and a high background risk for preterm delivery. This combination may prolong their pregnancy and safely bring them near term. Additional studies are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Shimrit Shor
- Department of Obstetrics and Gynecology, the Yitzhak Shamir Medical Center, formerly Assaf Harofeh Medical Center, Zerifin, Israel
| | - Ariel Zimerman
- Department of Obstetrics and Gynecology, the Yitzhak Shamir Medical Center, formerly Assaf Harofeh Medical Center, Zerifin, Israel
| | - Ron Maymon
- Department of Obstetrics and Gynecology, the Yitzhak Shamir Medical Center, formerly Assaf Harofeh Medical Center, Zerifin, Israel
| | - Michal Kovo
- Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel, both affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Maya Wolf
- Department of Obstetrics and Gynecology, Galilee Medical Center, Faculty of Medicine in the Galilee, Nahariya, affiliated with the Bar Ilan University, Tel Aviv, Israel
| | - Ifat Wiener
- Department of Obstetrics and Gynecology, the Yitzhak Shamir Medical Center, formerly Assaf Harofeh Medical Center, Zerifin, Israel
| | - Jacob Bar
- Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel, both affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yaakov Melcer
- Department of Obstetrics and Gynecology, the Yitzhak Shamir Medical Center, formerly Assaf Harofeh Medical Center, Zerifin, Israel
| |
Collapse
|
49
|
Winters AD, Romero R, Gervasi MT, Gomez-Lopez N, Tran MR, Garcia-Flores V, Pacora P, Jung E, Hassan SS, Hsu CD, Theis KR. Does the endometrial cavity have a molecular microbial signature? Sci Rep 2019; 9:9905. [PMID: 31289304 PMCID: PMC6616349 DOI: 10.1038/s41598-019-46173-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/21/2019] [Indexed: 01/15/2023] Open
Abstract
Recent molecular studies concluded that the endometrium has a resident microbiota dominated by Lactobacillus spp. and is therefore similar to that of the vagina. These findings were largely derived from endometrial samples obtained through a transcervical catheter and thus prone to contamination. Herein, we investigated the molecular microbial profiles of mid-endometrial samples obtained through hysterectomy and compared them with those of the cervix, vagina, rectum, oral cavity, and controls for background DNA contamination. Microbial profiles were examined through 16S rRNA gene qPCR and sequencing. Universal bacterial qPCR of total 16S rDNA revealed a bacterial load exceeding that of background DNA controls in the endometrium of 60% (15/25) of the study subjects. Bacterial profiles of the endometrium differed from those of the oral cavity, rectum, vagina, and background DNA controls, but not of the cervix. The bacterial profiles of the endometrium and cervix were dominated by Acinetobacter, Pseudomonas, Cloacibacterium, and Comamonadaceae. Both 16S rRNA gene sequencing and Lactobacillus species-specific (L. iners & L crispatus) qPCR showed that Lactobacillus was rare in the endometrium. In conclusion, if there is a microbiota in the middle endometrium, it is not dominated by Lactobacillus as was previously concluded, yet further investigation using culture and microscopy is necessary.
Collapse
Affiliation(s)
- Andrew D Winters
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA. .,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA. .,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA. .,Detroit Medical Center, Detroit, Michigan, USA.
| | - Maria Teresa Gervasi
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Nardhy Gomez-Lopez
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Maria Rosa Tran
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA. .,Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, USA. .,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.
| |
Collapse
|
50
|
You YA, Kwon EJ, Choi SJ, Hwang HS, Choi SK, Lee SM, Kim YJ. Vaginal microbiome profiles of pregnant women in Korea using a 16S metagenomics approach. Am J Reprod Immunol 2019; 82:e13124. [PMID: 31134711 DOI: 10.1111/aji.13124] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/28/2022] Open
Abstract
PROBLEM The stability and dominance of Lactobacillus spp. in vaginal fluid are important for reproductive health. However, the characterization of the vaginal microbiota of women with preterm labor (PTL) or preterm premature rupture of membranes (P-PROM), and its association with preterm birth (PTB) are poorly understood. METHOD OF STUDY We collected vaginal fluid from women at risk of PTB (n = 58) in five university hospitals in Korea. We performed a hierarchical clustering analysis and classification according to the Lactobacillus spp. and Lactobacillus abundance using Illumina MiSeq sequencing of 16S rRNA gene amplicons. RESULTS Women at risk for PTB caused by P-PROM had greater bacterial richness and diversity at the time of admission than those with PTL (P < 0.05). However, they were not significantly different between term and preterm samples. In the classification by Lactobacillus spp., the community commonly dominated by Bacteroides and Lactobacillus crispatus was found for the first time in pregnant women in Korea, and all women with this community delivered preterm. Intriguingly, women with an abundance of Weissella in a Bacteroides-dominant community delivered at term. Moreover, in the classification by Lactobacillus proportion, the abundances of Weissella and Rickettsiales were associated with term deliveries, but the abundances of Bacteroides and Escherichia-Shigella were associated with PTBs (P < 0.05). CONCLUSION This result suggests that Lactobacillus abundance-based classification of vaginal fluid may reveal the microbiome associated with PTB. Further studies are needed to investigate the mechanism underlying the link between the microbiome and PTB.
Collapse
Affiliation(s)
- Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Eun Jin Kwon
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Han-Sung Hwang
- Department of Obstetrics and Gynecology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Sae-Kyung Choi
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|