1
|
Horvath M, Yang R, Castaneda DC, Callender M, Aiken ES, Voigt AY, Caldwell R, Fachi J, Di Luccia B, Scholar Z, Yu P, Salner A, Colonna M, Palucka K, Oh J. Species- and strain-specific microbial modulation of interferon, innate immunity, and epithelial barrier in 2D air-liquid interface respiratory epithelial cultures. BMC Biol 2025; 23:28. [PMID: 39875977 PMCID: PMC11776145 DOI: 10.1186/s12915-025-02129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The microbiome regulates the respiratory epithelium's immunomodulatory functions. To explore how the microbiome's biodiversity affects microbe-epithelial interactions, we screened 58 phylogenetically diverse microbes for their transcriptomic effect on human primary bronchial air-liquid interface (ALI) cell cultures. RESULTS We found distinct species- and strain-level differences in host innate immunity and epithelial barrier response. Strikingly, we found that host interferon, an antiviral response, was one of the most variable host processes. This variability was not driven by microbial phylogenetic diversity, bioburden, nor by the microbe's ability to stimulate other innate immunity pathways. CONCLUSIONS Microbial colonization differentially stimulates host gene expression with variations observed across phylogenetically diverse microbes and across different strains of the same species. Our study provides a foundation for understanding how the respiratory microbiome's biodiversity affects epithelial, and particularly antiviral, innate immunity.
Collapse
Affiliation(s)
- Mian Horvath
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- UCONN Health (University of Connecticut), Farmington, CT, 06030, USA
| | - Ruoyu Yang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- UCONN Health (University of Connecticut), Farmington, CT, 06030, USA
- Duke University School of Medicine, Durham, NC, 27708, USA
| | | | - Megan Callender
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Elizabeth S Aiken
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Anita Y Voigt
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Duke University School of Medicine, Durham, NC, 27708, USA
| | - Ryan Caldwell
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - José Fachi
- Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Blanda Di Luccia
- Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zoe Scholar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Peter Yu
- Hartford Healthcare Cancer Institute, Hartford, CT, 06102, USA
| | - Andrew Salner
- Hartford Healthcare Cancer Institute, Hartford, CT, 06102, USA
| | - Marco Colonna
- Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Duke University School of Medicine, Durham, NC, 27708, USA.
| |
Collapse
|
2
|
de Araújo AP, da Costa Rodrigues T, de Oliveira MLS, Miyaji EN. Cytokine secretion by in vitro cultures of lung epithelial cells, differentiated macrophages and differentiated dendritic cells incubated with pneumococci and pneumococcal extracellular vesicles. Braz J Microbiol 2024; 55:3797-3810. [PMID: 39254798 PMCID: PMC11711742 DOI: 10.1007/s42770-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that can colonize the respiratory tract of healthy individuals. The respiratory tract mucosa is thus the first barrier for this pathogen. In this study, we have tested three models of the respiratory epithelium with immune cells: (i) monolayer of A549 human lung epithelial cells, (ii) A549 + macrophages differentiated from the human monocytic THP-1 cell line (dMφ) and (iii) A549 + dMφ + dendritic cells differentiated from THP-1 (dDC) using a two-chamber system. Pneumococcal strains Rx1 (non-encapsulated) and BHN418 (serotype 6B) were incubated with the cells and secretion of IL-6, IL-8, IL-1β, TNF-α and IL-10 was evaluated. Overall, the models using co-cultures of A549 + dMφ and A549 + dMφ + dDC elicited higher levels of pro-inflammatory cytokines and the non-encapsulated strain elicited an earlier cytokine response. BHN418 pspA (pneumococcal surface protein A) and pspC (pneumococcal surface protein C) knockouts elicited similar cytokine secretion in the co-culture models, whereas BHN18 ply (pneumolysin) knockout induced much lower levels. The results are in accordance with the activation of the inflammasome by Ply. Finally, we evaluated pneumococcal extracellular vesicles (pEVs) in the co-culture models and observed secretion of pro-inflammatory cytokines in the absence of cytotoxicity. Since pEVs are being studied as vaccine candidate against pneumococcal infections, the co-cultures of A549 + dMφ and A549 + dMφ + dDC are simple models that could be used to evaluate pEV vaccine batches.
Collapse
Affiliation(s)
| | - Tasson da Costa Rodrigues
- Laboratório de Bacteriologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil
| | | | - Eliane Namie Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
3
|
Casali L, Stella GM. The Microbiota in Children and Adolescents with Asthma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1175. [PMID: 39457140 PMCID: PMC11505771 DOI: 10.3390/children11101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024]
Abstract
The role of the respiratory microbiome has been deeply explored for at least two decades. Its characterization using modern methods is now well-defined, and the impacts of many microorganisms on health and diseases have been elucidated. Moreover, the acquired knowledge in related fields enables patient stratification based on their risk for disease onset, and the microbiome can play a role in defining possible phenotypes. The interplay between the lung and gut microbiomes is crucial in determining the microbial composition and immuno-inflammatory reaction. Asthma is still not a well-defined condition, where hyperreactivity and the immune system play important roles. In this disease, the microbiome is mostly represented by Proteobacteria, Streptococcus, and Veillonella, while Cytomegalovirus and Epstein-Barr viruses are the most prevalent viruses. A mycobiome may also be present. The passage from infancy to adolescence is examined by evaluating both the clinical picture and its relationship with possible variations of the microbiome and its effects on asthma. Otherwise, asthma is considered a heterogeneous disease that often starts in childhood and follows a particular personalized track, where adolescence plays a pivotal role in future prognosis. Under this point of view, the microbiota, with its possible variations due to many factors, both internal and external, can modify its composition; consequently, its inflammatory action and role in the immunological response has obvious consequences on the clinical conditions.
Collapse
Affiliation(s)
- Lucio Casali
- Unit of Respiratory Diseases, University of Perugia, 06121 Perugia, Italy;
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
4
|
Marrella V, Nicchiotti F, Cassani B. Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair. Int J Mol Sci 2024; 25:4051. [PMID: 38612860 PMCID: PMC11012346 DOI: 10.3390/ijms25074051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Bacterial and viral respiratory tract infections are the most common infectious diseases, leading to worldwide morbidity and mortality. In the past 10 years, the importance of lung microbiota emerged in the context of pulmonary diseases, although the mechanisms by which it impacts the intestinal environment have not yet been fully identified. On the contrary, gut microbial dysbiosis is associated with disease etiology or/and development in the lung. In this review, we present an overview of the lung microbiome modifications occurring during respiratory infections, namely, reduced community diversity and increased microbial burden, and of the downstream consequences on host-pathogen interaction, inflammatory signals, and cytokines production, in turn affecting the disease progression and outcome. Particularly, we focus on the role of the gut-lung bidirectional communication in shaping inflammation and immunity in this context, resuming both animal and human studies. Moreover, we discuss the challenges and possibilities related to novel microbial-based (probiotics and dietary supplementation) and microbial-targeted therapies (antibacterial monoclonal antibodies and bacteriophages), aimed to remodel the composition of resident microbial communities and restore health. Finally, we propose an outlook of some relevant questions in the field to be answered with future research, which may have translational relevance for the prevention and control of respiratory infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Federico Nicchiotti
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| |
Collapse
|
5
|
Song X, Dou X, Chang J, Zeng X, Xu Q, Xu C. The role and mechanism of gut-lung axis mediated bidirectional communication in the occurrence and development of chronic obstructive pulmonary disease. Gut Microbes 2024; 16:2414805. [PMID: 39446051 PMCID: PMC11509012 DOI: 10.1080/19490976.2024.2414805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
The current studies have shown that the occurrence and development of chronic obstructive pulmonary disease (COPD) are closely related to the changes in gut health and its microenvironment, and even some gut diseases have significant clinical correlation with COPD. The dysbiosis of gut microbiota observed in COPD patients also suggests a potential bidirectional interaction between the gut and lung. Communication between the gut and lung may occur through circulating inflammatory cells, gut microbial metabolites, and circulating inflammatory mediators, but the mechanism of bidirectional communication between the gut and lung in COPD is still under study. Therefore, more research is still needed in this area. In this review, we summarize recent clinical studies and animal models on the role of the gut-lung axis in the occurrence and development of COPD and its mechanisms, so as to provide ideas for further research in this field. In addition, we also summarized the negative effects of COPD medication on gut microbiota and the gut microbiota risk factors for COPD and proposed the potential prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Qinhong Xu
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Galanti M, Patiño-Galindo JA, Filip I, Morita H, Galianese A, Youssef M, Comito D, Ligon C, Lane B, Matienzo N, Ibrahim S, Tagne E, Shittu A, Elliott O, Perea-Chamblee T, Natesan S, Rosenbloom DS, Shaman J, Rabadan R. Virome Data Explorer: A web resource to longitudinally explore respiratory viral infections, their interactions with other pathogens and host transcriptomic changes in over 100 people. PLoS Biol 2024; 22:e3002089. [PMID: 38236818 PMCID: PMC10796020 DOI: 10.1371/journal.pbio.3002089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/22/2023] [Indexed: 01/22/2024] Open
Abstract
Viral respiratory infections are an important public health concern due to their prevalence, transmissibility, and potential to cause serious disease. Disease severity is the product of several factors beyond the presence of the infectious agent, including specific host immune responses, host genetic makeup, and bacterial coinfections. To understand these interactions within natural infections, we designed a longitudinal cohort study actively surveilling respiratory viruses over the course of 19 months (2016 to 2018) in a diverse cohort in New York City. We integrated the molecular characterization of 800+ nasopharyngeal samples with clinical data from 104 participants. Transcriptomic data enabled the identification of respiratory pathogens in nasopharyngeal samples, the characterization of markers of immune response, the identification of signatures associated with symptom severity, individual viruses, and bacterial coinfections. Specific results include a rapid restoration of baseline conditions after infection, significant transcriptomic differences between symptomatic and asymptomatic infections, and qualitatively similar responses across different viruses. We created an interactive computational resource (Virome Data Explorer) to facilitate access to the data and visualization of analytical results.
