1
|
Coronell-Tovar A, Pardo JP, Rodríguez-Romero A, Sosa-Peinado A, Vásquez-Bochm L, Cano-Sánchez P, Álvarez-Añorve LI, González-Andrade M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett 2024; 598:1811-1838. [PMID: 38724486 DOI: 10.1002/1873-3468.14901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024]
Abstract
Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan P Pardo
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandro Sosa-Peinado
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luz Vásquez-Bochm
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Iliana Álvarez-Añorve
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martin González-Andrade
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
2
|
Aati S, Aati HY, El-Shamy S, Khanfar MA, A.Naeim MA, Hamed AA, Rateb ME, Hassan HM, Aboseada MA. Green synthesized extracts/Au complex of Phyllospongia lamellosa: Unrevealing the anti-cancer and anti-bacterial potentialities, supported by metabolomics and molecular modeling. Heliyon 2024; 10:e34000. [PMID: 39071630 PMCID: PMC11283168 DOI: 10.1016/j.heliyon.2024.e34000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
The anti-cancer and anti-bacterial potential of the Red Sea sponge Phyllospongia lamellosa in its bulk (crude extracts) and gold nanostructure (loaded on gold nanaoparticles) were investigated. Metabolomics analysis was conducted, and subsequently, molecular modeling studies were conducted to explore and anticipate the P. lamellosa secondary metabolites and their potential target for their various bioactivities. The chloroformic extract (CE) and ethyl acetate extract (EE) of the P. lamellosa predicted to include bioactive lipophilic and moderately polar metabolites, respectively, were used to synthesize gold nanoparticles (AuNPs). The prepared AuNPs were characterized through transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV-vis spectrophotometric analyses. The cytotoxic activities were tested against MCF-7, MDB-231, and MCF-10A. Moreover, the anti-bacterial, antifungal, and anti-biofilm activity were assessed. Definite classes of metabolites were identified in CE (terpenoids) and EE (brominated phenyl ethers and sulfated fatty amides). Molecular modeling involving docking and molecular dynamics identified Protein-tyrosine phosphatase 1B (PTP1B) as a potential target for the anti-cancer activities of terpenoids. Moreover, CE exhibited the most powerful activity against breast cancer cell lines, matching our molecular modeling study. On the other hand, only EE was demonstrated to possess powerful anti-bacterial and anti-biofilm activity against Escherichia coli. In conclusion, depending on their bioactive metabolites, P. lamellosa-derived extracts, after being loaded on AuNPs, could be considered anti-cancer, anti-bacterial, and anti-biofilm bioactive products. Future work should be completed to produce drug leads.
Collapse
Affiliation(s)
- Sultan Aati
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Sherine El-Shamy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mohammad A. Khanfar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman, 11942, Jordan
| | | | - Ahmed A. Hamed
- National Research Centre, Microbial Chemistry Department, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, Scotland, UK
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mahmoud A. Aboseada
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Perez-Quintero LA, Abidin BM, Tremblay ML. Immunotherapeutic implications of negative regulation by protein tyrosine phosphatases in T cells: the emerging cases of PTP1B and TCPTP. Front Med (Lausanne) 2024; 11:1364778. [PMID: 38707187 PMCID: PMC11066278 DOI: 10.3389/fmed.2024.1364778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
In the context of inflammation, T cell activation occurs by the concerted signals of the T cell receptor (TCR), co-stimulatory receptors ligation, and a pro-inflammatory cytokine microenvironment. Fine-tuning these signals is crucial to maintain T cell homeostasis and prevent self-reactivity while offering protection against infectious diseases and cancer. Recent developments in understanding the complex crosstalk between the molecular events controlling T cell activation and the balancing regulatory cues offer novel approaches for the development of T cell-based immunotherapies. Among the complex regulatory processes, the balance between protein tyrosine kinases (PTK) and the protein tyrosine phosphatases (PTPs) controls the transcriptional and metabolic programs that determine T cell function, fate decision, and activation. In those, PTPs are de facto regulators of signaling in T cells acting for the most part as negative regulators of the canonical TCR pathway, costimulatory molecules such as CD28, and cytokine signaling. In this review, we examine the function of two close PTP homologs, PTP1B (PTPN1) and T-cell PTP (TCPTP; PTPN2), which have been recently identified as promising candidates for novel T-cell immunotherapeutic approaches. Herein, we focus on recent studies that examine the known contributions of these PTPs to T-cell development, homeostasis, and T-cell-mediated immunity. Additionally, we describe the signaling networks that underscored the ability of TCPTP and PTP1B, either individually and notably in combination, to attenuate TCR and JAK/STAT signals affecting T cell responses. Thus, we anticipate that uncovering the role of these two PTPs in T-cell biology may lead to new treatment strategies in the field of cancer immunotherapy. This review concludes by exploring the impacts and risks that pharmacological inhibition of these PTP enzymes offers as a therapeutic approach in T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Luis Alberto Perez-Quintero
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Villamar-Cruz O, Loza-Mejía MA, Vivar-Sierra A, Saldivar-Cerón HI, Patiño-López G, Olguín JE, Terrazas LI, Armas-López L, Ávila-Moreno F, Saha S, Chernoff J, Camacho-Arroyo I, Arias-Romero LE. A PTP1B-Cdk3 Signaling Axis Promotes Cell Cycle Progression of Human Glioblastoma Cells through an Rb-E2F Dependent Pathway. Mol Cell Biol 2023; 43:631-649. [PMID: 38014992 PMCID: PMC10761042 DOI: 10.1080/10985549.2023.2273193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 11/29/2023] Open
Abstract
PTP1B plays a key role in developing different types of cancer. However, the molecular mechanism underlying this effect is unclear. To identify molecular targets of PTP1B that mediate its role in tumorigenesis, we undertook a SILAC-based phosphoproteomic approach, which allowed us to identify Cdk3 as a novel PTP1B substrate. Substrate trapping experiments and docking studies revealed stable interactions between the PTP1B catalytic domain and Cdk3. In addition, we observed that PTP1B dephosphorylates Cdk3 at tyrosine residue 15 in vitro and interacts with it in human glioblastoma cells. Next, we found that pharmacological inhibition of PTP1B or its depletion with siRNA leads to cell cycle arrest with diminished activity of Cdk3, hypophosphorylation of Rb, and the downregulation of E2F target genes Cdk1, Cyclin A, and Cyclin E1. Finally, we observed that the expression of a constitutively active Cdk3 mutant bypasses the requirement of PTP1B for cell cycle progression and expression of E2F target genes. These data delineate a novel signaling pathway from PTP1B to Cdk3 required for efficient cell cycle progression in an Rb-E2F dependent manner in human GB cells.
Collapse
Affiliation(s)
- Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Marco Antonio Loza-Mejía
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Alonso Vivar-Sierra
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | | | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de Mexico Federico Gómez, Mexico City, Mexico
| | - Jonadab Efraín Olguín
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
- Laboratorio Nacional en Salud FES-Iztacala, Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
| | - Luis Ignacio Terrazas
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
- Laboratorio Nacional en Salud FES-Iztacala, Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Sayanti Saha
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Enrique Arias-Romero
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
5
|
Gu SH, Chen CH, Chang CH, Lin PL. Expression of tyrosine phosphatases in relation to PTTH-stimulated ecdysteroidogenesis in prothoracic glands of the silkworm, Bombyx mori. Gen Comp Endocrinol 2023; 331:114165. [PMID: 36368438 DOI: 10.1016/j.ygcen.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Protein tyrosine phosphorylation is a reversible, dynamic process regulated by the activities of tyrosine kinases and tyrosine phosphatases. Although the involvement of tyrosine kinases in the prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs) has been documented, few studies have been conducted on the involvement of protein tyrosine phosphatases (PTPs) in PTTH-stimulated ecdysteroidogenesis. In the present study, we investigated the correlation between PTPs and PTTH-stimulated ecdysteroidogenesis in Bombyx mori PGs. Our results showed that the basal PTP enzymatic activities exhibited development-specific changes during the last larval instar and pupation stage, with high activities being detected during the later stages of the last larval instar. PTP enzymatic activity was stimulated by PTTH treatment both in vitro and in vivo. Pretreatment with phenylarsine oxide (PAO) and benzylphosphonic acid (BPA), two chemical inhibitors of tyrosine phosphatase, reduced PTTH-stimulated enzymatic activity. Determination of ecdysteroid secretion showed that treatment with PAO and BPA did not affect basal ecdysteroid secretion, but greatly inhibited PTTH-stimulated ecdysteroid secretion, indicating that PTTH-stimulated PTP activity is indeed involved in ecdysteroid secretion. PTTH-stimulated phosphorylation of the extracellular signal-regulated kinase (ERK) and 4E-binding protein (4E-BP) was partially inhibited by pretreatment with either PAO or BPA, indicating the potential link between PTPs and phosphorylation of ERK and 4E-BP. In addition, we also found that in vitro treatment with 20-hydroxyecdysone did not affect PTP enzymatic activity. We further investigated the expressions of two important PTPs (PTP 1B (PTP1B) and the phosphatase and tension homologue (PTEN)) in Bombyx PGs. Our immunoblotting analysis showed that B. mori PGs contained the proteins of PTP1B and PTEN, with PTP1B protein undergoing development-specific changes. Protein levels of PTP1B and PTEN were not affected by PTTH treatment. The gene expression levels of PTP1B and PTEN showed development-specific changes. From these results, we suggest that PTTH-regulated PTP signaling may crosstalk with ERK and target of rapamycin (TOR) signaling pathways and is a necessary component for stimulation of ecdysteroid secretion.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Chia-Hao Chang
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
6
|
Bai KH, Zhu MJ, Zhang YY, Li XP, Chen SL, Wang DW, Dai YJ. Multi-omics analyses of tumor-associated immune-infiltrating cells with the novel immune checkpoint protein tyrosine phosphatase 1B (PTP1B) in extracellular matrix of brain-lower-grade-glioma (LGG) and uveal-melanoma (UVM). Front Immunol 2022; 13:1053856. [PMID: 36618415 PMCID: PMC9815505 DOI: 10.3389/fimmu.2022.1053856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors represented by PD-1 have greatly changed the way cancer is treated. In addition to PD-1, new immune checkpoints are constantly excavated to better treat cancer. Recently, protein tyrosine phosphatase 1B (PTP1B) was identified as a new immune checkpoint and played a critical role in the treatment of tumors by inhibiting the proliferation and cytotoxicity of T cells induced by tumor antigen. To explore the targeting role of PTP1B in precision tumor therapy, we deeply analyzed the expression and prognosis of PTP1B in all tumors. Survival analysis results indicated that PTP1B was highly expressed in most tumor tissues and indicated poor prognosis in acute-myeloid-leukemia (LAML), brain-lower-grade-glioma (LGG), kidney-renal clear-cell-carcinoma (KIRC) and uveal-melanoma (UVM). The methylation status of PTP1B in these four tumors exhibited hypomethylation and mutation landscape showed that PTP1B had its specific characteristics in genomic instability and heterogeneity. The homologous recombination deficiency (HRD) and loss of heterozygosity (LOH) were positive related to PTP1B expression in liver-hepatocellular-carcinoma (LIHC) and kidney-chromophobe (KICH), while the immunescore and immune infiltration displayed a significant positive correlation with PTP1B expression in LGG and UVM. Drug sensitivity tests showed that the PTP1B inhibitor MSI-1436 had a sensitivity effect suppressing tumor cell viability and suggested it enhanced the efficacy of PD-1 inhibitors in cancers.
