1
|
Wang H, Zhu S, Yang C, Zeng D, Luo C, Dai C, Cheng D, Lv X. Expression and Functional Identification of SPL6/7/9 Genes under Drought Stress in Sugarbeet Seedlings. Int J Mol Sci 2024; 25:8989. [PMID: 39201675 PMCID: PMC11354545 DOI: 10.3390/ijms25168989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Sugar beet is a significant sugar crop in China, primarily cultivated in arid regions of the north. However, drought often affects sugar beet cultivation, leading to reduced yield and quality. Therefore, understanding the impact of drought on sugar beets and studying their drought tolerance is crucial. Previous research has examined the role of SPL (SQUAMOSA promoter-binding protein-like) transcription factors in plant stress response; however, the precise contribution of SPLs to the drought stress response in sugar beets has yet to be elucidated. In this study, we identified and examined the BvSPL6, BvSPL7, and BvSPL9 genes in sugar beets, investigating their performance during the seedling stage under drought stress. We explored their drought resistance characteristics using bioinformatics, quantitative analysis, physiological experiments, and molecular biology experiments. Drought stress and rehydration treatments were applied to sugar beet seedlings, and the expression levels of BvSPL6, BvSPL7, and BvSPL9 genes in leaves were quantitatively analyzed at 11 different time points to evaluate sugar beets' response and tolerance to drought stress. Results indicated that the expression level of the BvSPL6/9 genes in leaves was upregulated during the mid-stage of drought stress and downregulated during the early and late stages. Additionally, the expression level of the BvSPL7 gene gradually increased with the duration of drought stress. Through analyzing changes in physiological indicators during different time periods of drought stress and rehydration treatment, we speculated that the regulation of BvSPL6/7/9 genes is associated with sugar beet drought resistance and their participation in drought stress response. Furthermore, we cloned the CDS sequences of BvSPL6, BvSPL7, and BvSPL9 genes from sugar beets and conducted sequence alignment with the database to validate the results. Subsequently, we constructed overexpression vectors, named 35S::BvSPL6, 35S::BvSPL7, and 35S::BvSPL9, and introduced them into sugar beets using Agrobacterium-mediated methods. Real-time fluorescence quantitative analysis revealed that the expression levels of BvSPL6/7/9 genes in transgenic sugar beets increased by 40% to 80%. The drought resistance of transgenic sugar beets was significantly enhanced compared with the control group.
Collapse
Affiliation(s)
- Hui Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Shengyi Zhu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Chao Yang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
| | - Chengfei Luo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Cuihong Dai
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
| | - Dayou Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Xiaohong Lv
- Heilongjiang Academy of Forestry, Harbin 150001, China;
| |
Collapse
|
2
|
Yolcu S, Skorupa M, Uras ME, Mazur J, Ozyiğit II. Genome-wide identification, phylogenetic classification of histone acetyltransferase genes, and their expression analysis in sugar beet (Beta vulgaris L.) under salt stress. PLANTA 2024; 259:85. [PMID: 38448714 PMCID: PMC10917867 DOI: 10.1007/s00425-024-04361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
MAIN CONCLUSION This study identified seven histone acetyltransferase-encoding genes (HATs) from Beta vulgaris L. (sugar beet) genome through bioinformatics tools and analyzed their expression profiles under salt stress. Sugar beet HATs are phylogenetically divided into four families: GNAT, MYST, CBP, and TAFII250. The BvHAT genes were differentially transcribed in leaves, stems, and roots of B. vulgaris salt-resistant (Casino) and -sensitive (Bravo) cultivars under salt stress. Histone acetylation is regulated by histone acetyltransferases (HATs), which catalyze ɛ-amino bond formation between lysine residues and acetyl groups with a cofactor, acetyl-CoA. Even though the HATs are known to participate in stress response and development in model plants, little is known about the functions of HATs in crops. In sugar beet (Beta vulgaris L.), they have not yet been identified and characterized. Here, an in silico analysis of the HAT gene family in sugar beet was performed, and their expression patterns in leaves, stems, and roots of B. vulgaris were analyzed under salt stress. Salt-resistant (Casino) and -sensitive (Bravo) beet cultivars were used for gene expression assays. Seven HATs were identified from sugar beet genome, and named BvHAG1, BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2, and BvHAF1. The HAT proteins were divided into 4 groups including MYST, GNAT (GCN5, HAT1, ELP3), CBP and TAFII250. Analysis of cis-acting elements indicated that the BvHAT genes might be involved in hormonal regulation, light response, plant development, and abiotic stress response. The BvHAT genes were differentially expressed in leaves, stems, and roots under control and 300 mM NaCl. In roots of B. vulgaris cv. Bravo, the BvHAG1, BvHAG2, BvHAG4, BvHAF1, and BvHAC1 genes were dramatically expressed after 7 and 14 days of salt stress. Interestingly, the BvHAC2 gene was not expressed under both control and stress conditions. However, the expression of BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2 genes showed a significant increase in response to salt stress in the roots of cv. Casino. This study provides new insights into the potential roles of histone acetyltransferases in sugar beet.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Türkiye.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Mehmet Emin Uras
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Haliç University, 34060, Istanbul, Türkiye
| | - Justyna Mazur
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Ibrahim Ilker Ozyiğit
- Faculty of Science, Department of Biology, Marmara University, 34722, Istanbul, Türkiye
| |
Collapse
|
3
|