Collapse
Affiliation(s)
- Marta Galanti
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Juan Angel Patiño-Galindo
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ioan Filip
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Haruka Morita
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Angelica Galianese
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Mariam Youssef
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Devon Comito
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Chanel Ligon
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Benjamin Lane
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Nelsa Matienzo
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Sadiat Ibrahim
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Eudosie Tagne
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Atinuke Shittu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Oliver Elliott
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Tomin Perea-Chamblee
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sanjay Natesan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Daniel Scholes Rosenbloom
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
7
|
Alsayed AR, Abed A, Khader HA, Al-Shdifat LMH, Hasoun L, Al-Rshaidat MMD, Alkhatib M, Zihlif M. Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:4086. [PMID: 36835503 PMCID: PMC9966333 DOI: 10.3390/ijms24044086] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The wide diversity of microbiota at the genera and species levels across sites and individuals is related to various causes and the observed differences between individuals. Efforts are underway to further understand and characterize the human-associated microbiota and its microbiome. Using 16S rDNA as a genetic marker for bacterial identification improved the detection and profiling of qualitative and quantitative changes within a bacterial population. In this light, this review provides a comprehensive overview of the basic concepts and clinical applications of the respiratory microbiome, alongside an in-depth explanation of the molecular targets and the potential relationship between the respiratory microbiome and respiratory disease pathogenesis. The paucity of robust evidence supporting the correlation between the respiratory microbiome and disease pathogenesis is currently the main challenge for not considering the microbiome as a novel druggable target for therapeutic intervention. Therefore, further studies are needed, especially prospective studies, to identify other drivers of microbiome diversity and to better understand the changes in the lung microbiome along with the potential association with disease and medications. Thus, finding a therapeutic target and unfolding its clinical significance would be crucial.
Collapse
Affiliation(s)
- Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Anas Abed
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 11931, Jordan
| | - Heba A. Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Laith M. H. Al-Shdifat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mamoon M. D. Al-Rshaidat
- Laboratory for Molecular and Microbial Ecology (LaMME), Department of Biological Sciences, School of Sciences, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
8
|
Di Simone SK, Rudloff I, Nold-Petry CA, Forster SC, Nold MF. Understanding respiratory microbiome-immune system interactions in health and disease. Sci Transl Med 2023; 15:eabq5126. [PMID: 36630485 DOI: 10.1126/scitranslmed.abq5126] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Interactions between the developing microbiome and maturing immune system in early life are critical for establishment of a homeostasis beneficial to both host and commensals. The lung harbors a diverse community of microbes associated with health and local or systemic disease. We discuss how early life colonization and community changes correlate with immune development and health and disease throughout infancy, childhood, and adult life. We highlight key advances in microbiology, immunology, and computational biology that allow investigation of the functional relevance of interactions between the respiratory microbiome and host immune system, which may unlock the potential for microbiome-based therapeutics.
Collapse
Affiliation(s)
- Sara K Di Simone
- Department of Paediatrics, Monash University, Melbourne 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia.,Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne 3168, Australia
| | - Ina Rudloff
- Department of Paediatrics, Monash University, Melbourne 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia
| | - Claudia A Nold-Petry
- Department of Paediatrics, Monash University, Melbourne 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne 3168, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne 3168, Australia
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Melbourne 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne 3168, Australia
| |
Collapse
|
9
|
Zhuang T, Hu M, Wang J, Mei L, Zhu X, Zhang H, Jin F, Shao J, Wang T, Wang C, Niu X, Wu D. Sodium houttuyfonate effectively treats acute pulmonary infection of Pseudomonas aeruginosa by affecting immunity and intestinal flora in mice. Front Cell Infect Microbiol 2022; 12:1022511. [PMID: 36530439 PMCID: PMC9751016 DOI: 10.3389/fcimb.2022.1022511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Pseudomonas aeruginosa is a major nosocomial pathogen that frequently causes ventilator-associated pneumonia in specific populations. Sodium houttuyfonate (SH) has shown mild antibacterial activity against P. aeruginosa in vitro, but the mechanism of potent antimicrobial activity of SH against P. aeruginosa infection in vivo remains unclear. Methods Here, using the mouse pneumonia model induced by P. aeruginosa nasal drip to explore the therapeutic effects of SH. Results We found that SH exhibits dose-dependent therapeutic effects of reducing P. aeruginosa burden and systemic inflammation in pneumonia mice. SH ameliorates inflammatory gene expression and production of inflammatory proteins, such as interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB) and toll-like receptor 4 (TLR4), associated with the TLR4/NF-κB pathway in mice with P. aeruginosa pneumonia. Furthermore, we analyzed the intestinal flora of mice and found that compared with the model group, the abundance and diversity of beneficial bacterial flora of SH treatment groups increased significantly, suggesting that SH can improve the intestinal flora disorder caused by inflammation. In addition, SH improves alpha and beta diversity index and reduces species abundance differences of intestinal flora in pneumonia mice. Discussion Taken together, our presented results indicate that SH may effectively alleviate the acute pulmonary infection induced by P. aeruginosa by reducing the disturbance of regulating immunity and intestinal flora in mice.
Collapse
Affiliation(s)
- Tian Zhuang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Mengxue Hu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jian Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,Pathology Department, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Longfei Mei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaoxiao Zhu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Haitao Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Feng Jin
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaojia Niu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,*Correspondence: Daqiang Wu, ; Xiaojia Niu,
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,*Correspondence: Daqiang Wu, ; Xiaojia Niu,
| |
Collapse
|
10
|
Han X, Cheng X, Xu J, Liu Y, Zhou J, Jiang L, Gu X, Xia T. Activation of TREM2 attenuates neuroinflammation via PI3K/Akt signaling pathway to improve postoperative cognitive dysfunction in mice. Neuropharmacology 2022; 219:109231. [PMID: 36041498 DOI: 10.1016/j.neuropharm.2022.109231] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative complication involving the central nervous system, but the underlying mechanism is not well understood. Neuroinflammation secondary to surgery and anesthesia is strongly correlated with POCD. A key aspect of neuroinflammation is microglia activation. Triggering receptor expressed on myeloid cells (TREM)2, which is highly expressed in microglia, is an innate immune receptor that modulates microglia function. In this study we investigated the role of TREM2 in cognitive impairment and microglia-mediated neuroinflammation using a mouse model of POCD and in vitro systems. We found that hippocampus-dependent learning and memory were impaired in POCD mice, which was accompanied by activation of microglia and downregulation of TREM2. Pretreatment with the TREM2 agonist heat shock protein (HSP)60 inhibited surgery-induced microglia activation and alleviated postoperative cognitive impairment. In BV2 microglial cells, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly reversed the attenuation of TREM2 activation on lipopolysaccharide (LPS)-induced neuroinflammation and abrogated the protective effect of activated TREM2 against LPS-induced neuronal injury in a microglia/neuron coculture system. Accordingly, the beneficial effects of TREM2 activation on cognitive function were reversed by preoperative administration of LY294002 in the POCD mouse model. These results demonstrate that TREM2 is involved in the regulation of the inflammatory response mediated by microglia and cognitive impairment following surgery. Activation of TREM2 can attenuate neuroinflammation by modulating PI3K/protein kinase B (Akt) signaling, thereby alleviating postoperative learning and memory deficits.
Collapse
Affiliation(s)
- Xue Han
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, China; Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaolei Cheng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, China
| | - Jiyan Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, China; Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Yujia Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, China; Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Jiawen Zhou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, China; Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Linhao Jiang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, China; Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, China.
| | - Tianjiao Xia
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, China; Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Zhao H, Chen S, Yang F, Wu H, Ba Y, Cui L, Chen R, Zhu J. Alternation of nasopharyngeal microbiota in healthy youth is associated with environmental factors: implication for respiratory diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:952-962. [PMID: 32866029 DOI: 10.1080/09603123.2020.1810209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The nasopharynx is a key niche of the upper respiratory tract which contains many commensal bacteria and potential pathogens. Dysbiosis of the nasopharyngeal (NP) microbiota is associated with a variety of respiratory diseases. Little is known about NP flora in healthy youth, nor about its relationship with environmental factors. We characterized NP microbiota using the 16S rRNA gene sequencing method, and compared microbial composition from subjects sampled in Spring and Fall when exposed to different environmental factors. Results showed that beta diversity was significantly different. Phyla Acidobacteria, Gemmatimonadetes, and genus Symbiobacterium were positively associated with PM2.5. Genera Streptococcus, Prevotella, and [Prevotella] were positively correlated with temperature (T). Ozone (O3) was associated with these floras for exposure that occurred 30 days prior to collection. These preliminary data suggest that the change in environmental factors between spring and fall can influence the composition of the NP microbiota, characterized by a significant correlation to specific taxa. These changes in NP microbiota might be a potential risk factor for respiratory disease.
