1
|
Solomon MG, Nennig SE, Cotton MR, Whiting KE, Fulenwider HD, Schank JR. Neurokinin-1 receptors in the nucleus accumbens shell influence sensitivity to social defeat stress and stress-induced alcohol consumption in male mice. ADDICTION NEUROSCIENCE 2024; 13:100174. [PMID: 39801674 PMCID: PMC11720327 DOI: 10.1016/j.addicn.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Chronic social defeat stress (SDS) is a widely employed preclinical model of depression involving repeated exposure to physical defeats using a resident-intruder model in male mice. Exposure to SDS induces depressive-like phenotypes including anhedonia, social withdrawal, and increased drug and alcohol consumption. Previously, we found that expression of the neurokinin-1 receptor (NK1R) is increased in the nucleus accumbens (NAC) of mice that are sensitive to this stressor and increase their alcohol intake. The NK1R is the endogenous receptor for the neuropeptide substance P (SP) and plays a prominent role in stress, anxiety, and addiction. In the present study, we assessed changes in NK1R protein levels in the NAC shell and implemented viral vector strategies to demonstrate a functional role of the NK1R in sensitivity to SDS. Specifically, we found that NK1R protein levels were increased in the NAC shell following SDS exposure. Next, we found that NK1R overexpression in the NAC shell increased the sensitivity to SDS and stress-induced alcohol consumption. Together, these experiments provide evidence for a role of the NK1R in the NAC shell in the sensitivity to SDS and the subsequent escalation in alcohol intake.
Collapse
Affiliation(s)
- Matthew G Solomon
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| | - Sadie E Nennig
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| | - Mallory R Cotton
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| | - Kimberly E Whiting
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| | - Hannah D Fulenwider
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| | - Jesse R Schank
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
2
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
3
|
He ZX, Yue MH, Liu KJ, Wang Y, Qiao JY, Lv XY, Xi K, Zhang YX, Fan JN, Yu HL, He XX, Zhu XJ. Substance P in the medial amygdala regulates aggressive behaviors in male mice. Neuropsychopharmacology 2024; 49:1689-1699. [PMID: 38649427 PMCID: PMC11399394 DOI: 10.1038/s41386-024-01863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Behavioral and clinical studies have revealed a critical role of substance P (SP) in aggression; however, the neural circuit mechanisms underlying SP and aggression remain elusive. Here, we show that tachykinin-expressing neurons in the medial amygdala (MeATac1 neurons) are activated during aggressive behaviors in male mice. We identified MeATac1 neurons as a key mediator of aggression and found that MeATac1→ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl) projections are critical to the regulation of aggression. Moreover, SP/neurokinin-1 receptor (NK-1R) signaling in the VMHvl modulates aggressive behaviors in male mice. SP/NK-1R signaling regulates aggression by influencing glutamate transmission in neurons in the VMHvl. In summary, these findings place SP as a key node in aggression circuits.
Collapse
Affiliation(s)
- Zi-Xuan He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Mei-Hui Yue
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Kai-Jie Liu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Yao Wang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jiu-Ye Qiao
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xin-Yue Lv
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ke Xi
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ya-Xin Zhang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jia-Ni Fan
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China.
| |
Collapse
|
4
|
Humes C, Sic A, Knezevic NN. Substance P's Impact on Chronic Pain and Psychiatric Conditions-A Narrative Review. Int J Mol Sci 2024; 25:5905. [PMID: 38892091 PMCID: PMC11172719 DOI: 10.3390/ijms25115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Substance P (SP) plays a crucial role in pain modulation, with significant implications for major depressive disorder (MDD), anxiety disorders, and post-traumatic stress disorder (PTSD). Elevated SP levels are linked to heightened pain sensitivity and various psychiatric conditions, spurring interest in potential therapeutic interventions. In chronic pain, commonly associated with MDD and anxiety disorders, SP emerges as a key mediator in pain and emotional regulation. This review examines SP's impact on pain perception and its contributions to MDD, anxiety disorders, and PTSD. The association of SP with increased pain sensitivity and chronic pain conditions underscores its importance in pain modulation. Additionally, SP influences the pathophysiology of MDD, anxiety disorders, and PTSD, highlighting its potential as a therapeutic target. Understanding SP's diverse effects provides valuable insights into the mechanisms underlying these psychiatric disorders and their treatment. Further research is essential to explore SP modulation in psychiatric disorders and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Charles Humes
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Aleksandar Sic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
6
|
Bayless DW, Davis CHO, Yang R, Wei Y, de Andrade Carvalho VM, Knoedler JR, Yang T, Livingston O, Lomvardas A, Martins GJ, Vicente AM, Ding JB, Luo L, Shah NM. A neural circuit for male sexual behavior and reward. Cell 2023; 186:3862-3881.e28. [PMID: 37572660 PMCID: PMC10615179 DOI: 10.1016/j.cell.2023.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.
Collapse
Affiliation(s)
- Daniel W Bayless
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Chung-Ha O Davis
- Stanford Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Renzhi Yang
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Yichao Wei
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Joseph R Knoedler
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Oscar Livingston
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Akira Lomvardas
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Ana Mafalda Vicente
- Allen Institute for Neural Dynamics, Seattle, WA 98109; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Departments of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Wu W, Ma M, Ibarra AE, Lu G, Bakshi VP, Li L. Global Neuropeptidome Profiling in Response to Predator Stress in Rat: Implications for Post-Traumatic Stress Disorder. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1549-1558. [PMID: 37405781 PMCID: PMC11731200 DOI: 10.1021/jasms.3c00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Traumatic stress triggers or exacerbates multiple psychiatric illnesses, including post-traumatic stress disorder (PTSD). Nevertheless, the neurophysiological mechanisms underlying stress-induced pathology remain unclear, in part due to the limited understanding of neuronal signaling molecules, such as neuropeptides, in this process. Here, we developed mass spectrometry (MS)-based qualitative and quantitative analytical strategies to profile neuropeptides in rats exposed to predator odor (an ethologically relevant analogue of trauma-like stress) versus control subjects (no odor) to determine peptidomic alterations induced by trauma. In total, 628 unique neuropeptides were identified across 5 fear-circuitry-related brain regions. Brain-region-specific changes of several neuropeptide families, including granin, ProSAAS, opioids, cholecystokinin, and tachykinin, were also observed in the stressed group. Neuropeptides from the same protein precursor were found to vary across different brain regions, indicating the site-specific effects of predator stress. This study reveals for the first time the interaction between neuropeptides and traumatic stress, providing insights into the molecular mechanisms of stress-induced psychopathology and suggesting putative novel therapeutic strategies for disorders such as PTSD.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Angel Erbey Ibarra
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Vaishali P. Bakshi
- Department of Psychiatry, University of Wisconsin–Madison, Madison, WI 53719, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
8
|
Salberg S, Li CN, Beveridge JK, Noel M, Yamakawa GR, Mychasiuk R. Gene expression changes in the cerebellum are associated with persistent post-injury pain in adolescent rats exposed to early life stress. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100145. [PMID: 38099278 PMCID: PMC10719517 DOI: 10.1016/j.ynpai.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Chronic pain develops following injury in approximately 20% of adolescents, at twice the rate in females than males. Adverse childhood experiences also increase the risk for poor health outcomes, such as chronic pain. Emerging literature suggests the cerebellum to be involved in pain processing, however detailed explorations into how the cerebellum contributes to pain are lacking. Therefore, this study aimed to characterise chronic pain outcomes and cerebellar gene expression changes following early life stress and injury in both sexes. The adverse childhood experience of neglect was modelled using a maternal separation (MS) paradigm, which was combined with a subsequent injury (mild traumatic brain injury (mTBI) or plantar incision surgery) in adolescent male and female Sprague-Dawley rats. We measured behavioural nociceptive sensitivity, systemic modulators of pain such as calcitonin gene-related protein (CGRP) and Substance P, as well as gene expression of IL1β, GFAP, GR, MR, GABRA1, CNR1, MAOA, and DAT1 in the cerebellum to examine associations between pain and neuroinflammation, the stress response, inhibitory neurotransmission, and monoaminergic function. We found increases in mechanical nociceptive sensitivity following plantar incision surgery. Sex differences were observed in anxiety-like behaviour and neuroinflammation, whereas systemic pain modulators showed cumulative effects with the addition of stressors. Most interestingly however, the increases in nociceptive sensitivity were associated with the suppressed expression of cerebellar genes that regulate stress, inhibition, cannabinoid function, and dopaminergic function, alongside sex-dependent distinctions for genes involved in inflammation and injury. This study highlights a novel link between nociception and molecular function in the cerebellum. Further investigation into how the cerebellum contributes to pain in males and females will facilitate novel therapeutic insights and opportunities.