Maleki M, Shojaeiyan A, Mokhtassi-Bidgoli A. Differential responses of two fenugreek (Trigonella foenum-graecum L.) landraces pretreated with melatonin to prolonged drought stress and subsequent recovery. BMC PLANT BIOLOGY 2024; 24:161. [PMID: 38429697 PMCID: PMC10908034 DOI: 10.1186/s12870-024-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Drought impairs growth, disturbs photosynthesis, and induces senescence in plants, which results in crop productivity reduction and ultimately jeopardizes human food security. The objective of this study was to determine major parameters associated with drought tolerance and recovery ability of fenugreek (Trigonella foenum-graecum L.), by examining differential biochemical and phenological responses and underlying enzyme activities as well as melatonin roles during drought stress and re-watering for two contrasting landraces. Moreover, the relative expression of three key genes involved in the biosynthesis pathway of diosgenin, including SQS, CAS, and BG, was investigated. RESULTS Depending on the conditions, drought stress enhanced the activity of antioxidant enzymes and the osmoregulating compounds, non-enzymatic antioxidants, hydrogen peroxide content, and lipid peroxidation levels in most cases. Severe drought stress accelerated flowering time in Shushtar landrace (SHR) but had no significant effects on Varamin (VR). Pretreatment with melatonin delayed flowering time in SHR and caused high drought resistance in this landrace. Furthermore, melatonin significantly enhanced drought adaptability in VR by improving plant recovery ability. DISCUSSION Based on our results plants' responses to drought stress and melatonin pretreatment were completely landrace-specific. Drought stress caused an increase in the relative expression of CAS gene and ultimately the accumulation of steroidal saponins in SHR. Melatonin compensated for the decrease in biomass production due to drought stress and finally increased steroidal saponins performance in SHR. Our study showed that melatonin can improve drought stress and recovery in fenugreek, but different factors such as genotype, melatonin concentration, and plant age should be considered.
Collapse
Affiliation(s)
- Masoud Maleki
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abdolali Shojaeiyan
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Haq SAU, Bashir T, Roberts TH, Husaini AM. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches. Mol Biol Rep 2023; 51:41. [PMID: 38158512 DOI: 10.1007/s11033-023-09042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
While global climate change poses a significant environmental threat to agriculture, the increasing population is another big challenge to food security. To address this, developing crop varieties with increased productivity and tolerance to biotic and abiotic stresses is crucial. Breeders must identify traits to ensure higher and consistent yields under inconsistent environmental challenges, possess resilience against emerging biotic and abiotic stresses and satisfy customer demands for safer and more nutritious meals. With the advent of omics-based technologies, molecular tools are now integrated with breeding to understand the molecular genetics of genotype-based traits and develop better climate-smart crops. The rapid development of omics technologies offers an opportunity to generate novel datasets for crop species. Identifying genes and pathways responsible for significant agronomic traits has been made possible by integrating omics data with genetic and phenotypic information. This paper discusses the importance and use of omics-based strategies, including genomics, transcriptomics, proteomics and phenomics, for agricultural and horticultural crop improvement, which aligns with developing better adaptability in these crop species to the changing climate conditions.
Collapse
Affiliation(s)
- Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Thomas H Roberts
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Eveleigh, Australia
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
5
|
Mertens S, Verbraeken L, Sprenger H, De Meyer S, Demuynck K, Cannoot B, Merchie J, De Block J, Vogel JT, Bruce W, Nelissen H, Maere S, Inzé D, Wuyts N. Monitoring of drought stress and transpiration rate using proximal thermal and hyperspectral imaging in an indoor automated plant phenotyping platform. PLANT METHODS 2023; 19:132. [PMID: 37996870 PMCID: PMC10668392 DOI: 10.1186/s13007-023-01102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Thermography is a popular tool to assess plant water-use behavior, as plant temperature is influenced by transpiration rate, and is commonly used in field experiments to detect plant water deficit. Its application in indoor automated phenotyping platforms is still limited and mainly focuses on differences in plant temperature between genotypes or treatments, instead of estimating stomatal conductance or transpiration rate. In this study, the transferability of commonly used thermography analysis protocols from the field to greenhouse phenotyping platforms was evaluated. In addition, the added value of combining thermal infrared (TIR) with hyperspectral imaging to monitor drought effects on plant transpiration rate (E) was evaluated. RESULTS The sensitivity of commonly used TIR indices to detect drought-induced and genotypic differences in water status was investigated in eight maize inbred lines in the automated phenotyping platform PHENOVISION. Indices that normalized plant temperature for vapor pressure deficit and/or air temperature at the time of imaging were most sensitive to drought and could detect genotypic differences in the plants' water-use behavior. However, these indices were not strongly correlated to stomatal conductance and E. The canopy temperature depression index, the crop water stress index and the simplified stomatal conductance index were more suitable to monitor these traits, and were consequently used to develop empirical E prediction models by combining them with hyperspectral indices and/or environmental variables. Different modeling strategies were evaluated, including single index-based, machine learning and mechanistic models. Model comparison showed that combining multiple TIR indices in a random forest model can improve E prediction accuracy, and that the contribution of the hyperspectral data is limited when multiple indices are used. However, the empirical models trained on one genotype were not transferable to all eight inbred lines. CONCLUSION Overall, this study demonstrates that existing TIR indices can be used to monitor drought stress and develop E prediction models in an indoor setup, as long as the indices normalize plant temperature for ambient air temperature or relative humidity.