Collapse
Affiliation(s)
- Kun-Hao Bai
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming-Jiao Zhu
- Department of Emergency, Peking University First Hospital, Beijing, China
| | - Yi-Yang Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue-Ping Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Si-Liang Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Da-Wei Wang
- National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Jun Dai
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China,*Correspondence: Yu-Jun Dai,
| |
Collapse
|
7
|
Suter P, Dazert E, Kuipers J, Ng CKY, Boldanova T, Hall MN, Heim MH, Beerenwinkel N. Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model. PLoS Comput Biol 2022; 18:e1009767. [PMID: 36067230 PMCID: PMC9481159 DOI: 10.1371/journal.pcbi.1009767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/16/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Comprehensive molecular characterization of cancer subtypes is essential for predicting clinical outcomes and searching for personalized treatments. We present bnClustOmics, a statistical model and computational tool for multi-omics unsupervised clustering, which serves a dual purpose: Clustering patient samples based on a Bayesian network mixture model and learning the networks of omics variables representing these clusters. The discovered networks encode interactions among all omics variables and provide a molecular characterization of each patient subgroup. We conducted simulation studies that demonstrated the advantages of our approach compared to other clustering methods in the case where the generative model is a mixture of Bayesian networks. We applied bnClustOmics to a hepatocellular carcinoma (HCC) dataset comprising genome (mutation and copy number), transcriptome, proteome, and phosphoproteome data. We identified three main HCC subtypes together with molecular characteristics, some of which are associated with survival even when adjusting for the clinical stage. Cluster-specific networks shed light on the links between genotypes and molecular phenotypes of samples within their respective clusters and suggest targets for personalized treatments.
Collapse
Affiliation(s)
- Polina Suter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eva Dazert
- Biozentrum, University of Basel, Basel, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Charlotte K. Y. Ng
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tuyana Boldanova
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Markus H. Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Jiménez-Castillo V, Illescas-Barbosa D, Zenteno E, Ávila-Curiel BX, Castañeda-Patlán MC, Robles-Flores M, De Oca DMM, Pérez-Campos E, Torres-Rivera A, Bouaboud A, Pagesy P, Solórzano-Mata CJ, Issad T. Increased O-GlcNAcylation promotes IGF-1 receptor/PhosphatidyI Inositol-3 kinase/Akt pathway in cervical cancer cells. Sci Rep 2022; 12:4464. [PMID: 35296731 PMCID: PMC8927345 DOI: 10.1038/s41598-022-08445-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/04/2022] [Indexed: 12/28/2022] Open
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification on serine and threonine residues of cytosolic, nuclear and mitochondrial proteins. O-GlcNAcylation level is regulated by OGT (O-GlcNAc transferase), which adds GlcNAc on proteins, and OGA (O-GlcNAcase), which removes it. Abnormal level of protein O-GlcNAcylation has been observed in numerous cancer cell types, including cervical cancer cells. In the present study, we have evaluated the effect of increasing protein O-GlcNAcylation on cervical cancer-derived CaSki cells. We observed that pharmacological enhancement of protein O-GlcNAcylation by Thiamet G (an inhibitor of OGA) and glucosamine (which provides UDP-GlcNAc substrate to OGT) increases CaSki cells proliferation, migration and survival. Moreover, we showed that increased O-GlcNAcylation promotes IGF-1 receptor (IGF1R) autophosphorylation, possibly through inhibition of protein tyrosine-phosphatase 1B activity. This was associated with increased IGF-1-induced phosphatidyl-Inositol 3-phosphate production at the plasma membrane and increased Akt activation in CaSki cells. Finally, we showed that protein O-GlcNAcylation and Akt phosphorylation levels were higher in human cervical cancer samples compared to healthy cervix tissues, and a highly positive correlation was observed between O-GlcNAcylation level and Akt phosphorylation in theses tissues. Together, our results indicate that increased O-GlcNAcylation, by activating IGF1R/ Phosphatidyl inositol 3-Kinase (PI-3K)/Akt signaling, may participate in cervical cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Victoria Jiménez-Castillo
- National Technology of Mexico/IT.Oaxaca, Oaxaca, Mexico
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Daniela Illescas-Barbosa
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Beatriz Xóchitl Ávila-Curiel
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | | | | | - Patrick Pagesy
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Carlos Josué Solórzano-Mata
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.
| | - Tarik Issad
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| |
Collapse
|
9
|
Xie J, Qian YY, Yang Y, Peng LJ, Mao JY, Yang MR, Tian Y, Sheng J. Isothiocyanate From Moringa oleifera Seeds Inhibits the Growth and Migration of Renal Cancer Cells by Regulating the PTP1B-dependent Src/Ras/Raf/ERK Signaling Pathway. Front Cell Dev Biol 2022; 9:790618. [PMID: 35059399 PMCID: PMC8764249 DOI: 10.3389/fcell.2021.790618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Moringa oleifera Lam. is a tropical and subtropical plant that has been used for centuries as both food and traditional medicine. 4-[(α-L-Rhamnosyloxy) benzyl] isothiocyanate (MIC-1) is an active substance in M. oleifera, with anti-cancer activity. However, whether MIC-1 exerts anti-renal cancer effects is unknown. Therefore, the aim of the present study was to evaluate the effects of MIC-1 on the growth and migration of renal cell carcinoma (RCC) cells and to identify the putative underlying mechanism. We found that, among 30 types of cancer cells, MIC-1 exerted the strongest growth inhibitory effects against 786-O RCC cells. In addition, MIC-1 (10 μM) significantly inhibited the growth of five RCC cell lines, including 786-O, OSRC-2, 769-P, SK-NEP-1, and ACHN cells, but was not toxic to normal renal (HK2) cells. Also, MIC-1 suppressed 786-O and 769-P cell migration and invasion abilities, and reduced the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, MIC-1 induced apoptosis and cell cycle arrest, increased Bax/Bcl-2 ratio, and decreased cell cycle-related protein expression in 786-O cells and 769-P cells. Molecular docking and small-molecule interaction analyses with PTP1B both showed that MIC-1 inhibited PTP1B activity by binding to its active site through hydrogen bonding and hydrophobic interactions. Additionally, MIC-1 could suppress the growth and migration of 786-O cells by inhibiting PTP1B-mediated activation of the Src/Ras/Raf/ERK signaling pathway. In vivo experiments further showed that MIC-1 markedly inhibited the growth of xenograft tumors in mice, and greatly increased Bax/Bcl-2 ratio in tumor tissues. In addition, MIC-1 had no effect on the PTP1B-dependent Src/Ras/Raf/ERK signaling pathway in HCT-116 cells, Hep-G2 cells, and A431 cells. Overall, our data showed that MIC-1 could be a promising, non-toxic, natural dietary supplement for the prevention and treatment of renal cancer.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,National R&D Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Ying-Yan Qian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yang Yang
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Lin-Jie Peng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jia-Ying Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ming-Rong Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National R&D Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
Teimouri M, Hosseini H, ArabSadeghabadi Z, Babaei-Khorzoughi R, Gorgani-Firuzjaee S, Meshkani R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J Physiol Biochem 2022; 78:307-322. [PMID: 34988903 DOI: 10.1007/s13105-021-00860-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Insulin resistance, the most important characteristic of the type 2 diabetes mellitus (T2DM), is mostly caused by impairment in the insulin receptor (IR) signal transduction pathway. Protein tyrosine phosphatase 1B (PTP1B), one of the main negative regulators of the IR signaling pathway, is broadly expressed in various cells and tissues. PTP1B decreases the phosphorylation of the IR resulting in insulin resistance in various tissues. The evidence for the physiological role of PTP1B in regulation of metabolic pathways came from whole-body PTP1B-knockout mice. Whole-body and tissue-specific PTP1B-knockout mice showed improvement in adiposity, insulin resistance, and glucose tolerance. In addition, the key role of PTP1B in the pathogenesis of T2DM and its complications was further investigated in mice models of PTP1B deficient/overexpression. In recent years, targeting PTP1B using PTP1B inhibitors is being considered an attractive target to treat T2DM. PTP1B inhibitors improve the sensitivity of the insulin receptor and have the ability to cure insulin resistance-related diseases. We herein summarized the biological functions of PTP1B in different tissues in vivo and in vitro. We also describe the effectiveness of potent PTP1B inhibitors as pharmaceutical agents to treat T2DM.