Collapse
Affiliation(s)
- Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Crystal N. Li
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Jaimie K. Beveridge
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| | - Melanie Noel
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| | - Glenn R. Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Ahn D, Kim H, Lee B, Hahm DH. Psychological Stress-Induced Pathogenesis of Alopecia Areata: Autoimmune and Apoptotic Pathways. Int J Mol Sci 2023; 24:11711. [PMID: 37511468 PMCID: PMC10380371 DOI: 10.3390/ijms241411711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune dermatological disease with multifactorial etiology and is characterized by reversible hair loss in patches. AA may be closely related to emotional stress and influenced by psychological factors as part of its pathophysiology; however, its etiology remains predominantly unknown. This review aimed to elucidate the association between AA occurrence and the neuropeptide substance P (SP) and corticotropin-releasing hormone (CRH), which are secreted during emotional stress, and have been understood to initiate and advance the etiopathogenesis of AA. Therefore, this review aimed to explain how SP and CRH initiate and contribute to the etiopathogenesis of AA. To assess the etiopathogenesis of AA, we conducted a literature search on PubMed and ClinicalTrials.gov. Overall, several authors described interactions between the hair follicles (HFs) and the stress-associated signaling substances, including SP and CRH, in the etiology of AA; this was attributed to the understanding in that AA can occur without the loss of HFs, similar to that observed in hereditary hair loss with age. Most studies demonstrated that the collapse of "immune privilege" plays a crucial role in the development and exacerbation of the AA; nonetheless, a few studies indicated that substances unrelated to autoimmunity may also cause apoptosis in keratocytes, leading to the development of AA. We investigated both the autoimmune and apoptotic pathways within the etiology of AA and assessed the potential interactions between the key substances of both pathways to evaluate potential therapeutic targets for the treatment of AA. Clinical trials of marketed/unreviewed intervention drugs for AA were also reviewed to determine their corresponding target pathways.
Collapse
Affiliation(s)
- Dongkyun Ahn
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungjun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Bombi Lee
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae-Hyun Hahm
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Raghuraman R, Navakkode S, Sajikumar S. Alteration of hippocampal CA2 plasticity and social memory in adult rats impacted by juvenile stress. Hippocampus 2023; 33:745-758. [PMID: 36965045 PMCID: PMC10946601 DOI: 10.1002/hipo.23531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/27/2023]
Abstract
The hippocampal CA2 region has received greater attention in recent years due to its fundamental role in social memory and hippocampus-dependent memory processing. Unlike entorhinal cortical inputs, the Schaffer collateral inputs to CA2 do not support activity-dependent long-term potentiation (LTP), which serves as the basis for long-term memories. This LTP-resistant zone also expresses genes that restrict plasticity. With the aim of exploring social interaction and sociability in rats that were subjected to juvenile stress, we addressed questions about how the neural circuitry is altered and its effects on social behavior. Although there was induction of LTP in both Schaffer collateral and entorhinal cortical pathways in juvenile-stressed rats, LTP declined in both pathways after 2-3 h. Moreover, exogenous bath application of substance P, a neuropeptide that resulted in slow onset long-lasting potentiation in control animals while it failed to induce LTP in juvenile-stressed rats. Our study reveals that juvenile-stressed rats show behavioral and cellular abnormalities with a long-lasting impact in adulthood.
Collapse
Affiliation(s)
- Radha Raghuraman
- Department of PhysiologyNational University of SingaporeSingapore117593Singapore
- Life Sciences Institute Neurobiology ProgrammeCentre for Life Sciences, National University of SingaporeSingapore117456Singapore
- Present address:
Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew York10032USA
| | - Sheeja Navakkode
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore308232Singapore
| | - Sreedharan Sajikumar
- Department of PhysiologyNational University of SingaporeSingapore117593Singapore
- Life Sciences Institute Neurobiology ProgrammeCentre for Life Sciences, National University of SingaporeSingapore117456Singapore
- Healthy Longevity Translational Research ProgrammeYong Loo Lin School of Medicine, National University of SingaporeSingapore117456Singapore
| |
Collapse
|
11
|
Philippu A. Brain mapping: topography of neurons and their transmitters involved in various brain functions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02523-4. [PMID: 37184687 DOI: 10.1007/s00210-023-02523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Use of the demanding techniques microdialysis or push-pull superfusion makes it possible to identify neurons in distinct brain areas involved in central control of peripheral functions, thus enabling brain mapping. Investigations with the push-pull superfusion technique have shown that mainly catecholaminergic neurons of the posterior and anterior hypothalamus, the locus coeruleus, and the nucleus of the solitary tract are of crucial importance for blood pressure regulation. Experimentally induced blood pressure changes also modify the release of histamine, glutamate, and taurine in the posterior hypothalamus and of serotonin in the locus coeruleus. Furthermore, histaminergic neurons of the nucleus accumbens are involved in memory, serotonergic neurons of the locus coeruleus in response to noxious stimuli, while nitric oxide of striatum has been implicated in neurotoxicity elicited by amphetamines. The involvement of several neurons in one brain function is discussed.
Collapse
Affiliation(s)
- Athineos Philippu
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Kranebitter Allee 26, A-6020, Innsbruck, Austria.
| |
Collapse
|
12
|
Heilig M. Stress-related neuropeptide systems as targets for treatment of alcohol addiction: A clinical perspective. J Intern Med 2023; 293:559-573. [PMID: 37052145 DOI: 10.1111/joim.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Alcohol use is a major cause of disability and death globally. These negative consequences disproportionately affect people who develop alcohol addiction, a chronic relapsing condition characterized by increased motivation to use alcohol, choice of alcohol over healthy, natural rewards, and continued use despite negative consequences. Available pharmacotherapies for alcohol addiction are few, have effect sizes in need of improvement, and remain infrequently prescribed. Research aimed at developing novel therapeutics has in large part focused on attenuating pleasurable or "rewarding" properties of alcohol, but this targets processes that primarily play a role as initiation factors. As clinical alcohol addiction develops, long-term changes in brain function result in a shift of affective homeostasis, and rewarding alcohol effects become progressively reduced. Instead, increased stress sensitivity and negative affective states emerge in the absence of alcohol and create powerful incentives for relapse and continued use through negative reinforcement, or "relief." Based on research in animal models, several neuropeptide systems have been proposed to play an important role in this shift, suggesting that these systems could be targeted by novel medications. Two mechanisms in this category, antagonism at corticotropin-releasing factor type 1, and neurokinin 1/substance P receptors, have been subject to initial evaluation in humans. A third, kappa-opioid receptor antagonism, has been evaluated in nicotine addiction and could soon be tested for alcohol. This paper discusses findings with these mechanisms to date, and their prospects as future targets for novel medications.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
13
|
Scholler D, Zablotski Y, May A. Evaluation of Substance P as a New Stress Parameter in Horses in a Stress Model Involving Four Different Stress Levels. Animals (Basel) 2023; 13:ani13071142. [PMID: 37048398 PMCID: PMC10093602 DOI: 10.3390/ani13071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Stress has a significant impact on equine welfare. There are some studies on the stress response in horses ridden with tight nosebands, but little is known about other stress parameters than cortisol, which potentially could address an emotional component. In this study, blood samples of a total of 74 warmblood horses were used to establish reference values for plasma substance P (SP) concentrations. Moreover, 16 of these warmblood horses were included in a stress model. Four different stress levels (level 1: horses ridden with loose noseband, level 2: tight noseband, level 3: loose noseband and overground endoscope, level 4: tight noseband and overground endoscope) were applied to evaluate SP as a potential stress parameter in horses. Blood samples were taken at rest (t0) and directly after inducing stress (noseband tightening, insertion of endoscope; t1), as well as after 20 min of riding at all gaits (t2). A ridden horse ethogram was applied and showed that horses in the tight noseband group resorted to other stress-related behavioral issues than horses with loose nosebands. Serum cortisol showed a linear increase concurrent with the increase in stress levels with a significant difference between level 1 and level 4 (p = 0.043), proving that stress factors were adequate to evaluate the stress response, whereas SP did not show a correlation with the stress levels. Furthermore, concentrations of SP differed widely between horses but stayed within more narrow limits in the individual horse. As a conclusion, SP might not be a reliable stress parameter in horses in the applied minor stress model.
Collapse
Affiliation(s)
- Dominik Scholler
- Equine Hospital, Ludwig Maximilians University, 85764 Oberschleissheim, Germany
| | - Yury Zablotski
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig Maximilians University, 85764 Oberschleissheim, Germany
| | - Anna May
- Equine Hospital, Ludwig Maximilians University, 85764 Oberschleissheim, Germany
| |
Collapse
|
14
|
Hatcher KM, Costanza L, Kauffman AS, Stephens SBZ. The molecular phenotype of kisspeptin neurons in the medial amygdala of female mice. Front Endocrinol (Lausanne) 2023; 14:1093592. [PMID: 36843592 PMCID: PMC9951589 DOI: 10.3389/fendo.2023.1093592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023] Open
Abstract
Reproduction is regulated through the hypothalamic-pituitary-gonadal (HPG) axis, largely via the action of kisspeptin neurons in the hypothalamus. Importantly, Kiss1 neurons have been identified in other brain regions, including the medial amygdala (MeA). Though the MeA is implicated in regulating aspects of both reproductive physiology and behavior, as well as non-reproductive processes, the functional roles of MeA Kiss1 neurons are largely unknown. Additionally, besides their stimulation by estrogen, little is known about how MeA Kiss1 neurons are regulated. Using a RiboTag mouse model in conjunction with RNA-seq, we examined the molecular profile of MeA Kiss1 neurons to identify transcripts that are co-expressed in MeA Kiss1 neurons of female mice and whether these transcripts are modulated by estradiol (E2) treatment. RNA-seq identified >13,800 gene transcripts co-expressed in female MeA Kiss1 neurons, including genes for neuropeptides and receptors implicated in reproduction, metabolism, and other neuroendocrine functions. Of the >13,800 genes co-expressed in MeA Kiss1 neurons, only 45 genes demonstrated significantly different expression levels due to E2 treatment. Gene transcripts such as Kiss1, Gal, and Oxtr increased in response to E2 treatment, while fewer transcripts, such as Esr1 and Cyp26b1, were downregulated by E2. Dual RNAscope and immunohistochemistry was performed to validate co-expression of MeA Kiss1 with Cck and Cartpt. These results are the first to establish a profile of genes actively expressed by MeA Kiss1 neurons, including a subset of genes regulated by E2, which provides a useful foundation for future investigations into the regulation and function of MeA Kiss1 neurons.
