1
|
Chen Q, Zhou Q, Yang S, Pan F, Tao H, Wen Y, Chao Y, Xie C, Ou W, Guo D, Li Y, Zhang X. Identification of adenosine analogues as nsp14 N7‑methyltransferase inhibitors for treating coronaviruses infection. Bioorg Chem 2024; 153:107894. [PMID: 39490138 DOI: 10.1016/j.bioorg.2024.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Coronaviruses are RNA viruses that have coevolved with humans and animals over time, exhibiting high mutation rates and mortality rates upon epidemic outbreaks. The nonstructural protein (nsp14) is crucial for various coronaviruses processes, including genome replication, protein translation, virus particle assembly, and evasion of host immunity via RNA methylation modification. In this study, a series of adenosine analogs were designed, synthesized, and evaluated for their inhibitory activities. Among them, MTI013 exhibited the strongest nsp14 MTase inhibition and antiviral activity, with an IC50 of 10.33 μM in HCoV-229E-infected Huh7 cells, along with low cytotoxicity. When combined with the RdRp inhibitor ATV014, MTI013 showed a synergistic antiviral effect, indicating its potential both as a standalone therapy and in combination treatments. Furthermore, MTI013 displayed high selectivity against the SARS-CoV-2 nsp10-nsp16 complex and five human methyltransferases. These results offer valuable structural insights for future exploration of nsp14 as a drug target for SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Qishu Chen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Qifan Zhou
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China.
| | - Sidi Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Fan Pan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Hongqi Tao
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Yuanmei Wen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Yang Chao
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Cailing Xie
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Weixin Ou
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China.
| | - Yingjun Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
2
|
Mese S, Allahverdiyeva A, Onel M, Uysal HK, Agacfidan A. Investigation of the Effect of the COVID-19 Pandemic Period on Respiratory Tract Viruses at Istanbul Medical Faculty Hospital, Turkey. Infect Dis Rep 2024; 16:992-1004. [PMID: 39452164 PMCID: PMC11507061 DOI: 10.3390/idr16050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Aim: Respiratory viruses significantly impact public health, contributing to high morbidity and mortality rates in both children and adults. This study evaluates the distribution and incidence of respiratory tract viruses in our hospital from 2019 to 2022, focusing on changes post-COVID-19 pandemic. Material and Methods: Utilizing molecular methods, we analyzed nasopharyngeal swabs with the FTD Respiratory Pathogens 21 kit and the QIAStat Dx Respiratory Panel kit at Istanbul Faculty of Medicine. A total of 1186 viruses were detected in 2488 samples (47.6% of the total) examined with the FTD Respiratory Pathogens 21 kit between 2019 and 2022. Results: It was determined that the detection rates were 52.8% in 2019, 44.3% in 2020, 50.0% in 2021, and 40.0% in 2022. Notable changes in prevalence were observed for pandemic influenza A (IAV-H1N1pdm2009), parainfluenza virus (PIV)-3, rhinovirus (RV), and respiratory syncytial virus (RSV)-A/B (p < 0.05). RV consistently showed the highest detection rates across all years (17.6% to 7.9%). Additionally, 1276 viruses were detected in 1496 samples using the QIAStat DX kit, with 91.3% positivity in 2021 and 78.6% in 2022, highlighting the kit's effectiveness in rapid diagnosis. Conclusions: This study enhances understanding of respiratory virus epidemiology during and after the pandemic, emphasizing the need for ongoing surveillance and strategic public health measures to address the evolving landscape of respiratory infections.
Collapse
Affiliation(s)
- Sevim Mese
- Istanbul Medicine Faculty, Department of Virology and Basic Immunology, Istanbul University, Istanbul 34093, Turkey; (A.A.); (M.O.); (H.K.U.); (A.A.)
| | | | | | | | | |
Collapse
|
3
|
Wang X, Chen Y, Qi C, Li F, Zhang Y, Zhou J, Wu H, Zhang T, Qi A, Ouyang H, Xie Z, Pang D. Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles. Front Immunol 2024; 15:1340332. [PMID: 38919631 PMCID: PMC11196420 DOI: 10.3389/fimmu.2024.1340332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
During infection, positive-stranded RNA causes a rearrangement of the host cell membrane, resulting in specialized membrane structure formation aiding viral genome replication. Double-membrane vesicles (DMVs), typical structures produced by virus-induced membrane rearrangements, are platforms for viral replication. Nidoviruses, one of the most complex positive-strand RNA viruses, have the ability to infect not only mammals and a few birds but also invertebrates. Nidoviruses possess a distinctive replication mechanism, wherein their nonstructural proteins (nsps) play a crucial role in DMV biogenesis. With the participation of host factors related to autophagy and lipid synthesis pathways, several viral nsps hijack the membrane rearrangement process of host endoplasmic reticulum (ER), Golgi apparatus, and other organelles to induce DMV formation. An understanding of the mechanisms of DMV formation and its structure and function in the infectious cycle of nidovirus may be essential for the development of new and effective antiviral strategies in the future.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
4
|
Mohamed-Ezzat RA, Elgemeie GH. Novel synthesis of the first new class of triazine sulfonamide thioglycosides and the evaluation of their anti-tumor and anti-viral activities against human coronavirus. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-18. [PMID: 38753464 DOI: 10.1080/15257770.2024.2341406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Novel class of triazine sulfonamide thioglycosides was designed and synthesized. Those novel structures comprising three essential and pharmacological significant moieties such as the triazine, sulfonamide, and thioglycosidic scaffolds. The triazine sulfonamides were furnished via a direct approach starting from potassium cyanocarbonimidodithioate, then the corresponding triazine sulfonamide thioglycosides were generated using the peracylated α-d-gluco- and galacto-pyranosyl bromides. Anti-viral evaluation of compounds in vitro against HCoV-229E virus revealed that some compounds possess promising activity. Compounds 4a, 4b, 4d, 6d and 6e indicate from moderate to low antiviral activity against low pathogenic coronavirus 229E in comparison with remdesivir at a concentration of 100 µg/mL. Additionally their in vitro anti-proliferative effects against NCI 60 cancer cell lines cell lines were also investigated. Compound 4a, the most potent compound among the estimated compounds, revealed remarkably lowest cell growth promotion against CNS cancer SNB-75, and renal cancer UO-31.
Collapse
Affiliation(s)
- Reham A Mohamed-Ezzat
- Chemistry of Natural & Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Galal H Elgemeie
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Geng Q, Wan Y, Hsueh FC, Shang J, Ye G, Bu F, Herbst M, Wilkens R, Liu B, Li F. Lys417 acts as a molecular switch that regulates the conformation of SARS-CoV-2 spike protein. eLife 2023; 12:e74060. [PMID: 37991488 PMCID: PMC10695562 DOI: 10.7554/elife.74060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/21/2023] [Indexed: 11/23/2023] Open
Abstract
SARS-CoV-2 spike protein plays a key role in mediating viral entry and inducing host immune responses. It can adopt either an open or closed conformation based on the position of its receptor-binding domain (RBD). It is yet unclear what causes these conformational changes or how they influence the spike's functions. Here, we show that Lys417 in the RBD plays dual roles in the spike's structure: it stabilizes the closed conformation of the trimeric spike by mediating inter-spike-subunit interactions; it also directly interacts with ACE2 receptor. Hence, a K417V mutation has opposing effects on the spike's function: it opens up the spike for better ACE2 binding while weakening the RBD's direct binding to ACE2. The net outcomes of this mutation are to allow the spike to bind ACE2 with higher probability and mediate viral entry more efficiently, but become more exposed to neutralizing antibodies. Given that residue 417 has been a viral mutational hotspot, SARS-CoV-2 may have been evolving to strike a balance between infection potency and immune evasion, contributing to its pandemic spread.
Collapse
Affiliation(s)
- Qibin Geng
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Yushun Wan
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Fu-Chun Hsueh
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Jian Shang
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Rowan Wilkens
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Bin Liu
- Hormel Institute, University of MinnesotaAustinUnited States
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
6
|
Devaux CA, Fantini J. Unravelling Antigenic Cross-Reactions toward the World of Coronaviruses: Extent of the Stability of Shared Epitopes and SARS-CoV-2 Anti-Spike Cross-Neutralizing Antibodies. Pathogens 2023; 12:713. [PMID: 37242383 PMCID: PMC10220573 DOI: 10.3390/pathogens12050713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The human immune repertoire retains the molecular memory of a very great diversity of target antigens (epitopes) and can recall this upon a second encounter with epitopes against which it has previously been primed. Although genetically diverse, proteins of coronaviruses exhibit sufficient conservation to lead to antigenic cross-reactions. In this review, our goal is to question whether pre-existing immunity against seasonal human coronaviruses (HCoVs) or exposure to animal CoVs has influenced the susceptibility of human populations to SARS-CoV-2 and/or had an impact upon the physiopathological outcome of COVID-19. With the hindsight that we now have regarding COVID-19, we conclude that although antigenic cross-reactions between different coronaviruses exist, cross-reactive antibody levels (titers) do not necessarily reflect on memory B cell frequencies and are not always directed against epitopes which confer cross-protection against SARS-CoV-2. Moreover, the immunological memory of these infections is short-term and occurs in only a small percentage of the population. Thus, in contrast to what might be observed in terms of cross-protection at the level of a single individual recently exposed to circulating coronaviruses, a pre-existing immunity against HCoVs or other CoVs can only have a very minor impact on SARS-CoV-2 circulation at the level of human populations.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM Institut Hospitalo-Universitaire—Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Jacques Fantini
- Aix-Marseille Université, INSERM UMR_S 1072, 13015 Marseille, France
| |
Collapse
|
7
|
Niu Z, Zhang S, Xu S, Wang J, Wang S, Hu X, Zhang L, Ren L, Zhang J, Liu X, Zhou Y, Yang L, Song Z. Porcine Epidemic Diarrhea Virus Replication in Human Intestinal Cells Reveals Potential Susceptibility to Cross-Species Infection. Viruses 2023; 15:v15040956. [PMID: 37112936 PMCID: PMC10142432 DOI: 10.3390/v15040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Various coronaviruses have emerged as a result of cross-species transmission among humans and domestic animals. Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets. Porcine small intestinal epithelial cells (IPEC-J2 cells) can be used as target cells for PEDV infection. However, the origin of PEDV in pigs, the host range, and cross-species infection of PEDV remain unclear. To determine whether PEDV has the ability to infect human cells in vitro, human small intestinal epithelial cells (FHs 74 Int cells) were inoculated with PEDV LJX and PEDV CV777 strains. The results indicated that PEDV LJX, but not PEDV CV777, could infect FHs 74 Int cells. Furthermore, we observed M gene mRNA transcripts and N protein expression in infected FHs 74 Int cells. A one-step growth curve showed that the highest viral titer of PEDV occurred at 12 h post infection. Viral particles in vacuoles were observed in FHs 74 Int cells at 24 h post infection. The results proved that human small intestinal epithelial cells are susceptible to PEDV infection, suggesting the possibility of cross-species transmission of PEDV.