Collapse
Affiliation(s)
- Stien Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Lennart Verbraeken
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Heike Sprenger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Food Safety Department , German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sam De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Robovision, Technologiepark 80, 9052, Zwijnaarde, Belgium
| | - Kirin Demuynck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Bernard Cannoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Julie Merchie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Eenheid Plant, Instituut voor Landbouw, Visserij-en Voedingsonderzoek (ILVO), Caritasstraat 39, 9090, Melle, Belgium
| | - Jolien De Block
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | | | - Wesley Bruce
- BASF Corporation, 2 TW Alexander Drive, Durham, NC, 27709, USA
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium.
| | - Nathalie Wuyts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Plant Production Systems, Cultivation Techniques and Varieties in Arable Farming, Agroscope, Route de Duillier 50, 1260, Nyon, Switzerland
| |
Collapse
|
6
|
Alavilli H, Yolcu S, Skorupa M, Aciksoz SB, Asif M. Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. PLANTA 2023; 258:30. [PMID: 37358618 DOI: 10.1007/s00425-023-04189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION Although sugar beet is a salt- and drought-tolerant crop, high salinity, and water deprivation significantly reduce its yield and growth. Several reports have demonstrated stress tolerance enhancement through stress-mitigating strategies including the exogenous application of osmolytes or metabolites, nanoparticles, seed treatments, breeding salt/drought-tolerant varieties. These approaches would assist in achieving sustainable yields despite global climatic changes. Sugar beet (Beta vulgaris L.) is an economically vital crop for ~ 30% of world sugar production. They also provide essential raw materials for bioethanol, animal fodder, pulp, pectin, and functional food-related industries. Due to fewer irrigation water requirements and shorter regeneration time than sugarcane, beet cultivation is spreading to subtropical climates from temperate climates. However, beet varieties from different geographical locations display different stress tolerance levels. Although sugar beet can endure moderate exposure to various abiotic stresses, including high salinity and drought, prolonged exposure to salt and drought stress causes a significant decrease in crop yield and production. Hence, plant biologists and agronomists have devised several strategies to mitigate the stress-induced damage to sugar beet cultivation. Recently, several studies substantiated that the exogenous application of osmolytes or metabolite substances can help plants overcome injuries induced by salt or drought stress. Furthermore, these compounds likely elicit different physio-biochemical impacts, including improving nutrient/ionic homeostasis, photosynthetic efficiency, strengthening defense response, and water status improvement under various abiotic stress conditions. In the current review, we compiled different stress-mitigating agricultural strategies, prospects, and future experiments that can secure sustainable yields for sugar beets despite high saline or drought conditions.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Biotechnology, GITAM (Deemed to be) University, Visakhapatnam, 530045, India
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Seher Bahar Aciksoz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
7
|
Characteristic of the Ascorbate Oxidase Gene Family in Beta vulgaris and Analysis of the Role of AAO in Response to Salinity and Drought in Beet. Int J Mol Sci 2022; 23:ijms232112773. [PMID: 36361565 PMCID: PMC9654295 DOI: 10.3390/ijms232112773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Ascorbate oxidase, which is known to play a key role in regulating the redox state in the apoplast, cell wall metabolism, cell expansion and abiotic stress response in plants, oxidizes apo-plastic ascorbic acid (AA) to dehydroascorbic acid (DHA). However, there is little information about the AAO genes and their functions in beets under abiotic stress. The term salt or drought stress refers to the treatment of plants with slow and gradual salinity/drought. Contrastingly, salt shock consists of exposing plants to high salt levels instantaneously and drought shock occurs under fast drought progression. In the present work, we have subjected plants to salinity or drought treatments to elicit either stress or shock and carried out a genome-wide analysis of ascorbate oxidase (AAO) genes in sugar beet (B. vulgaris cv. Huzar) and its halophytic ancestor (B. maritima). Here, conserved domain analyses showed the existence of twelve BvAAO gene family members in the genome of sugar beet. The BvAAO_1-12 genes are located on chromosomes 4, 5, 6, 8 and 9. The phylogenetic tree exhibited the close relationships between BvAAO_1-12 and AAO genes of Spinacia oleracea and Chenopodium quinoa. In both beet genotypes, downregulation of AAO gene expression with the duration of salt stress or drought treatment was observed. This correlated with a decrease in AAO enzyme activity under defined experimental setup. Under salinity, the key downregulated gene was BvAAO_10 in Beta maritima and under drought the BvAAO_3 gene in both beets. This phenomenon may be involved in determining the high tolerance of beet to salinity and drought.