Collapse
Affiliation(s)
- Maryam Teimouri
- Department of Clinical Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra ArabSadeghabadi
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Reyhaneh Babaei-Khorzoughi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Faria AVS, Yu B, Mommersteeg M, de Souza-Oliveira PF, Andrade SS, Spaander MCW, de Maat MPM, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. Platelet-dependent signaling and Low Molecular Weight Protein Tyrosine Phosphatase expression promote aggressive phenotypic changes in gastrointestinal cancer cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166280. [PMID: 34610471 DOI: 10.1016/j.bbadis.2021.166280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Over the last decades, some members of the protein tyrosine phosphatase family have emerged as cancer promoters. Among them, the Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) has been described to be associated with colorectal cancer liver metastasis and poor prostate cancer prognosis. Of importance in the process of cancer progression and metastasis is the interaction between tumor cells and platelets, as the latter are thought to promote several tumor hallmarks. Here, we examine to what extent LMWPTP expression in tumor cells affects their interaction with platelets. We demonstrate that the gene encoding LMWPTP is overexpressed in upper gastrointestinal (GI) cancer cell as well as colorectal cancer, and subsequently employ cell line models to show that the level of this phosphatase may be further augmented in the presence of platelets. We demonstrate that tumor-platelet interaction promotes GI tumor cell proliferation. Additionally, using know-down/-out models we show that LMWPTP expression in cancer cells contributes to a more efficient interaction with platelets and drives platelet-induced proliferation. These data are the first to demonstrate that phosphatases play a positive role in the tumor-promoting activities of platelets, with LMWPTP emerging as a key player promoting oncogenic phenotypic changes in tumor cells.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands; Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Bingting Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands
| | - Michiel Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands
| | | | | | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands
| | - Moniek P M de Maat
- Department of Hematology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil.
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Recent advances in PTP1B signaling in metabolism and cancer. Biosci Rep 2021; 41:230148. [PMID: 34726241 PMCID: PMC8630396 DOI: 10.1042/bsr20211994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Protein tyrosine phosphorylation is one of the major post-translational modifications in eukaryotic cells and represents a critical regulatory mechanism of a wide variety of signaling pathways. Aberrant protein tyrosine phosphorylation has been linked to various diseases, including metabolic disorders and cancer. Few years ago, protein tyrosine phosphatases (PTPs) were considered as tumor suppressors, able to block the signals emanating from receptor tyrosine kinases. However, recent evidence demonstrates that misregulation of PTPs activity plays a critical role in cancer development and progression. Here, we will focus on PTP1B, an enzyme that has been linked to the development of type 2 diabetes and obesity through the regulation of insulin and leptin signaling, and with a promoting role in the development of different types of cancer through the activation of several pro-survival signaling pathways. In this review, we discuss the molecular aspects that support the crucial role of PTP1B in different cellular processes underlying diabetes, obesity and cancer progression, and its visualization as a promising therapeutic target.
Collapse
|
13
|
La Marca JE, Willoughby LF, Allan K, Portela M, Goh PK, Tiganis T, Richardson HE. PTP61F Mediates Cell Competition and Mitigates Tumorigenesis. Int J Mol Sci 2021; 22:12732. [PMID: 34884538 PMCID: PMC8657627 DOI: 10.3390/ijms222312732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue homeostasis via the elimination of aberrant cells is fundamental for organism survival. Cell competition is a key homeostatic mechanism, contributing to the recognition and elimination of aberrant cells, preventing their malignant progression and the development of tumors. Here, using Drosophila as a model organism, we have defined a role for protein tyrosine phosphatase 61F (PTP61F) (orthologue of mammalian PTP1B and TCPTP) in the initiation and progression of epithelial cancers. We demonstrate that a Ptp61F null mutation confers cells with a competitive advantage relative to neighbouring wild-type cells, while elevating PTP61F levels has the opposite effect. Furthermore, we show that knockdown of Ptp61F affects the survival of clones with impaired cell polarity, and that this occurs through regulation of the JAK-STAT signalling pathway. Importantly, PTP61F plays a robust non-cell-autonomous role in influencing the elimination of adjacent polarity-impaired mutant cells. Moreover, in a neoplastic RAS-driven polarity-impaired tumor model, we show that PTP61F levels determine the aggressiveness of tumors, with Ptp61F knockdown or overexpression, respectively, increasing or reducing tumor size. These effects correlate with the regulation of the RAS-MAPK and JAK-STAT signalling by PTP61F. Thus, PTP61F acts as a tumor suppressor that can function in an autonomous and non-cell-autonomous manner to ensure cellular fitness and attenuate tumorigenesis.
Collapse
Affiliation(s)
- John E. La Marca
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
| | - Lee F. Willoughby
- Cell Cycle & Development Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia;
| | - Kirsten Allan
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
| | - Marta Portela
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
| | - Pei Kee Goh
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (P.K.G.); (T.T.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (P.K.G.); (T.T.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Helena E. Richardson
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
- Cell Cycle & Development Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia;
- Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
14
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Qian L, Wang Q, Wei C, Wang L, Yang Y, Deng X, Liu J, Qi F. Protein tyrosine phosphatase 1B regulates fibroblasts proliferation, motility and extracellular matrix synthesis via the MAPK/ERK signalling pathway in keloid. Exp Dermatol 2021; 31:202-213. [PMID: 34370343 DOI: 10.1111/exd.14443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Keloid is a fibroproliferative disorder resulting from trauma, characterized by abnormal activation of keloid fibroblasts and excessive deposition of extracellular matrix (ECM). It affects life quality of patients and lacks of effective therapeutic targets. Protein tyrosine phosphatase 1B (PTP1B) belongs to the protein tyrosine phosphatases and participates in many cellular processes such as metabolism, proliferation and motility. It has been reported that PTP1B negatively regulated diabetic wound healing and tumor progression. However, its effects in keloid remain unclear. Here, we aimed to evaluate the effects of PTP1B on keloid fibroblasts which play essential roles in keloids pathogenesis. Our results revealed that PTP1B expression was decreased both in keloid tissues and in keloid fibroblasts compared to healthy controls. Keloid fibroblasts (KFs) showed higher cell proliferation, motility, ECM production and ERK activity than normal fibroblasts (NFs). Overexpression of PTP1B in KFs and NFs inhibited cell proliferation, motility, ECM synthesis and the MAPK/ERK signalling pathway while knockdown of PTP1B showed converse effects. The rescue experiments with ERK inhibitor further verified that MAPK/ERK signalling pathway involved in PTP1B regulatory network. Taken together, our findings indicated that overexpression of PTP1B suppressed keloid fibroblasts bio-behaviours and promoted their phenotype switch to normal cells via inhibiting the MAPK/ERK signalling pathway, suggesting it may be a potential anti-keloid therapy.
Collapse
Affiliation(s)
- Leqi Qian
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanwen Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Deng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue Cancers, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fazhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Zahn M, Kaluszniak B, Möller P, Marienfeld R. The PTP1B mutant PTP1B∆2-4 is a positive regulator of the JAK/STAT signalling pathway in Hodgkin lymphoma. Carcinogenesis 2021; 42:517-527. [PMID: 33382412 PMCID: PMC8086765 DOI: 10.1093/carcin/bgaa144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 01/17/2023] Open
Abstract
The neoplastic Hodgkin/Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) depend on chronic activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathways to maintain survival and proliferation. Accumulating reports highlight the importance of the inactivation or reduced expression of negative JAK/STAT regulators such as the protein-tyrosine phosphatase 1B (PTP1B/PTPN1) in this process. Various PTPN1 mRNA variants as well as truncated PTP1B proteins were identified in cHL cell lines and primary cHL tumour samples. These PTPN1 mRNA variants lack either one or several exon sequences and therefore render these PTP1B variants catalytically inactive. Here, we show that one of these mutants, PTP1B∆2-4, is not only a catalytically inactive variant, but also augmented the IL-4-induced JAK/STAT activity similar to the recently reported PTP1B∆6 splice variant. Moreover, while PTP1B∆6 diminished the activity and protein levels of PTP1BWT, PTP1BWT remained unaffected by PTP1B∆2-4, arguing for different molecular mechanisms of JAK/STAT modulation by PTP1B∆6 and PTP1B∆2-4. Collectively, these data indicate that PTPN1 variants missing one or more exon sequences originated either from alternative splicing or from gene mutation, create PTP1B gain-of-function variants with oncogenic potential by augmenting JAK/STAT signalling in cHL.