Collapse
Affiliation(s)
- Zheng Niu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Shujuan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Shasha Xu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jing Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Siying Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Xia Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Li Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Lixin Ren
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jingyi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Xiangyang Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Liu Yang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| |
Collapse
|
8
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Amanat F, Clark J, Carreño JM, Strohmeier S, Yellin T, Meade PS, Bhavsar D, Muramatsu H, Sun W, Coughlan L, Pardi N, Krammer F. Immunity to Seasonal Coronavirus Spike Proteins Does Not Protect from SARS-CoV-2 Challenge in a Mouse Model but Has No Detrimental Effect on Protection Mediated by COVID-19 mRNA Vaccination. J Virol 2023; 97:e0166422. [PMID: 36779758 PMCID: PMC10062180 DOI: 10.1128/jvi.01664-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/14/2023] [Indexed: 02/14/2023] Open
Abstract
Seasonal coronaviruses have been circulating widely in the human population for many years. With increasing age, humans are more likely to have been exposed to these viruses and to have developed immunity against them. It has been hypothesized that this immunity to seasonal coronaviruses may provide partial protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been shown that coronavirus disease 2019 (COVID-19) vaccination induces a back-boosting effects against the spike proteins of seasonal betacoronaviruses. In this study, we tested if immunity to the seasonal coronavirus spikes from OC43, HKU1, 229E, or NL63 would confer protection against SARS-CoV-2 challenge in a mouse model, and whether pre-existing immunity against these spikes would weaken the protection afforded by mRNA COVID-19 vaccination. We found that mice vaccinated with the seasonal coronavirus spike proteins had no increased protection compared to the negative controls. While a negligible back-boosting effect against betacoronavirus spike proteins was observed after SARS-CoV-2 infection, there was no negative original antigenic sin-like effect on the immune response and protection induced by SARS-CoV-2 mRNA vaccination in animals with pre-existing immunity to seasonal coronavirus spike proteins. IMPORTANCE The impact that immunity against seasonal coronaviruses has on both susceptibility to SARS-CoV-2 infection as well as on COVID-19 vaccination is unclear. This study provides insights into both questions in a mouse model of SARS-CoV-2.
Collapse
Affiliation(s)
- Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jordan Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Temima Yellin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Philip S. Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Disha Bhavsar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged pathogenic human coronavirus that belongs to the sarbecovirus lineage of the genus Betacoronavirus. The ancestor strain has evolved into a number of variants of concern, with the Omicron variant of concern now having many distinct sublineages. The ongoing COVID-19 pandemic caused by SARS-CoV-2 has caused serious damage to public health and the global economy, and one strategy to combat COVID-19 has been the development of broadly neutralizing antibodies for prophylactic and therapeutic use. Many are in preclinical and clinical development, and a few have been approved for emergency use. Here we summarize neutralizing antibodies that target four key regions within the SARS-CoV-2 spike (S) protein, namely the N-terminal domain and the receptor-binding domain in the S1 subunit, and the stem helix region and the fusion peptide region in the S2 subunit. Understanding the characteristics of these broadly neutralizing antibodies will accelerate the development of new antibody therapeutics and provide guidance for the rational design of next-generation vaccines.
Collapse
|
11
|
Gandhi L, Maisnam D, Rathore D, Chauhan P, Bonagiri A, Venkataramana M. Respiratory illness virus infections with special emphasis on COVID-19. Eur J Med Res 2022; 27:236. [PMID: 36348452 PMCID: PMC9641310 DOI: 10.1186/s40001-022-00874-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses that emerge pose challenges for treatment options as their uniqueness would not know completely. Hence, many viruses are causing high morbidity and mortality for a long time. Despite large diversity, viruses share common characteristics for infection. At least 12 different respiratory-borne viruses are reported belonging to various virus taxonomic families. Many of these viruses multiply and cause damage to the upper and lower respiratory tracts. The description of these viruses in comparison with each other concerning their epidemiology, molecular characteristics, disease manifestations, diagnosis and treatment is lacking. Such information helps diagnose, differentiate, and formulate the control measures faster. The leading cause of acute illness worldwide is acute respiratory infections (ARIs) and are responsible for nearly 4 million deaths every year, mostly in young children and infants. Lower respiratory tract infections are the fourth most common cause of death globally, after non-infectious chronic conditions. This review aims to present the characteristics of different viruses causing respiratory infections, highlighting the uniqueness of SARS-CoV-2. We expect this review to help understand the similarities and differences among the closely related viruses causing respiratory infections and formulate specific preventive or control measures.
Collapse
Affiliation(s)
- Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
12
|
Marinov GK, Mladenov M, Rangachev A, Alexiev I. SARS-CoV-2 reinfections during the first three major COVID-19 waves in Bulgaria. PLoS One 2022; 17:e0274509. [PMID: 36084070 PMCID: PMC9462809 DOI: 10.1371/journal.pone.0274509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic has had a devastating impact on the world over the past two years (2020-2021). One of the key questions about its future trajectory is the protection from subsequent infections and disease conferred by a previous infection, as the SARS-CoV-2 virus belongs to the coronaviruses, a group of viruses the members of which are known for their ability to reinfect convalescent individuals. Bulgaria, with high rates of previous infections combined with low vaccination rates and an elderly population, presents a somewhat unique context to study this question. METHODS We use detailed governmental data on registered COVID-19 cases to evaluate the incidence and outcomes of COVID-19 reinfections in Bulgaria in the period between March 2020 and early December 2021. RESULTS For the period analyzed, a total of 4,106 cases of individuals infected more than once were observed, including 31 cases of three infections and one of four infections. The number of reinfections increased dramatically during the Delta variant-driven wave of the pandemic towards the end of 2021. We observe a moderate reduction of severe outcomes (hospitalization and death) in reinfections relative to primary infections, and a more substantial reduction of severe outcomes in breakthrough infections in vaccinated individuals. CONCLUSIONS In the available datasets from Bulgaria, prior infection appears to provide some protection from severe outcomes, but to a lower degree than the reduction in severity of breakthrough infections in the vaccinated compared to primary infections in the unvaccinated.
Collapse
Affiliation(s)
- Georgi K. Marinov
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | | | - Antoni Rangachev
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
- International Center for Mathematical Sciences-Sofia, Sofia, Bulgaria
| | - Ivailo Alexiev
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
13
|
Abstract
The COVID-19 pandemic has caused an unprecedented health crisis and economic burden worldwide. Its etiological agent SARS-CoV-2, a new virus in the coronavirus family, has infected hundreds of millions of people worldwide. SARS-CoV-2 has evolved over the past 2 years to increase its transmissibility as well as to evade the immunity established by previous infection and vaccination. Nevertheless, strong immune responses can be elicited by viral infection and vaccination, which have proved to be protective against the emergence of variants, particularly with respect to hospitalization or severe disease. Here, we review our current understanding of how the virus enters the host cell and how our immune system is able to defend against cell entry and infection. Neutralizing antibodies are a major component of our immune defense and have been extensively studied for SARS-CoV-2 and its variants. Structures of these neutralizing antibodies have provided valuable insights into epitopes that are protective against the original ancestral virus and the variants that have emerged. The molecular characterization of neutralizing epitopes as well as epitope conservation and resistance are important for design of next-generation vaccines and antibody therapeutics.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
14
|
Human Air-Liquid-Interface Organotypic Airway Cultures Express Significantly More ACE2 Receptor Protein and Are More Susceptible to HCoV-NL63 Infection than Monolayer Cultures of Primary Respiratory Epithelial Cells. Microbiol Spectr 2022; 10:e0163922. [PMID: 35863002 PMCID: PMC9431431 DOI: 10.1128/spectrum.01639-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human coronavirus NL63 (HCoV-NL63) is commonly associated with mild respiratory tract infections in infants, being that the respiratory epithelial cells are the main target for infection and initial replication of this virus. Standard immortalized cells are highly permissive to HCoV-NL63, and they are routinely used for isolation and propagation of the virus from clinical specimens. However, these cell lines are not the natural cell target of the virus and lack sufficient complexity to mimic the natural infection process in vivo. This study comparatively evaluated the differences on the susceptibility to HCoV-NL63 infection and virus replication efficiency of submerged monolayer cultures of LLC-MK2 and primary human respiratory epithelial cells (HRECs) and organotypic airway cultures of respiratory cells (ALI-HRECs). Productive viral infection and growth kinetics were assessed by morphologic examination of cytopathic effects, immunofluorescence, reverse transcription quantitative real-time PCR, and flow cytometry. Results from this study showed higher susceptibility to HCoV-NL63 infection and replication in LLC-MK2 cells followed by ALI-HRECs, with very low susceptibility and no significant virus replication in HRECs. This susceptibility was associated with the expression levels of angiontensin-converting enzyme 2 (ACE2) receptor protein in LLC-MK2, ALI-HRECs, and HRECs, respectively. Remarkably, organotypic ALI-HREC cultures expressed significantly more ACE2 receptor protein and were more susceptible to HCoV-NL63 infection than monolayer cultures of HREC. The ACE2 receptor is, therefore, a critical factor for susceptibility to HCoV-NL63 infection and replication, as is the type of culture used during infection studies. IMPORTANCE HCoV-NL63 is widespread globally, accounting for a significant number of respiratory infections in children and adults. HCoV-NL63 gains entrance into respiratory epithelial cells via the ACE2 receptor, the same cell receptor used by severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Thus, HCoV-NL63 has been suggested as safe surrogate for studying disease mechanisms and therapeutic interventions against SARS-like CoVs, while working under BSL-2 conditions. The present study not only showed the critical role of ACE2 for effective HCoV-NL63 infection and replication, but also shed light on the need of more refined and complex in vitro organotypic models that recapitulate the proxy of air-liquid respiratory epithelia cell composition, structure, and functionality. These cultures have broaden virological studies toward improving our understanding of how coronaviruses cause disease and transmission not just within humans but also in animal populations.