Collapse
|
8
|
Mahreen N, Yasmin S, Asif M, Yousaf S, Yahya M, Ejaz K, Shahid Hussain H, Sajjid ZI, Arif M. Integrated Analysis of Osmotic Stress and Infrared Thermal Imaging for the Selection of Resilient Rice Under Water Scarcity. FRONTIERS IN PLANT SCIENCE 2022; 13:834520. [PMID: 35237292 PMCID: PMC8882677 DOI: 10.3389/fpls.2022.834520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/01/2023]
Abstract
The climate change scenario has increased the severity and frequency of drought stress, which limits the growth and yield of rice worldwide. There is a dire need to select drought-tolerant rice varieties to sustain crop production under water scarcity. Therefore, the present study effectively combined morpho-physiological and biochemical approaches with the technology of infrared thermal imaging (IRTI) for a reliable selection of drought-tolerant genotypes. Initially, we studied 28 rice genotypes including 26 advance lines and three varieties for water stress tolerance under net house conditions. Three genotypes NIBGE-DT-02, KSK-133, and NIBGE-DT-11 were selected based on the Standard Evaluation System (SES) scoring for drought tolerance. NIBGE-DT-02 showed tolerance to polyethylene glycol (20%) induced osmotic stress indicated by a minimum reduction in seedling length, biomass, chlorophyll content, and increased leaf proline content as compared to susceptible varieties under a hydroponic system. NIBGE-DT-02 was further evaluated for water withholding at varying growth stages, i.e., 30 and 60 days after transplantation (DAT) in pots under net house conditions. NIBGE-DT-02 showed a significantly lower reduction (35.9%) in yield as compared to a susceptible variety (78.06%) under water stress at 60 DAT with concomitant induction of antioxidant enzymes such as peroxidase, catalase, and polyphenol oxidase. A significant increase (45.9%) in proline content, a low increase (7.5%) in plant temperature, along with a low reduction in relative water content (RWC) (5.5%), and membrane stability index (MSI) (9%) were observed under water stress at 60 DAT as compared to the well-watered control. Pearson correlation analysis showed the strong correlation of shoot length with MSI and root length with RWC in rice genotypes at the later growth stage. Furthermore, Regression analysis indicated a negative correlation between plant temperature of NIBGE-DT-02 and proline, RWC, MSI, and peroxidase enzyme under variable water stress conditions. All these responses collectively validated the adaptive response of selected genotypes under water stress during different growth stages. Tolerant genotypes can be used in breeding programs aimed at improving drought tolerance and can expand rice cultivation. Furthermore, this study provides a foundation for future research directed to utilize IRTI as a fast and non-destructive approach for the selection of potent rice genotypes better adapted to water scarcity from wide germplasm collection.
Collapse
Affiliation(s)
- Naima Mahreen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - M. Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Sumaira Yousaf
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Mahreen Yahya
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Khansa Ejaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Hafiz Shahid Hussain
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Zahid Iqbal Sajjid
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Arif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
9
|
Naguib WB, Divte PR, Chandra A, Sathee L, Singh B, Mandal PK, Anand A. Raffinose accumulation and preferential allocation of carbon ( 14 C) to developing leaves impart salinity tolerance in sugar beet. PHYSIOLOGIA PLANTARUM 2021; 173:1421-1433. [PMID: 33837561 DOI: 10.1111/ppl.13420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Sugar beet is a salt-tolerant crop that can be explored for crop production in degraded saline soils. Seeds of multigerm genotypes LKC-2006 (susceptible) and LKC-HB (tolerant) were grown in 150 mM NaCl, from germination to 60 days after sowing, to decipher the mechanism of salinity tolerance at the vegetative stage. The biomass of the root and leaf were maintained in the tolerant genotype, LKC-HB, under saline conditions. Na+ /K+ ratios were similar in roots and leaves of LKC-HB, with lower values under salinity compared to LKC 2006. Infrared temperatures were 0.96°C lower in LKC-HB than in LKC-2006, which helped regulate the leaf water status under stressed conditions. Pulse-chase experiment showed that 14 C photosynthate was preferentially allocated towards the development of new leaves in the tolerant genotype. The sugar profile of leaves and roots showed accumulation of raffinose in leaves of LKC-HB, indicating a plausible role in imparting salinity tolerance by serving as an osmolyte or scavenger. The molecular analysis of the genes responsible for raffinose synthesis revealed an 18-fold increase in the expression of BvRS2 in the tolerant genotype, suggesting its involvement in raffinose synthesis. Our study accentuated that raffinose accumulation in leaves is vital for inducing salinity tolerance and maintenance of shoot dry weight in sugar beet.