Collapse
Affiliation(s)
- Hongcheng Zhao
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Fan Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huiying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liuxin Cui
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruiying Chen
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyuan Zhu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Pharmacodynamic and immunomodulatory effects of polymyxin B in combination with fosfomycin against KPC-2-producing Klebsiella pneumoniae. Int J Antimicrob Agents 2022; 59:106566. [DOI: 10.1016/j.ijantimicag.2022.106566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
13
|
Massa HM, Spann KM, Cripps AW. Innate Immunity in the Middle Ear Mucosa. Front Cell Infect Microbiol 2021; 11:764772. [PMID: 34778109 PMCID: PMC8586084 DOI: 10.3389/fcimb.2021.764772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Otitis media (OM) encompasses a spectrum of clinical presentations ranging from the readily identifiable Acute OM (AOM), which is characterised by otalgia and fever, to chronic otitis media with effusion (COME) where impaired hearing due to middle ear effusion may be the only clinical symptom. Chronic suppurative OM (CSOM) presents as a more severe form of OM, involving perforation of the tympanic membrane. The pathogenesis of OM in these varied clinical presentations is unclear but activation of the innate inflammatory responses to viral and/or bacterial infection of the upper respiratory tract performs an integral role. This localised inflammatory response can persist even after pathogens are cleared from the middle ear, eustachian tubes and, in the case of respiratory viruses, even the nasal compartment. Children prone to OM may experience an over exuberant inflammatory response that underlies the development of chronic forms of OM and their sequelae, including hearing impairment. Treatments for chronic effusive forms of OM are limited, with current therapeutic guidelines recommending a "watch and wait" strategy rather than active treatment with antibiotics, corticosteroids or other anti-inflammatory drugs. Overall, there is a clear need for more targeted and effective treatments that either prevent or reduce the hyper-inflammatory response associated with chronic forms of OM. Improved treatment options rely upon an in-depth understanding of OM pathogenesis, particularly the role of the host innate immune response during acute OM. In this paper, we review the current literature regarding the innate immune response within the middle ear to bacterial and viral otopathogens alone, and as co-infections. This is an important consideration, as the role of respiratory viruses as primary pathogens in OM is not yet fully understood. Furthermore, increased reporting from PCR-based diagnostics, indicates that viral/bacterial co-infections in the middle ear are more common than bacterial infections alone. Increasingly, the mechanisms by which viral/bacterial co-infections may drive or maintain complex innate immune responses and inflammation during OM as a chronic response require investigation. Improved understanding of the pathogenesis of chronic OM, including host innate immune response within the middle ear is vital for development of improved diagnostic and treatment options for our children.
Collapse
Affiliation(s)
- Helen M Massa
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kirsten M Spann
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Allan W Cripps
- Menzies Health Institute Queensland, School of Medicine, Griffith University, Gold Coast, QLD, Australia.,School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
14
|
Nontypeable Haemophilus influenzae infection impedes Pseudomonas aeruginosa colonization and persistence in mouse respiratory tract. Infect Immun 2021; 90:e0056821. [PMID: 34780275 DOI: 10.1128/iai.00568-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients with cystic fibrosis (CF) experience lifelong respiratory infections which are a significant cause of morbidity and mortality. These infections are polymicrobial in nature, and the predominant bacterial species undergo a predictable series of changes as patients age. Young patients have populations dominated by opportunists that are typically found within the microbiome of the human nasopharynx, such as nontypeable Haemophilus influenzae (NTHi); these are eventually supplanted and the population within the CF lung is later dominated by pathogens such as Pseudomonas aeruginosa (Pa). In this study, we investigated how initial colonization with NTHi impacts colonization and persistence of Pa in the respiratory tract. Analysis of polymicrobial biofilms in vitro by confocal microscopy revealed that NTHi promoted greater levels of Pa biofilm volume and diffusion. However, sequential respiratory infection of mice with NTHi followed by Pa resulted in significantly lower Pa as compared to infection with Pa alone. Coinfected mice also had reduced airway tissue damage and lower levels of inflammatory cytokines as compared with Pa infected mice. Similar results were observed after instillation of heat-inactivated NTHi bacteria or purified NTHi lipooligosaccharide (LOS) endotoxin prior to Pa introduction. Based on these results, we conclude that NTHi significantly reduces susceptibility to subsequent Pa infection, most likely due to priming of host innate immunity rather than a direct competitive interaction between species. These findings have potential significance with regard to therapeutic management of early life infections in patients with CF.
Collapse
|
15
|
Elgamal Z, Singh P, Geraghty P. The Upper Airway Microbiota, Environmental Exposures, Inflammation, and Disease. ACTA ACUST UNITED AC 2021; 57:medicina57080823. [PMID: 34441029 PMCID: PMC8402057 DOI: 10.3390/medicina57080823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Along with playing vital roles in pathogen exclusion and immune system priming, the upper airways (UAs) and their microbiota are essential for myriad physiological functions such as conditioning and transferring inhaled air. Dysbiosis, a microbial imbalance, is linked with various diseases and significantly impedes the quality of one’s life. Daily inhaled exposures and/or underlying conditions contribute to adverse changes to the UA microbiota. Such variations in the microbial community exacerbate UA and pulmonary disorders via modulating inflammatory and immune pathways. Hence, exploring the UA microbiota’s role in maintaining homeostasis is imperative. The microbial composition and subsequent relationship with airborne exposures, inflammation, and disease are crucial for strategizing innovating UA diagnostics and therapeutics. The development of a healthy UA microbiota early in life contributes to normal respiratory development and function in the succeeding years. Although different UA cavities present a unique microbial profile, geriatrics have similar microbes across their UAs. This lost community segregation may contribute to inflammation and disease, as it stimulates disadvantageous microbial–microbial and microbial–host interactions. Varying inflammatory profiles are associated with specific microbial compositions, while the same is true for many disease conditions and environmental exposures. A shift in the microbial composition is also detected upon the administration of numerous therapeutics, highlighting other beneficial and adverse side effects. This review examines the role of the UA microbiota in achieving homeostasis, and the impact on the UAs of environmental airborne pollutants, inflammation, and disease.
Collapse
Affiliation(s)
- Ziyad Elgamal
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA
| | - Pratyush Singh
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada;
| | - Patrick Geraghty
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA
- Correspondence: ; Tel.: +1-718-270-3141
| |
Collapse
|
16
|
Losol P, Choi JP, Kim SH, Chang YS. The Role of Upper Airway Microbiome in the Development of Adult Asthma. Immune Netw 2021; 21:e19. [PMID: 34277109 PMCID: PMC8263217 DOI: 10.4110/in.2021.21.e19] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Clinical and molecular phenotypes of asthma are complex. The main phenotypes of adult asthma are characterized by eosinophil and/or neutrophil cell dominant airway inflammation that represent distinct clinical features. Upper and lower airways constitute a unique system and their interaction shows functional complementarity. Although human upper airway contains various indigenous commensals and opportunistic pathogenic microbiome, imbalance of this interactions lead to pathogen overgrowth and increased inflammation and airway remodeling. Competition for epithelial cell attachment, different susceptibilities to host defense molecules and antimicrobial peptides, and the production of proinflammatory cytokine and pattern recognition receptors possibly determine the pattern of this inflammation. Exposure to environmental factors, including infection, air pollution, smoking is commonly associated with asthma comorbidity, severity, exacerbation and resistance to anti-microbial and steroid treatment, and these effects may also be modulated by host and microbial genetics. Administration of probiotic, antibiotic and corticosteroid treatment for asthma may modify the composition of resident microbiota and clinical features. This review summarizes the effect of some environmental factors on the upper respiratory microbiome, the interaction between host-microbiome, and potential impact of asthma treatment on the composition of the upper airway microbiome.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Korea
| | - Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Korea
| |
Collapse
|
17
|
Rhee RL, Lu J, Bittinger K, Lee JJ, Mattei LM, Sreih AG, Chou S, Miner JJ, Cohen NA, Kelly BJ, Lee H, Grayson PC, Collman RG, Merkel PA. Dynamic Changes in the Nasal Microbiome Associated With Disease Activity in Patients With Granulomatosis With Polyangiitis. Arthritis Rheumatol 2021; 73:1703-1712. [PMID: 33682371 DOI: 10.1002/art.41723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Little is known about temporal changes in nasal bacteria in granulomatosis with polyangiitis (GPA). This study was undertaken to examine longitudinal changes in the nasal microbiome in association with relapse in GPA patients. METHODS Bacterial 16S ribosomal RNA gene sequencing was performed on nasal swabs from 19 patients with GPA who were followed up longitudinally for a total of 78 visits, including 9 patients who experienced a relapse and 10 patients who remained in remission. Relative abundance of bacteria and ratios between bacteria were examined. Generalized estimating equation models were used to evaluate the association between bacterial composition and 1) disease activity and 2) levels of antineutrophil cytoplasmic antibody (ANCA) with specificity for proteinase 3 (PR3), adjusted for medication. RESULTS Corynebacterium and Staphylococcus were the most abundant bacterial genera across all nasal samples. Patients with quiescent disease maintained a stable ratio of Corynebacterium to Staphylococcus across visits. In contrast, in patients who experienced a relapse, a significantly lower ratio was observed at the visit prior to relapse, followed by a higher ratio at the time of relapse (adjusted P < 0.01). Species-level analysis identified an association between a higher abundance of nasal Corynebacterium tuberculostearicum and 1) relapse (adjusted P = 0.04) and 2) higher PR3-ANCA levels (adjusted P = 0.02). CONCLUSION In GPA, significant changes occur in the nasal microbiome over time and are associated with disease activity. The occurrence of these changes months prior to the onset of relapse supports a pathogenic role of nasal bacteria in GPA. Our results uphold existing hypotheses implicating Staphylococcus as an instigator of disease and have generated a novel finding involving Corynebacterium as a potential mediator of disease in GPA.