Collapse
|
15
|
Andola P, Pagag J, Laxman D, Guruprasad L. Fragment-based inhibitor design for SARS-CoV2 main protease. Struct Chem 2022; 33:1467-1487. [PMID: 35811782 PMCID: PMC9251026 DOI: 10.1007/s11224-022-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
COVID-19 disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) has resulted in tremendous loss of lives across the world and is continuing to do so. Extensive work is under progress to develop inhibitors which can prevent the disease by arresting the virus in its life cycle. One such way is by targeting the main protease of the virus which is crucial for the cleavage and conversion of polyproteins into functional units of polypeptides. In this endeavor, our effort was to identify hit molecule inhibitors for SARS-CoV2 main protease using fragment-based drug discovery (FBDD), based on the available crystal structure of chromene-based inhibitor (PDB_ID: 6M2N). The designed molecules were validated by molecular docking and molecular dynamics simulations. The stability of the complexes was further assessed by calculating their binding free energies, normal mode analysis, mechanical stiffness, and principal component analysis.
Collapse
Affiliation(s)
- Priyanka Andola
- School of Chemistry, University of Hyderabad, Hyderabad, 500046 India
| | - Jishu Pagag
- School of Chemistry, University of Hyderabad, Hyderabad, 500046 India
| | - Durgam Laxman
- School of Chemistry, University of Hyderabad, Hyderabad, 500046 India
| | | |
Collapse
|
16
|
Human coronaviruses: origin, host and receptor. J Clin Virol 2022; 155:105246. [PMID: 35930858 PMCID: PMC9301904 DOI: 10.1016/j.jcv.2022.105246] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 01/02/2023]
|
17
|
Choi H, Shin S, Hong SJ, Seo SU, Rhyu MG. High Level of SARS-CoV-2 Infection in Young Population Is a Predictor for Peak Incidence. Front Microbiol 2022; 13:891646. [PMID: 35711766 PMCID: PMC9195141 DOI: 10.3389/fmicb.2022.891646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
South Korea adopted stringent preventive measures against Coronavirus virus disease 2019, resulting in three small and one large outbreaks until January 15, 2022. The fatality rate was 2.5-fold higher during peak transmission periods than in base periods. As new variants of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) are continuously emerging, the need for understanding their epidemic potential remains necessary. In South Korea, the epidemiologic data obtained from mass diagnostic testing enabled investigation of the true number of infected cases, exact incidence, and fatality numbers. Analysis found a similarity between estimated infection rates and confirmed cases. This suggested that the number of confirmed cases had an influence on the fatality rate as a quantitative parameter. The fatality rate decreased even as infection with SARS-CoV-2 variants rose. In comparative analysis, the confirmed cases in young people (ages 20-29) increased prior to every outbreak peak and marked the tipping point in infection spread. These results indicate that a high level of SARS-CoV-2 infection in young population drives peak incidence and mortality across all age groups.
Collapse
Affiliation(s)
| | | | | | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | |
Collapse
|
18
|
Xue W, Ding C, Qian K, Liao Y. The Interplay Between Coronavirus and Type I IFN Response. Front Microbiol 2022; 12:805472. [PMID: 35317429 PMCID: PMC8934427 DOI: 10.3389/fmicb.2021.805472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the past few decades, newly evolved coronaviruses have posed a global threat to public health and animal breeding. To control and prevent the coronavirus-related diseases, understanding the interaction of the coronavirus and the host immune system is the top priority. Coronaviruses have evolved multiple mechanisms to evade or antagonize the host immune response to ensure their replication. As the first line and main component of innate immune response, type I IFN response is able to restrict virus in the initial infection stage; it is thus not surprising that the primary aim of the virus is to evade or antagonize the IFN response. Gaining a profound understanding of the interaction between coronaviruses and type I IFN response will shed light on vaccine development and therapeutics. In this review, we provide an update on the current knowledge on strategies employed by coronaviruses to evade type I IFN response.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kun Qian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Ying Liao,
| |
Collapse
|
19
|
Jo KJ, Choi SH, Oh CE, Kim H, Choi BS, Jo DS, Park SE. Epidemiology and Clinical Characteristics of Human Coronaviruses-Associated Infections in Children: A Multi-Center Study. Front Pediatr 2022; 10:877759. [PMID: 35498812 PMCID: PMC9039334 DOI: 10.3389/fped.2022.877759] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human coronaviruses (HCoVs) are associated with upper respiratory tract infections. Although studies have analyzed the clinical and epidemiological characteristics of HCoV-associated infections, no multi-center studies have been conducted in Korean children. We aimed to describe the epidemiology and clinical characteristics of HCoV-associated infection in children. METHODS We retrospectively reviewed medical records of children in whom HCoVs were detected using multiplex reverse transcriptase-polymerase chain reaction amplification in five centers from January 2015 to December 2019. RESULTS Overall, 1,096 patients were enrolled. Among them, 654 (59.7%) patients were male. The median age was 1 year [interquartile range (IQR), 0-2 years]. HCoVs were identified mainly in winter (55.9%). HCoV-229E, HCoV-OC43, and HCoOV-NL63 were detected mainly in winter (70.9, 55.8, and 57.4%, respectively), but HCoV-HKU1 was mainly identified in spring (69.7%). HCoV-OC43 (66.0%) was detected most frequently, followed by HCoV-NL63 (33.3%), and HCoV-229E (7.7%). Two different types of HCoVs were co-detected in 18 samples, namely. Alphacoronavirus-betacoronavirus co-infection (n = 13) and, alphacoronavirus-alphacoronavirus co-infection (n = 5). No betacoronavirus-betacoronavirus co-infection was detected. Patients were diagnosed with upper respiratory tract infection (41.4%), pneumonia (16.6%), acute bronchiolitis (15.5%), non-specific febrile illness (13.1%), croup (7.3%), and acute gastroenteritis (5.1%). There were 832 (75.9%) hospitalized patients with a median duration of hospitalization of 4 days (IQR, 3-5 days); 108 (9.9%) patients needed supplemental oxygen with 37 (3.4%) needing high-flow nasal cannula or mechanical ventilation. There were no deaths. CONCLUSION HCoV-associated infections exhibit marked seasonality with peaks in winter. Patients with lower respiratory tract infection, a history of prematurity, or underlying chronic diseases may progress to a severe course and may need oxygen therapy.
Collapse
Affiliation(s)
- Kyo Jin Jo
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, South Korea
| | - Soo-Han Choi
- Department of Pediatrics, Pusan National University Hospital, Busan, South Korea
| | - Chi Eun Oh
- Department of Pediatrics, Kosin University College of Medicine, Busan, South Korea
| | - HyeonA Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Bong Seok Choi
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Dae Sun Jo
- Department of Pediatrics, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Su Eun Park
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, South Korea
| |
Collapse
|
20
|
Lalchhandama K. A history of coronaviruses. WIKIJOURNAL OF MEDICINE 2022. [DOI: 10.15347/wjm/2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The history of coronaviruses is an account of the discovery of coronaviruses and the diseases they cause. It starts with a report of a new type of upper-respiratory tract disease among chickens in North Dakota, US, in 1931. The causative agent was identified as a virus in 1933. By 1936, the disease and the virus were recognised as unique from other viral diseases. The virus became known as infectious bronchitis virus (IBV), but later officially renamed as Avian coronavirus. A new brain disease of mice (murine encephalomyelitis) was discovered in 1947 at Harvard Medical School in Boston. The virus was called JHM (after Harvard pathologist John Howard Mueller). Three years later a new mouse hepatitis was reported from the National Institute for Medical Research in London. The causative virus was identified as mouse hepatitis virus (MHV), later renamed Murine coronavirus. In 1961, a virus was obtained from a school boy in Epsom, England, who was suffering from common cold. The sample, designated B814, was confirmed as novel virus in 1965. New common cold viruses (assigned 229E) collected from medical students at the University of Chicago were also reported in 1966. Structural analyses of IBV, MHV, B18 and 229E using transmission electron microscopy revealed that they all belong to the same group of viruses. Making a crucial comparison in 1967, June Almeida and David Tyrrell invented the collective name coronavirus, as all those viruses were characterised by solar corona-like projections (called spikes) on their surfaces. Other coronaviruses have been discovered from pigs, dogs, cats, rodents, cows, horses, camels, Beluga whales, birds and bats. As of 2022, 52 species are described. Bats are found to be the richest source of different species of coronaviruses. All coronaviruses originated from a common ancestor about 293 million years ago. Zoonotic species such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a variant of SARS-CoV, emerged during the past two decades and caused the first pandemics of the 21st century.
Collapse
|
21
|
Aimrane A, Laaradia MA, Sereno D, Perrin P, Draoui A, Bougadir B, Hadach M, Zahir M, Fdil N, El Hiba O, El Hidan MA, Kahime K. Insight into COVID-19's epidemiology, pathology, and treatment. Heliyon 2022; 8:e08799. [PMID: 35071819 PMCID: PMC8767941 DOI: 10.1016/j.heliyon.2022.e08799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/08/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
The newly emerged 2019 coronavirus disease (COVID-19) has urged scientific and medical communities to focus on epidemiology, pathophysiology, and treatment of SARS-CoV-2. Indeed, little is known about the virus causing this severe acute respiratory syndrome pandemic, coronavirus (SARS-CoV-2). Data already collected on viruses belonging to the coronaviridae family are of interest to improve our knowledge rapidly on this pandemic. The current review aims at delivering insight into the fundamental advances inSARS-CoV-2 epidemiology, pathophysiology, life cycle, and treatment.