Collapse
Affiliation(s)
- Wassem B Naguib
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Division of Plant Physiology and Biochemistry, ARC-Sugar Crops Research Institute, Giza, Egypt
| | - Pandurang R Divte
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amaresh Chandra
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pranab Kumar Mandal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
10
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets ( Beta vulgaris L.) and Wild Beet ( Beta maritima L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1843. [PMID: 34579375 PMCID: PMC8472689 DOI: 10.3390/plants10091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Cultivated beets, including leaf beets, garden beets, fodder beets, and sugar beets, which belong to the species Beta vulgaris L., are economically important edible crops that have been originated from a halophytic wild ancestor, Beta maritima L. (sea beet or wild beet). Salt and drought are major abiotic stresses, which limit crop growth and production and have been most studied in beets compared to other environmental stresses. Characteristically, beets are salt- and drought-tolerant crops; however, prolonged and persistent exposure to salt and drought stress results in a significant drop in beet productivity and yield. Hence, to harness the best benefits of beet cultivation, knowledge of stress-coping strategies, and stress-tolerant beet varieties, are prerequisites. In the current review, we have summarized morpho-physiological, biochemical, and molecular responses of sugar beet, fodder beet, red beet, chard (B. vulgaris L.), and their ancestor, wild beet (B. maritima L.) under salt and drought stresses. We have also described the beet genes and noncoding RNAs previously reported for their roles in salt and drought response/tolerance. The plant biologists and breeders can potentiate the utilization of these resources as prospective targets for developing crops with abiotic stress tolerance.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Khurda 761211, Odisha, India;
| | - Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Center, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
11
|
Wiśniewska A, Andryka-Dudek P, Czerwiński M, Chołuj D. Fodder beet is a reservoir of drought tolerance alleles for sugar beet breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:120-131. [PMID: 31677543 DOI: 10.1016/j.plaphy.2019.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Drought leads to serious yield losses and followed by increasing food prices. Thereby, drought tolerance is one of most important, pivotal issues for plant breeding and is determined by the very complex genetic architecture, which involves a lot of genes engaged in many cell processes. Within genomes of currently cultivated sugar beet forms, the number of favourable allelic variants is limited. However, there is a potential to identify genes related to drought tolerance deposited in genomes of wild or fodder relatives. Therefore, the goal of our study, was to identify the source of allelic variants involved in drought tolerance using a large spectrum of sugar or fodder beets and their wild relatives for analyses. Based on the drought tolerance index, calculated for morphophysiological traits, it was demonstrated that some of selected fodder beets showed the highest level of drought tolerance. The most drought tolerant fodder beet genotype did not show differences in the level of expression of genes engaged in osmoprotection and the antioxidative system, between control and drought condition, compared to sugar and wild beets. The genetic distance between selected beet forms was broad and ranged from 18 to 87%, however the most drought tolerant sugar, fodder and wild beets showed high genetic similarity and formed the common clade. Based on obtained results we propose that an adequate broad source of genes related to drought tolerance occurs in fodder beets, the crossing with which is easier, less time-consuming and more cost-effective than with wild forms of beets.
Collapse
Affiliation(s)
- Anita Wiśniewska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Paulina Andryka-Dudek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mateusz Czerwiński
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Danuta Chołuj
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
12
|
Ibrahim OR, Opabode JT. Pre-treatment of two contrasting water-stressed genotypes of cassava ( Manihot esculenta Crantz) with ascorbic acid. I. Growth, physiological and antioxidant responses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1385-1394. [PMID: 31736542 PMCID: PMC6825054 DOI: 10.1007/s12298-019-00709-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Water deficit-stress at early growth stage is a major constraint of cassava production. Ascorbic acid is a non-enzymatic antioxidant that mitigates oxidative damage caused by water stress in plants. Growth, physiological and antioxidant defense system responses of two contrasting water-stressed cassava genotypes to pre-treatment with foliar application of ascorbic acid (AA) were investigated. The objectives of this study were to assess the growth, proline, photosynthesis pigments and antioxidant activities of young water-stressed cassava plants pre-treated with ascorbic acid. The study consisted of IITA-TMS-IBA980581 (drought tolerant) and IITA-TMS-IBA010040 (drought sensitive) cassava genotypes treated with six doses (0.00, 0.25, 0.50, 0.75 and 1.00 mM) of AA before being subjected to water deficit (45.0% field capacity) and a water sufficient AA-untreated control. In both genotypes, water stress reduced shoot height (40.3%), leaf area (42.5%), and number of root (54.5%), biomass (28.6%), relative water content (RWC, 3.2%) and photosynthetic pigments (300.0%). However, water stress increased proline (91.3%), endogenous AA (112.0%), catalase (CAT, 300.0%) and superoxide dismutase (SOD, 15.3%) in both genotypes. Compared with IITA-TMS-IBA010040, leaf area, biomass, number of root and shoot height of IITA-TMS-IBA980581 were higher by 7.3, 24.6, 25.9 and 13.1%, respectively. By less than a quarter, chlorophylls a and b, activity of superoxide dismutase and relative water content of IITA-TMS-IBA980581 were higher compared with IITA-TMS-IBA010040. However, proline content of IITA-TMS-IBA010040 was higher than IITA-TMS-IBA980581 by 14.3%. Pre-treatment with AA improved growth parameters, photosynthetic pigments, RWC, endogenous AA, activity of CAT and SOD, but decreased proline in both genotypes with an optimum concentration at 0.5 mM. Pre-treatment with 0.5 mM AA increased shoot height, area of leaves, leaf number, number of root and dry weight by 46.3, 44.7, 14.4, 88.2 and 37.5%, respectively. Pre-treatment with 0.5 mM AA doubled chlorophylls, tripled carotenoids content, doubled endogenous AA and slightly enhanced RWC (2.1%) and SOD (2.0%) when compared with AA-untreated water stressed plants. But pre-stress application of AA reduced proline content by one-fold, increased CAT activity by one-fold in IITA-TMS-IBA980581 and by one-third in IITA-TMS-IBA010040. The study concluded that pre-treatment of cassava young plants with AA before water deficit could alleviate oxidative stress.