Collapse
Affiliation(s)
| | - Jiarui Lu
- University of Pennsylvania, Philadelphia
| | - Kyle Bittinger
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jung-Jin Lee
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lisa M Mattei
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | - Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | | | | |
Collapse
|
18
|
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020; 12:toxins12040223. [PMID: 32252376 PMCID: PMC7232160 DOI: 10.3390/toxins12040223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.
Collapse
Affiliation(s)
- Rudolf Lucas
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Joyce Gonzales
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland;
| | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland;
| | - Hartmut Lode
- Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany;
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 Voelklingen/Saar, Germany;
| | - Martina Hudel
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Mobarak Abu Mraheil
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Haroldo Alfredo Flores Toque
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Trinad Chakraborty
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, D-66421 Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, D-66421 Homburg, Germany
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| |
Collapse
|
19
|
Kumpitsch C, Koskinen K, Schöpf V, Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol 2019; 17:87. [PMID: 31699101 PMCID: PMC6836414 DOI: 10.1186/s12915-019-0703-z] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
The human upper respiratory tract (URT) offers a variety of niches for microbial colonization. Local microbial communities are shaped by the different characteristics of the specific location within the URT, but also by the interaction with both external and intrinsic factors, such as ageing, diseases, immune responses, olfactory function, and lifestyle habits such as smoking. We summarize here the current knowledge about the URT microbiome in health and disease, discuss methodological issues, and consider the potential of the nasal microbiome to be used for medical diagnostics and as a target for therapy.
Collapse
Affiliation(s)
- Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kaisa Koskinen
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Veronika Schöpf
- Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
- Present address: Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
20
|
Zhang J, Deng Y, Hu X, Chi X, Liu J, Chu W, Sun L. Molecular Magnets Based on Graphenes and Carbon Nanotubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804917. [PMID: 30462864 DOI: 10.1002/adma.201804917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/22/2018] [Indexed: 06/09/2023]
Abstract
Molecular magnets are demonstrated to provide a promising way to realize nanometer-scale structures with a stable spin orientation. Herein, first a description of conventional molecular magnets coupled with sp2 carbon materials, such as carbon nanotubes and graphenes, is given. Then, progress on ferromagnetism in sp2 carbon nanomaterials due to the existence of defects or topological structures as the spin units, which makes the sp2 materials themselves act as a novel class of molecular magnets, is reviewed, and a scheme of controllable synthesis of the molecular magnets at the sheared ends of carbon nanotubes is proposed. To conclude, remarks on some challenges and perspectives in the synthesis of carbon nanotube arrays with orderly sheared ends as integrated molecular magnets are provided.
Collapse
Affiliation(s)
- Jian Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ya Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiao Hu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiannian Chi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiguo Chu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lianfeng Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
21
|
Weight CM, Venturini C, Pojar S, Jochems SP, Reiné J, Nikolaou E, Solórzano C, Noursadeghi M, Brown JS, Ferreira DM, Heyderman RS. Microinvasion by Streptococcus pneumoniae induces epithelial innate immunity during colonisation at the human mucosal surface. Nat Commun 2019; 10:3060. [PMID: 31311921 PMCID: PMC6635362 DOI: 10.1038/s41467-019-11005-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Control of Streptococcus pneumoniae colonisation at human mucosal surfaces is critical to reducing the burden of pneumonia and invasive pneumococcal disease, interrupting transmission, and achieving herd protection. Here, we use an experimental human pneumococcal carriage model (EHPC) to show that S. pneumoniae colonisation is associated with epithelial surface adherence, micro-colony formation and invasion, without overt disease. Interactions between different strains and the epithelium shaped the host transcriptomic response in vitro. Using epithelial modules from a human epithelial cell model that recapitulates our in vivo findings, comprising of innate signalling and regulatory pathways, inflammatory mediators, cellular metabolism and stress response genes, we find that inflammation in the EHPC model is most prominent around the time of bacterial clearance. Our results indicate that, rather than being confined to the epithelial surface and the overlying mucus layer, the pneumococcus undergoes micro-invasion of the epithelium that enhances inflammatory and innate immune responses associated with clearance. Streptococcus pneumoniae is a common coloniser of the human nasopharynx, but it also causes severe diseases. Here, Weight et al. use an experimental human pneumococcal carriage model to show that bacterial colonisation is associated with invasion of the epithelium and enhancement of immune responses.
Collapse
Affiliation(s)
- Caroline M Weight
- Division of Infection and Immunity, University College London, London, UK.
| | - Cristina Venturini
- Division of Infection and Immunity, University College London, London, UK
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Jeremy S Brown
- Department of Respiratory Medicine, University College London, London, UK
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
22
|
Abdel-Aziz MI, Vijverberg SJH, Neerincx AH, Kraneveld AD, Maitland-van der Zee AH. The crosstalk between microbiome and asthma: Exploring associations and challenges. Clin Exp Allergy 2019; 49:1067-1086. [PMID: 31148278 PMCID: PMC6852296 DOI: 10.1111/cea.13444] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
Abstract
With the advancement of high‐throughput DNA/RNA sequencing and computational analysis techniques, commensal bacteria are now considered almost as important as pathological ones. Understanding the interaction between these bacterial microbiota, host and asthma is crucial to reveal their role in asthma pathophysiology. Several airway and/or gut microbiome studies have shown associations between certain bacterial taxa and asthma. However, challenges remain before gained knowledge from these studies can be implemented into clinical practice, such as inconsistency between studies in choosing sampling compartments and/or sequencing approaches, variability of results in asthma studies, and not taking into account medication intake and diet composition especially when investigating gut microbiome. Overcoming those challenges will help to better understand the complex asthma disease process. The therapeutic potential of using pro‐ and prebiotics to prevent or reduce risk of asthma exacerbations requires further investigation. This review will focus on methodological issues regarding setting up a microbiome study, recent developments in asthma bacterial microbiome studies, challenges and future therapeutic potential.
Collapse
Affiliation(s)
- Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne H Neerincx
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Respiratory Medicine, Amsterdam UMC, Emma Children's Hospital, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Lakhani V, Tan L, Mukherjee S, Stewart WCL, Swords WE, Das J. Mutations in bacterial genes induce unanticipated changes in the relationship between bacterial pathogens in experimental otitis media. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180810. [PMID: 30564392 PMCID: PMC6281918 DOI: 10.1098/rsos.180810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/19/2018] [Indexed: 05/09/2023]
Abstract
Otitis media (OM) is a common polymicrobial infection of the middle ear in children under the age of 15 years. A widely used experimental strategy to analyse roles of specific phenotypes of bacterial pathogens of OM is to study changes in co-infection kinetics of bacterial populations in animal models when a wild-type bacterial strain is replaced by a specific isogenic mutant strain in the co-inoculating mixtures. As relationships between the OM bacterial pathogens within the host are regulated by many interlinked processes, connecting the changes in the co-infection kinetics to a bacterial phenotype can be challenging. We investigated middle ear co-infections in adult chinchillas (Chinchilla lanigera) by two major OM pathogens: non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat), as well as isogenic mutant strains in each bacterial species. We analysed the infection kinetic data using Lotka-Volterra population dynamics, maximum entropy inference and Akaike information criteria-(AIC)-based model selection. We found that changes in relationships between the bacterial pathogens that were not anticipated in the design of the co-infection experiments involving mutant strains are common and were strong regulators of the co-infecting bacterial populations. The framework developed here allows for a systematic analysis of host-host variations of bacterial populations and small sizes of animal cohorts in co-infection experiments to quantify the role of specific mutant strains in changing the infection kinetics. Our combined approach can be used to analyse the functional footprint of mutant strains in regulating co-infection kinetics in models of experimental OM and other polymicrobial diseases.