Collapse
Affiliation(s)
- Abdelmohcine Aimrane
- Metabolics Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
- Nutritional Physiopathology Team, Faculty of Sciences, ChouaibDoukkali University, El Jadida, 24000, Morocco
| | - Mehdi Ait Laaradia
- Laboratory of Pharmacology, Neurobiology and Behavior, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Denis Sereno
- IRD, University of Montpellier, InterTryp, Parasite Infectiology Research Group, 34000, Montpellier, France
| | - Pascale Perrin
- IRD, University of Montpellier, MiVeGec, Parasite Infectiology Research Group, 34000, Montpellier, France
| | - Ahmed Draoui
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Morocco
| | - Blaid Bougadir
- SAEDD Laboratory, School of Technology Essaouira, Cadi Ayyad University of Marrakesh, Morocco
| | - Mohamed Hadach
- SAEDD Laboratory, School of Technology Essaouira, Cadi Ayyad University of Marrakesh, Morocco
| | - Mustapha Zahir
- SAEDD Laboratory, School of Technology Essaouira, Cadi Ayyad University of Marrakesh, Morocco
| | - Naima Fdil
- Metabolics Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Omar El Hiba
- Nutritional Physiopathology Team, Faculty of Sciences, ChouaibDoukkali University, El Jadida, 24000, Morocco
| | | | - Kholoud Kahime
- SAEDD Laboratory, School of Technology Essaouira, Cadi Ayyad University of Marrakesh, Morocco
| |
Collapse
|
22
|
Nguyen THO, Cohen CA, Rowntree LC, Bull MB, Hachim A, Kedzierska K, Valkenburg SA. T Cells Targeting SARS-CoV-2: By Infection, Vaccination, and Against Future Variants. Front Med (Lausanne) 2021; 8:793102. [PMID: 35004764 PMCID: PMC8739267 DOI: 10.3389/fmed.2021.793102] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
T cell responses are a key cornerstone to viral immunity to drive high-quality antibody responses, establishing memory for recall and for viral clearance. Inefficient recruitment of T cell responses plays a role in the development of severe COVID-19 and is also represented by reduced cellular responses in men, children, and diversity compared with other epitope-specific subsets and available T cell receptor diversity. SARS-CoV-2-specific T cell responses are elicited by multiple vaccine formats and augmented by prior infection for hybrid immunity. Epitope conservation is relatively well-maintained leading to T cell crossreactivity for variants of concern that have diminished serological responses.
Collapse
Affiliation(s)
- Thi H. O. Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Carolyn A. Cohen
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Maireid B. Bull
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Asmaa Hachim
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
23
|
Zhuang Z, Liu D, Sun J, Li F, Zhao J. Immune responses to human respiratory coronaviruses infection in mouse models. Curr Opin Virol 2021; 52:102-111. [PMID: 34906757 PMCID: PMC8665230 DOI: 10.1016/j.coviro.2021.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022]
Abstract
Human respiratory coronaviruses (HCoVs), including the recently emerged SARS-CoV-2, the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, potentially cause severe lung infections and multiple organ damages, emphasizing the urgent need for antiviral therapeutics and vaccines against HCoVs. Small animal models, especially mice, are ideal tools for deciphering the pathogenesis of HCoV infections as well as virus-induced immune responses, which is critical for antiviral drug development and vaccine design. In this review, we focus on the antiviral innate immune response, antibody response and T cell response in HCoV infected mouse models, and discuss the potential implications for understanding the anti-HCoV immunity and fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong 510320, China.
| |
Collapse
|
24
|
Li D, Gong XQ, Xiao X, Han HJ, Yu H, Li ZM, Yan LN, Gu XL, Duan SH, Xue-jieYu. MERS-related CoVs in hedgehogs from Hubei Province, China. One Health 2021; 13:100332. [PMID: 34604493 PMCID: PMC8464353 DOI: 10.1016/j.onehlt.2021.100332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The emerging coronavirus diseases such as COVID-19, MERS, and SARS indicated that animal coronaviruses (CoVs) spillover to humans are a huge threat to public health. Therefore, we needed to understand the CoVs carried by various animals. Wild hedgehogs were collected from rural areas in Wuhan and Xianning cities in Hubei Province for analysis of CoVs. PCR results showed that 5 out of 51 (9.8%) hedgehogs (Erinaceus amurensis) were positive to CoVs in Hubei Province with 3 samples from Wuhan City and 2 samples from Xianning City. Phylogenetic analysis based on the partial sequence of RNA-dependent RNA polymerase showed that the CoVs from hedgehogs are classified into Merbecovirus of the genus Betacoronavirus; the hedgehog CoVs formed a phylogenetic sister cluster with human MERS-CoVs and bat MERS-related CoVs. Among the 12 most critical residues of receptor binding domain in MERS-CoV for binding human Dipeptidyl peptidase 4, 3 residuals were conserved between the hedgehog MERS-related CoV obtained in this study and the human MERS-CoV. We concluded that hedgehogs from Hubei Province carried MERS-related CoVs, indicating that hedgehogs might be important in the evolution and transmission of MERS-CoVs, and continuous surveillance of CoVs in hedgehogs was important.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-qing Gong
- Double First-class Construction Office, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Xiao
- Lab Animal Research Center, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Hui-ju Han
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hao Yu
- Department of Neuroscience, Cell Biology, and Anatomy, 301 University Blvd, Galveston, TX 77555, United States of America
| | - Ze-min Li
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Li-na Yan
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-lan Gu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shu-hui Duan
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xue-jieYu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
25
|
Cueno ME, Imai K. Structural Insights on the SARS-CoV-2 Variants of Concern Spike Glycoprotein: A Computational Study With Possible Clinical Implications. Front Genet 2021; 12:773726. [PMID: 34745235 PMCID: PMC8568765 DOI: 10.3389/fgene.2021.773726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has been attributed to SARS-CoV-2 (SARS2) and, consequently, SARS2 has evolved into multiple SARS2 variants driving subsequent waves of infections. In particular, variants of concern (VOC) were identified to have both increased transmissibility and virulence ascribable to mutational changes occurring within the spike protein resulting to modifications in the protein structural orientation which in-turn may affect viral pathogenesis. However, this was never fully elucidated. Here, we generated spike models of endemic HCoVs (HCoV 229E, HCoV OC43, HCoV NL63, HCoV HKU1, SARS CoV, MERS CoV), original SARS2, and VOC (alpha, beta, gamma, delta). Model quality check, structural superimposition, and structural comparison based on RMSD values, TM scores, and contact mapping were all performed. We found that: 1) structural comparison between the original SARS2 and VOC whole spike protein model have minor structural differences (TM > 0.98); 2) the whole VOC spike models putatively have higher structural similarity (TM > 0.70) to spike models from endemic HCoVs coming from the same phylogenetic cluster; 3) original SARS2 S1-CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM = 1.0) and S1-NTD (TM > 0.96); and 4) endemic HCoV S1-CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM > 0.70) and S1-NTD (TM > 0.70) models belonging to the same phylogenetic cluster. Overall, we propose that structural similarities (possibly ascribable to similar conformational epitopes) may help determine immune cross-reactivity, whereas, structural differences (possibly associated with varying conformational epitopes) may lead to viral infection (either reinfection or breakthrough infection).
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
26
|
Wan Y, Huang L, Zhang X, Shang J, Perlman S, Du L, Li F. Molecular switches regulating the potency and immune evasiveness of SARS-CoV-2 spike protein. RESEARCH SQUARE 2021:rs.3.rs-736159. [PMID: 34611654 PMCID: PMC8491847 DOI: 10.21203/rs.3.rs-736159/v2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SARS-CoV-2 spike protein plays a key role in viral entry and host immune responses. The conformation of the spike protein can be either open or closed, yet it is unclear how the conformations affect the protein's functions or what regulate the conformational changes. Using SARS-CoV-1 and bat RaTG13-CoV as comparisons, we identified two molecular switches that regulate the conformations of SARS-CoV-2 spike protein: (i) a furin motif loop turns SARS-CoV-2 spike from a closed conformation to a mixture of open and closed conformations, and (ii) a K417V mutation turns SARS-CoV-2 spike from mixed conformations to an open conformation. We showed that the open conformation favors viral potency by exposing the RBD for receptor binding and viral entry, whereas the closed conformation supports viral immune evasion by hiding the RBD from neutralizing antibodies. Hence SARS-CoV-2 spike has evolved to reach a balance between potency and immune evasiveness, which may contribute to the pandemic spread of SARS-CoV-2. The dynamics between viral potency and invasiveness is likely to further evolve, providing insights into future evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Yushun Wan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, MN, USA
| | - Linfen Huang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, MN, USA
| | - Xiujuan Zhang
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, MN, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Lanying Du
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
27
|
Trichel AM. Overview of Nonhuman Primate Models of SARS-CoV-2 Infection. Comp Med 2021; 71:411-432. [PMID: 34548126 PMCID: PMC8594265 DOI: 10.30802/aalas-cm-20-000119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/04/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
COVID-19, the disease caused by the SARS-CoV-2 betacoronavirus, was declared a pandemic by the World Health Organization on March 11, 2020. Since then, SARS-CoV-2 has triggered a devastating global health and economic emergency. In response, a broad range of preclinical animal models have been used to identify effective therapies and vaccines. Current animal models do not express the full spectrum of human COVID-19 disease and pathology, with most exhibiting mild to moderate disease without mortality. NHPs are physiologically, genetically, and immunologically more closely related to humans than other animal species; thus, they provide a relevant model for SARS-CoV-2 investigations. This overview summarizes NHP models of SARS-CoV-2 and their role in vaccine and therapeutic development.