Collapse
Affiliation(s)
- Omolara R. Ibrahim
- Crop Production and Protection Department, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jelili T. Opabode
- Crop Production and Protection Department, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
13
|
Franzisky BL, Geilfus CM, Kränzlein M, Zhang X, Zörb C. Shoot chloride translocation as a determinant for NaCl tolerance in Vicia faba L. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:23-33. [PMID: 30851648 DOI: 10.1016/j.jplph.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Faba bean (Vicia faba L.) is sensitive to salinity. While toxic effects of sodium (Na+) are well studied, toxicity aspects of chloride (Cl-) and the underlying tolerance mechanisms to Cl- are not well understood. For this reason, shoot Cl- translocation and its effect as potential determinant for tolerance was tested. Diverse V. faba varieties were grown hydroponically and stressed with 100 mM NaCl until necrotic leaf spots appeared. At this point, biomass formation, oxidative damage of membranes as well as Na+, Cl- and potassium concentrations were measured. The V. faba varieties contrasted in the length of the period they could withstand the NaCl stress treatment. More tolerant varieties survived longer without evolving necrosis and were less affected by inhibitory effects on photosynthesis. The concentration of Cl- at the time point of developing leaf necrosis was in the same range irrespective of the variety, while that of Na+ varied. This indicates that Cl- concentrations, and not Na+ concentrations are critical for the formation of salt necrosis in faba bean. Tolerant varieties profited from lower Cl- translocation to leaves. Therefore, photosynthesis was less affected in those varieties with lower Cl-. This mechanism is a new trait of interest for salt tolerance in V. faba.
Collapse
Affiliation(s)
- Bastian L Franzisky
- University of Hohenheim, Institute of Crop Science, 340e, Schloss Westflügel, 70593, Stuttgart, Germany
| | - Christoph-Martin Geilfus
- Humboldt-University of Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Controlled Environment Horticulture, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany
| | - Markus Kränzlein
- University of Hohenheim, Institute of Crop Science, 340e, Schloss Westflügel, 70593, Stuttgart, Germany
| | - Xudong Zhang
- University of Hohenheim, Institute of Crop Science, 340e, Schloss Westflügel, 70593, Stuttgart, Germany
| | - Christian Zörb
- University of Hohenheim, Institute of Crop Science, 340e, Schloss Westflügel, 70593, Stuttgart, Germany.
| |
Collapse
|
14
|
Schneider S, Turetschek R, Wedeking R, Wimmer MA, Wienkoop S. A Protein-Linger Strategy Keeps the Plant On-Hold After Rehydration of Drought-Stressed Beta vulgaris. FRONTIERS IN PLANT SCIENCE 2019; 10:381. [PMID: 30984226 PMCID: PMC6449722 DOI: 10.3389/fpls.2019.00381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Most crop plants are exposed to intermittent drought periods. To cope with these continuous changes, plants need strategies to prevent themselves from exhaustive adjustment maneuvers. Drought stress recovery has been shown to be an active process, possibly involved in a drought memory effect allowing plants to better cope with recurrent aridity. An integrated understanding of the molecular processes of enhanced drought tolerance is required to tailor key networks for improved crop protection. During summer, prolonged periods of drought are the major reason for economic yield losses of sugar beet (Beta vulgaris) in Europe. A drought stress and recovery time course experiment was carried out under controlled environmental conditions. In order to find regulatory key mechanisms enabling plants to rapidly react to periodic stress events, beets were either subjected to 11 days of progressive drought, or were drought stressed for 9 days followed by gradual rewatering for 14 days. Based on physiological measurements of leaf water relations and changes in different stress indicators, plants experienced a switch from moderate to severe water stress between day 9 and 11 of drought. The leaf proteome was analyzed, revealing induced protein pre-adjustment (prior to severe stress) and putative stress endurance processes. Three key protein targets, regulatory relevant during drought stress and with lingering levels of abundance upon rewatering were further exploited through their transcript performance. These three targets consist of a jasmonate induced, a salt-stress enhanced and a phosphatidylethanolamine-binding protein. The data demonstrate delayed protein responses to stress compared to their transcripts and indicate that the lingering mechanism is post-transcriptionally regulated. A set of lingering proteins is discussed with respect to a possible involvement in drought stress acclimation and memory effects.