Collapse
Affiliation(s)
- Vinal Lakhani
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Li Tan
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Sayak Mukherjee
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - William C. L. Stewart
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - W. Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
25
|
Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D, Christophi C, Leslie K, McGuinness S, Parke R, Serpell J, Chan MTV, Painter T, McCluskey S, Minto G, Wallace S. Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery. N Engl J Med 2018; 378:2263-2274. [PMID: 29742967 DOI: 10.1056/nejmoa1801601] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Guidelines to promote the early recovery of patients undergoing major surgery recommend a restrictive intravenous-fluid strategy for abdominal surgery. However, the supporting evidence is limited, and there is concern about impaired organ perfusion. METHODS In a pragmatic, international trial, we randomly assigned 3000 patients who had an increased risk of complications while undergoing major abdominal surgery to receive a restrictive or liberal intravenous-fluid regimen during and up to 24 hours after surgery. The primary outcome was disability-free survival at 1 year. Key secondary outcomes were acute kidney injury at 30 days, renal-replacement therapy at 90 days, and a composite of septic complications, surgical-site infection, or death. RESULTS During and up to 24 hours after surgery, 1490 patients in the restrictive fluid group had a median intravenous-fluid intake of 3.7 liters (interquartile range, 2.9 to 4.9), as compared with 6.1 liters (interquartile range, 5.0 to 7.4) in 1493 patients in the liberal fluid group (P<0.001). The rate of disability-free survival at 1 year was 81.9% in the restrictive fluid group and 82.3% in the liberal fluid group (hazard ratio for death or disability, 1.05; 95% confidence interval, 0.88 to 1.24; P=0.61). The rate of acute kidney injury was 8.6% in the restrictive fluid group and 5.0% in the liberal fluid group (P<0.001). The rate of septic complications or death was 21.8% in the restrictive fluid group and 19.8% in the liberal fluid group (P=0.19); rates of surgical-site infection (16.5% vs. 13.6%, P=0.02) and renal-replacement therapy (0.9% vs. 0.3%, P=0.048) were higher in the restrictive fluid group, but the between-group difference was not significant after adjustment for multiple testing. CONCLUSIONS Among patients at increased risk for complications during major abdominal surgery, a restrictive fluid regimen was not associated with a higher rate of disability-free survival than a liberal fluid regimen and was associated with a higher rate of acute kidney injury. (Funded by the Australian National Health and Medical Research Council and others; RELIEF ClinicalTrials.gov number, NCT01424150 .).
Collapse
Affiliation(s)
- Paul S Myles
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Rinaldo Bellomo
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Tomas Corcoran
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Andrew Forbes
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Philip Peyton
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - David Story
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Chris Christophi
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Kate Leslie
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Shay McGuinness
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Rachael Parke
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Jonathan Serpell
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Matthew T V Chan
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Thomas Painter
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Stuart McCluskey
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Gary Minto
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| | - Sophie Wallace
- From Alfred Hospital (P.S.M., J.S., S.W.), Monash University (P.S.M., R.B., T.C., A.F., K.L., J.S., S.W.), and the University of Melbourne (R.B., P.P., D.S., C.C., K.L.), Melbourne, VIC, Austin Hospital, Heidelberg, VIC (R.B., P.P., D.S., C.C.), Royal Perth Hospital and the University of Western Australia, Perth (T.C.), Royal Melbourne Hospital, Parkville, VIC (K.L.), and Royal Adelaide Hospital and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA (T.P.) - all in Australia; Auckland City Hospital, Auckland, and the Medical Research Institute of New Zealand, Wellington - both in New Zealand (S. McGuinness, R.P.); the Chinese University of Hong Kong, Hong Kong (M.T.V.C.); University Health Network, Toronto (S. McCluskey); and Derriford Hospital, Plymouth, United Kingdom (G.M.)
| |
Collapse
|
26
|
Hare KM, Pizzutto SJ, Chang AB, Smith-Vaughan HC, McCallum GB, Beissbarth J, Versteegh L, Grimwood K. Defining lower airway bacterial infection in children with chronic endobronchial disorders. Pediatr Pulmonol 2018; 53:224-232. [PMID: 29265639 PMCID: PMC7167837 DOI: 10.1002/ppul.23931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Differentiating lower airway bacterial infection from possible upper airway contamination in children with endobronchial disorders undergoing bronchoalveolar lavage (BAL) is important for guiding management. A diagnostic bacterial load threshold based on inflammatory markers has been determined to differentiate infection from upper airway contamination in infants with cystic fibrosis, but not for children with protracted bacterial bronchitis (PBB), chronic suppurative lung disease (CSLD), or bronchiectasis. METHODS BAL samples from children undergoing bronchoscopy underwent quantitative bacterial culture, cytologic examination, and respiratory virus testing; a subset also had interleukin-8 examined. Geometric means (GMs) of total cell counts (TCCs) and neutrophil counts were plotted by respiratory pathogen bacterial load. Logistic regression determined associations between age, sex, Indigenous status, antibiotic exposure, virus detection and bacterial load, and elevated TCCs (>400 × 103 cells/mL) and airway neutrophilia (neutrophils >15% BAL leukocytes). RESULTS From 2007 to 2016, 655 children with PBB, CSLD, or bronchiectasis were enrolled. In univariate analyses, Indigenous status and bacterial load ≥105 colony-forming units (CFU)/mL were positively associated with high TCCs. Viruses and bacterial load ≥104 CFU/mL were positively associated with neutrophilia; negative associations were seen for Indigenous status and macrolides. In children who had not received macrolide antibiotics, bacterial load was positively associated in multivariable analyses with high TCCs at ≥104 CFU/mL and with neutrophilia at ≥105 CFU/mL; GMs of TCCs and neutrophil counts were significantly elevated at 104 and 105 CFU/mL compared to negative cultures. CONCLUSIONS Our findings support a BAL threshold ≥104 CFU/mL to define lower airway infection in children with chronic endobronchial disorders.
Collapse
Affiliation(s)
- Kim M Hare
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Susan J Pizzutto
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,Department of Respiratory Medicine, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Heidi C Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Gabrielle B McCallum
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Lesley Versteegh
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Keith Grimwood
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, Queensland, Australia
| |
Collapse
|
27
|
Hare KM, Leach AJ, Smith-Vaughan HC, Chang AB, Grimwood K. Streptococcus pneumoniae and chronic endobronchial infections in childhood. Pediatr Pulmonol 2017; 52:1532-1545. [PMID: 28922566 DOI: 10.1002/ppul.23828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/06/2017] [Indexed: 01/03/2023]
Abstract
Streptococcus pneumoniae (pneumococcus) is the main cause of bacterial pneumonia worldwide and has been studied extensively in this context. However, its role in chronic endobronchial infections and accompanying lower airway neutrophilic infiltration has received little attention. Severe and recurrent pneumonia are risk factors for chronic suppurative lung disease (CSLD) and bronchiectasis; the latter causes considerable morbidity and, in some populations, premature death in children and adults. Protracted bacterial bronchitis (PBB) is another chronic endobronchial infection associated with substantial morbidity. In some children, PBB may progress to bronchiectasis. Although nontypeable Haemophilus influenzae is the main pathogen in PBB, CSLD and bronchiectasis, pneumococci are isolated commonly from the lower airways of children with these diagnoses. Here we review what is known currently about pneumococci in PBB, CSLD and bronchiectasis, including the importance of pneumococcal nasopharyngeal colonization and how persistence in the lower airways may contribute to the pathogenesis of these chronic pulmonary disorders. Antibiotic treatments, particularly long-term azithromycin therapy, are discussed together with antibiotic resistance and the impact of pneumococcal conjugate vaccines. Important areas requiring further investigation are identified, including immune responses associated with pneumococcal lower airway infection, alone and in combination with other respiratory pathogens, and microarray serotyping to improve detection of carriage and infection by multiple serotypes. Genome wide association studies of pneumococci from the upper and lower airways will help identify virulence and resistance determinants, including potential therapeutic targets and vaccine antigens to treat and prevent endobronchial infections. Much work is needed, but the benefits will be substantial.
Collapse
Affiliation(s)
- Kim M Hare
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Amanda J Leach
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Heidi C Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,Department of Respiratory Medicine, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Keith Grimwood
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Gold Coast Health, Gold Coast, Queensland, Australia
| |
Collapse
|
28
|
Yu H, Lin M, Wang X, Wang S, Wang Z. Toll-like receptor 4 polymorphism is associated with increased susceptibility to chronic obstructive pulmonary disease in Han Chinese patients with chronic periodontitis. J Oral Sci 2017; 58:555-560. [PMID: 28025440 DOI: 10.2334/josnusd.16-0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of the present study was to evaluate the association of single nucleotide polymorphisms (SNPs) in toll-like receptor 4 (TLR4) with chronic obstructive pulmonary disease (COPD) in Han Chinese patients with chronic periodontitis (CP). Six candidate SNPs of TLR4-rs10759930, rs10983755, rs11536879, rs1927907, rs11536889 and rs7873784-and 18 haplotype-tagging SNPs (tagSNPs) were genotyped in 339 patients with chronic periodontitis only (CP group), and 373 CP patients with COPD (CP with COPD group). The genotype distribution and allele frequencies of TLR4 rs1927907 among the CP (AA: 26, 8.5%, AG: 109, 35.5%, GG: 172, 56.0%) and CP with COPD (AA: 41, 12.0%, AG: 143, 41.7%, GG: 159, 46.4%) groups were significantly different (P = 0.039). After adjusting for age, sex, smoking status, and oral hygiene habits, CP patients carrying the AG polymorphism in TLR4 rs1927907 were found to be more susceptible to concomitant COPD than those carrying the GG genotype (P = 0.005, OR = 1.94, 95% CI for OR: 1.22-3.03). In conclusion, TLR4 gene polymorphism plays a role in the common pathophysiology of CP and COPD, indicating that CP patients with TLR4 gene rs1927907 polymorphism may be more susceptible to COPD.(J Oral Sci 58, 555-560, 2016).