Collapse
Key Words
- ace2, angiotensin l converting enzyme 2
- ade, antibody dependent enhancement
- agm, african green monkey
- ards, acute respiratory distress syndrome
- balf, bronchoalveolar lavage fluid
- cj, conjunctival
- cm, cynomolgus macaque
- covid-19, coronavirus disease 19
- cp, convalescent plasma
- dad, diffuse alveolar damage
- dpc, days post challenge
- dpi, days post infection
- ggos, ground glass opacities
- grna, genomic ribonucleic acid
- hcq, hydroxychloroquine
- it, intratracheal
- nab, neutralizing antibodies
- ptm, pigtail macaque
- rbd, receptor binding domain
- rm, rhesus macaque
- s, spike
- sgrna, subgenomic ribonucleic acid
- th1, type 1 t helper cell
- vrna, viral ribonucleic acid
Collapse
Affiliation(s)
- Anita M Trichel
- Division of Laboratory Animal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Zocchi E, Terrazzano G. COVID-19: why not learn from the past? Front Med 2021; 15:776-781. [PMID: 34463906 PMCID: PMC8407128 DOI: 10.1007/s11684-021-0883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Elena Zocchi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.
| | | |
Collapse
|
29
|
El-Senousy WM, Shouman M. Human Coronavirus NL63 Among Other Respiratory Viruses in Clinical Specimens of Egyptian Children and Raw Sewage Samples. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:322-328. [PMID: 34086254 PMCID: PMC8176886 DOI: 10.1007/s12560-021-09479-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to investigate human coronavirus NL63 (HCoV-NL63) prevalence among the other respiratory viruses such as parainfluenza, respiratory syncytial virus, and non-enteric adenoviruses in clinical specimens of Egyptian children and raw sewage samples. One hundred clinical specimens were collected from Egyptian children suffering from upper and lower respiratory viral infections in the years 2005-2006 to detect HCoV-NL63 genome using RT-PCR. All the specimens were negative for the virus. Also, a complete absence of HCoV-NL63 genome was observed in the twenty-four raw sewage samples collected from two wastewater treatment plants within Greater Cairo from February 2006 to January 2007. Using nested RT-PCR, parainfluenza virus type 1, respiratory syncytial virus type A, adenovirus type 4, and adenovirus type 7 were detected in 3%, 2%, 5%, and 2% of the clinical specimens, respectively. Of these viruses, only adenovirus type 4 was detected in 1/24 (4.17%) of the raw sewage samples, while a complete absence of the other investigated respiratory viruses was observed in the raw sewage samples. The low percentage of positivity in the clinical specimens, the concentration method of the raw sewage samples, and the indirect routes of transmission may be the reasons for the absence of respiratory viruses in raw sewage samples. On the other hand, enteric adenoviruses were detected in 21/24 (87.5%) of the raw sewage samples with a higher prevalence of adenovirus type 41 than adenovirus type 40. A direct route of transmission of enteric viruses to raw sewage may be the reason for the high positivity percentage of enteric adenoviruses in raw sewage samples.
Collapse
Affiliation(s)
- Waled Morsy El-Senousy
- Environmental Virology Lab, Water Pollution Research Department, Environmental Research Division and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth st., Dokki, Giza, 12622, Egypt.
| | - Mohamed Shouman
- Pediatric Department, Centre of Medical Excellence, Medical Research Division, NRC, Dokki, Giza, Egypt
| |
Collapse
|
30
|
Kayode AJ, Banji-Onisile FO, Olaniran AO, Okoh AI. An Overview of the Pathogenesis, Transmission, Diagnosis, and Management of Endemic Human Coronaviruses: A Reflection on the Past and Present Episodes and Possible Future Outbreaks. Pathogens 2021; 10:1108. [PMID: 34578140 PMCID: PMC8470645 DOI: 10.3390/pathogens10091108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the 2019 coronavirus pandemic caught the world by surprise in late 2019 and has held it hostage for months with an increasing number of infections and deaths. Although coronavirus was first discovered in the 1960s and was known to cause respiratory infection in humans, no information was available about the epidemic pattern of the virus until the past two decades. This review addresses the pathogenesis, transmission dynamics, diagnosis, management strategies, the pattern of the past and present events, and the possibility of future outbreaks of the endemic human coronaviruses. Several studies have described bats as presumptive natural reservoirs of coronaviruses. In essence, the identification of a diverse group of similar SARS coronaviruses in bats suggests the possibility of a future epidemic due to severe acute respiratory syndrome (SARS-like) coronaviruses originating from different reservoir hosts. The study also identified a lack of vaccines to prevent human coronavirus infections in humans in the past, however, the recent breakthrough in vaccine discovery and approval for emergency use for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 is commendable. The high rates of genomic substitution and recombination due to errors in RNA replication and the potential for independent species crossing suggest the chances of an entirely new strain evolving. Therefore, rapid research efforts should be deployed for vaccination to combat the COVID-19 pandemic and prevent a possible future outbreak. More sensitization and enlightenment on the need to adopt good personal hygiene practices, social distancing, and scientific evaluation of existing medications with promising antiviral effects against SARS-CoV-2 is required. In addition, intensive investigations to unravel and validate the possible reservoirs, the intermediate host, as well as insight into the ability of the virus to break the species barrier are needed to prevent future viral spillover and possible outbreaks.
Collapse
Affiliation(s)
- Adeoye J. Kayode
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; or
- Wastewater Coronavirus Surveillance Laboratory, SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Folasade O. Banji-Onisile
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa; (F.O.B.-O.); (A.O.O.)
| | - Ademola O. Olaniran
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa; (F.O.B.-O.); (A.O.O.)
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; or
- Wastewater Coronavirus Surveillance Laboratory, SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- Department of Environmental Health Sciences, College Health Sciences, University of Sharjah, Sharjah 555588, United Arab Emirates
| |
Collapse
|
31
|
Singh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J 2021; 18:166. [PMID: 34389034 PMCID: PMC8361246 DOI: 10.1186/s12985-021-01633-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.
Collapse
Affiliation(s)
- Jalen Singh
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, Canada
| | - Pranav Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Karen Mossman
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
32
|
Sealy RE, Hurwitz JL. Cross-Reactive Immune Responses toward the Common Cold Human Coronaviruses and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Mini-Review and a Murine Study. Microorganisms 2021; 9:1643. [PMID: 34442723 PMCID: PMC8398386 DOI: 10.3390/microorganisms9081643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes serious morbidity and mortality in humans (coronavirus disease 2019, COVID-19), there is an enormous range of disease outcomes following virus exposures. Some individuals are asymptomatic while others succumb to virus infection within days. Presently, the factors responsible for disease severity are not fully understood. One factor that may influence virus control is pre-existing immunity conferred by an individual's past exposures to common cold human coronaviruses (HCoVs). Here, we describe previous literature and a new, murine study designed to examine cross-reactive immune responses between SARS-CoV-2 and common cold HCoVs (represented by prototypes OC43, HKU1, 229E, and NL63). Experimental results have been mixed. In SARS-CoV-2-unexposed humans, cross-reactive serum antibodies were identified toward nucleocapsid (N) and the spike subunit S2. S2-specific antibodies were in some cases associated with neutralization. SARS-CoV-2-unexposed humans rarely exhibited antibody responses to the SARS-CoV-2 spike subunit S1, and when naïve mice were immunized with adjuvanted S1 from either SARS-CoV-2 or common cold HCoVs, S1-specific antibodies were poorly cross-reactive. When humans were naturally infected with SARS-CoV-2, cross-reactive antibodies that recognized common cold HCoV antigens increased in magnitude. Cross-reactive T cells, like antibodies, were present in humans prior to SARS-CoV-2 exposures and increased following SARS-CoV-2 infections. Some studies suggested that human infections with common cold HCoVs afforded protection against disease caused by subsequent exposures to SARS-CoV-2. Small animal models are now available for the testing of controlled SARS-CoV-2 infections. Additionally, in the United Kingdom, a program of SARS-CoV-2 human challenge experiments has received regulatory approval. Future, controlled experimental challenge studies may better define how pre-existing, cross-reactive immune responses influence SARS-CoV-2 infection outcomes.
Collapse
Affiliation(s)
- Robert E. Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
33
|
Lemaitre J, Naninck T, Delache B, Creppy J, Huber P, Holzapfel M, Bouillier C, Contreras V, Martinon F, Kahlaoui N, Pascal Q, Tricot S, Ducancel F, Vecellio L, Le Grand R, Maisonnasse P. Non-human primate models of human respiratory infections. Mol Immunol 2021; 135:147-164. [PMID: 33895579 PMCID: PMC8062575 DOI: 10.1016/j.molimm.2021.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
Respiratory pathogens represent a great burden for humanity and a potential source of new pandemics, as illustrated by the recent emergence of coronavirus disease 2019 (COVID-19). In recent decades, biotechnological advances have led to the development of numerous innovative therapeutic molecules and vaccine immunogens. However, we still lack effective treatments and vaccines against many respiratory pathogens. More than ever, there is a need for a fast, predictive, preclinical pipeline, to keep pace with emerging diseases. Animal models are key for the preclinical development of disease management strategies. The predictive value of these models depends on their ability to reproduce the features of the human disease, the mode of transmission of the infectious agent and the availability of technologies for monitoring infection. This review focuses on the use of non-human primates as relevant preclinical models for the development of prevention and treatment for human respiratory infections.
Collapse
Affiliation(s)
- Julien Lemaitre
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Thibaut Naninck
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Benoît Delache
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Justina Creppy
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France; Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Philippe Huber
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Marion Holzapfel
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Camille Bouillier
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Vanessa Contreras
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frédéric Martinon
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Quentin Pascal
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sabine Tricot
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frédéric Ducancel
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Laurent Vecellio
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France; Plateforme Scientifique et Technique Animaleries (PST-A), Université de Tours, Tours, France
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Pauline Maisonnasse
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
34
|
Akbay B, Abidi SH, Ibrahim MAA, Mukhatayev Z, Ali S. Multi-Subunit SARS-CoV-2 Vaccine Design Using Evolutionarily Conserved T- and B- Cell Epitopes. Vaccines (Basel) 2021; 9:702. [PMID: 34206865 PMCID: PMC8310312 DOI: 10.3390/vaccines9070702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
The SARS-CoV-2 pandemic has created a public health crisis worldwide. Although vaccines against the virus are efficiently being rolled out, they are proving to be ineffective against certain emerging SARS-CoV-2 variants. The high degree of sequence similarity between SARS-CoV-2 and other human coronaviruses (HCoV) presents the opportunity for designing vaccines that may offer protection against SARS-CoV-2 and its emerging variants, with cross-protection against other HCoVs. In this study, we performed bioinformatics analyses to identify T and B cell epitopes originating from spike, membrane, nucleocapsid, and envelope protein sequences found to be evolutionarily conserved among seven major HCoVs. Evolutionary conservation of these epitopes indicates that they may have critical roles in viral fitness and are, therefore, unlikely to mutate during viral replication thus making such epitopes attractive candidates for a vaccine. Our designed vaccine construct comprises of twelve T and six B cell epitopes that are conserved among HCoVs. The vaccine is predicted to be soluble in water, stable, have a relatively long half-life, and exhibit low allergenicity and toxicity. Our docking results showed that the vaccine forms stable complex with toll-like receptor 4, while the immune simulations predicted that the vaccine may elicit strong IgG, IgM, and cytotoxic T cell responses. Therefore, from multiple perspectives, our multi-subunit vaccine design shows the potential to elicit a strong immune-protective response against SARS-CoV-2 and its emerging variants while carrying minimal risk for causing adverse effects.
Collapse
Affiliation(s)
- Burkitkan Akbay
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.A.); (Z.M.)