Collapse
Affiliation(s)
- Katherine M. Hatcher
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Leah Costanza
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander S. Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Shannon B. Z. Stephens
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Vitorio AS, Reis-Silva LL, Barretto-de-Souza L, Gomes-de-Souza L, Crestani CC. Evaluation of the posterior insular cortex involvement in anxiogenic response to emotional stress in male rats: Functional topography along the rostrocaudal axis. Physiol Behav 2023; 258:114006. [PMID: 36341833 DOI: 10.1016/j.physbeh.2022.114006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
The insular cortex (IC) is engaged in behavioral and physiological responses to emotional stress. Control of physiological functions and behavioral responses has been reported to occur in a site-specific manner along the rostrocaudal axis of the IC. However, a functional topography of the IC regulation of anxiogenic responses caused by stress has never been evaluated. Therefore, we investigated the role of rostrocaudal subregions in the posterior IC in anxiogenic-like effect caused by exposure to acute restraint stress in male rats. For this, rats received bilateral microinjection of the non-selective synaptic inhibitor CoCl2 or vehicle into either the rostral, intermediate or caudal portions of the posterior IC before exposure to acute restraint stress. Then, behavior in the elevated plus maze (EPM) was evaluated immediately after restraint stress. The behavior of non-stressed animals in the EPM was also investigated. We observed that acute restraint stress decreased the exploration of the EPM open arms in animals treated with vehicle in all regions of the posterior IC, thus indicating an anxiogenic-like effect. The avoidance of the EPM open arms was completely inhibited in animals subjected to microinjection of CoCl2 into the intermediate posterior IC. Nevertheless, the same pharmacological treatment into either the rostral or caudal subregions of the posterior IC did not affect the restraint-evoked behavioral changes in the EPM. Taken together, these results suggest that regulation of anxiogenic-like effect to emotional stress along the rostrocaudal axis of the posterior IC might occur in a site-specific manner, indicating a role of the intermediate subregion.
Collapse
Affiliation(s)
- Alex S Vitorio
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Lilian L Reis-Silva
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
16
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
17
|
Ronca SE, Gunter SM, Kairis RB, Lino A, Romero J, Pautler RG, Nimmo A, Murray KO. A Potential Role for Substance P in West Nile Virus Neuropathogenesis. Viruses 2022; 14:v14091961. [PMID: 36146768 PMCID: PMC9503494 DOI: 10.3390/v14091961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Of individuals who develop West Nile neuroinvasive disease (WNND), ~10% will die and >40% will develop long-term complications. Current treatment recommendations solely focus on supportive care; therefore, we urgently need to identify novel and effective therapeutic options. We observed a correlation between substance P (SP), a key player in neuroinflammation, and its receptor Neurokinin-1 (NK1R). Our study in a wild-type BL6 mouse model found that SP is upregulated in the brain during infection, which correlated with neuroinvasion and damage to the blood−brain barrier. Blocking the SP/NK1R interaction beginning at disease onset modestly improved survival and prolonged time to death in a small pilot study. Although SP is significantly increased in the brain of untreated WNND mice when compared to mock-infected animals, levels of WNV are unchanged, indicating that SP likely does not play a role in viral replication but may mediate the immune response to infection. Additional studies are necessary to define if SP plays a mechanistic role or if it represents other mechanistic pathways.
Collapse
Affiliation(s)
- Shannon E. Ronca
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence: (S.E.R.); (K.O.M.)
| | - Sarah M. Gunter
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Rebecca Berry Kairis
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Allison Lino
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jonathan Romero
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Robia G. Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Alan Nimmo
- Centre for Molecular Therapeutics and College of Medicine and Dentistry, James Cook University, Cairns, QLD 4878, Australia
| | - Kristy O. Murray
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence: (S.E.R.); (K.O.M.)
| |
Collapse
|
18
|
Wu Y, Berisha A, Borniger JC. Neuropeptides in Cancer: Friend and Foe? Adv Biol (Weinh) 2022; 6:e2200111. [PMID: 35775608 DOI: 10.1002/adbi.202200111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Indexed: 01/28/2023]
Abstract
Neuropeptides are small regulatory molecules found throughout the body, most notably in the nervous, cardiovascular, and gastrointestinal systems. They serve as neurotransmitters or hormones in the regulation of diverse physiological processes. Cancer cells escape normal growth control mechanisms by altering their expression of growth factors, receptors, or intracellular signals, and neuropeptides have recently been recognized as mitogens in cancer growth and development. Many neuropeptides and their receptors exist in multiple subtypes, coupling with different downstream signaling pathways and playing distinct roles in cancer progression. The consideration of neuropeptide/receptor systems as anticancer targets is already leading to new biological and diagnostic knowledge that has the potential to enhance the understanding and treatment of cancer. In this review, recent discoveries regarding neuropeptides in a wide range of cancers, emphasizing their mechanisms of action, signaling cascades, regulation, and therapeutic potential, are discussed. Current technologies used to manipulate and analyze neuropeptides/receptors are described. Applications of neuropeptide analogs and their receptor inhibitors in translational studies and radio-oncology are rapidly increasing, and the possibility for their integration into therapeutic trials and clinical treatment appears promising.
Collapse
Affiliation(s)
- Yue Wu
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
19
|
Exploring the role of neuropeptides in depression and anxiety. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110478. [PMID: 34801611 DOI: 10.1016/j.pnpbp.2021.110478] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022]
Abstract
Depression is one of the most prevalent forms of mental disorders and is the most common cause of disability in the Western world. Besides, the harmful effects of stress-related mood disorders on the patients themselves, they challenge the health care system with enormous social and economic impacts. Due to the high proportion of patients not responding to existing drugs, finding new treatment strategies has become an important topic in neurobiology, and there is much evidence that neuropeptides are not only involved in the physiology of stress but may also be clinically important. Based on preclinical trial data, new neuropharmaceutical candidates may target neuropeptides and their receptors and are expected to be essential and valuable tools in the treatment of psychiatric disorders. In the current article, we have summarized data obtained from animal models of depressive disorder and transgenic mouse models. We also focus on previously published research data of clinical studies on corticotropin-releasing hormone (CRH), galanin (GAL), neuropeptide Y (NPY), neuropeptide S (NPS), Oxytocin (OXT), vasopressin (VP), cholecystokinin (CCK), and melanin-concentrating hormone (MCH) stress research fields.
Collapse
|
20
|
Salim C, Kan AK, Batsaikhan E, Patterson EC, Jee C. Neuropeptidergic regulation of compulsive ethanol seeking in C. elegans. Sci Rep 2022; 12:1804. [PMID: 35110557 PMCID: PMC8810865 DOI: 10.1038/s41598-022-05256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the catastrophic consequences of alcohol abuse, alcohol use disorders (AUD) and comorbidities continue to strain the healthcare system, largely due to the effects of alcohol-seeking behavior. An improved understanding of the molecular basis of alcohol seeking will lead to enriched treatments for these disorders. Compulsive alcohol seeking is characterized by an imbalance between the superior drive to consume alcohol and the disruption or erosion in control of alcohol use. To model the development of compulsive engagement in alcohol seeking, we simultaneously exploited two distinct and conflicting Caenorhabditis elegans behavioral programs, ethanol preference and avoidance of aversive stimulus. We demonstrate that the C. elegans model recapitulated the pivotal features of compulsive alcohol seeking in mammals, specifically repeated attempts, endurance, and finally aversion-resistant alcohol seeking. We found that neuropeptide signaling via SEB-3, a CRF receptor-like GPCR, facilitates the development of ethanol preference and compels animals to seek ethanol compulsively. Furthermore, our functional genomic approach and behavioral elucidation suggest that the SEB-3 regulates another neuropeptidergic signaling, the neurokinin receptor orthologue TKR-1, to facilitate compulsive ethanol-seeking behavior.