Collapse
Affiliation(s)
- Hui Yu
- Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University
| | | | | | | | | |
Collapse
|
29
|
Morris MC, Pichichero ME. Streptococcus pneumoniae burden and nasopharyngeal inflammation during acute otitis media. Innate Immun 2017; 23:667-677. [DOI: 10.1177/1753425917737825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is a common respiratory pathogen and a frequent cause of acute otitis media (AOM) in children. The first step in bacterial pathogenesis of AOM is the establishment of asymptomatic colonization in the nasopharynx. We studied Spn bacterial burden in conjunction with neutrophil recruitment and inflammatory gene transcription and cytokine secretion in samples of nasal wash collected from normal and otitis-prone children during health, viral upper respiratory infection without middle ear involvement (URI) and AOM. We found no significant associations between otitis-prone status and any of the measured parameters. However, Spn bacterial burden was significantly correlated with neutrophil recruitment, transcription of IL-8, TNF-α and SOD2, and secretion of TNF-α. We also found that transcription of IL-8 and TNF-α mRNA by neutrophils was significantly correlated with the secretion of these cytokines into the nasopharynx. We conclude that Spn bacterial burden in the NP is a major determinant of neutrophil recruitment to the NP and activity during URI and AOM, and that neutrophils are contributors to the secretion of IL-8 and TNF-α in the NP when the Spn burden is high.
Collapse
Affiliation(s)
- Matthew C Morris
- Rochester General Hospital Research Institute, Rochester, NY, USA
| | | |
Collapse
|
30
|
Myles P, Bellomo R, Corcoran T, Forbes A, Wallace S, Peyton P, Christophi C, Story D, Leslie K, Serpell J, McGuinness S, Parke R. Restrictive versus liberal fluid therapy in major abdominal surgery (RELIEF): rationale and design for a multicentre randomised trial. BMJ Open 2017; 7:e015358. [PMID: 28259855 PMCID: PMC5353290 DOI: 10.1136/bmjopen-2016-015358] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION The optimal intravenous fluid regimen for patients undergoing major abdominal surgery is unclear. However, results from many small studies suggest a restrictive regimen may lead to better outcomes. A large, definitive clinical trial evaluating perioperative fluid replacement in major abdominal surgery, therefore, is required. METHODS/ANALYSIS We designed a pragmatic, multicentre, randomised, controlled trial (the RELIEF trial). A total of 3000 patients were enrolled in this study and randomly allocated to a restrictive or liberal fluid regimen in a 1:1 ratio, stratified by centre and planned critical care admission. The expected fluid volumes in the first 24 hour from the start of surgery in restrictive and liberal groups were ≤3.0 L and ≥5.4 L, respectively. Patient enrolment is complete, and follow-up for the primary end point is ongoing. The primary outcome is disability-free survival at 1 year after surgery, with disability defined as a persistent (at least 6 months) reduction in functional status using the 12-item version of the World Health Organisation Disability Assessment Schedule. ETHICS/DISSEMINATION The RELIEF trial has been approved by the responsible ethics committees of all participating sites. Participant recruitment began in March 2013 and was completed in August 2016, and 1-year follow-up will conclude in August 2017. Publication of the results of the RELIEF trial is anticipated in early 2018. TRIAL REGISTRATION NUMBER ClinicalTrials.gov identifier NCT01424150.
Collapse
Affiliation(s)
- Paul Myles
- Alfred Hospital, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Monash University, Melbourne, Victoria, Australia
- Austin Hospital, Melbourne, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| | - Tomas Corcoran
- University of Western Australia, Melbourne, Victoria, Australia
| | | | - Sophie Wallace
- Alfred Hospital, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
| | | | - Chris Christophi
- Austin Hospital, Melbourne, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| | - David Story
- The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Leslie
- Monash University, Melbourne, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Jonathan Serpell
- Alfred Hospital, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
31
|
Novick S, Shagan M, Blau K, Lifshitz S, Givon-Lavi N, Grossman N, Bodner L, Dagan R, Mizrachi Nebenzahl Y. Adhesion and invasion of Streptococcus pneumoniae to primary and secondary respiratory epithelial cells. Mol Med Rep 2016; 15:65-74. [PMID: 27922699 PMCID: PMC5355668 DOI: 10.3892/mmr.2016.5996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/30/2016] [Indexed: 11/06/2022] Open
Abstract
The interaction between Streptococcus pneumoniae (S. pneumoniae) and the mucosal epithelial cells of its host is a prerequisite for pneumococcal disease development, yet the specificity of this interaction between different respiratory cells is not fully understood. In the present study, three areas were examined: i) The capability of the encapsulated S. pneumoniae serotype 3 strain (WU2) to adhere to and invade primary nasal‑derived epithelial cells in comparison to primary oral‑derived epithelial cells, A549 adenocarcinoma cells and BEAS‑2B viral transformed bronchial cells; ii) the capability of the unencapsulated 3.8DW strain (a WU2 derivative) to adhere to and invade the same cells over time; and iii) the ability of various genetically‑unrelated encapsulated and unencapsulated S. pneumoniae strains to adhere to and invade A549 lung epithelial cells. The results of the present study demonstrated that the encapsulated WU2 strain adhesion to and invasion of primary nasal epithelial cells was greatest, followed by BEAS‑2B, A549 and primary oral epithelial cells. By contrast, the unencapsulated 3.8‑DW strain invaded oral epithelial cells significantly more efficiently when compared to the nasal epithelial cells. In addition, unencapsulated S. pneumoniae strains adhered to and invaded the A459 cells significantly more efficiently than the encapsulated strains; this is consistent with previously published data. In conclusion, the findings presented in the current study indicated that the adhesion and invasion of the WU2 strain to primary nasal epithelial cells was more efficient compared with the other cultured respiratory epithelial cells tested, which corresponds to the natural course of S. pneumoniae infection and disease development. The target cell preference of unencapsulated strains was different from that of the encapsulated strains, which may be due to the exposure of cell wall proteins.
Collapse
Affiliation(s)
- Sara Novick
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Marilous Shagan
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Karin Blau
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Sarit Lifshitz
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Noga Givon-Lavi
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Nili Grossman
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Lipa Bodner
- Oral and Maxillofacial Surgery Unit, Soroka University Medical Center, Beer Sheva 84105, Israel
| | - Ron Dagan
- Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Yaffa Mizrachi Nebenzahl
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| |
Collapse
|
32
|
Bellinghausen C, Rohde GGU, Savelkoul PHM, Wouters EFM, Stassen FRM. Viral-bacterial interactions in the respiratory tract. J Gen Virol 2016; 97:3089-3102. [PMID: 27902340 DOI: 10.1099/jgv.0.000627] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the respiratory tract, viruses and bacteria can interact on multiple levels. It is well known that respiratory viruses, particularly influenza viruses, increase the susceptibility to secondary bacterial infections. Numerous mechanisms, including compromised physical and immunological barriers, and changes in the microenvironment have hereby been shown to contribute to the development of secondary bacterial infections. In contrast, our understanding of how bacteria shape a response to subsequent viral infection is still limited. There is emerging evidence that persistent infection (or colonization) of the lower respiratory tract (LRT) with potential pathogenic bacteria, as observed in diseases like chronic obstructive pulmonary disease or cystic fibrosis, modulates subsequent viral infections by increasing viral entry receptors and modulating the inflammatory response. Moreover, recent studies suggest that even healthy lungs are not, as had long been assumed, sterile. The composition of the lung microbiome may thus modulate responses to viral infections. Here we summarize the current knowledge on the co-pathogenesis between viruses and bacteria in LRT infections.
Collapse
Affiliation(s)
- Carla Bellinghausen
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gernot G U Rohde
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frank R M Stassen
- Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
33
|
Budden KF, Gellatly SL, Wood DLA, Cooper MA, Morrison M, Hugenholtz P, Hansbro PM. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 2016; 15:55-63. [PMID: 27694885 DOI: 10.1038/nrmicro.2016.142] [Citation(s) in RCA: 934] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microbiota is vital for the development of the immune system and homeostasis. Changes in microbial composition and function, termed dysbiosis, in the respiratory tract and the gut have recently been linked to alterations in immune responses and to disease development in the lungs. In this Opinion article, we review the microbial species that are usually found in healthy gastrointestinal and respiratory tracts, their dysbiosis in disease and interactions with the gut-lung axis. Although the gut-lung axis is only beginning to be understood, emerging evidence indicates that there is potential for manipulation of the gut microbiota in the treatment of lung diseases.