Collapse
Affiliation(s)
- Malena Zahn
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Bianca Kaluszniak
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Ralf Marienfeld
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| |
Collapse
|
17
|
Monoe Y, Jingushi K, Kawase A, Hirono T, Hirose R, Nakatsuji Y, Kitae K, Ueda Y, Hase H, Abe Y, Adachi J, Tomonaga T, Tsujikawa K. Pharmacological Inhibition of miR-130 Family Suppresses Bladder Tumor Growth by Targeting Various Oncogenic Pathways via PTPN1. Int J Mol Sci 2021; 22:ijms22094751. [PMID: 33947152 PMCID: PMC8124864 DOI: 10.3390/ijms22094751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
Previously, we have revealed that the miR-130 family (miR-130b, miR-301a, and miR-301b) functions as an oncomiR in bladder cancer. The pharmacological inhibition of the miR-130 family molecules by the seed-targeting strategy with an 8-mer tiny locked nucleic acid (LNA) inhibits the growth, migration, and invasion of bladder cancer cells by repressing stress fiber formation. Here, we searched for a functionally advanced target sequence with LNA for the miR-130 family with low cytotoxicity and found LNA #9 (A(L)^i^i^A(L)^T(L)^T(L)^G(L)^5(L)^A(L)^5(L)^T(L)^G) as a candidate LNA. LNA #9 inhibited cell growth in vitro and in an in vivo orthotopic bladder cancer model. Proteome-wide tyrosine phosphorylation analysis suggested that the miR-130 family upregulates a wide range of receptor tyrosine kinases (RTKs) signaling via the expression of phosphorylated Src (pSrcTyr416). SILAC-based proteome analysis and a luciferase assay identified protein tyrosine phosphatase non-receptor type 1 (PTPN1), which is implicated as a negative regulator of multiple signaling pathways downstream of RTKs as a target gene of the miR-130 family. The miR-130-targeted LNA increased and decreased PTPN1 and pSrcTyr416 expressions, respectively. PTPN1 knockdown led to increased tumor properties (cell growth, invasion, and migration) and increased pSrcTyr416 expression in bladder cancer cells, suggesting that the miR-130 family upregulates multiple RTK signaling by targeting PTPN1 and subsequent Src activation in bladder cancer. Thus, our newly designed miR-130 family targeting LNA could be a promising nucleic acid therapeutic agent for bladder cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Cell Line, Tumor
- Drug Screening Assays, Antitumor
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Mice
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- Neoplasm Proteins/physiology
- Oligonucleotides/therapeutic use
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/physiology
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Recombinant Proteins/metabolism
- Up-Regulation
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yuya Monoe
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
- Correspondence: ; Tel.: +81-6-6879-8192
| | - Akitaka Kawase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Takayuki Hirono
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Ryo Hirose
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Yoshino Nakatsuji
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; (Y.A.); (J.A.); (T.T.)
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; (Y.A.); (J.A.); (T.T.)
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; (Y.A.); (J.A.); (T.T.)
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| |
Collapse
|
18
|
Du J, Dong Z, Tan L, Tan M, Zhang F, Zhang K, Pan G, Li C, Shi S, Zhang Y, Liu Y, Cui H. Tubeimoside I Inhibits Cell Proliferation and Induces a Partly Disrupted and Cytoprotective Autophagy Through Rapidly Hyperactivation of MEK1/2-ERK1/2 Cascade via Promoting PTP1B in Melanoma. Front Cell Dev Biol 2020; 8:607757. [PMID: 33392197 PMCID: PMC7773826 DOI: 10.3389/fcell.2020.607757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tubeimoside I (TBMS1), also referred to as tubeimoside A, is a natural compound extracted from the plant Tu Bei Mu (Bolbostemma paniculatum), which is a traditional Chinese herb used to treat multiple diseases for more than 1,000 years. Studies in recent years reported its anti-tumor activity in several cancers. However, whether it is effective in melanoma remains unknown. In the current study, we discovered that TBMS1 treatment inhibited melanoma cell proliferation in vitro and tumorigenecity in vivo. Besides, we also observed that TBMS1 treatment induced a partly disrupted autophagy, which still remained a protective role, disruption of which by chloroquine (CQ) or 3-methyladenine (3-MA) enhanced TBMS1-induced cell proliferation inhibition. CQ combined with TBMS1 even induced cellular apoptosis. BRAF(V600E) mutation and its continuously activated downstream MEK1/2-ERK1/2 cascade are found in 50% of melanomas and are important for malanomagenesis. However, hyperactivating MEK1/2-ERK1/2 cascade can also inhibit tumor growth. Intriguingly, we observed that TBMS1 rapidly hyperactivated MEK1/2-ERK1/2, inhibition of which by its inhibitor SL-327 rescued the anti-cancerous effects of TBMS1. Besides, the targets of TBMS1 were predicted by the ZINC Database based on its structure. It is revealed that protein-tyrosine phosphatase 1B (PTP1B) might be one of the targets of TBMS1. Inhibition of PTP1B by its selective inhibitor TCS401 or shRNA rescued the anti-cancerous effects of TBMS1 in melanoma cells. These results indicated that TBMS1 might activate PTP1B, which further hyperactivates MEK1/2-ERK1/2 cascade, thereby inhibiting cell proliferation in melanoma. Our results provided the potentiality of TBMS1 as a drug candidate for melanoma therapy and confirmed that rapidly hyperactivating an oncogenic signaling pathway may also be a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Juan Du
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Mengqin Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Fang Zhang
- Department of Nuclear Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
| | - Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
19
|
Yang R, Dong Q, Xu H, Gao X, Zhao Z, Qin J, Chen C, Luo D. Identification of Phomoxanthone A and B as Protein Tyrosine Phosphatase Inhibitors. ACS OMEGA 2020; 5:25927-25935. [PMID: 33073119 PMCID: PMC7557999 DOI: 10.1021/acsomega.0c03315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Phomoxanthone A and B (PXA and PXB) are xanthone dimers and isolated from the endophytic fungus Phomopsis sp. By254. The results demonstrated that PXB and PXA are noncompetitive inhibitors of SHP2 and PTP1B and competitive inhibitors of SHP1. Molecular docking studies showed that PXB and PXA interact with conserved domains of protein tyrosine phosphatases such as the β5-β6 loop, WPD loop, P loop, and Q loop. PXA and PXB could significantly inhibit the cell proliferation in MCF7 cells. Our results indicated that these two compounds do not efficiently inhibit PTP1B and SHP2 activity. RNA sequencing showed that PXA and PXB may inhibit SHP1 activity in MCF7 cells leading to the upregulation of inflammatory factors. In addition to PTP inhibition, PXA and PXB are multitarget compounds to inhibit the proliferation of tumor cells. In conclusion, both compounds show inhibition of cancer cells and a certain degree of inflammatory stimulation, which make them promising for tumor immunotherapy.
Collapse
Affiliation(s)
- Runlei Yang
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Qian Dong
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Huibin Xu
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - XueHui Gao
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Ziyue Zhao
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jianchun Qin
- College
of Plant Science, Jilin University, Changchun, Jilin 130062, China
| | - Chuan Chen
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Duqiang Luo
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| |
Collapse
|
20
|
Xu Q, Wu N, Li X, Guo C, Li C, Jiang B, Wang H, Shi D. Inhibition of PTP1B blocks pancreatic cancer progression by targeting the PKM2/AMPK/mTOC1 pathway. Cell Death Dis 2019; 10:874. [PMID: 31745071 PMCID: PMC6864061 DOI: 10.1038/s41419-019-2073-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a highly malignant cancer and lacks effective therapeutic targets. Protein-tyrosine phosphatase 1B (PTP1B), a validated therapeutic target for diabetes and obesity, also plays a critical positive or negative role in tumorigenesis. However, the role of PTP1B in pancreatic cancer remains elusive. Here, we initially demonstrated that PTP1B was highly expressed in pancreatic tumors, and was positively correlated with distant metastasis and tumor staging, and indicated poor survival. Then, inhibition of PTP1B either by shRNA or by a specific small-molecule inhibitor significantly suppressed pancreatic cancer cell growth, migration and colony formation with cell cycle arrest in vitro and inhibited pancreatic cancer progression in vivo. Mechanism studies revealed that PTP1B targeted the PKM2/AMPK/mTOC1 signaling pathway to regulate cell growth. PTP1B inhibition directly increased PKM2 Tyr-105 phosphorylation to further result in significant activation of AMPK, which decreased mTOC1 activity and led to inhibition of p70S6K. Meanwhile, the decreased phosphorylation of PRAS40 caused by decreased PKM2 activity also helped to inhibit mTOC1. Collectively, these findings support the notion of PTP1B as an oncogene and a promising therapeutic target for PDAC.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/antagonists & inhibitors
- AMP-Activated Protein Kinases/metabolism
- Animals
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Disease Progression
- Female
- Humans
- Male
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/biosynthesis
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Random Allocation
- Signal Transduction/drug effects
- Small Molecule Libraries/pharmacology
- Thyroid Hormones/metabolism
- Xenograft Model Antitumor Assays
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Chuanlong Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Chao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- The University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Carmona S, Brunel JM, Bonier R, Sbarra V, Robert S, Borentain P, Lombardo D, Mas E, Gerolami R. A squalamine derivative, NV669, as a novel PTP1B inhibitor: in vitro and in vivo effects on pancreatic and hepatic tumor growth. Oncotarget 2019; 10:6651-6667. [PMID: 31803360 PMCID: PMC6877102 DOI: 10.18632/oncotarget.27286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
NV669 is an aminosterol derived from squalamine found to possess strong anticancer effects. The aim of this study was to investigate NV669’s beneficial effects on human pancreatic and hepatic cancer models and to decipher the cellular and molecular mechanisms involved in tumor growth decrease upon treatment with NV669. Pancreatic (BxPC3, MiaPaCa-2) and hepatic (HepG2, Huh7) cancer cells were treated with NV669, and the effects recorded on proliferation, cell cycle and death. Results showed that NV669 inhibited the viability of cancer cells, induced cell cycle arrest and subsequently promoted apoptosis. This was accompanied by a decrease in the expression of cyclin B1 and phosphorylated Cdk1 and by a cleavage of pro-apoptotic caspase-8 and PARP-1. Taken together, our studies showed that NV669 inhibits the proliferation of pancreatic and hepatic cancer cells through the regulation of G2/M phase transition via the cyclin B1-Cdk1 complex. In vitro NV669 inhibits PTP1B activity and FAK expression. NV669 impacts on the expression of adhesion molecules CDH-1, -2 and -3 in BxPC3 and Huh7 lines that form cell monolayers. Consecutively NV669 induces cell detachment. This suggests that NV669 by inhibiting PTP1B induces cell detachment and apoptosis.