Collapse
Affiliation(s)
- Chinnu Salim
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Ann Ke Kan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Enkhzul Batsaikhan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - E Clare Patterson
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA.
| |
Collapse
|
21
|
Li B, Chang L, Peng X. Orexin 2 receptor in the nucleus accumbens is critical for the modulation of acute stress-induced anxiety. Psychoneuroendocrinology 2021; 131:105317. [PMID: 34111776 DOI: 10.1016/j.psyneuen.2021.105317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
Orexin is a neuropeptide mainly synthesized in the lateral hypothalamus/perifornical area and has been traditionally implicated in feeding, sleep-wake cycles, and reward. Intriguingly, patients with anxiety have increased levels of orexin in the cerebrospinal fluid. Pharmacological or genetic manipulation of orexin receptors affects anxiety-like behaviors in rodents, suggesting an involvement of the orexin signaling in the regulation of anxiety. Yet, the neural substrates involved remain largely unknown. The nucleus accumbens (NAc) shell holds a key position in the modulation of anxiety-related behaviors. Therefore, in the present study, by using neuropharmacology, molecular approaches and behavioral tests in rats, the role of orexin/orexin receptors in the NAc shell on the anxiety-like behaviors was investigated. We found that microinjection of orexin-A into the NAc shell induced an anxiogenic-like effect. Quantitative real-time PCR and immunofluorescence showed that the orexin 2 receptor (OX2R) is expressed and distributed in the NAc shell neurons. Activation of OX2R mimicked the anxiogenic effect of orexin-A. Moreover, infusion of an OX2R antagonist had no effect on anxiety-like behaviors in normal rats, but reversed anxiogenic effect induced by acute restraint stress. Finally, we found that downregulation of OX2R in the NAc shell caused an anxiolytic-like effect in acute restraint stressed rats, which was consistent with the pharmacological results. Together, this study suggests that OX2R in the NAc shell is involved in the regulation of acute stress-induced anxiety, and raises the possibility that OX2R antagonist may serve as an effective mean to treat anxiety disorders.
Collapse
Affiliation(s)
- Bin Li
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Leilei Chang
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaochun Peng
- School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Sah A, Kharitonova M, Mlyniec K. Neuronal correlates underlying the role of the zinc sensing receptor (GPR39) in passive-coping behaviour. Neuropharmacology 2021; 198:108752. [PMID: 34390690 DOI: 10.1016/j.neuropharm.2021.108752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 01/13/2023]
Abstract
The Zn2+ receptor GPR39 is proposed to be involved in the pathophysiology of depression. GPR39 knockout (KO) animals show depressive- and anxiety-like behaviour, and resistance to conventional monoamine-based antidepressants. However, it is unclear as to which brain regions are involved in the pro-depressive phenotype of GPR39KO mice and the resistance to monoamine-targeting antidepressant treatment. Our current study confirmed previous results, showing that mice lacking GPR39 display enhanced passive coping-like behaviour compared with their wild-type controls. Furthermore, this study shows for the first time that GPR39KO displayed aberrant challenge-induced neuronal activity in key brain regions associated with passive coping behaviour. Imipramine induced only a marginal reduction in the enhanced passive coping behaviour in GPR39KO mice, which was associated with attenuation of the hyperactive prefrontal cortex. Similarly, the aberrant activity within the amygdalar subregions was normalized following imipramine treatment in the GPR39KO mice, indicating that imipramine mediates these effects independently of GPR39 in the prefrontal cortex and amygdala. However, imipramine failed to modulate the aberrant brain activity in other brain regions, such as the anterior CA3 and the dentate gyrus, in GPR39KO mice. Normalization of aberrant activity in these areas has been shown previously to accompany successful behavioural effects of antidepressants. Taken together, our data suggest that monoamine-based antidepressants such as imipramine exert their action via GPR39-dependent and -independent pathways. Failure to modulate passive-coping related aberrant activity in important brain areas of the depression circuitry is proposed to mediate/contribute to the greatly reduced antidepressant action of monoamine-based antidepressants in GPR39KO mice.
Collapse
Affiliation(s)
- Anupam Sah
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Kharitonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020, Innsbruck, Austria
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| |
Collapse
|
23
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
24
|
Domi E, Domi A, Adermark L, Heilig M, Augier E. Neurobiology of alcohol seeking behavior. J Neurochem 2021; 157:1585-1614. [PMID: 33704789 DOI: 10.1111/jnc.15343] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Alcohol addiction is a chronic relapsing brain disease characterized by an impaired ability to stop or control alcohol use despite adverse consequences. A main challenge of addiction treatment is to prevent relapse, which occurs in more than >50% of newly abstinent patients with alcohol disorder within 3 months. In people suffering from alcohol addiction, stressful events, drug-associated cues and contexts, or re-exposure to a small amount of alcohol trigger a chain of behaviors that frequently culminates in relapse. In this review, we first present the preclinical models that were developed for the study of alcohol seeking behavior, namely the reinstatement model of alcohol relapse and compulsive alcohol seeking under a chained schedule of reinforcement. We then provide an overview of the neurobiological findings obtained using these animal models, focusing on the role of opioids systems, corticotropin-release hormone and neurokinins, followed by dopaminergic, glutamatergic, and GABAergic neurotransmissions in alcohol seeking behavior.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| |
Collapse
|
25
|
Inutsuka A, Ino D, Onaka T. Detection of neuropeptides in vivo and open questions for current and upcoming fluorescent sensors for neuropeptides. Peptides 2021; 136:170456. [PMID: 33245950 DOI: 10.1016/j.peptides.2020.170456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
During a stress response, various neuropeptides are secreted in a spatiotemporally coordinated way in the brain. For a precise understanding of peptide functions in a stress response, it is important to investigate when and where they are released, how they diffuse, and how they are broken down in the brain. In the past two decades, genetically encoded fluorescent calcium indicators have greatly advanced our knowledge of the functions of specific neuronal activity in regulation of behavioral changes and physiological responses during stress. In addition, various kinds of structural information on G-protein-coupled receptors (GPCRs) for neuropeptides have been revealed. Recently, genetically encoded fluorescent sensors have been developed for detection of neurotransmitters by making use of conformational changes induced by ligand binding. In this review, we summarize the recent and upcoming advances of techniques for detection of neuropeptides and then present several open questions that will be solved by application of recent or upcoming technical advances in detection of neuropeptides in vivo.
Collapse
Affiliation(s)
- Ayumu Inutsuka
- Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | - Daisuke Ino
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Tatsushi Onaka
- Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
26
|
Kokhan VS, Mariasina S, Pikalov VA, Abaimov DA, Somasundaram SG, Kirkland CE, Aliev G. Neurokinin-1 receptor antagonist reverses functional CNS alteration caused by combined γ-rays and carbon nuclei irradiation. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:278-289. [PMID: 33480350 DOI: 10.2174/1871527320666210122092330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ionizing radiation (IR) is one of the major limiting factors for human deep-space missions. Preventing IR-induced cognitive alterations in astronauts is a critical success factor. It has been shown that cognitive alterations in rodents can be inferred by alterations of a psycho-emotional balance, primarily an anxiogenic effect of IR. In our recent work we hypothesized that the neurokinin-1 (NK1) receptor may be instrumental for such alterations. OBJECTIVE The NK1 receptor antagonist rolapitant and the classic anxiolytic diazepam (as a comparison drug) were selected to test this hypothesis on Wistar rats. METHOD Pharmacological substances were administered through intragastric probes. We used a battery of tests for a comprehensive ethological analysis. A high-performance liquid chromatography was applied to quantify monoamines content. An analysis of mRNA expression was performed by real-time PCR. Protein content was studied by Western blotting technique. RESULTS Our salient finding includes no substantial changes in anxiety, locomotor activity and cognitive abilities of treated rats under irradiation. No differences were found in the content of monoamines. We discovered a synchronous effect on mRNA expression and protein content of 5-HT2a and 5-HT4 receptors in the prefrontal cortex, as well as decreased content of serotonin transporter and increased content of tryptophan hydroxylase in the hypothalamus of irradiated rats. Rolapitant affected the protein amount of a number of serotonin receptors in the amygdala of irradiated rats. CONCLUSION Rolapitant may be the first atypical radioprotector, providing symptomatic treatment of CNS functional disorders in astronauts caused by IR.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology, Moscow. Russian Federation
| | - Sofia Mariasina
- M.V. Lomonosov Moscow State University, Moscow. Russian Federation
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino. Russian Federation
| | | | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991. Russian Federation
| |
Collapse
|
27
|
Li B, Chang LL, Xi K. Neurotensin 1 receptor in the prelimbic cortex regulates anxiety-like behavior in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110011. [PMID: 32561375 DOI: 10.1016/j.pnpbp.2020.110011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/13/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
Abstract
The central neurotensin system has been implicated in reward, memory processes, also in the regulation of anxiety. However, the neural substrates where neurotensin acts to regulate anxiety have not been fully identified. The prelimbic region of medial prefrontal cortex (PrL) holds a key position in the modulation of anxiety-related behaviors and expresses neurotensin 1 receptor (NTS1). This study investigated the effects of activation or blockade of NTS1 in the PrL on anxiety-like behaviors of rats. Our results demonstrated that infusion of a selective NTS1 agonist or neurotensin into the PrL produced anxiogenic-like effects. Administration of a NTS1 antagonist into the PrL did not affect anxiety-like behaviors of normal rats, but attenuated anxiogenic effects induced by restraint stress. Moreover, we employed molecular approaches to downregulate the expression of NTS1 in the PrL, and found that downregulation of NTS1 in the PrL induced anxiolytic effects in restraint stress rats, also confirming the pharmacological results. Together, these findings suggest that NTS1 in the PrL is actively involved in the regulation of anxiety.