Collapse
Affiliation(s)
- Kurtis F Budden
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4072, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, and the Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; and The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| |
Collapse
|
34
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
35
|
Pettigrew MM, Gent JF, Kong Y, Wade M, Gansebom S, Bramley AM, Jain S, Arnold SLR, McCullers JA. Association of sputum microbiota profiles with severity of community-acquired pneumonia in children. BMC Infect Dis 2016; 16:317. [PMID: 27391033 PMCID: PMC4939047 DOI: 10.1186/s12879-016-1670-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Competitive interactions among bacteria in the respiratory tract microbiota influence which species can colonize and potentially contribute to pathogenesis of community-acquired pneumonia (CAP). However, understanding of the role of respiratory tract microbiota in the clinical course of pediatric CAP is limited. METHODS We sought to compare microbiota profiles in induced sputum and nasopharyngeal/oropharyngeal (NP/OP) samples from children and to identify microbiota profiles associated with CAP severity. We used 16S ribosomal RNA sequencing and several measures of microbiota profiles, including principal component analysis (PCA), to describe the respiratory microbiota in 383 children, 6 months to <18 years, hospitalized with CAP. We examined associations between induced sputum and NP/OP microbiota profiles and CAP severity (hospital length of stay and intensive care unit admission) using logistic regression. RESULTS Relative abundance of bacterial taxa differed in induced sputum and NP/OP samples. In children 6 months to < 5 years, the sputum PCA factor with high relative abundance of Actinomyces, Veillonella, Rothia, and Lactobacillales was associated with decreased odds of length of stay ≥ 4 days [adjusted odds ratio (aOR) 0.69; 95 % confidence interval (CI) 0.48-0.99]. The sputum factor with high relative abundance of Haemophilus and Pasteurellaceae was associated with increased odds of intensive care unit admission [aOR 1.52; 95 % CI 1.02-2.26]. In children 5 to < 18 years, the sputum factor with high relative abundance of Porphyromonadaceae, Bacteriodales, Lactobacillales, and Prevotella was associated with increased odds of length of stay ≥ 4 days [aOR 1.52; 95 % CI 1.02-2.26]. Taxa in NP/OP samples were not associated with CAP severity. CONCLUSION Certain taxa in the respiratory microbiota, which were detected in induced sputum samples, are associated with the clinical course of CAP.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- Yale School of Public Health, New Haven, CT, USA.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, LEPH 720, New Haven, CT, 06515, USA.
| | | | - Yong Kong
- Yale School of Medicine, New Haven, CT, USA
| | - Martina Wade
- Yale School of Public Health, New Haven, CT, USA
| | | | - Anna M Bramley
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Seema Jain
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Jonathan A McCullers
- St. Jude Children's Research Hospital, Memphis, TN, USA
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
36
|
Abstract
Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis.
Collapse
|
37
|
Bellinghausen C, Gulraiz F, Heinzmann ACA, Dentener MA, Savelkoul PHM, Wouters EF, Rohde GG, Stassen FR. Exposure to common respiratory bacteria alters the airway epithelial response to subsequent viral infection. Respir Res 2016; 17:68. [PMID: 27259950 PMCID: PMC4891894 DOI: 10.1186/s12931-016-0382-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background Colonization of the airways with potential pathogenic bacteria is observed in a number of chronic respiratory diseases, such as COPD or cystic fibrosis. Infections with respiratory viruses are known triggers of exacerbations of these diseases. We here investigated if pre-exposure to bacteria alters the response of lung epithelial cells to subsequent viral infection. Methods Bronchial epithelial cells (BEAS-2B cells and primary bronchial epithelial cells) were exposed to heat-inactivated Haemophilus influenzae, Pseudomonas aeruginosa or Streptococcus pneumoniae and subsequently infected with respiratory syncytial virus (RSV), type 2 human adenovirus or influenza B. Levels of pro-inflammatory cytokines, viral replication and expression of pattern recognition receptors were determined in culture supernatants and/or cell lysates. Results Exposure of BEAS-2B cells to H. influenzae before and during RSV-infection synergistically increased the release of IL-6 (increase above calculated additive effect at 72 h: 56 % ± 3 %, mean ± SEM) and IL-8 (53 % ± 12 %). This effect was sustained even when bacteria were washed away before viral infection and was neither associated with enhanced viral replication, nor linked to increased expression of key pattern recognition receptors. P. aeruginosa enhanced the release of inflammatory cytokines to a similar extent, yet only if bacteria were also present during viral infection. S. pneumoniae did not enhance RSV-induced cytokine release. Surprisingly, adenovirus infection significantly reduced IL-6 release in cells exposed to either of the three tested bacterial strains by on average more than 50 %. Infection with influenza B on the other hand did not affect cytokine production in BEAS-2B cells exposed to the different bacterial strains. Conclusion Pre-exposure of epithelial cells to bacteria alters the response to subsequent viral infection depending on the types of pathogen involved. These findings highlight the complexity of microbiome interactions in the airways, possibly contributing to the susceptibility to exacerbations and the natural course of airway diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0382-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Bellinghausen
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Fahad Gulraiz
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Cell Biology and Immunology, University of North Texas Health Science Center (UNT Health Science Center), Fort Worth, TX, USA
| | - Alexandra C A Heinzmann
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Mieke A Dentener
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Emiel F Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gernot G Rohde
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frank R Stassen
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands. .,, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands.
| |
Collapse
|
38
|
Pickering JL, Prosser A, Corscadden KJ, de Gier C, Richmond PC, Zhang G, Thornton RB, Kirkham LAS. Haemophilus haemolyticus Interaction with Host Cells Is Different to Nontypeable Haemophilus influenzae and Prevents NTHi Association with Epithelial Cells. Front Cell Infect Microbiol 2016; 6:50. [PMID: 27242968 PMCID: PMC4860508 DOI: 10.3389/fcimb.2016.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that resides in the upper respiratory tract and contributes to a significant burden of respiratory related diseases in children and adults. Haemophilus haemolyticus is a respiratory tract commensal that can be misidentified as NTHi due to high levels of genetic relatedness. There are reports of invasive disease from H. haemolyticus, which further blurs the species boundary with NTHi. To investigate differences in pathogenicity between these species, we optimized an in vitro epithelial cell model to compare the interaction of 10 H. haemolyticus strains with 4 NTHi and 4 H. influenzae-like haemophili. There was inter- and intra-species variability but overall, H. haemolyticus had reduced capacity to attach to and invade nasopharyngeal and bronchoalveolar epithelial cell lines (D562 and A549) within 3 h when compared with NTHi. H. haemolyticus was cytotoxic to both cell lines at 24 h, whereas NTHi was not. Nasopharyngeal epithelium challenged with some H. haemolyticus strains released high levels of inflammatory mediators IL-6 and IL-8, whereas NTHi did not elicit an inflammatory response despite higher levels of cell association and invasion. Furthermore, peripheral blood mononuclear cells stimulated with H. haemolyticus or NTHi released similar and high levels of IL-6, IL-8, IL-10, IL-1β, and TNFα when compared with unstimulated cells but only NTHi elicited an IFNγ response. Due to the relatedness of H. haemolyticus and NTHi, we hypothesized that H. haemolyticus may compete with NTHi for colonization of the respiratory tract. We observed that in vitro pre-treatment of epithelial cells with H. haemolyticus significantly reduced NTHi attachment, suggesting interference or competition between the two species is possible and warrants further investigation. In conclusion, H. haemolyticus interacts differently with host cells compared to NTHi, with different immunostimulatory and cytotoxic properties. This study provides an in vitro model for further investigation into the pathogenesis of Haemophilus species and the foundation for exploring whether H. haemolyticus can be used to prevent NTHi disease.
Collapse
Affiliation(s)
- Janessa L Pickering
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western AustraliaPerth, WA, Australia; School of Paediatrics and Child Health, The University of Western AustraliaPerth, WA, Australia
| | - Amy Prosser
- School of Paediatrics and Child Health, The University of Western Australia Perth, WA, Australia
| | - Karli J Corscadden
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia Perth, WA, Australia
| | - Camilla de Gier
- School of Paediatrics and Child Health, The University of Western Australia Perth, WA, Australia
| | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western AustraliaPerth, WA, Australia; School of Paediatrics and Child Health, The University of Western AustraliaPerth, WA, Australia; Department of Paediatrics, Princess Margaret Hospital for ChildrenPerth, WA, Australia
| | - Guicheng Zhang
- School of Public Health, Curtin University Perth, WA, Australia
| | - Ruth B Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western AustraliaPerth, WA, Australia; School of Paediatrics and Child Health, The University of Western AustraliaPerth, WA, Australia
| | - Lea-Ann S Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western AustraliaPerth, WA, Australia; School of Paediatrics and Child Health, The University of Western AustraliaPerth, WA, Australia
| |
Collapse
|
39
|
Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis. Infect Immun 2016; 84:1603-1614. [PMID: 26975994 DOI: 10.1128/iai.01470-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol.