Subsequently, our in vivo results showed that NV669 inhibited the growth of pancreatic and hepatic tumor xenografts with a significant cell cycle arrest in pre-mitotic phase and an increase of tumor cell apoptosis. Therefore, NV669 may serve as an alternative anticancer agent, used alone or in association with other medications, for the treatment of pancreatic adenocarcinoma and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sylvie Carmona
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de médecine, Marseille, France.,Aix Marseille Univ, CNRS, INP, Institut de Neuro-Physiopathologie, Faculté de médecine, Marseille, France
| | | | - Rénaté Bonier
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de médecine, Marseille, France.,Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Véronique Sbarra
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de médecine, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, Faculté de médecine, Marseille, France
| | - Stéphane Robert
- Aix Marseille Univ, INSERM, INRA, C2VN AMUTICYT Core facility, Faculté de pharmacie, Marseille, France
| | - Patrick Borentain
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de médecine, Marseille, France.,Aix Marseille Univ, AP-HM, Assistance Publique des Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Service d'Hépato-Gastro-Entérologie, Marseille, France
| | - Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de médecine, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de médecine, Marseille, France.,Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - René Gerolami
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de médecine, Marseille, France.,Aix Marseille Univ, AP-HM, Assistance Publique des Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Service d'Hépato-Gastro-Entérologie, Marseille, France
| |
Collapse
|
22
|
Yu M, Liu Z, Liu Y, Zhou X, Sun F, Liu Y, Li L, Hua S, Zhao Y, Gao H, Zhu Z, Na M, Zhang Q, Yang R, Zhang J, Yao Y, Chen X. PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J 2018; 286:1136-1153. [PMID: 30548198 DOI: 10.1111/febs.14724] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/05/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023]
Abstract
The protein tyrosine phosphatase PTP1B, which is encoded by PTPN1, is a ubiquitously expressed nonreceptor protein tyrosine phosphatase. PTP1B has long been known to negatively regulate insulin and leptin receptor signalling. Recently, it was reported to be aberrantly expressed in cancer cells and to function as an important oncogene. In this study, we found that PTP1B protein levels are dramatically increased in breast cancer (BC) tissues and that PTP1B promotes the proliferation, and suppresses the apoptosis, of both HER2-positive and triple-negative BC cell lines. Bioinformatics analysis identified that the miRNA, miR-193a-3p, might potentially target PTP1B. We demonstrate that miR-193a-3p regulates PTP1B in BC cells and that it regulates the proliferation and apoptosis of BC cells by targeting PTP1B, both in vitro and in vivo. In conclusion, this study confirms that PTP1B acts as an oncogene in BC and demonstrates that miR-193a-3p can serve as a tumour suppressor gene in BC by targeting PTP1B.
Collapse
Affiliation(s)
- Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Zhijian Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Yuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Xinyan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Liuyi Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Shiyu Hua
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Yi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Haidong Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Zhouting Zhu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Muhan Na
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Rong Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Jiangsu, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| |
Collapse
|
23
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
24
|
Liao SC, Li JX, Yu L, Sun SR. Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer. J Zhejiang Univ Sci B 2017; 18:334-342. [PMID: 28378571 DOI: 10.1631/jzus.b1600184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The protein tyrosine phosphatase 1B (PTP1B) is an important regulator of metabolism. The relationship between PTP1B and tumors is quite complex. The purpose of this study is to explore the expression pattern and role of PTP1B in breast cancer. The expression of PTP1B was detected in 67 samples of breast cancer tissue by Western blot. Cell growth assay, Transwell migration assay, and Scratch motility assay were used to examine the proliferation and migration of MCF-7 with and without PTP1B. The total levels and phosphorylated levels of signal transduction and activator of transcription 3 (STAT3) and the expression of C-C motif chemokine ligand 5 (CCL5) were also examined by Western blot. PTP1B was overexpressed in over 70% of breast cancer tissues, correlating with patients with estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and human epidermal growth factor receptor 2 (HER2)-positive tumors. The data also showed that both tumor size and lymph node metastasis were significantly higher in patients with a higher level of PTP1B. The proliferation and migration of MCF-7 cells were found to be inhibited after knocking down the gene of PTP1B. Our data also showed that PTP1B could up-regulate the dephosphorylated level of STAT3, which could increase the expression of CCL5. These phenomena indicated that PTP1B may play a crucial role in the development of breast cancer.
Collapse
Affiliation(s)
- Shi-Chong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jin-Xin Li
- Department of Teaching Administration, Wuhan University School of Medicine, Wuhan 430071, China
| | - Li Yu
- Intensive Care Unit, the Central Hospital of Wuhan, Wuhan 430014, China
| | - Sheng-Rong Sun
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
25
|
IRE1α links Nck1 deficiency to attenuated PTP1B expression in HepG2 cells. Cell Signal 2017; 36:79-90. [DOI: 10.1016/j.cellsig.2017.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/11/2017] [Accepted: 04/23/2017] [Indexed: 12/23/2022]
|
26
|
Huang SQ, Zhang N, Zhou ZX, Huang CC, Zeng CL, Xiao D, Guo CC, Han YJ, Ye XH, Ye XG, Ou ML, Zhang BH, Liu Y, Zeng EY, Yang G, Jing CX. Association of LPP and TAGAP Polymorphisms with Celiac Disease Risk: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020171. [PMID: 28208589 PMCID: PMC5334725 DOI: 10.3390/ijerph14020171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023]
Abstract
Background: Lipoma preferred partner (LPP) and T-cell activation Rho GTPase activating protein (TAGAP) polymorphisms might influence the susceptibility to celiac disease. Therefore, we performed a meta-analysis by identifying relevant studies to estimate the risks of these polymorphisms on celiac disease. Methods: The PubMed, Web of Science and Embase databases were searched (up to October 2016) for LPP rs1464510 and TAGAP rs1738074 polymorphisms. Results: This meta-analysis included the same 7 studies for LPP rs1464510 and TAGAP rs1738074. The minor risk A allele at both rs1464510 and rs1738074 carried risks (odds ratios) of 1.26 (95% CI: 1.22-1.30) and 1.17 (95% CI: 1.14-1.21), respectively, which contributed to increased risks in all celiac disease patients by 10.72% and 6.59%, respectively. The estimated lambdas were 0.512 and 0.496, respectively, suggesting that a co-dominant model would be suitable for both gene effects. Conclusions: This meta-analysis provides robust estimates that polymorphisms in LPP and TAGAP genes are potential risk factors for celiac disease in European and American. Prospective studies and more genome-wide association studies (GWAS) are needed to confirm these findings, and some corresponding molecular biology experiments should be carried out to clarify the pathogenic mechanisms of celiac disease.
Collapse
Affiliation(s)
- Shi-Qi Huang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Na Zhang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
- Department of Preventive Medicine, Zunyi Medical College, Zhuhai Campus, Zhuhai 519041, Guangdong, China.
| | - Zi-Xing Zhou
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Chui-Can Huang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Cheng-Li Zeng
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Di Xiao
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Cong-Cong Guo
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Ya-Jing Han
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Xiao-Hong Ye
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Xing-Guang Ye
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Mei-Ling Ou
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Bao-Huan Zhang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Yang Liu
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Guang Yang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
- Department of Parasitology, School of Basic Medical Sciences, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Chun-Xia Jing
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
27
|
Teng HW, Hung MH, Chen LJ, Chang MJ, Hsieh FS, Tsai MH, Huang JW, Lin CL, Tseng HW, Kuo ZK, Jiang JK, Yang SH, Shiau CW, Chen KF. Protein tyrosine phosphatase 1B targets PITX1/p120RasGAP thus showing therapeutic potential in colorectal carcinoma. Sci Rep 2016; 6:35308. [PMID: 27752061 PMCID: PMC5082755 DOI: 10.1038/srep35308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/28/2016] [Indexed: 12/27/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is known to promote the pathogenesis of diabetes and obesity by negatively regulating insulin and leptin pathways, but its role associated with colon carcinogenesis is still under debate. In this study, we demonstrated the oncogenic role of PTP1B in promoting colon carcinogenesis and predicting worse clinical outcomes in CRC patients. By co-immunoprecipitation, we showed that PITX1 was a novel substrate of PTP1B. Through direct dephosphorylation at Y160, Y175 and Y179, PTP1B destabilized PITX1, which resulted in downregulation of the PITX1/p120RasGAP axis. Interestingly, we found that regorafenib, the approved target agent for advanced CRC patients, exerted a novel property against PTP1B. By inhibiting PTP1B activity, regorafenib treatment augmented the stability of PITX1 protein and upregulated the expression of p120RasGAP in CRC. Importantly, we found that this PTP1B-dependant PITX1/p120RasGAP axis determines the in vitro anti-CRC effects of regorafenib. The above-mentioned effects of regorafenib were confirmed by the HT-29 xenograft tumor model. In conclusion, we demonstrated a novel oncogenic mechanism of PTP1B on affecting PITX1/p120RasGAP in CRC. Regorafenib inhibited CRC survival through reserving PTP1B-dependant PITX1/p120RasGAP downregulation. PTP1B may be a potential biomarker predicting regorafenib effectiveness, and a potential solution for CRC.