Collapse
Affiliation(s)
- Bin Li
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
| | - Lei-Lei Chang
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China
| | - Kang Xi
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| |
Collapse
|
28
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Kwon E, Jo YH. Activation of the ARC POMC→MeA Projection Reduces Food Intake. Front Neural Circuits 2020; 14:595783. [PMID: 33250721 PMCID: PMC7674918 DOI: 10.3389/fncir.2020.595783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) plays an essential role in the control of food intake and energy expenditure. Melanocortin-4 receptors (MC4Rs) are expressed in key areas that are implicated in regulating energy homeostasis. Although the importance of MC4Rs in the paraventricular hypothalamus (PVH) has been well documented, the role of MC4Rs in the medial amygdala (MeA) on feeding remains controversial. In this study, we specifically examine the role of a novel ARCPOMC→MeA neural circuit in the regulation of short-term food intake. To map a local melanocortinergic neural circuit, we use monosynaptic anterograde as well as retrograde viral tracers and perform double immunohistochemistry to determine the identity of the neurons receiving synaptic input from POMC neurons in the ARC. To investigate the role of the ARCPOMC→MeA projection on feeding, we optogenetically stimulate channelrhodopsin-2 (ChR2)-expressing POMC fibers in the MeA. Anterograde viral tracing studies reveal that ARC POMC neurons send axonal projections to estrogen receptor-α (ER-α)- and MC4R-expressing neurons in the MeA. Retrograde viral tracing experiments show that the neurons projecting to the MeA is located mainly in the lateral part of the ARC. Optogenetic stimulation of the ARCPOMC→MeA pathway reduces short-term food intake. This anorectic effect is blocked by treatment with the MC4R antagonist SHU9119. In addition to the melanocortinergic local circuits within the hypothalamus, this extrahypothalamic ARCPOMC→MeA neural circuit would play a role in regulating short-term food intake.
Collapse
Affiliation(s)
- Eunjin Kwon
- The Fleischer Institute for Diabetes and Metabolism, Bronx, NY, United States
- Division of Endocrinology, Department of Medicine, Bronx, NY, United States
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Bronx, NY, United States
- Division of Endocrinology, Department of Medicine, Bronx, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
30
|
Moreno-Santos B, Marchi-Coelho C, Costa-Ferreira W, Crestani CC. Angiotensinergic receptors in the medial amygdaloid nucleus differently modulate behavioral responses in the elevated plus-maze and forced swimming test in rats. Behav Brain Res 2020; 397:112947. [PMID: 33011187 DOI: 10.1016/j.bbr.2020.112947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
The brain renin-angiotensin system (RAS) has been implicated in anxiety and depression disorders, but the specific brain sites involved are poorly understood. The medial amygdaloid nucleus (MeA) is involved in expression of behavioral responses. However, despite evidence of the presence of all angiotensinergic receptors in this amygdaloid nucleus, regulation of anxiety- and depressive-like behaviors by angiotensinergic neurotransmissions within the MeA has never been reported. Thus, the present study aimed to investigate the role angiotensin II (AT1 and AT2 receptors) and angiotensin-(1-7) (Mas receptor) receptors present within the MeA in behavioral responses in the elevated plus-maze (EPM) and forced swimming test (FST). For this, male Wistar rats had cannula-guide bilaterally implanted into the MeA, and independent sets of animals received bilateral microinjections of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective Mas receptor antagonist A-779 or vehicle into the MeA before the EPM and FST. Treatment of the MeA with either PD123319 or A-779 decreased the EPM open arms exploration, while losartan did not affect behavioral responses in this apparatus. However, intra-MeA microinjection of losartan decreased immobility in the FST. Administration of either PD123319 or A-779 into the MeA did not affect the immobility during the FST, but changed the pattern of the active behaviors swimming and climbing. Altogether, these results indicate the presence of different angiotensinergic mechanisms within the MeA controlling behavioral responses in the FST and EPM.
Collapse
Affiliation(s)
- Beatriz Moreno-Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
31
|
Schank JR. Neurokinin receptors in drug and alcohol addiction. Brain Res 2020; 1734:146729. [PMID: 32067964 DOI: 10.1016/j.brainres.2020.146729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
The neurokinins are a class of peptide signaling molecules that mediate a range of central and peripheral functions including pain processing, gastrointestinal function, stress responses, and anxiety. Recent data have linked these neuropeptides with drug-related behaviors. Specifically, substance P (SP) and neurokinin B (NKB), have been shown to influence responses to alcohol, cocaine, and/or opiate drugs. SP and NKB preferentially bind to the neurokinin-1 receptor (NK1R) and neurokinin-3 receptor (NK3R), respectively, but do have some affinity for all classes of neurokinin receptor at high concentrations. NK1R activity has been shown to influence reward and reinforcement for opiate drugs, stimulatory and neurochemical responses to cocaine, and escalated and stress-induced alcohol seeking. In reinstatement models of relapse-like behavior, NK1R antagonism attenuates stress-induced reinstatement for all classes of drugs tested to date. The NK3R also influences alcohol intake and behavioral/neurochemical responses to cocaine, but less research has been performed in regard to this particular receptor in preclinical models of addiction. Clinically, agents targeting these receptors have shown some promise, but have produced mixed results. Here, the preclinical findings for the NK1R and NK3R are reviewed, and discussion is provided to interpret clinical findings. Additionally, important factors to consider in regards to future clinical work are suggested.
Collapse
Affiliation(s)
- Jesse R Schank
- University of Georgia, Department of Physiology and Pharmacology, 501 DW Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
32
|
Iftikhar K, Siddiq A, Baig SG, Zehra S. Substance P: A neuropeptide involved in the psychopathology of anxiety disorders. Neuropeptides 2020; 79:101993. [PMID: 31735376 DOI: 10.1016/j.npep.2019.101993] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/19/2022]
Abstract
Substance P (SP) is the most widely distributed neuropeptide in central nervous system (CNS) where it participates in numerous physiological and pathophysiological processes including stress and anxiety related behaviors. In line with this notion, brain areas that are thought to be involved in anxiety regulation contains SP and its specific NK1 receptors. SP concentration in different brain regions alters with the exposure of stressful stimulus and affected NK1 receptor binding is observed. SP is released in response to a stressor, which produces anxiogenic effects via activation of hypothalamic-pituitary-adrenal (HPA) axis, resulting in the liberation of cortisol. Moreover, SP is also involved in the activation of the sympathetic nervous system via stimulation of locus coeruleus (LC). This sympathetic surge initiates cortisol discharge by activation of HPA axis, representing the indirect anxiogenic effect of SP. Besides the aforementioned regions, SP also has an impact on other brain regions known to be involved in stress and anxiety mechanisms, including amygdala, lateral septum (LS), periaqueductal gray (PAG), ventromedial nucleus of the hypothalamus (VMH), and bed nucleus of stria terminalis (BNST). Thus, SP acts as an important neuromodulator in various brain regions in stress and anxiety response. Consistent with the above statement, SP makes a robust link in the psychopathology of anxiety disorders. As SP concentration is found elevated in stressed conditions, several studies have reported that the pharmacological antagonism or genetic depletion of NK-1 receptors results in the anxiolytic response making them a suitable therapeutic target for the treatment of stress and anxiety related disorders.
Collapse
Affiliation(s)
- Kanwal Iftikhar
- Hussain Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan.
| | - Afshan Siddiq
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
| | - Sadia Ghousia Baig
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
| | - Sumbul Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
33
|
Cannizzaro E, Cirrincione L, Mazzucco W, Scorciapino A, Catalano C, Ramaci T, Ledda C, Plescia F. Night-Time Shift Work and Related Stress Responses: A Study on Security Guards. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020562. [PMID: 31952337 PMCID: PMC7013811 DOI: 10.3390/ijerph17020562] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Work-related stress can induce a break in homeostasis by placing demands on the body that are met by the activation of two different systems, the hypothalamic–pituitary–adrenal axis and the sympathetic nervous system. Night-shift work alters the body’s exposure to the natural light–dark schedule and disrupts circadian (daily) rhythms. The greatest effect of night-shift work is the disruption of circadian rhythms. The impact that these disruptions may have on the pathogenesis of many diseases, including cancer, is unknown. This study aims to discover the relationship among three different job activities of security guards and their stress-related responses by evaluating salivary cortisol levels and blood pressure. Methods: Ninety security guards, including night-time workers and night-time and daily-shift workers, were recruited for this study. Each security guard provided two saliva samples before and after three scheduled time points: (i) at 22:00, (ii) at 06:30, and (iii) at 14:00. Results: The results of the study showed a significant alteration in cortisol levels. Night-time shift cortisol levels significantly increased before and after the work shifts. A physiological prevalence of the vagal tone on the cardiocirculatory activity was found during night-shift work. Conclusions: This study indicates that cortisol levels and blood pressure are sensitive markers of biological responses to severe work stress. Shift-change consequences may occur at the end of the night shift when there is a significant increase in the cortisol level and a significant variation in cardiovascular parameters.
Collapse
Affiliation(s)
- Emanuele Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, via del Vespro 133, 90127 Palermo, Italy; (L.C.); (W.M.); (F.P.)