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Zhussipbek Mukhatayev
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.A.); (Z.M.)
| | - Syed Ali
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.A.); (Z.M.)
| |
Collapse
|
35
|
Liu W, Reyes HM, Yang JF, Li Y, Stewart KM, Basil MC, Lin SM, Katzen J, Morrisey EE, Weiss SR, You J. Activation of STING Signaling Pathway Effectively Blocks Human Coronavirus Infection. J Virol 2021; 95:e00490-21. [PMID: 33789998 PMCID: PMC8316077 DOI: 10.1128/jvi.00490-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic poses a serious global health threat. The rapid global spread of SARS-CoV-2 highlights an urgent need to develop effective therapeutics for blocking SARS-CoV-2 infection and spread. Stimulator of Interferon Genes (STING) is a chief element in host antiviral defense pathways. In this study, we examined the impact of the STING signaling pathway on coronavirus infection using the human coronavirus OC43 (HCoV-OC43) model. We found that HCoV-OC43 infection did not stimulate the STING signaling pathway, but the activation of STING signaling effectively inhibits HCoV-OC43 infection to a much greater extent than that of type I interferons (IFNs). We also discovered that IRF3, the key STING downstream innate immune effector, is essential for this anticoronavirus activity. In addition, we found that the amidobenzimidazole (ABZI)-based human STING agonist diABZI robustly blocks the infection of not only HCoV-OC43 but also SARS-CoV-2. Therefore, our study identifies the STING signaling pathway as a potential therapeutic target that could be exploited for developing broad-spectrum antiviral therapeutics against multiple coronavirus strains in order to face the challenge of future coronavirus outbreaks.IMPORTANCE The highly infectious and lethal SARS-CoV-2 is posing an unprecedented threat to public health. Other coronaviruses are likely to jump from a nonhuman animal to humans in the future. Novel broad-spectrum antiviral therapeutics are therefore needed to control known pathogenic coronaviruses such as SARS-CoV-2 and its newly mutated variants, as well as future coronavirus outbreaks. STING signaling is a well-established host defense pathway, but its role in coronavirus infection remains unclear. In the present study, we found that activation of the STING signaling pathway robustly inhibits infection of HCoV-OC43 and SARS-CoV-2. These results identified the STING pathway as a novel target for controlling the spread of known pathogenic coronaviruses, as well as emerging coronavirus outbreaks.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hanako M Reyes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - June F Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yize Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathleen M Stewart
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria C Basil
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan M Lin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy Katzen
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward E Morrisey
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Ecology and Evolution of Betacoronaviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:41-60. [PMID: 33973171 DOI: 10.1007/978-3-030-63761-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The crown-like outline of the virions of coronaviruses will long endure as the iconic image of 2020 - the year of the COVID-19 pandemic. This major human health emergency has been caused by a betacoronavirus, as have others in the past. In this chapter, we outline the taxonomy of betacoronaviruses and their properties, both genetic and biological. We discuss their recombinational and mutational histories separately to show that the sequence of the RaTG13 bat virus isolate is the closest currently known full-length genetic homolog of that of the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). However, the RaTG13 bat virus and SARS-CoV-2 have probably diverged over 20 years. We discuss the ecology of their pangolin and bat hosts and conclude that, like other recent viral pandemics, the underlying cause of the SARS-CoV-2 emergence is probably the relentless growth of the world's human population and the overexploitation and disturbance of the environment.
Collapse
|
37
|
Inhaled aerosols: Their role in COVID-19 transmission, including biophysical interactions in the lungs. Curr Opin Colloid Interface Sci 2021; 54:101451. [PMID: 33782631 PMCID: PMC7989069 DOI: 10.1016/j.cocis.2021.101451] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The high rate of spreading of COVID-19 is attributed to airborne particles exhaled by infected but often asymptomatic individuals. In this review, the role of aerosols in SARS-CoV-2 coronavirus transmission is discussed from the biophysical perspective. The essential properties of the coronavirus virus transported inside aerosol droplets, their successive inhalation, and size-dependent deposition in the respiratory system are highlighted. The importance of face covers (respirators and masks) in the reduction of aerosol spreading is analyzed. Finally, the discussion of the physicochemical phenomena of the coronavirus entering the surface of lung liquids (bronchial mucus and pulmonary surfactant) is presented with a focus on a possible role of interfacial phenomena in pulmonary alveoli. Information given in this review should be important in understanding the essential biophysical conditions of COVID-19 infection via aerosol route as a prerequisite for effective strategies of respiratory tract protection, and possibly, indications for future treatments of the disease.
Collapse
|
38
|
Cueno ME, Ueno M, Iguchi R, Harada T, Miki Y, Yasumaru K, Kiso N, Wada K, Baba K, Imai K. Insights on the Structural Variations of the Furin-Like Cleavage Site Found Among the December 2019-July 2020 SARS-CoV-2 Spike Glycoprotein: A Computational Study Linking Viral Evolution and Infection. Front Med (Lausanne) 2021; 8:613412. [PMID: 33777970 PMCID: PMC7987684 DOI: 10.3389/fmed.2021.613412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
The SARS-CoV-2 (SARS2) is the cause of the coronavirus disease 2019 (COVID-19) pandemic. One unique structural feature of the SARS2 spike protein is the presence of a furin-like cleavage site (FLC) which is associated with both viral pathogenesis and host tropism. Specifically, SARS2 spike protein binds to the host ACE-2 receptor which in-turn is cleaved by furin proteases at the FLC site, suggesting that SARS2 FLC structural variations may have an impact on viral infectivity. However, this has not yet been fully elucidated. This study designed and analyzed a COVID-19 genomic epidemiology network for December 2019 to July 2020, and subsequently generated and analyzed representative SARS2 spike protein models from significant node clusters within the network. To distinguish possible structural variations, a model quality assessment was performed before further protein model analyses and superimposition of the protein models, particularly in both the receptor-binding domain (RBD) and FLC. Mutant spike models were generated with the unique 681PRRA684 amino acid sequence found within the deleted FLC. We found 9 SARS2 FLC structural patterns that could potentially correspond to nine node clusters encompassing various countries found within the COVID-19 genomic epidemiology network. Similarly, we associated this with the rapid evolution of the SARS2 genome. Furthermore, we observed that either in the presence or absence of the unique 681PRRA684 amino acid sequence no structural changes occurred within the SARS2 RBD, which we believe would mean that the SARS2 FLC has no structural influence on SARS2 RBD and may explain why host tropism was maintained.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan.,Immersion Biology Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo, Japan.,Immersion Physics Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo, Japan
| | - Miu Ueno
- Immersion Physics Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo, Japan
| | - Rinako Iguchi
- Immersion Physics Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo, Japan
| | - Tsubasa Harada
- Immersion Physics Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo, Japan
| | - Yoshifumi Miki
- Immersion Biology Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo, Japan
| | - Kanae Yasumaru
- Immersion Biology Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo, Japan
| | - Natsumi Kiso
- Immersion Biology Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo, Japan
| | - Kanta Wada
- Immersion Biology Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo, Japan
| | - Koki Baba
- Immersion Biology Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
39
|
Rivero-Calle I, Gómez-Rial J, Bont L, Gessner BD, Kohn M, Dagan R, Payne DC, Bruni L, Pollard AJ, García-Sastre A, Faustman DL, Osterhaus A, Butler R, Giménez Sánchez F, Álvarez F, Kaforou M, Bello X, Martinón-Torres F. TIPICO X: report of the 10th interactive infectious disease workshop on infectious diseases and vaccines. Hum Vaccin Immunother 2021; 17:759-772. [PMID: 32755474 PMCID: PMC7996078 DOI: 10.1080/21645515.2020.1788301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 11/03/2022] Open
Abstract
TIPICO is an expert meeting and workshop that aims to provide the most recent evidence in the field of infectious diseases and vaccination. The 10th Interactive Infectious Disease TIPICO workshop took place in Santiago de Compostela, Spain, on November 21-22, 2019. Cutting-edge advances in vaccination against respiratory syncytial virus, Streptococcus pneumoniae, rotavirus, human papillomavirus, Neisseria meningitidis, influenza virus, and Salmonella Typhi were discussed. Furthermore, heterologous vaccine effects were updated, including the use of Bacillus Calmette-Guérin (BCG) vaccine as potential treatment for type 1 diabetes. Finally, the workshop also included presentations and discussion on emergent virus and zoonoses, vaccine resilience, building and sustaining confidence in vaccination, approaches to vaccine decision-making, pros and cons of compulsory vaccination, the latest advances in decoding infectious diseases by RNA gene signatures, and the application of big data approaches.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Jose Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Louis Bont
- Wilhelmina’s Children’s Hospital University Medical Center Utrecht, The Netherlands
| | | | - Melvin Kohn
- Vaccines and Infectious Diseases Medical Affairs, Global Medical and Scientific Affairs, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel C. Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laia Bruni
- Cancer Epidemiology Research Program, Institut Català d’Oncologia (ICO) - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Andrew J. Pollard
- Oxford Vaccines Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise L. Faustman
- The Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Osterhaus
- Artemis One Health, Utrecht, The Netherlands
- Research Center Emerging Infections and Zoonoses, Hannover, Germany
| | - Robb Butler
- WHO Regional Office for Europe, Copenhagen, Denmark
| | | | | | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| |
Collapse
|
40
|
Uversky VN, Elrashdy F, Aljadawi A, Ali SM, Khan RH, Redwan EM. Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How? J Neurosci Res 2021; 99:750-777. [PMID: 33217763 PMCID: PMC7753416 DOI: 10.1002/jnr.24752] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Without protective and/or therapeutic agents the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection known as coronavirus disease 2019 is quickly spreading worldwide. It has surprising transmissibility potential, since it could infect all ages, gender, and human sectors. It attacks respiratory, gastrointestinal, urinary, hepatic, and endovascular systems and can reach the peripheral nervous system (PNS) and central nervous system (CNS) through known and unknown mechanisms. The reports on the neurological manifestations and complications of the SARS-CoV-2 infection are increasing exponentially. Herein, we enumerate seven candidate routes, which the mature or immature SARS-CoV-2 components could use to reach the CNS and PNS, utilizing the within-body cross talk between organs. The majority of SARS-CoV-2-infected patients suffer from some neurological manifestations (e.g., confusion, anosmia, and ageusia). It seems that although the mature virus did not reach the CNS or PNS of the majority of patients, its unassembled components and/or the accompanying immune-mediated responses may be responsible for the observed neurological symptoms. The viral particles and/or its components have been specifically documented in endothelial cells of lung, kidney, skin, and CNS. This means that the blood-endothelial barrier may be considered as the main route for SARS-CoV-2 entry into the nervous system, with the barrier disruption being more logical than barrier permeability, as evidenced by postmortem analyses.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFLUSA
- Institute for Biological Instrumentation of the Russian Academy of SciencesFederal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”PushchinoRussia
| | - Fatma Elrashdy
- Department of Endemic Medicine and HepatogastroenterologyKasr Alainy School of MedicineCairo UniversityCairoEgypt
| | - Abdullah Aljadawi
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Syed Moasfar Ali
- Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Elrashdy M. Redwan
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
41
|
Choi WI, Kim IB, Park SJ, Ha EH, Lee CW. Comparison of the clinical characteristics and mortality of adults infected with human coronaviruses 229E and OC43. Sci Rep 2021; 11:4499. [PMID: 33627764 PMCID: PMC7904943 DOI: 10.1038/s41598-021-83987-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of the study was to compare clinical characteristics and mortality among adults infected with human coronaviruses (HCoV) 229E and OC43. We conducted a retrospective cohort study of adults (≥ 18 years) admitted to the ward of a university teaching hospital for suspected viral infection from October 2012 to December 2017. Multiplex real-time polymerase chain reaction (PCR) was used to test for respiratory viruses. Multivariate logistic regression was used to compare mortality among patients with HCoV 229E and HCoV OC43 infections. The main outcome was 30-day all-cause mortality. Of 8071 patients tested, 1689 were found to have a respiratory virus infection. Of these patients, 133 had HCoV infection, including 12 mixed infections, 44 HCoV 229E infections, and 77 HCoV OC43 infections. HCoV 229E infections peaked in January and February, while HCoV OC43 infections occurred throughout the year. The 30-day all-cause mortality was 25.0% among patients with HCoV 229E infection, and 9.1% among patients with HCoV OC43 infection (adjusted odds ratio: 3.58, 95% confidence interval: 1.19–10.75). Infections with HCoVs 229E and OC43 appear to have different seasonal patterns, and HCoV 229E might be more virulent than HCoV OC43.