Collapse
Affiliation(s)
- Hao-Wei Teng
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Program in Molecular Medicine, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Mao-Ju Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Feng-Shu Hsieh
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Jui-Wen Huang
- Industrial Technology Research Institute, Hsin-Chu, Taiwan
| | - Chih-Lung Lin
- Industrial Technology Research Institute, Hsin-Chu, Taiwan
| | | | - Zong-Keng Kuo
- Industrial Technology Research Institute, Hsin-Chu, Taiwan
| | - Jeng-Kai Jiang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Colon &Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shung-Haur Yang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Colon &Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
28
|
Eden ER. The formation and function of ER-endosome membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:874-879. [PMID: 26898183 PMCID: PMC4917889 DOI: 10.1016/j.bbalip.2016.01.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 02/02/2023]
Abstract
Recent advances in membrane contact site (MCS) biology have revealed key roles for MCSs in inter-organellar exchange, the importance of which is becoming increasingly apparent. Roles for MCSs in many essential physiological processes including lipid transfer, calcium exchange, receptor tyrosine kinase signalling, lipid droplet formation, autophagosome formation, organelle dynamics and neurite outgrowth have been reported. The ER forms an extensive and dynamic network of MCSs with a diverse range of functionally distinct organelles. MCSs between the ER and endocytic pathway are particularly abundant, suggesting important physiological roles. Here, our current knowledge of the formation and function of ER contact sites with endocytic organelles from studies in mammalian systems is reviewed. Their relatively poorly defined molecular composition and recently identified functions are discussed. In addition, likely, but yet to be established, roles for these contacts in lipid transfer and calcium signalling are considered. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
29
|
Wojtowicz EE, Lechman ER, Hermans KG, Schoof EM, Wienholds E, Isserlin R, van Veelen PA, Broekhuis MJC, Janssen GMC, Trotman-Grant A, Dobson SM, Krivdova G, Elzinga J, Kennedy J, Gan OI, Sinha A, Ignatchenko V, Kislinger T, Dethmers-Ausema B, Weersing E, Alemdehy MF, de Looper HWJ, Bader GD, Ritsema M, Erkeland SJ, Bystrykh LV, Dick JE, de Haan G. Ectopic miR-125a Expression Induces Long-Term Repopulating Stem Cell Capacity in Mouse and Human Hematopoietic Progenitors. Cell Stem Cell 2016; 19:383-96. [PMID: 27424784 DOI: 10.1016/j.stem.2016.06.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 04/01/2016] [Accepted: 06/15/2016] [Indexed: 12/25/2022]
Abstract
Umbilical cord blood (CB) is a convenient and broadly used source of hematopoietic stem cells (HSCs) for allogeneic stem cell transplantation. However, limiting numbers of HSCs remain a major constraint for its clinical application. Although one feasible option would be to expand HSCs to improve therapeutic outcome, available protocols and the molecular mechanisms governing the self-renewal of HSCs are unclear. Here, we show that ectopic expression of a single microRNA (miRNA), miR-125a, in purified murine and human multipotent progenitors (MPPs) resulted in increased self-renewal and robust long-term multi-lineage repopulation in transplanted recipient mice. Using quantitative proteomics and western blot analysis, we identified a restricted set of miR-125a targets involved in conferring long-term repopulating capacity to MPPs in humans and mice. Our findings offer the innovative potential to use MPPs with enhanced self-renewal activity to augment limited sources of HSCs to improve clinical protocols.
Collapse
Affiliation(s)
- Edyta E Wojtowicz
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV Groningen, the Netherlands
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Karin G Hermans
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Erwin M Schoof
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Erno Wienholds
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Ruth Isserlin
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Peter A van Veelen
- Departments of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Mathilde J C Broekhuis
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV Groningen, the Netherlands
| | - George M C Janssen
- Departments of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Aaron Trotman-Grant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Stephanie M Dobson
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gabriela Krivdova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jantje Elzinga
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - James Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Ankit Sinha
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Vladimir Ignatchenko
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Bertien Dethmers-Ausema
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV Groningen, the Netherlands
| | - Ellen Weersing
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV Groningen, the Netherlands
| | - Mir Farshid Alemdehy
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Hans W J de Looper
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Martha Ritsema
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV Groningen, the Netherlands
| | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Leonid V Bystrykh
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV Groningen, the Netherlands
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV Groningen, the Netherlands.
| |
Collapse
|
30
|
Tai WT, Chen YL, Chu PY, Chen LJ, Hung MH, Shiau CW, Huang JW, Tsai MH, Chen KF. Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology 2016; 63:1528-43. [PMID: 26840794 DOI: 10.1002/hep.28478] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/29/2016] [Indexed: 01/07/2023]
Abstract
UNLABELLED The effective therapeutic targets for hepatocellular carcinoma remain limited. Pituitary homeobox 1 (PITX1) functions as a tumor suppressor in hepatocarcinogenesis by regulating the expression level of Ras guanosine triphosphatase-activating protein. Here, we report that protein tyrosine phosphatases 1B (PTP1B) directly dephosphorylated PITX1 at Y160, Y175, and Y179 to further weaken the protein stability of PITX. The PTP1B-dependent decline of PITX1 reduced its transcriptional activity for p120RasGAP (RASA1), a Ras guanosine triphosphatase-activating protein. Both silencing of PTP1B and PTP1B inhibitor up-regulated the PITX1-p120RasGAP axis through hyperphosphorylation of PITX1. Sorafenib, the first and only targeted drug approved for hepatocellular carcinoma, directly decreased PTP1B activity and promoted the expression of PITX1 and p120RasGAP by PITX1 hyperphosphorylation. Molecular docking also supported the potential interaction between PTP1B and sorafenib. PTP1B overexpression impaired the sensitivity of sorafenib in vitro and in vivo, implying that PTP1B has a significant effect on sorafenib-induced apoptosis. In sorafenib-treated tumor samples, we further found inhibition of PTP1B activity and up-regulation of the PITX1-p120RasGAP axis, suggesting that PTP1B inhibitor may be effective for the treatment of hepatocellular carcinoma. By immunohistochemical staining of hepatic tumor tissue from 155 patients, the expression of PTP1B was significantly in tumor parts higher than nontumor parts (P = 0.02). Furthermore, high expression of PTP1B was significantly associated with poor tumor differentiation (P = 0.031). CONCLUSION PTP1B dephosphorylates PITX1 to weaken its protein stability and the transcriptional activity for p120RasGAP gene expression and acts as a determinant of the sorafenib-mediated drug effect; targeting the PITX1-p120RasGAP axis with a PTP1B inhibitor may provide a new therapy for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Li Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jui-Wen Huang
- Industrial Technology Research Institute, Hsin-Chu, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Yue L, Xie Z, Li H, Pang Z, Junkins RD, Tremblay ML, Chen X, Lin TJ. Protein Tyrosine Phosphatase-1B Negatively Impacts Host Defense against Pseudomonas aeruginosa Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1234-44. [DOI: 10.1016/j.ajpath.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/26/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
|
32
|
Calvisi DF. Accomplices in crime: The diabolical liaison between protein tyrosine phosphatase 1B and ras in hepatocellular carcinoma. Hepatology 2016; 63:1418-20. [PMID: 26784533 DOI: 10.1002/hep.28462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Diego F Calvisi
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
33
|
Hoekstra E, Das AM, Swets M, Cao W, van der Woude CJ, Bruno MJ, Peppelenbosch MP, Kuppen PJ, ten Hagen TL, Fuhler GM. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome. Oncotarget 2016; 7:21922-38. [PMID: 26942883 PMCID: PMC5008334 DOI: 10.18632/oncotarget.7829] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/11/2016] [Indexed: 01/05/2023] Open
Abstract
Cell signaling is dependent on the balance between phosphorylation of proteins by kinases and dephosphorylation by phosphatases. This balance if often disrupted in colorectal cancer (CRC), leading to increased cell proliferation and invasion. For many years research has focused on the role of kinases as potential oncogenes in cancer, while phosphatases were commonly assumed to be tumor suppressive. However, this dogma is currently changing as phosphatases have also been shown to induce cancer growth. One of these phosphatases is protein tyrosine phosphatase 1B (PTP1B). Here we report that the expression of PTP1B is increased in colorectal cancer as compared to normal tissue, and that the intrinsic enzymatic activity of the protein is also enhanced. This suggests a role for PTP1B phosphatase activity in CRC formation and progression. Furthermore, we found that increased PTP1B expression is correlated to a worse patient survival and is an independent prognostic marker for overall survival and disease free survival. Knocking down PTP1B in CRC cell lines results in a less invasive phenotype with lower adhesion, migration and proliferation capabilities. Together, these results suggest that inhibition of PTP1B activity is a promising new target in the treatment of colorectal cancer and the prevention of metastasis.
Collapse
Affiliation(s)
- Elmer Hoekstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Asha M. Das
- Department of Surgery, Section Surgical Oncology, Laboratory Experimental Surgical Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marloes Swets
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - C. Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter J.K. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Timo L.M. ten Hagen
- Department of Surgery, Section Surgical Oncology, Laboratory Experimental Surgical Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Fontanillo M, Köhn M. Phosphatases: Their Roles in Cancer and Their Chemical Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:209-40. [PMID: 27236558 DOI: 10.1007/978-3-319-32805-8_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phosphatases are involved in basically all cellular processes by dephosphorylating cellular components such as proteins, phospholipids and second messengers. They counteract kinases of which many are established oncogenes, and therefore kinases are one of the most important drug targets for targeted cancer therapy. Due to this relationship between kinases and phosphatases, phosphatases are traditionally assumed to be tumour suppressors. However, research findings over the last years prove that this simplification is incorrect, as bona-fide and putative phosphatase oncogenes have been identified. We describe here the role of phosphatases in cancer, tumour suppressors and oncogenes, and their chemical modulators, and discuss new approaches and opportunities for phosphatases as drug targets.