Collapse
Affiliation(s)
- Sebastian Schneider
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Reinhard Turetschek
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Rita Wedeking
- Institute of Crop Science and Resource Conservation – Plant Nutrition, University of Bonn, Bonn, Germany
- Environmental Safety/Ecotoxicology, Bayer AG, Crop Science Division, Monheim am Rhein, Germany
| | - Monika A. Wimmer
- Institute of Crop Science – Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Yates S, Mikaberidze A, Krattinger SG, Abrouk M, Hund A, Yu K, Studer B, Fouche S, Meile L, Pereira D, Karisto P, McDonald BA. Precision Phenotyping Reveals Novel Loci for Quantitative Resistance to Septoria Tritici Blotch. PLANT PHENOMICS (WASHINGTON, D.C.) 2019; 2019:3285904. [PMID: 33313526 PMCID: PMC7706307 DOI: 10.34133/2019/3285904] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/02/2019] [Indexed: 05/19/2023]
Abstract
Accurate, high-throughput phenotyping for quantitative traits is a limiting factor for progress in plant breeding. We developed an automated image analysis to measure quantitative resistance to septoria tritici blotch (STB), a globally important wheat disease, enabling identification of small chromosome intervals containing plausible candidate genes for STB resistance. 335 winter wheat cultivars were included in a replicated field experiment that experienced natural epidemic development by a highly diverse but fungicide-resistant pathogen population. More than 5.4 million automatically generated phenotypes were associated with 13,648 SNP markers to perform the GWAS. We identified 26 chromosome intervals explaining 1.9-10.6% of the variance associated with four independent resistance traits. Sixteen of the intervals overlapped with known STB resistance intervals, suggesting that our phenotyping approach can identify simultaneously (i.e., in a single experiment) many previously defined STB resistance intervals. Seventeen of the intervals were less than 5 Mbp in size and encoded only 173 genes, including many genes associated with disease resistance. Five intervals contained four or fewer genes, providing high priority targets for functional validation. Ten chromosome intervals were not previously associated with STB resistance, perhaps representing resistance to pathogen strains that had not been tested in earlier experiments. The SNP markers associated with these chromosome intervals can be used to recombine different forms of quantitative STB resistance that are likely to be more durable than pyramids of major resistance genes. Our experiment illustrates how high-throughput automated phenotyping can accelerate breeding for quantitative disease resistance.
Collapse
Affiliation(s)
- Steven Yates
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Alexey Mikaberidze
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Simon G. Krattinger
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Michael Abrouk
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andreas Hund
- Crop Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Kang Yu
- Crop Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Simone Fouche
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Lukas Meile
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Danilo Pereira
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Petteri Karisto
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Biju S, Fuentes S, Gupta D. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:11-24. [PMID: 29544209 DOI: 10.1016/j.plaphy.2018.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Lentil (Lens culinaris, Medik.) is an important legume crop, which often experience drought stress especially at the flowering and grain filling phenological stages. The availability of efficient and robust screening tools based on relevant non-destructive quantifiable traits would facilitate research on crop improvement for drought tolerance. The objective of this study was to evaluate the drought tolerance of 37 lentil genotypes using infrared thermal imaging (IRTI), drought tolerance parameters and multivariate data analysis. Potted plants were kept in a completely randomized design in a growth chamber with five replicates. Plants were subjected to three different drought treatments: 100, 50 and 20% of field capacity at the onset of reproductive period. The relative drought stress tolerance was determined based on a set of morpho-physiological parameters including non-destructive measures based on IRTI, such as: canopy temperature (Tc), canopy temperature depression (CTD) and crop water stress index (CWSI) during the growing period and destructive measures at harvest, such as: dry root-shoot ratio (RS ratio), relative water content (RWC) and harvest index (HI). The drought tolerance indices used were drought susceptibility index (DSI) and drought tolerance efficiency (DTE). Results showed that drought stress treatments significantly reduced the RWC, HI, CTD and DSI, whereas, the values of Tc, CWSI, RS ratio and DTE significantly increased for all the genotypes. The cluster analysis from morpho-physiological parameters clustered genotypes in three distinctive groups as per the level of drought stress tolerance. The genotypes with higher values of RS ratio, RWC, HI, DTE and CTD and lower values of DSI, Tc and CWSI were identified as drought-tolerant genotypes. Based on this preliminary screening, the genotypes Digger, Cumra, Indianhead, ILL 5588, ILL 6002 and ILL 5582 were identified as promising drought-tolerant genotypes. It can be concluded that the IRTI analysis is a high-throughput constructive screening tool along with RS ratio, RWC, HI and other drought tolerance indices to define the drought stress tolerance variability within lentil plants. These results provide a foundation for future research directed at identifying powerful drought assessment traits using rapid and non-destructive techniques, such as IRTI along with the yield traits, and understanding the biochemical and molecular mechanisms underlying lentil tolerance to drought stress.