- Correspondence: ; Tel.: +39-091-6555812
| | - Luigi Cirrincione
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, via del Vespro 133, 90127 Palermo, Italy; (L.C.); (W.M.); (F.P.)
| | - Walter Mazzucco
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, via del Vespro 133, 90127 Palermo, Italy; (L.C.); (W.M.); (F.P.)
| | - Alessandro Scorciapino
- Department of Prevention, Area of Protection and Safety in the Workplace, Provincial Health Authority, 95124 Catania, Italy; (A.S.); (C.C.)
| | - Cesare Catalano
- Department of Prevention, Area of Protection and Safety in the Workplace, Provincial Health Authority, 95124 Catania, Italy; (A.S.); (C.C.)
| | - Tiziana Ramaci
- Faculty of Human and Social Sciences, Kore University of Enna, 94100 Enna, Italy;
| | - Caterina Ledda
- Clinical Pathology, ARNAS “Garibaldi”, 95123 Catania, Italy;
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, via del Vespro 133, 90127 Palermo, Italy; (L.C.); (W.M.); (F.P.)
| |
Collapse
|
34
|
Ogawa S, Ramadasan PN, Anthonysamy R, Parhar IS. Sexual Dimorphic Distribution of Hypothalamic Tachykinin1 Cells and Their Innervations to GnRH Neurons in the Zebrafish. Front Endocrinol (Lausanne) 2020; 11:534343. [PMID: 33763023 PMCID: PMC7982876 DOI: 10.3389/fendo.2020.534343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023] Open
Abstract
Substance P (SP) and neurokinin A (NKA), encoded by TAC1/Tac1 gene are members of the tachykinin family, which exert their neuromodulatory roles in vertebrate reproduction. In mammals, SP and NKA have been shown to regulate gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion via kisspeptin neurons. On the other hand, the role of SP/NKA in the regulation of reproduction in non-mammalian vertebrates is not well known. In the present study, we first localized expression of tac1 mRNA in the brain of male and female zebrafish, Danio rerio. Next, using an antibody against zebrafish tachykinin1 (Tac1), we examined the neural association of SP/NKA neural processes with GnRH3 neurons, and with kisspeptin (kiss2) neurons, in the brains of male and female zebrafish. In situ hybridization showed an apparent male-dominant tac1 expression in the ventral telencephalic area, the anterior and posterior parts of the parvocellular preoptic nucleus, and the suprachiasmatic nucleus. On the other hand, there was female-dominant tac1 expression in the ventral periventricular hypothalamus. Confocal images of double-labeled zebrafish Tac1 and GnRH3 showed associations between Tac1-immunoreactive processes and GnRH3 neurons in the ventral telencephalic area. In contrast, there was no apparent proximity of Tac1 processes to kiss2 mRNA-expressing neurons in the hypothalamus. Lastly, to elucidate possible direct action of SP/NKA on GnRH3 or Kiss2 neurons, expression of SP/NKA receptor, tacr1a mRNA was examined in regions containing GnRH3 or Kiss2 neurons by in situ hybridization. Expression of tacr1a mRNA was seen in several brain regions including the olfactory bulb, preoptic area and hypothalamus, where GnRH3 and Kiss2 cells are present. These results suggest that unlike in mammals, Tac1 may be involved in male reproductive functions via direct action on GnRH3 neurons but independent of kisspeptin in the zebrafish.
Collapse
|
35
|
Grigorova OV, Akhapkin RV, Aleksandrovsky YA. [Modern concepts of pathogenetic therapy of anxiety disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:111-120. [PMID: 31793552 DOI: 10.17116/jnevro2019119101111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The high prevalence of anxiety disorders around the world leads to a high interest in the study of anxiety. At the moment, a lot of knowledge about the pathogenesis and therapy of anxiety disorders has been accumulated, which is well covered in modern domestic and world medical literature. It is known that many areas of the brain are involved in the modulation of anxiety, among which the amygdala is considered the key in the modulation of anxiety and fear. A large body of evidence supports the involvement of different neurotransmitter systems in the processes of anxiogenesis-anxiolysis (GABA, monoamines, glutamate, neuropeptides, neurosteroids). This article provides an analysis of methods of pharmacological impact on each of these systems, which serve to optimize the already known strategies of anxiolytic therapy.
Collapse
Affiliation(s)
- O V Grigorova
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - R V Akhapkin
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Yu A Aleksandrovsky
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
36
|
Rodríguez B, Nani JV, Almeida PGC, Brietzke E, Lee RS, Hayashi MAF. Neuropeptides and oligopeptidases in schizophrenia. Neurosci Biobehav Rev 2019; 108:679-693. [PMID: 31794779 DOI: 10.1016/j.neubiorev.2019.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with severe impact on patient's livelihood. In the last years, the importance of neuropeptides in SCZ and other CNS disorders has been recognized, mainly due to their ability to modulate the signaling of classical monoaminergic neurotransmitters as dopamine. In addition, a class of enzymes coined as oligopeptidases are able to cleave several of these neuropeptides, and their potential implication in SCZ was also demonstrated. Interestingly, these enzymes are able to play roles as modulators of neuropeptidergic systems, and they were also implicated in neurogenesis, neurite outgrowth, neuron migration, and therefore, in neurodevelopment and brain formation. Altered activity of oligopeptidases in SCZ was described only more recently, suggesting their possible utility as biomarkers for mental disorders diagnosis or treatment response. We provide here an updated and comprehensive review on neuropeptides and oligopeptidases involved in mental disorders, aiming to attract the attention of physicians to the potential of targeting this system for improving the therapy and for understanding the neurobiology underlying mental disorders as SCZ.
Collapse
Affiliation(s)
- Benjamín Rodríguez
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Priscila G C Almeida
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Richard S Lee
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
37
|
Lovelock DF, Deak T. Acute stress imposed during adolescence yields heightened anxiety in Sprague Dawley rats that persists into adulthood: Sex differences and potential involvement of the Medial Amygdala. Brain Res 2019; 1723:146392. [PMID: 31446016 DOI: 10.1016/j.brainres.2019.146392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022]
Abstract
Stressors experienced during adolescence have been demonstrated to have a long-lasting influence on affective behavior in adulthood. Notably, most studies to date have found these outcomes after chronic stress during adolescence. In the present study we tested how exposure to a single episode of acute footshock during early adolescence would modify subsequent adult anxiety- and depressive-like behaviors in male and female Sprague-Dawley rats. Adolescent rats were exposed to inescapable footshock (80 shocks, 5 s, 1.0 mA, 90 sec variable inter-trial interval (ITI)) at Post-natal day (PND) 29-30 and remained undisturbed until adulthood where they were evaluated with several behavioral assays for anxiety as well as depressive-like behavior via forced swim. In addition, gene expression changes were assessed immediately after a 30 min forced swim challenge in adulthood among several stress-related brain regions including the Central Amygdala (CeA), Medial Amygdala (MeA), ventral Hippocampus (vHPC), and Paraventricular Nucleus (PVN). Studies used real-time RT-PCR to examine the cytokines Interleukin-1β (IL-1β) and Interleukin-6 (IL-6), corticotropin-releasing hormone (CRH), the immediate early genes c-Fos, c-Jun, Egr1 and Arc, and several genes relating to corticosteroid receptor function (glucocorticoid and mineralocorticoid receptor (GR and MR, respectively), Gilz (glucocorticoid-induced leucine zipper), Sgk1 (Serum and Glucocorticoid regulated Kinase 1)). Behaviorally, males displayed signs of increased anxiety, most notably in the light-dark box, whereas females did not. No notable depressive-like behavior was observed in forced swim as a result of adolescent stress history, but adolescent footshock exacerbated the c-Fos response in the MeA produced by swim in both sexes. Forced swim led to increased IL-1β expression in the PVN regardless of adolescent stress history, whereas most HPA (hypothalamic-pituitaryadrenal) axis-related genes were largely unaffected in the vHPC. To determine the potential for β-adrenergic receptors to contribute to the male-specific anxiety-like behavior, two further studies applied a β-adrenergic agonist (isoproterenol) or antagonist (propranolol) in male rats. These studies found that propranolol administered 2 h after footshock led to a reduction in some anxiety-like behaviors as compared to controls. Overall, these findings suggest that exposure to a single, intense stress challenge imposed during adolescence may have sex-specific consequences across the lifespan and may implicate the MeA in developmental plasticity.
Collapse
Affiliation(s)
- Dennis F Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
38
|
Escalated Alcohol Self-Administration and Sensitivity to Yohimbine-Induced Reinstatement in Alcohol Preferring Rats: Potential Role of Neurokinin-1 Receptors in the Amygdala. Neuroscience 2019; 413:77-85. [PMID: 31242442 DOI: 10.1016/j.neuroscience.2019.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 06/15/2019] [Indexed: 12/16/2022]
Abstract
Genetic factors significantly contribute to the risk for developing alcoholism. To study these factors and other associated phenotypes, rodent lines have been developed using selective breeding for high alcohol preference. One of these models, the alcohol preferring (P) rat, has been used in hundreds of preclinical studies over the last few decades. However, very few studies have examined relapse-like behavior in this rat strain. In this study, we used operant self-administration and yohimbine-induced reinstatement models to examine relapse-like behavior in P rats. Our previous work has demonstrated that P rats show increased expression of the neurokinin-1 receptor (NK1R) in the central nucleus of the amygdala (CeA), and this functionally contributes to escalated alcohol consumption in this strain. We hypothesized that P rats would show increased sensitivity to yohimbine-induced reinstatement that is also mediated by NK1R in the CeA. Using Fos staining, site-specific infusion of NK1R antagonist, and viral vector overexpression, we examined the influence of NK1R on the sensitivity to yohimbine-induced reinstatement of alcohol seeking. We found that P rats displayed increased sensitivity to yohimbine-induced reinstatement as well as increased neuronal activation in the CeA after yohimbine injection compared to the control Wistar strain. Intra-CeA infusion of NK1R antagonist attenuates yohimbine-induced reinstatement in P rats. Conversely, upregulation of NK1R within the CeA of Wistar rats increases alcohol consumption and sensitivity to yohimbine-induced reinstatement. These findings suggest that NK1R upregulation in the CeA contributes to multiple alcohol-related phenotypes in the P rat, including alcohol consumption and sensitivity to relapse.