Collapse
Affiliation(s)
- Miriam Fontanillo
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
35
|
Chen C, Cao M, Zhu S, Wang C, Liang F, Yan L, Luo D. Discovery of a Novel Inhibitor of the Protein Tyrosine Phosphatase Shp2. Sci Rep 2015; 5:17626. [PMID: 26626996 PMCID: PMC4667271 DOI: 10.1038/srep17626] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
Shp2 is a ubiquitously expressed protein tyrosine phosphatase (PTP) related to adult acute myelogenous leukemia and human solid tumors. In this report, we describe identification of a potent Shp2 inhibitor, Fumosorinone (Fumos) from entomogenous fungi, which shows selective inhibition of Shp2 over other tested PTPs. Using a surface plasmon resonance analysis, we further confirmed the physical interaction between Shp2 and Fumos. Fumos inhibits Shp2-dependent activation of the Ras/ERK signal pathway downstream of EGFR, and interrupts EGF-induced Gab1-Shp2 association. As expected, Fumos shows little effects on the Shp2-independent ERK1/2 activation induced by PMA or oncogenic Ras. Furthermore, Fumos down-regulates Src activation, inhibits phosphorylation of Paxillin and prevents tumor cell invasion. These results suggest that Fumos can inhibit Shp2-dependent cell signaling in human cells and has a potential for treatment of Shp2-associated diseases.
Collapse
Affiliation(s)
- Chuan Chen
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Mengmeng Cao
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Siyu Zhu
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Cuicui Wang
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Fan Liang
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Leilei Yan
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Duqiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| |
Collapse
|
36
|
Fan G, Aleem S, Yang M, Miller WT, Tonks NK. Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase. J Biol Chem 2015; 290:15934-47. [PMID: 25897081 DOI: 10.1074/jbc.m115.651703] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 11/06/2022] Open
Abstract
Despite significant evidence to the contrary, the view that phosphatases are "nonspecific" still pervades the field. Systems biology approaches to defining how signal transduction pathways are integrated at the level of whole organisms also often downplay the contribution of phosphatases, defining them as "erasers" that serve merely to restore the system to its basal state. Here, we present a study that counteracts the idea of "nonspecific phosphatases." We have characterized two structurally similar and functionally related kinases, BRK and SRC, which are regulated by combinations of activating autophosphorylation and inhibitory C-terminal sites of tyrosine phosphorylation. We demonstrated specificity at the level of the kinases in that SRMS phosphorylated the C terminus of BRK, but not SRC; in contrast, CSK is the kinase responsible for C-terminal phosphorylation of SRC, but not BRK. For the phosphatases, we observed that RNAi-mediated suppression of PTP1B resulted in opposing effects on the activity of BRK and SRC and have defined the mechanisms underlying this specificity. PTP1B inhibited BRK by directly dephosphorylating the Tyr-342 autophosphorylation site. In contrast, PTP1B potentiated SRC activity, but not by dephosphorylating SRC itself directly; instead, PTP1B regulated the interaction between CBP/PAG and CSK. SRC associated with, and phosphorylated, the transmembrane protein CBP/PAG at Tyr-317, resulting in CSK recruitment. We identified PAG as a substrate of PTP1B, and dephosphorylation abolished recruitment of the inhibitory kinase CSK. Overall, these findings illustrate how the combinatorial effects of PTKs and PTPs may be integrated to regulate signaling, with both classes of enzymes displaying exquisite specificity.
Collapse
Affiliation(s)
- Gaofeng Fan
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-2208 and
| | - Saadat Aleem
- the Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661
| | - Ming Yang
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-2208 and
| | - W Todd Miller
- the Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661
| | - Nicholas K Tonks
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-2208 and
| |
Collapse
|
37
|
Dokainish HM, Gauld JW. Formation of a Stable Iminol Intermediate in the Redox Regulation Mechanism of Protein Tyrosine Phosphatase 1B (PTP1B). ACS Catal 2015. [DOI: 10.1021/cs501707h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hisham M. Dokainish
- Department
of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - James W. Gauld
- Department
of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
38
|
Li H, Dusseault J, Larose L. Nck1 depletion induces activation of the PI3K/Akt pathway by attenuating PTP1B protein expression. Cell Commun Signal 2014; 12:71. [PMID: 25398386 PMCID: PMC4236421 DOI: 10.1186/s12964-014-0071-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/19/2014] [Indexed: 12/17/2022] Open
Abstract
Background Activation of the PI3K/Akt pathway mediates crucial cellular functions regulated by receptor tyrosine kinases, such as cell growth, proliferation, survival and metabolism. Previously, we reported that the whole-body knockout of the Src homology domain-containing adaptor protein Nck1 improves overall glucose homeostasis and insulin-induced activation of the PI3K/Akt pathway in liver of obese mice. The aim of the current study is to elucidate the mechanism by which Nck1 depletion regulates hepatic insulin signaling. Results Here, we demonstrate that Nck1 regulates the activation of the PI3K/Akt pathway in a protein tyrosine phosphatase 1B (PTP1B)-dependent mechanism. Indeed, depletion of Nck1 by siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation. In accordance, primary hepatocytes isolated from Nck1−/− mice also display enhanced Akt activation in response to insulin. Activation of the PI3K/Akt pathway in Nck1-depleted HepG2 cells relies on higher levels of tyrosine-phosphorylated proteins and correlates with decreased PTP1B levels. Interestingly, Nck1 and PTP1B in cells are found in a common molecular complex and their interaction is dependent on the SH3 domains of Nck1. Finally, Nck1 depletion in HepG2 cells neither affects PTP1B gene transcription nor PTP1B protein stability, suggesting that Nck1 modulates PTP1B expression at the translational level. Conclusion Our study provides strong evidence supporting that the adaptor protein Nck1 interacts with PTP1B and also regulates PTP1B expression. In this manner, Nck1 plays a role in regulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hui Li
- Department of Medicine, Polypeptide Laboratory, McGill University and The Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Julie Dusseault
- Department of Medicine, Polypeptide Laboratory, McGill University and The Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Louise Larose
- Department of Medicine, Polypeptide Laboratory, McGill University and The Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
39
|
He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35:1227-46. [PMID: 25220640 DOI: 10.1038/aps.2014.80] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022] Open
Abstract
Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
Collapse
|
40
|
Groitl B, Jakob U. Thiol-based redox switches. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1335-43. [PMID: 24657586 PMCID: PMC4059413 DOI: 10.1016/j.bbapap.2014.03.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
Regulation of protein function through thiol-based redox switches plays an important role in the response and adaptation to local and global changes in the cellular levels of reactive oxygen species (ROS). Redox regulation is used by first responder proteins, such as ROS-specific transcriptional regulators, chaperones or metabolic enzymes to protect cells against mounting levels of oxidants, repair the damage and restore redox homeostasis. Redox regulation of phosphatases and kinases is used to control the activity of select eukaryotic signaling pathways, making reactive oxygen species important second messengers that regulate growth, development and differentiation. In this review we will compare different types of reversible protein thiol modifications, elaborate on their structural and functional consequences and discuss their role in oxidative stress response and ROS adaptation. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Bastian Groitl
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Krishnan N, Koveal D, Miller DH, Xue B, Akshinthala SD, Kragelj J, Jensen MR, Gauss CM, Page R, Blackledge M, Muthuswamy SK, Peti W, Tonks NK. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat Chem Biol 2014; 10:558-66. [PMID: 24845231 PMCID: PMC4062594 DOI: 10.1038/nchembio.1528] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/16/2014] [Indexed: 01/23/2023]
Abstract
PTP1B, a validated therapeutic target for diabetes and obesity, has a critical positive role in HER2 signaling in breast tumorigenesis. Efforts to develop therapeutic inhibitors of PTP1B have been frustrated by the chemical properties of the active site. We define a new mechanism of allosteric inhibition that targets the C-terminal, noncatalytic segment of PTP1B. We present what is to our knowledge the first ensemble structure of PTP1B containing this intrinsically disordered segment, within which we identified a binding site for the small-molecule inhibitor MSI-1436. We demonstrate binding to a second site close to the catalytic domain, with cooperative effects between the two sites locking PTP1B in an inactive state. MSI-1436 antagonized HER2 signaling, inhibited tumorigenesis in xenografts and abrogated metastasis in the NDL2 mouse model of breast cancer, validating inhibition of PTP1B as a therapeutic strategy in breast cancer. This new approach to inhibition of PTP1B emphasizes the potential of disordered segments of proteins as specific binding sites for therapeutic small molecules.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Site/drug effects
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Catalytic Domain
- Cholestanes/chemistry
- Cholestanes/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kinetics
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mice
- Models, Molecular
- Molecular Targeted Therapy
- Protein Binding/drug effects
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Signal Transduction
- Spermine/analogs & derivatives
- Spermine/chemistry
- Spermine/pharmacology
Collapse
Affiliation(s)
- Navasona Krishnan
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Dorothy Koveal
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Daniel H. Miller
- Department of Molecular Pharmacology, Physiology and Biotechnology, and Department of Chemistry, Brown University, Providence, RI 02903, USA
| | - Bin Xue
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | - Jaka Kragelj
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, 41 Rue Jules Horowitz, Grenoble 38027, France
| | - Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, 41 Rue Jules Horowitz, Grenoble 38027, France
| | - Carla-Maria Gauss
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Martin Blackledge
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, 41 Rue Jules Horowitz, Grenoble 38027, France
| | - Senthil K. Muthuswamy
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
- Ontario Cancer Institute, Campbell Family Institute for Breast Cancer Research, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, and Department of Chemistry, Brown University, Providence, RI 02903, USA
| | - Nicholas K. Tonks
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
42
|
Tchankouo-Nguetcheu S, Udinotti M, Durand M, Meng TC, Taouis M, Rabinow L. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B. Mol Genet Genomics 2014; 289:795-806. [DOI: 10.1007/s00438-014-0852-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
|
43
|
Tomas A, Futter CE, Eden ER. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 2013; 24:26-34. [PMID: 24295852 PMCID: PMC3884125 DOI: 10.1016/j.tcb.2013.11.002] [Citation(s) in RCA: 565] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 11/15/2022]
Abstract
EGF receptor endocytic traffic can regulate signaling and cell survival. Signaling from activated EGFR occurs at the endosome as well as the cell surface. Endocytosis can have positive and negative effects on signaling and tumorigenesis. EGFR traffic promoted by antineoplastic therapy is important in tumor resistance.