Collapse
Affiliation(s)
- Sajitha Biju
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sigfredo Fuentes
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Dorin Gupta
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
17
|
Wedeking R, Maucourt M, Deborde C, Moing A, Gibon Y, Goldbach HE, Wimmer MA. 1H-NMR metabolomic profiling reveals a distinct metabolic recovery response in shoots and roots of temporarily drought-stressed sugar beets. PLoS One 2018; 13:e0196102. [PMID: 29738573 PMCID: PMC5940195 DOI: 10.1371/journal.pone.0196102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/08/2018] [Indexed: 11/19/2022] Open
Abstract
Yield formation in regions with intermittent drought periods depends on the plant’s ability to recover after cessation of the stress. The present work assessed differences in metabolic recovery of leaves and roots of drought-stressed sugar beets with high temporal resolution. Plants were subjected to drought for 13 days, and rewatered for 12 days. At one to two-day intervals, plant material was harvested for untargeted 1H-NMR metabolomic profiling, targeted analyses of hexose-phosphates, starch, amino acids, nitrate and proteins, and physiological measurements including relative water content, osmotic potential, electrolyte leakage and malondialdehyde concentrations. Drought triggered changes in primary metabolism, especially increases in amino acids in both organs, but leaves and roots responded with different dynamics to rewatering. After a transient normalization of most metabolites within 8 days, a second accumulation of amino acids in leaves might indicate a stress imprint beneficial in upcoming drought events. Repair mechanisms seemed important during initial recovery and occurred at the expense of growth for at least 12 days. These results indicate that organ specific metabolic recovery responses might be related to distinct functions and concomitant disparate stress levels in above- and belowground organs. With respect to metabolism, recovery was not simply a reversal of the stress responses.
Collapse
Affiliation(s)
- Rita Wedeking
- Department of Plant Nutrition, INRES, University of Bonn, Bonn, Germany
| | - Mickaël Maucourt
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux- MetaboHUB, Centre de Génomique Fonctionnelle - IBVM, Villenave d’Ornon, France
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux- MetaboHUB, Centre de Génomique Fonctionnelle - IBVM, Villenave d’Ornon, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux- MetaboHUB, Centre de Génomique Fonctionnelle - IBVM, Villenave d’Ornon, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
| | | | - Monika A. Wimmer
- Department of Plant Nutrition, INRES, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
18
|
Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz KJ. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5961-5976. [PMID: 29140437 PMCID: PMC5854137 DOI: 10.1093/jxb/erx388] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/11/2017] [Indexed: 05/21/2023]
Abstract
Sugar beet is among the most salt-tolerant crops. This study aimed to investigate the metabolic adaptation of sugar beet to salt stress at the cellular and subcellular levels. Seedlings were grown hydroponically and subjected to stepwise increases in salt stress up to 300 mM NaCl. Highly enriched fractions of chloroplasts were obtained by non-aqueous fractionation using organic solvents. Total leaf metabolites and metabolites in chloroplasts were profiled at 3 h and 14 d after reaching the maximum salinity stress of 300 mM NaCl. Metabolite profiling by gas chromatography-mass spectrometry (GC-MS) resulted in the identification of a total of 83 metabolites in leaves and chloroplasts under control and stress conditions. There was a lower abundance of Calvin cycle metabolites under salinity whereas there was a higher abundance of oxidative pentose phosphate cycle metabolites such as 6-phosphogluconate. Accumulation of ribose-5-phosphate and ribulose-5-phosphate coincided with limitation of carbon fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Increases in glycolate and serine levels indicated that photorespiratory metabolism was stimulated in salt-stressed sugar beet. Compatible solutes such as proline, mannitol, and putrescine accumulated mostly outside the chloroplasts. Within the chloroplast, putrescine had the highest relative level and probably assisted in the acclimation of sugar beet to high salinity stress. The results provide new information on the contribution of chloroplasts and the extra-chloroplast space to salinity tolerance via metabolic adjustment in sugar beet.
Collapse
Affiliation(s)
- M Sazzad Hossain
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, Germany
| | - Marcus Persicke
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. Germany
| | - Abdelaleim Ismail ElSayed
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, Germany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Egypt
| | - Jörn Kalinowski
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, Germany
| |
Collapse
|
19
|
Hawkesford MJ, Lorence A. Plant phenotyping: increasing throughput and precision at multiple scales. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 44:v-vii. [PMID: 32480540 DOI: 10.1071/fpv44n1_fo] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this special issue of Functional Plant Biology, we present a perspective of the current state of the art in plant phenotyping. The applications of automated and detailed recording of plant characteristics using a range of mostly non-invasive techniques are described. Papers range from tissue scale analysis through to aerial surveying of field trials and include model plant species such as Arabidopsis as well as commercial crops such as sugar beet and cereals. The common denominators are high throughput measurements, data rich analyses often utilising image based data capture, requirements for validation when proxy measurement are employed and in many instances a need to fuse datasets. The outputs are detailed descriptions of plant form and function. The papers represent technological advances and important contributions to basic plant biology, and these studies are commonly multidisciplinary, involving engineers, software specialists and plant physiologists. This is a fast moving area producing large datasets and analytical requirements are often common between very diverse platforms.
Collapse
Affiliation(s)
| | - Argelia Lorence
- Department of Chemistry and Physics and Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| |
Collapse
|