Collapse
|
39
|
Psycho-emotional status but not cognition is changed under the combined effect of ionizing radiations at doses related to deep space missions. Behav Brain Res 2019; 362:311-318. [DOI: 10.1016/j.bbr.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/14/2022]
|
40
|
Won E, Han KM, Kim A, Lee MS, Kim YK, Chang HS, Ham BJ. The associations of TAC1 gene polymorphisms with major depressive disorder. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Zelikowsky M, Hui M, Karigo T, Choe A, Yang B, Blanco MR, Beadle K, Gradinaru V, Deverman BE, Anderson DJ. The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress. Cell 2019; 173:1265-1279.e19. [PMID: 29775595 DOI: 10.1016/j.cell.2018.03.037] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/29/2018] [Accepted: 03/15/2018] [Indexed: 01/06/2023]
Abstract
Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.
Collapse
Affiliation(s)
- Moriel Zelikowsky
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | - May Hui
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomomi Karigo
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Choe
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bin Yang
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Keith Beadle
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - David J Anderson
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
42
|
Nyman M, Eskola O, Kajander J, Jokinen R, Penttinen J, Karjalainen T, Nummenmaa L, Hirvonen J, Burns D, Hargreaves R, Solin O, Hietala J. Brain neurokinin-1 receptor availability in never-medicated patients with major depression - A pilot study. J Affect Disord 2019; 242:188-194. [PMID: 30193189 DOI: 10.1016/j.jad.2018.08.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Neurotransmitter substance P (SP) and its preferred neurokinin-1 receptor (NK1R) have been implicated in the treatment of affective and addiction disorders. Despite promising preclinical data on antidepressant action, the clinical trials of NK1R antagonists in major depression have been disappointing. There are no direct in vivo imaging studies on NK1R characteristics in patients with a major depressive disorder (MDD). METHODS In this cross-sectional case-control study, we recruited nine never-medicated patients with moderate to severe MDD and nine matched healthy controls. NK1R availability (NK1R binding potential, BPND) was measured with in vivo 3-D positron emission tomography and a specific NK1 receptor tracer [18F]SPA-RQ. Clinical symptoms were assessed with the 17-item Hamilton Rating Scale for Depression (HAM-D17). RESULTS NK1R-BPND did not differ statistically significantly between patients with MDD and healthy controls. HAM-D17 total scores (range 21-32) correlated positively with NK1R-BPND in cortical and limbic areas. HAM-D17 subscale score for anxiety symptoms correlated positively with NK1R-BPND in specific brain areas implicated in fear and anxiety. LIMITATIONS Small sample size. Low variability in the clinical HAM-D subscale ratings may affect the observed correlations. CONCLUSIONS Our preliminary results do not support a different baseline expression of NK1Rs in a representative sample of never-medicated patients with MDD during a current moderate/severe depressive episode. The modulatory effect of NK1Rs on affective symptoms is in line with early positive results on antidepressant action of NK1 antagonists. However, the effect is likely to be too weak for treatment of MDD with NK1R antagonists alone in clinical practice.
Collapse
Affiliation(s)
- Mikko Nyman
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Eskola
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Turku, Finland
| | - Jaana Kajander
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland
| | - Riitta Jokinen
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Jukka Penttinen
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | - Jussi Hirvonen
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Donald Burns
- Imaging Research, Merck Research Laboratories, West Point, PA, USA
| | | | - Olof Solin
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
43
|
Hoppe JM, Frick A, Åhs F, Linnman C, Appel L, Jonasson M, Lubberink M, Långström B, Frans Ö, von Knorring L, Fredrikson M, Furmark T. Association between amygdala neurokinin-1 receptor availability and anxiety-related personality traits. Transl Psychiatry 2018; 8:168. [PMID: 30154470 PMCID: PMC6113290 DOI: 10.1038/s41398-018-0163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/30/2018] [Accepted: 04/13/2018] [Indexed: 02/08/2023] Open
Abstract
Animal studies indicate that substance P (SP) and its preferred neurokinin-1 (NK1) receptor modulate stress and anxiety-related behavior. Alterations in the SP-NK1 system have also been observed in human anxiety disorders, yet little is known about the relation between this system and individual differences in personality traits associated with anxiety propensity and approach-avoidance behavior, including trait anxiety, neuroticism, and extraversion. Exploring this relation could provide important insights into the neurobiological underpinnings of human anxiety and the etiology of anxiety disorders, as anxious traits are associated with increased susceptibility to develop psychopathological conditions. Here we examined the relationship between central NK1 receptor availability and self-rated measures of trait anxiety, neuroticism, and extraversion. The amygdala was chosen as the primary region of interest since this structure has been suggested to mediate the effect of the SP-NK1 system on anxiety. Anxious traits and NK1 receptor availability, determined with positron emission tomography and the radiotracer [11C]GR205171, were measured in 17 healthy individuals. Voxel-wise analyses showed a significant positive correlation between bilateral amygdala NK1 receptor availability and trait anxiety, and a trend in similar direction was observed for neuroticism. Conversely, extraversion was found to be negatively associated with amygdala NK1 receptor availability. Extraversion also correlated negatively with the NK1 measure in the cuneus/precuneus and fusiform gyrus according to exploratory whole-brain analyses. In conclusion, our findings indicate that amygdala NK1 receptor availability is associated with anxiety-related personality traits in healthy subjects, consistent with a modulatory role for the SP-NK1 system in human anxiety.
Collapse
Affiliation(s)
- Johanna M. Hoppe
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden
| | - Andreas Frick
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden ,0000 0004 1936 9377grid.10548.38Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Fredrik Åhs
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden ,0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Clas Linnman
- 000000041936754Xgrid.38142.3cDepartment of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, and Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Lieuwe Appel
- 0000 0004 1936 9457grid.8993.bNuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - My Jonasson
- 0000 0004 1936 9457grid.8993.bNuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,0000 0001 2351 3333grid.412354.5Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Mark Lubberink
- 0000 0004 1936 9457grid.8993.bNuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,0000 0001 2351 3333grid.412354.5Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Bengt Långström
- 0000 0004 1936 9457grid.8993.bDepartment of Chemistry, Uppsala University, Uppsala, Sweden
| | - Örjan Frans
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden
| | - Lars von Knorring
- 0000 0004 1936 9457grid.8993.bDepartment of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Mats Fredrikson
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden ,0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Furmark
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Cellular and behavioral effects of lipopolysaccharide treatment are dependent upon neurokinin-1 receptor activation. J Neuroinflammation 2018; 15:60. [PMID: 29486768 PMCID: PMC6389133 DOI: 10.1186/s12974-018-1098-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Several psychiatric conditions are affected by neuroinflammation and neuroimmune activation. The transcription factor nuclear factor kappa light-chain-enhancer of activated B cells (NFkB) plays a major role in inflammation and innate immunity. The neurokinin-1 receptor (NK1R) is the primary endogenous target of the neuroactive peptide substance P, and some data suggests that NK1R stimulation may influence NFkB activity. Both NK1R and NFkB have been shown to play a functional role in complex behaviors including stress responsivity, depression, and addiction. In this study, we test whether NFkB activity in the brain (stimulated by lipopolysaccharide administration) is dependent upon the NK1R. Methods Adult male Wistar rats were treated systemically with the NK1R antagonist L822429 followed by administration of systemic lipopolysaccharide (LPS, a strong activator of NFkB). Hippocampal extracts were used to assess expression of proinflammatory cytokines and NFkB-DNA-binding potential. For behavioral studies, rats were trained to consume 1% (w/v) sucrose solution in a continuous access two-bottle choice model. After establishment of baseline, animals were treated with L822429 and LPS and sucrose preference was measured 12 h post-treatment. Results Systemic LPS treatment causes a significant increase in proinflammatory cytokine expression and NFkB-DNA-binding activity within the hippocampus. These increases are attenuated by systemic pretreatment with the NK1R antagonist L822429. Systemic LPS treatment also led to the development of anhedonic-like behavior, evidenced by decreased sucrose intake in the sucrose preference test. This behavior was significantly attenuated by systemic pretreatment with the NK1R antagonist L822429. Conclusions Systemic LPS treatment induced significant increases in NFkB activity, evidenced by increased NFkB-DNA binding and by increased proinflammatory cytokine expression in the hippocampus. LPS also induced anhedonic-like behavior. Both the molecular and behavioral effects of LPS treatment were significantly attenuated by systemic NK1R antagonism, suggesting that NK1R stimulation lies upstream of NFkB activation following systemic LPS administration and is at least in part responsible for NFkB activation.