The ligand-stimulated epidermal growth factor receptor (EGFR) has been extensively studied in the analysis of molecular mechanisms regulating endocytic traffic and the role of that traffic in signal transduction. Although such studies have largely focused on mitogenic signaling and dysregulated traffic in tumorigenesis, there is growing interest in the potential role of EGFR traffic in cell survival and the consequent response to cancer therapy. Here we review recent advances in our understanding of molecular mechanisms regulating ligand-stimulated EGFR activation, internalization, and post-endocytic sorting. The role of EGFR overexpression/mutation and new modulators of EGFR traffic in cancer and the response to cancer therapeutics are also discussed. Finally, we speculate on the relationship between EGFR traffic and cell survival.
Collapse
Affiliation(s)
- Alejandra Tomas
- University College London (UCL) Institute of Ophthalmology, London, UK
| | - Clare E Futter
- University College London (UCL) Institute of Ophthalmology, London, UK
| | - Emily R Eden
- University College London (UCL) Institute of Ophthalmology, London, UK.
| |
Collapse
|
44
|
Nanayakkara M, Kosova R, Lania G, Sarno M, Gaito A, Galatola M, Greco L, Cuomo M, Troncone R, Auricchio S, Auricchio R, Barone MV. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43. PLoS One 2013; 8:e79763. [PMID: 24278174 PMCID: PMC3838353 DOI: 10.1371/journal.pone.0079763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP) gene was identified as strongly associated with CD using genome-wide association studies (GWAS). The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD) and controls, without and with treatment with A-gliadin peptide P31-43. We observed a “CD cellular phenotype” in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Roberta Kosova
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Giuliana Lania
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Marco Sarno
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Alessandra Gaito
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Martina Galatola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Marialaura Cuomo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Salvatore Auricchio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
45
|
Knockout of Density-Enhanced Phosphatase-1 impairs cerebrovascular reserve capacity in an arteriogenesis model in mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:802149. [PMID: 24027763 PMCID: PMC3763586 DOI: 10.1155/2013/802149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/27/2013] [Accepted: 07/17/2013] [Indexed: 01/07/2023]
Abstract
Collateral growth, arteriogenesis, represents a proliferative mechanism involving endothelial cells, smooth muscle cells, and monocytes/macrophages. Here we investigated the role of Density-Enhanced Phosphatase-1 (DEP-1) in arteriogenesis in vivo, a protein-tyrosine-phosphatase that has controversially been discussed with regard to vascular cell biology. Wild-type C57BL/6 mice subjected to permanent left common carotid artery occlusion (CCAO) developed a significant diameter increase in distinct arteries of the circle of Willis, especially in the anterior cerebral artery. Analyzing the impact of loss of DEP-1 function, induction of collateralization was quantified after CCAO and hindlimb femoral artery ligation comparing wild-type and DEP-1−/− mice. Both cerebral collateralization assessed by latex perfusion and peripheral vessel growth in the femoral artery determined by microsphere perfusion and micro-CT analysis were not altered in DEP-1−/− compared to wild-type mice. Cerebrovascular reserve capacity, however, was significantly impaired in DEP-1−/− mice. Cerebrovascular transcriptional analysis of proarteriogenic growth factors and receptors showed specifically reduced transcripts of PDGF-B. SiRNA knockdown of DEP-1 in endothelial cells in vitro also resulted in significant PDGF-B downregulation, providing further evidence for DEP-1 in PDGF-B gene regulation. In summary, our data support the notion of DEP-1 as positive functional regulator in vascular cerebral arteriogenesis, involving differential PDGF-B gene expression.
Collapse
|
46
|
Feldhammer M, Uetani N, Miranda-Saavedra D, Tremblay ML. PTP1B: a simple enzyme for a complex world. Crit Rev Biochem Mol Biol 2013; 48:430-45. [PMID: 23879520 DOI: 10.3109/10409238.2013.819830] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our understanding of the fundamental regulatory roles that tyrosine phosphatases play within cells has advanced significantly in the last two decades. Out-dated ideas that tyrosine phosphatases acts solely as the "off" switch counterbalancing the action of tyrosine kinases has proved to be flawed. PTP1B is the most characterized of all the tyrosine phosphatases and it acts as a critical negative and positive regulator of numerous signaling cascades. PTP1B's direct regulation of the insulin and the leptin receptors makes it an ideal therapeutic target for type II diabetes and obesity. Moreover, the last decade has also seen several reports establishing PTP1B as key player in cancer serving as both tumor suppressor and tumor promoter depending on the cellular context. Despite many key advances in these fields one largely ignored area is what role PTP1B may play in the modulation of immune signaling. The important recognition that PTP1B is a major negative regulator of Janus kinase - signal transducer and activator of transcription (JAK-STAT) signaling throughout evolution places it as a key link between metabolic diseases and inflammation, as well as a unique regulator between immune response and cancer. This review looks at the emergence of PTP1B through evolution, and then explore at the cell and systemic levels how it is controlled physiologically. The second half of the review will focus on the role(s) PTP1B can play in disease and in particular its involvement in metabolic syndromes and cancer. Finally we will briefly examine several novel directions in the development of PTP1B pharmacological inhibitors.
Collapse
|
47
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
48
|
Protein tyrosine phosphatase 4A2 expression predicts overall and disease-free survival of human breast cancer and is associated with estrogen and progestin receptor status. Discov Oncol 2013; 4:208-21. [PMID: 23568563 DOI: 10.1007/s12672-013-0141-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/19/2013] [Indexed: 12/21/2022] Open
Abstract
Expression of protein tyrosine phosphatase PTP4A2 (also known as PRL2) has been examined in a variety of human carcinomas, although its role in breast cancer remains inconclusive. Since the majority of previous breast cancer studies utilized tissue biopsies composed of heterogeneous cell populations, we hypothesized that an examination of PTP4A2 expression in carcinoma cells isolated by laser capture microdissection (LCM) would provide a more accurate means of assessing its predictive value. From investigations of 247 human breast cancer biopsies collected under standardized, stringent conditions, total RNA was extracted from LCM-procured carcinoma cells to perform microarray analyses to identify gene signatures associated with breast cancer behavior. Expression of PTP4A2 was corroborated by real-time quantitative polymerase chain reaction (qPCR) and referenced to estrogen and progesterone receptor levels. Patient outcomes for overall and disease-free survival were more favorable (p = 0.004 and p = 0.001, respectively) when the expression of PTP4A2 in breast carcinomas was increased compared to patients with biopsies with decreased PTP4A2 levels. PTP4A2 expression determined either by microarray or qPCR was elevated in either estrogen receptor (ER)-positive or progestin receptor (PR)-positive breast cancer biopsies compared to ER-negative or PR-negative biopsies. However, PTP4A2 expression was only correlated with overall survival in PR-positive breast carcinomas. These data suggest that PTP4A2 mRNA expression alone may serve as a biomarker for prediction of a breast cancer patient's risk of recurrence and overall survival.
Collapse
|
49
|
Control of ALK (wild type and mutated forms) phosphorylation: specific role of the phosphatase PTP1B. Cell Signal 2013; 25:1505-13. [PMID: 23499906 DOI: 10.1016/j.cellsig.2013.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/14/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
Phosphorylation of proteins on tyrosine residues is regulated by the activities of protein tyrosine kinases and protein tyrosine phosphatases. Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) essentially and transiently expressed during development of the central and peripheral nervous systems. ALK has been identified as a major neuroblastoma predisposition gene and activating mutations have been identified in a subset of sporadic neuroblastoma tumors. We previously established that the mutated receptors were essentially retained in the endoplasmic reticulum/Golgi compartments due to their constitutive activity. Intriguingly we demonstrated a stronger phosphorylation for the minor pool of receptor addressed to the plasma membrane. We decided to investigate the potential involvement of tyrosine phosphatase in dephosphorylation of this intracellular pool. In this study we first showed that general inhibition of tyrosine phosphatases resulted in a dramatic increase of the tyrosine phosphorylation of the wild type but also of the mutated receptors. This increase not only required the intrinsic kinase activity of the ALK receptor but also involved the Src tyrosine kinase family. Second we provided strong evidences that the endoplasmic reticulum associated phosphatase PTP1B is key player in the control of ALK phosphorylation. Our data shed a new light on the biological significance of the basal phosphorylation levels of both wild type and mutated ALK receptors and could be essential to further understand their roles in malignancies.
Collapse
|
50
|
Burdisso JE, González Á, Arregui CO. PTP1B promotes focal complex maturation, lamellar persistence and directional migration. J Cell Sci 2013; 126:1820-31. [DOI: 10.1242/jcs.118828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous findings established that ER-bound PTP1B targets peripheral cell-matrix adhesions and regulates positively cell adhesion to fibronectin. Here we show that PTP1B enhances focal complex lifetime at the lamellipodium base, delaying their turnover and facilitating α-actinin incorporation. We demonstrate the presence of catalytic PTP1BD181A-α-actinin complexes at focal complexes. Kymograph analysis reveals that PTP1B contributes to lamellar protrusion persistence and directional cell migration. Pull down and FRET analysis also shows that PTP1B is required for efficient integrin-dependent downregulation of RhoA and upregulation of Rac1 during spreading. A substrate trap strategy revealed that FAK/Src recruitment and Src activity were essential for the generation of PTP1B substrates in adhesions. PTP1B targets the negative regulatory site of Src (phosphotyrosine 529), paxillin and p130Cas at peripheral cell-matrix adhesions. We postulate that PTP1B modulates more than one pathway required for focal complex maturation and membrane protrusion, including α-actinin-mediated cytoskeletal anchorage, integrin-dependent activation of the FAK/Src signaling pathway, and RhoA and Rac1 GTPase activity. By doing so, PTP1B contributes to coordinate adhesion turnover, lamellar stability and directional cell migration.
Collapse
|