Collapse
Affiliation(s)
- Won-Il Choi
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, 55 Hwasu-ro, 14 beon-gil, Deogyang-gu, Goyang-si, Gyeongji-do, 10475, Republic of Korea.
| | - In Byung Kim
- Department of Emergency Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Sang Joon Park
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, 55 Hwasu-ro, 14 beon-gil, Deogyang-gu, Goyang-si, Gyeongji-do, 10475, Republic of Korea
| | - Eun-Hye Ha
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, 55 Hwasu-ro, 14 beon-gil, Deogyang-gu, Goyang-si, Gyeongji-do, 10475, Republic of Korea
| | - Choong Won Lee
- Department of Occupational and Environmental Medicine, Sungso Hospital, Andong, Republic of Korea
| |
Collapse
|
42
|
Donia A, Hassan SU, Zhang X, Al-Madboly L, Bokhari H. COVID-19 Crisis Creates Opportunity towards Global Monitoring & Surveillance. Pathogens 2021; 10:256. [PMID: 33668358 PMCID: PMC7996165 DOI: 10.3390/pathogens10030256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
The spectrum of emerging new diseases as well as re-emerging old diseases is broadening as infectious agents evolve, adapt, and spread at enormous speeds in response to changing ecosystems. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recent phenomenon and may take a while to understand its transmission routes from less traveled territories, ranging from fomite exposure routes to wastewater transmission. The critical challenge is how to negotiate with such catastrophic pandemics in high-income countries (HICs ~20% of the global population) and low-and middle-income countries (LMICs ~ 80% of the global population) with a total global population size of approximately eight billion, where practical mass testing and tracing is only a remote possibility, particularly in low-and middle-income countries (LMICs). Keeping in mind the population distribution disparities of high-income countries (HICs) and LMICs and urbanisation trends over recent years, traditional wastewater-based surveillance such as that used to combat polio may help in addressing this challenge. The COVID-19 era differs from any previous pandemics or global health challenges in the sense that there is a great deal of curiosity within the global community to find out everything about this virus, ranging from diagnostics, potential vaccines/therapeutics, and possible routes of transmission. In this regard, the fact that the gut is the common niche for both poliovirus and SARS-CoV-2, and due to the shedding of the virus through faecal material into sewerage systems, the need for long-term wastewater surveillance and developing early warning systems for better preparedness at local and global levels is increasingly apparent. This paper aims to provide an insight into the ongoing COVID-19 crisis, how it can be managed, and what measures are required to deal with a current global international public health concern. Additionally, it shed light on the importance of using wastewater surveillance strategy as an early warning practical tool suitable for massive passive screening, as well as the urgent need for microfluidic technology as a rapid and cost-effective approach tracking SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- Ahmed Donia
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan;
| | - Sammer-ul Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Xunli Zhang
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Lamiaa Al-Madboly
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Habib Bokhari
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan;
| |
Collapse
|
43
|
Cai L, Guo X, Cao Y, Ying P, Hong L, Zhang Y, Yi G, Fu M. Determining available strategies for prevention and therapy: Exploring COVID‑19 from the perspective of ACE2 (Review). Int J Mol Med 2021; 47:43. [PMID: 33576441 PMCID: PMC7891831 DOI: 10.3892/ijmm.2021.4876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute infectious pneumonia caused by a novel type of coronavirus infection. There are currently no clinically available specific drugs for the treatment of this virus. The process of host invasion is the key to viral infection, and it is a mechanism that needs to be considered when exploring antiviral drugs. At present, studies have confirmed that angiotensin-converting enzyme II (ACE2) is the main functional receptor through which severe acute respiratory syndrome coronavirus (SARS-CoV-2) invades host cells. Therefore, a number of studies have focused on this field. However, as ACE2 may play a dual role in mediating susceptibility and immunity to SARS-CoV-2 infection, the role of ACE2 in viral infection is controversial. Beginning with the physiological function of ACE2, the present review article summarizes the influence of the ACE2 content on the susceptibility to the virus and acute lung injury. Drug mechanisms were taken as the starting point, combined with the results of clinical trials, specifically elaborating upon and analyzing the efficacy of several ACE2-centered therapeutic drugs and their potential effects. In addition, the current status of ACE2 as a targeted therapy for COVID-19 is discussed in order to provide new insight into the clinical prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Liyang Cai
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xi Guo
- Medical College of Rehabilitation, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuchen Cao
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peixi Ying
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Libing Hong
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuxi Zhang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun‑Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
44
|
Molecular Evolution of Human Coronavirus 229E in Hong Kong and a Fatal COVID-19 Case Involving Coinfection with a Novel Human Coronavirus 229E Genogroup. mSphere 2021; 6:6/1/e00819-20. [PMID: 33568452 PMCID: PMC8544887 DOI: 10.1128/msphere.00819-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Compared to other human coronaviruses, the genetic diversity and evolution of human coronavirus 229E (HCoV-229E) are relatively understudied. We report a fatal case of COVID-19 pneumonia coinfected with HCoV-229E in Hong Kong. Genome sequencing of SARS-CoV-2 and HCoV-229E from a nasopharyngeal sample of the patient showed that the SARS-CoV-2 strain HK13 was most closely related to SARS-CoV-2 type strain Wuhan-Hu-1 (99.99% nucleotide identity), compatible with his recent history of travel to Wuhan. The HCoV-229E strain HK20-42 was most closely related to HCoV-229E strain SC0865 from the United States (99.86% nucleotide identity). To investigate if it may represent a newly emerged HCoV-229E genotype in Hong Kong, we retrieved 41 archived respiratory samples that tested positive for HCoV-229E from 2004 to 2019. Pneumonia and exacerbations of chronic airway diseases were common among infected patients. Complete RdRp, S, and N gene sequencing of the 41 HCoV-229E strains revealed that our contemporary HCoV-229E strains have undergone significant genetic drift with clustering of strains in chronological order. Two novel genogroups were identified, in addition to previously described genogroups 1 to 4, with recent circulating strains including strain HK20-42 belonging to novel genogroup 6. Positive selection was detected in the spike protein and receptor-binding domain, which may be important for viral evolution at the receptor-binding interphase. Molecular dating analysis showed that HCoV-229E shared the most recent common ancestor with bat and camel/alpaca 229E-related viruses at ∼1884, while camel/alpaca viruses had a relatively recent common ancestor at ∼1999. Further studies are required to ascertain the evolutionary origin and path of HCoV-229E.IMPORTANCE Since its first appearance in the 1960s, the genetic diversity and evolution of human coronavirus 229E (HCoV-229E) have been relatively understudied. In this study, we report a fatal case of COVID-19 coinfected with HCoV-229E in Hong Kong. Genome sequencing revealed that our SARS-CoV-2 strain is highly identical to the SARS-CoV-2 strain from Wuhan, compatible with the patient's recent travel history, whereas our HCoV-229E strain in this study is highly identical to a recent strain in the United States. We also retrieved 41 archived HCoV-229E strains from 2004 to 2019 in Hong Kong for sequence analysis. Pneumonia and exacerbations of chronic airway diseases were common diagnoses among the 41 patients. The results showed that HCoV-229E was evolving in chronological order. Two novel genogroups were identified in addition to the four preexisting HCoV-229E genogroups, with recent circulating strains belonging to novel genogroup 6. Molecular clock analysis dated bat-to-human and bat-to-camelid transmission to as early as 1884.
Collapse
|
45
|
Comparison of Selected Characteristics of SARS-CoV-2, SARS-CoV, and HCoV-NL63. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The global pandemic known as coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This review article presents the taxonomy of SARS-CoV-2 coronaviruses, which have been classified as the seventh known human pathogenic coronavirus. The etiology of COVID-19 is also briefly discussed. Selected characteristics of SARS-CoV-2, SARS-CoV, and HCoV-NL63 are compared in the article. The angiotensin converting enzyme-2 (ACE-2) has been identified as the receptor for the SARS-CoV-2 viral entry. ACE2 is well-known as a counter-regulator of the renin-angiotensin system (RAAS) and plays a key role in the cardiovascular system. In the therapy of patients with COVID-19, there has been a concern about the use of RAAS inhibitors. As a result, it is hypothesized that ACE inhibitors do not directly affect ACE2 activity in clinical use. Coronaviruses are zoonotic RNA viruses. Identification of the primary causative agent of the SARS-CoV-2 is essential. Sequencing showed that the genome of the Bat CoVRaTG13 virus found in bats matches the genome of up to (96.2%) of SARS-CoV-2 virus. Sufficient knowledge of the molecular and biological mechanisms along with reliable information related to SARS-CoV-2 gives hope for a quick solution to epidemiological questions and therapeutic processes.