Collapse
|
45
|
Carvalho MC, Veloni AC, Genaro K, Brandão ML. Behavioral sensitization induced by dorsal periaqueductal gray electrical stimulation is counteracted by NK1 receptor antagonism in the ventral hippocampus and central nucleus of the amygdala. Neurobiol Learn Mem 2018. [PMID: 29519453 DOI: 10.1016/j.nlm.2018.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A single threatening experience may change the behavior of an animal in a long-lasting way and elicit generalized behavioral responses to a novel threatening situation that is unrelated to the original aversive experience. Electrical stimulation (ES) of the dorsal periaqueductal gray (dPAG) produces a range of defensive reactions, characterized by freezing, escape, and post-stimulation freezing (PSF). The latter reflects the processing of ascending aversive information to prosencephalic structures, including the central nucleus of the amygdala (CeA), which allows the animal to evaluate the consequences of the aversive situation. This process is modulated by substance P (SP) and its preferred receptor, neurokinin 1 (NK1). The ventral hippocampus (VH) has been associated with the processing of aversive information and expression of emotional reactions with negative valence, but the participation of the VH in the expression of these defensive responses has not been investigated. The VH is rich in NK1 receptor expression and has a high density of SP-containing fibers. The present study examined the role of NK1 receptors in the VH in the expression of defensive responses and behavioral sensitization that were induced by dPAG-ES. Rats were implanted with an electrode in the dPAG for ES, and a cannula was implanted in the VH or CeA for injections of vehicle (phosphate-buffered saline) or the NK1 receptor antagonist spantide (100 pmol/0.2 μL. Spantide reduced the duration of PSF that was evoked by dPAG-ES, without changing the aversive freezing or escape thresholds. One and 7 days later, exploratory behavior was evaluated in independent groups of rats in the elevated plus maze (EPM). dPAG-ES in rats that received vehicle caused higher aversion to the open arms of the EPM compared with rats that did not receive dPAG stimulation at both time intervals. Injections of spantide in the VH or CeA prevented the proaversive effects of dPAG-ES in the EPM only 1 day later. These findings suggest that NK1 receptors are activated in both the VH and CeA during the processing of aversive information that derives from dPAG-ES. As previously shown for the CeA, SP/NK1 receptors in the VH are recruited during PSF that is evoked by dPAG-ES, suggesting that a 24-h time window is susceptible to interventions with NK1 antagonists that block the passage of aversive information from the dPAG to higher brain areas.
Collapse
Affiliation(s)
- M C Carvalho
- Departamento de Psicologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil.
| | - A C Veloni
- Departamento de Psicologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | - K Genaro
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil
| | - M L Brandão
- Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil
| |
Collapse
|
46
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
47
|
Estrada CM, Ghisays V, Nguyen ET, Caldwell JL, Streicher J, Solomon MB. Estrogen signaling in the medial amygdala decreases emotional stress responses and obesity in ovariectomized rats. Horm Behav 2018; 98:33-44. [PMID: 29248436 DOI: 10.1016/j.yhbeh.2017.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/01/2017] [Accepted: 12/09/2017] [Indexed: 12/15/2022]
Abstract
Declining estradiol (E2), as occurs during menopause, increases risk for obesity and psychopathology (i.e., depression, anxiety). E2 modulates mood and energy homeostasis via binding to estrogen receptors (ER) in the brain. The often comorbid and bidirectional relationship between mood and metabolic disorders suggests shared hormonal and/or brain networks. The medial amygdala (MeA) is abundant in ERs and regulates mood, endocrine, and metabolic stress responses; therefore we tested the hypothesis that E2 in the MeA mitigates emotional and metabolic dysfunction in a rodent model of surgical menopause. Adult female rats were ovariectomized (OVX) and received bilateral implants of E2 or cholesterol micropellets aimed at the MeA. E2-MeA decreased anxiety-like (center entries, center time) and depression-like (immobility) behaviors in the open field and forced swim tests (FST), respectively in ovariectomized rats. E2-MeA also prevented hyperphagia, body weight gain, increased visceral adiposity, and glucose intolerance in ovariectomized rats. E2-MeA decreased caloric efficiency, suggestive of increased energy expenditure. E2-MeA also modulated c-Fos neural activity in amygdalar (central and medial) and hypothalamic (paraventricular and arcuate) brain regions that regulate mood and energy homeostasis in response to the FST, a physically demanding task. Given the shared neural circuitry between mood and body weight regulation, c-Fos expression in discrete brain regions in response to the FST may be due to the psychologically stressful and/or metabolic demands of the task. Together, these findings suggest that the MeA is a critical node for mediating estrogenic effects on mood and energy homeostasis.
Collapse
Affiliation(s)
- Christina M Estrada
- Department of Psychology Experimental Psychology Program, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Valentina Ghisays
- Department of Psychology Experimental Psychology Program, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Elizabeth T Nguyen
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Jody L Caldwell
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Joshua Streicher
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Matia B Solomon
- Department of Psychology Experimental Psychology Program, University of Cincinnati, Cincinnati, OH 45237, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45237, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States.
| |
Collapse
|
48
|
Substance P signalling in primary motor cortex facilitates motor learning in rats. PLoS One 2017; 12:e0189812. [PMID: 29281692 PMCID: PMC5744944 DOI: 10.1371/journal.pone.0189812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/01/2017] [Indexed: 01/17/2023] Open
Abstract
Among the genes that are up-regulated in response to a reaching training in rats, Tachykinin 1 (Tac1)-a gene that encodes the neuropeptide Substance P (Sub P)-shows an especially strong expression. Using Real-Time RT-PCR, a detailed time-course of Tac1 expression could be defined: a significant peak occurs 7 hours after training ended at the first and second training session, whereas no up-regulation could be detected at a later time-point (sixth training session). To assess the physiological role of Sub P during movement acquisition, microinjections into the primary motor cortex (M1) contralateral to the trained paw were performed. When Sub P was injected before the first three sessions of a reaching training, effectiveness of motor learning became significantly increased. Injections at a time-point when rats already knew the task (i.e. training session ten and eleven) had no effect on reaching performance. Sub P injections did not influence the improvement of performance within a single training session, but retention of performance between sessions became strengthened at a very early stage (i.e. between baseline-training and first training session). Thus, Sub P facilitates motor learning in the very early phase of skill acquisition by supporting memory consolidation. In line with these findings, learning related expression of the precursor Tac1 occurs at early but not at later time-points during reaching training.
Collapse
|
49
|
The association between substance P and white matter integrity in medication-naive patients with major depressive disorder. Sci Rep 2017; 7:9707. [PMID: 28852030 PMCID: PMC5575350 DOI: 10.1038/s41598-017-10100-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/28/2017] [Indexed: 01/06/2023] Open
Abstract
Substance P (SP) has been implicated in major depressive disorder (MDD), with SP antagonists being studied as potential antidepressants. Although impaired neural plasticity is considered a key mechanism in MDD pathophysiology, the association between SP and brain structural changes in depression has not been investigated. We investigated the correlations between SP levels and white matter (WM) integrity in 42 medication-naive patients with MDD and 57 healthy controls (HCs). Plasma levels of SP were determined, and diffusion tensor imaging (DTI) was performed to investigate microstructural changes in WM tracts. In patients, negative correlations between SP levels and fractional anisotropy (FA) values of the forceps minor of the corpus callosum, and positive correlations between SP levels and radial diffusivity (RD) and mean diffusivity (MD) values of the right corticospinal tract (CST) were observed, with no significant correlations in HCs. Linear regression analyses showed SP levels to significantly predict FA values of the forceps minor, and RD and MD values of the right CST in patients, but not in HCs. We consider our findings to contribute to the neurobiological evidence on the association between SP and brain structural changes in depression, which may be related with the pathophysiology and treatment of MDD.
Collapse
|
50
|
Nennig SE, Schank JR. The Role of NFkB in Drug Addiction: Beyond Inflammation. Alcohol Alcohol 2017; 52:172-179. [PMID: 28043969 DOI: 10.1093/alcalc/agw098] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
Aims Nuclear factor kappa light chain enhancer of activated B cells (NFkB) is a ubiquitous transcription factor well known for its role in the innate immune response. As such, NFkB is a transcriptional activator of inflammatory mediators such as cytokines. It has recently been demonstrated that alcohol and other drugs of abuse can induce NFkB activity and cytokine expression in the brain. A number of reviews have been published highlighting this effect of alcohol, and have linked increased NFkB function to neuroimmune-stimulated toxicity. However, in this review we focus on the potentially non-immune functions of NFkB as possible links between NFkB and addiction. Methods An extensive review of the literature via Pubmed searches was used to assess the current state of the field. Results NFkB can induce the expression of a diverse set of gene targets besides inflammatory mediators, some of which are involved in addictive processes, such as opioid receptors and neuropeptides. NFkB mediates complex behaviors including learning and memory, stress responses, anhedonia and drug reward, processes that may lie outside the role of NFkB in the classic neuroimmune response. Conclusions Future studies should focus on these non-immune functions of NFkB signaling and their association with addiction-related processes.
Collapse
Affiliation(s)
- S E Nennig
- Department of Physiology and Pharmacology, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - J R Schank
- Department of Physiology and Pharmacology, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|