Collapse
|
46
|
Koteswara Rao V. Point of Care Diagnostic Devices for Rapid Detection of Novel Coronavirus (SARS-nCoV19) Pandemic: A Review. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.593619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coronaviruses are recognized as causative agents of human diseases worldwide. In Wuhan, China, an outbreak of Severe acute respiratory syndrome novel Coronavirus (SARS-nCoV-2) was reported at the end of December 2019, causing 63 million COVID cases and 1.3 million deaths globally by 2 December, 2020. The transmission risk forecasts and the SARS-nCoV-2 epidemic pattern are progressive. Unfortunately, there is no specific FDA approved drugs or vaccines available currently to treat SARS-nCoV-2. In response to nCoV-2 spread, the rapid detection is crucial for estimating the severity of the disease and treatment of patients. Currently, there are several RT-PCR based diagnostic kits available for SARS-nCoV-2 detection, which are time-consuming, expensive, need advanced equipment facilities and trained personnel. The cost of diagnosis and the unavailability of sufficient test kits may prevent to check community transmission. Furthermore, expanding the testing facilities in asymptomatic cases in hotspots require more Point of Care (PoC) devices. Therefore, fast, inexpensive, and reliable methods of detection of SARS-nCoV-2 virus infection in humans is urgently required. The rapid and easy-to-use devices will facilitate onsite testing. In this review, nucleic acid assays, serological assays, multiplex assays, and PoC devices are discussed to understand various diagnostic approaches to reduce the spread and mortality rate in the future. Aptamer based detection is most specific, inexpensive and rapid detection of SARS-nCoV-2 without laboratory tools. To the best of our knowledge more than 900 SARS-nCoV-2 test kits are in pipeline, among 395 test kits are molecular bested test kits and only few test kits are developed using Aptamer technology https://www.finddx.org/covid-19/pipeline/.
Collapse
|
47
|
Perveen N, Muzaffar SB, Al-Deeb MA. Exploring human-animal host interactions and emergence of COVID-19: Evolutionary and ecological dynamics. Saudi J Biol Sci 2021; 28:1417-1425. [PMID: 33281479 PMCID: PMC7708805 DOI: 10.1016/j.sjbs.2020.11.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
The novel coronavirus disease (COVID-19) that emerged in December 2019 had caused substantial morbidity and mortality at the global level within few months. It affected economies, stopped travel, and isolated individuals and populations around the world. Wildlife, especially bats, serve as reservoirs of coronaviruses from which the variant Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) emerged that causes COVID-19. In this review, we describe the current knowledge on COVID-19 and the significance of wildlife hosts in its emergence. Mammalian and avian coronaviruses have diverse host ranges with distinct lineages of coronaviruses. Recombination and reassortments occur more frequently in mixed-animal markets where diverse viral genotypes intermingle. Human coronaviruses have evolved through gene gains and losses primarily in interfaces where wildlife and humans come in frequent contact. There is a gap in our understanding of bats as reservoirs of coronaviruses and there is a misconception that bats periodically transmit coronaviruses to humans. Future research should investigate bat viral diversity and loads at interfaces between humans and bats. Furthermore, there is an urgent need to evaluate viral strains circulating in mixed animal markets, where the coronaviruses circulated before becoming adapted to humans. We propose and discuss a management intervention plan for COVID-19 and raise questions on the suitability of current containment plans. We anticipate that more virulent coronaviruses could emerge unless proper measures are taken to limit interactions between diverse wildlife and humans in wild animal markets.
Collapse
Affiliation(s)
- Nighat Perveen
- Department of Biology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Sabir Bin Muzaffar
- Department of Biology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Mohammad Ali Al-Deeb
- Department of Biology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
48
|
Cueno ME, Imai K. Structural Comparison of the SARS CoV 2 Spike Protein Relative to Other Human-Infecting Coronaviruses. Front Med (Lausanne) 2021; 7:594439. [PMID: 33585502 PMCID: PMC7874069 DOI: 10.3389/fmed.2020.594439] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoV) are enveloped positive-stranded RNA viruses and, historically, there are seven known human-infecting CoVs with varying degrees of virulence. CoV attachment to the host is the first step of viral pathogenesis and mainly relies on the spike glycoprotein located on the viral surface. Among the human-infecting CoVs, only the infection of SARS CoV 2 (SARS2) among humans resulted to a pandemic which would suggest that the protein structural conformation of SARS2 spike protein is distinct as compared to other human-infecting CoVs. Surprisingly, the possible differences and similarities in the protein structural conformation between the various human-infecting CoV spike proteins have not been fully elucidated. In this study, we utilized a computational approach to generate models and analyze the seven human-infecting CoV spike proteins, namely: HCoV 229E, HCoV OC43, HCoV NL63, HCoV HKU1, SARS CoV, MERS CoV, and SARS2. Model quality assessment of all CoV models generated, structural superimposition of the whole protein model and selected S1 domains (S1-CTD and S1-NTD), and structural comparison based on RMSD values, Tm scores, and contact mapping were all performed. We found that the structural orientation of S1-CTD is a potential structural feature associated to both the CoV phylogenetic cluster and lineage. Moreover, we observed that spike models in the same phylogenetic cluster or lineage could potentially have similar protein structure. Additionally, we established that there are potentially three distinct S1-CTD orientation (Pattern I, Pattern II, Pattern III) among the human-infecting CoVs. Furthermore, we postulate that human-infecting CoVs in the same phylogenetic cluster may have similar S1-CTD and S1-NTD structural orientation. Taken together, we propose that the SARS2 spike S1-CTD follows a Pattern III orientation which has a higher degree of similarity with SARS1 and some degree of similarity with both OC43 and HKU1 which coincidentally are in the same phylogenetic cluster and lineage, whereas, the SARS2 spike S1-NTD has some degree of similarity among human-infecting CoVs that are either in the same phylogenetic cluster or lineage.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
49
|
Coronavirus Surveillance in a Pediatric Population in Jordan From 2010 to 2013: A Prospective Viral Surveillance Study. Pediatr Infect Dis J 2021; 40:e12-e17. [PMID: 33165274 DOI: 10.1097/inf.0000000000002965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human coronaviruses (HCoVs) are a significant cause of acute respiratory illness (ARI) in children; however, the role of HCoVs in ARI among hospitalized children in the Middle East is not well defined. METHODS Children under 2 years admitted with fever and/or respiratory symptoms were enrolled from 2010 to 2013 in Amman, Jordan. Nasal/throat swabs were collected and stored for testing. Demographic and clinical characteristics were collected through parent/guardian interviews and medical chart abstractions. Prior stored specimens were tested for HCoVs (HKU1, OC43, 229E and NL63) by qRT-PCR. RESULTS Of the 3168 children enrolled, 6.7% were HCoVs-positive. Among HCoV-positive children, the median age was 3.8 (1.9-8.4) months, 59% were male, 14% were premature, 11% had underlying medical conditions and 76% had viral-codetection. The most common presenting symptoms were cough, fever, wheezing and shortness of breath. HCoVs were detected year-round, peaking in winter-spring months. Overall, 56%, 22%, 13% and 6% were OC43, NL63, HKU1 and 229E, respectively. There was no difference in disease severity between the species, except higher intensive care unit admission frequency in NL63-positive subjects. CONCLUSIONS HCoVs were detected in around 7% of children enrolled in our study. Despite HCoV detection in children with ARI with highest peaks in respiratory seasons, the actual burden and pathogenic role of HCoVs in ARI merits further evaluation given the high frequency of viral codetection.
Collapse
|
50
|
Haghani M, Varamini P. Temporal evolution, most influential studies and sleeping beauties of the coronavirus literature. Scientometrics 2021; 126:7005-7050. [PMID: 34188334 PMCID: PMC8221746 DOI: 10.1007/s11192-021-04036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Following the outbreak of SARS-CoV-2 disease, within less than 8 months, the 50 years-old scholarly literature of coronaviruses grew to nearly three times larger than its size prior to 2020. Here, temporal evolution of the coronavirus literature over the last 30 years (N = 43,769) is analysed along with its subdomain of SARS-CoV-2 articles (N = 27,460) and the subdomain of reviews and meta-analytic studies (N = 1027). The analyses are conducted through the lenses of co-citation and bibliographic coupling of documents. (1) Of the N = 1204 review and meta-analytical articles of the coronavirus literature, nearly 88% have been published and indexed during the first 8 months of 2020, marking an unprecedented attention to reviews and meta-analyses in this domain, prompted by the SARS-CoV-2 pandemic. (2) The subset of 2020 SARS-CoV-2 articles is bibliographically distant from the rest of this literature published prior to 2020. Individual articles of the SARS-CoV-2 segment with a bridging role between the two bodies of articles (i.e., before and after 2020) are identifiable. (3) Furthermore, the degree of bibliographic coupling within the 2020 SARS-CoV-2 cluster is much poorer compared to the cluster of articles published prior to 2020. This could, in part, be explained by the higher diversity of topics that are studied in relation to SARS-CoV-2 compared to the literature of coronaviruses published prior to the SARS-CoV-2 disease. (4) The analyses on the subset of SARS-CoV-2 literature identified studies published prior to 2020 that have now proven highly instrumental in the development of various clusters of publications linked to SARS-CoV-2. In particular, the so-called "sleeping beauties" of the coronavirus literature with an awakening in 2020 were identified, i.e., previously published studies of this literature that had remained relatively unnoticed for several years but gained sudden traction in 2020 in the wake of the SARS-CoV-2 outbreak. This work documents the historical development of the literature on coronaviruses as an event-driven literature and as a domain that exhibited, arguably, the most exceptional case of publication burst in the history of science. It also demonstrates how scholarly efforts undertaken during peace time or prior to a disease outbreak could suddenly play a critical role in prevention and mitigation of health disasters caused by new diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s11192-021-04036-4.
Collapse
Affiliation(s)
- Milad Haghani
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
- Institute of Transport and Logistics Studies, The University of Sydney, Sydney, Australia
| | - Pegah Varamini
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|