Collapse
|
40
|
Pneumolysin plays a key role at the initial step of establishing pneumococcal nasal colonization. Folia Microbiol (Praha) 2016; 61:375-83. [PMID: 26803756 DOI: 10.1007/s12223-016-0445-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Nasopharyngeal colonization by Streptococcus pneumoniae is an important initial step for the subsequent development of pneumococcal infections. Pneumococci have many virulence factors that play a role in colonization. Pneumolysin (PLY), a pivotal pneumococcal virulence factor for invasive disease, causes severe tissue damage and inflammation with disruption of epithelial tight junctions. In this study, we evaluated the role of PLY in nasal colonization of S. pneumoniae using a mouse colonization model. A reduction of numbers of PLY-deficient pneumococci recovered from nasal tissue, as well as nasal wash, was observed at days 1 and 2 post-intranasal challenges, but not later. The findings strongly support an important role for PLY in the initial establishment nasal colonization. PLY-dependent invasion of local nasal mucosa may be required to establish nasal colonization with S. pneumoniae. The data help provide a rationale to explain why an organism that exists as an asymptomatic colonizer has evolved virulence factors that enable it to occasionally invade and kill its hosts. Thus, the same pneumococcal virulence factor, PLY that can contribute to killing the host, may also play a role early in the establishment of nasopharynx carriage.
Collapse
|
41
|
Nasopharyngeal Bacterial Carriage in the Conjugate Vaccine Era with a Focus on Pneumococci. J Immunol Res 2015; 2015:394368. [PMID: 26351646 PMCID: PMC4553195 DOI: 10.1155/2015/394368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/29/2015] [Accepted: 06/10/2015] [Indexed: 12/17/2022] Open
Abstract
Seven-valent pneumococcal conjugate vaccine (PCV7) was included in the UK national immunisation program in 2006, and this was replaced by thirteen-valent PCV in 2010. During this time, the carriage of vaccine-type Streptococcus pneumoniae decreased but pneumococcal carriage remained stable due to increases in non-vaccine-type S. pneumoniae. Carriage studies have been undertaken in various countries to monitor vaccine-type replacement and to help predict the serotypes, which may cause invasive disease. There has been less focus on how conjugate vaccines indirectly affect colonization of other nasopharyngeal bacteria. If the nasopharynx is treated as a niche, then bacterial dynamics are accepted to occur. Alterations in these dynamics have been shown due to seasonal changes, antibiotic use, and sibling/day care interaction. It has been shown that, following PCV7 introduction, an eradication of pneumococcal vaccine types has resulted in increases in the abundance of other respiratory pathogens including Haemophilus influenzae and Staphylococcus aureus. These changes are difficult to attribute to PCV7 introduction alone and these studies do not account for further changes due to PCV13 implementation. This review aims to describe nasopharyngeal cocarriage of respiratory pathogens in the PCV era.
Collapse
|
42
|
Xu H, Jenkinson HF, Dongari-Bagtzoglou A. Innocent until proven guilty: mechanisms and roles of Streptococcus-Candida interactions in oral health and disease. Mol Oral Microbiol 2015; 29:99-116. [PMID: 24877244 PMCID: PMC4238848 DOI: 10.1111/omi.12049] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Candida albicans and streptococci of the mitis group colonize the oral cavities of the majority of healthy humans. While C. albicans is considered an opportunistic pathogen, streptococci of this group are broadly considered avirulent or even beneficial organisms. However, recent evidence suggests that multi-species biofilms with these organisms may play detrimental roles in host homeostasis and may promote infection. In this review we summarize the literature on molecular interactions between members of this streptococcal group and C. albicans, with emphasis on their potential role in the pathogenesis of opportunistic oral mucosal infections.
Collapse
|
43
|
King PT, Sharma R. The Lung Immune Response to Nontypeable Haemophilus influenzae (Lung Immunity to NTHi). J Immunol Res 2015; 2015:706376. [PMID: 26114124 PMCID: PMC4465770 DOI: 10.1155/2015/706376] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae is divided into typeable or nontypeable strains based on the presence or absence of a polysaccharide capsule. The typeable strains (such as type b) are an important cause of systemic infection, whilst the nontypeable strains (designated as NTHi) are predominantly respiratory mucosal pathogens. NTHi is present as part of the normal microbiome in the nasopharynx, from where it may spread down to the lower respiratory tract. In this context it is no longer a commensal and becomes an important respiratory pathogen associated with a range of common conditions including bronchitis, bronchiectasis, pneumonia, and particularly chronic obstructive pulmonary disease. NTHi induces a strong inflammatory response in the respiratory tract with activation of immune responses, which often fail to clear the bacteria from the lung. This results in recurrent/persistent infection and chronic inflammation with consequent lung pathology. This review will summarise the current literature about the lung immune response to nontypeable Haemophilus influenzae, a topic that has important implications for patient management.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Monash University Department of Medicine, Monash Medical Centre, Melbourne, VIC 3168, Australia
| | - Roleen Sharma
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Monash University Department of Medicine, Monash Medical Centre, Melbourne, VIC 3168, Australia
| |
Collapse
|
44
|
Caneschi A, Gatteschi D, Totti F. Molecular magnets and surfaces: A promising marriage. A DFT insight. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Beisswenger C, Honecker A, Kamyschnikow A, Bischoff M, Tschernig T, Bals R. Moxifloxacin modulates inflammation during murine pneumonia. Respir Res 2014; 15:82. [PMID: 25034539 PMCID: PMC4118268 DOI: 10.1186/1465-9921-15-82] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022] Open
Abstract
Background Moxifloxacin is a synthetic antibacterial agent belonging to the fluoroquinolone family. The antimicrobial activity of quinolones against Gram-positive and Gram-negative bacteria is based on their ability to inhibit topoisomerases. Quinolones are described to have immunomodulatory features in addition to their antimicrobial activities. It was the goal of this study to examine whether a short term treatment with moxifloxacin modulates the inflammation during a subsequently induced bacterial infection in an animal model. Methods Mice were treated with moxifloxacin or saline for two consecutive days and were subsequently intranasally infected with viable or heat-inactivated bacterial pathogens (Streptococcus pneumoniae, Pseudomonas aeruginosa) for 6 and 24 hours. Measurements of cytokines in the lungs and plasma were performed. Alveolar cells were determined in bronchoalveolar lavage fluits. Results The inflammation was increased after the inoculation of viable bacteria compared to inactivated bacteria. Numbers of total immune cells and neutrophils and concentrations of inflammatory mediators (e.g. KC, IL-1β, IL-17A) were significantly reduced in lungs of moxifloxacin-treated mice infected with inactivated and viable bacterial pathogens as compared to infected control mice. Plasma concentrations of inflammatory mediators were significantly reduced in moxifloxacin-treated mice. Immunohistochemistry showed a stronger infiltrate of TNF-α-expressing cells into lungs of saline-treated mice infected with viable P. aeruginosa as compared to moxifloxacin-treated mice. Conclusions These data show that in this pneumonia model moxifloxacin has anti-inflammatory properties beyond its antibacterial activity.
Collapse
Affiliation(s)
- Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
No major role for the transcription factor NF-κB in bone marrow function during peritonitis in the mouse. Int J Hematol 2014; 100:111-8. [PMID: 24859830 DOI: 10.1007/s12185-014-1598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Nuclear factor-kappa B (NF-κB) is a multipotent transcription factor that plays a pivotal role in immune reactions, inflammation, and possibly hematopoiesis as well. Mobilization of neutrophilic granulocytes during inflammation is a highly regulated process, but one that is incompletely understood. We studied the in vivo activity of NF-κB in mouse organs and cells, with a focus on bone marrow, during acute inflammation. NF-κB activity was studied in transgenic mice expressing a luciferase reporter expressed in a NF-κB activation-dependent fashion. Acute peritoneal inflammation was induced by lipopolysaccharide (LPS), the casein digest bacto-tryptone, or the insoluble polysaccharide zymosan. Organs were removed and blood, bone marrow, and peritoneal cells were separated using density gradient centrifugation. NF-κB activity in organ homogenates and cell lysates was quantified. These three inflammatory agents increased NF-κB activity to a variable extent within the inflamed peritoneal cavity, liver, and spleen, with LPS being the strongest stimulus. LPS, but not bacto-tryptone or zymosan, activated NF-κB in lung and bone marrow, the latter activity mainly observed in density fractions rich in immature bone marrow cells. NF-κB activation was prominent at 6 h after induction of peritonitis, fading at 24 h, as expected for an acute phase phenomenon. From this proof-of-principle study with luciferase reporter mice dependent on NF-κB activation, we suggest that, in steady-state mice, mobilization of bone marrow granulocytes to an inflammatory site can occur without discernible activation of NF-κB in bone marrow.
Collapse
|
47
|
Küng E, Coward WR, Neill DR, Malak HA, Mühlemann K, Kadioglu A, Hilty M, Hathaway LJ. The pneumococcal polysaccharide capsule and pneumolysin differentially affect CXCL8 and IL-6 release from cells of the upper and lower respiratory tract. PLoS One 2014; 9:e92355. [PMID: 24664110 PMCID: PMC3963895 DOI: 10.1371/journal.pone.0092355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
The polysaccharide capsule and pneumolysin toxin are major virulence factors of the human bacterial pathogen Streptococcus pneumoniae. Colonization of the nasopharynx is asymptomatic but invasion of the lungs can result in invasive pneumonia. Here we show that the capsule suppresses the release of the pro-inflammatory cytokines CXCL8 (IL-8) and IL-6 from the human pharyngeal epithelial cell line Detroit 562. Release of both cytokines was much less from human bronchial epithelial cells (iHBEC) but levels were also affected by capsule. Pneumolysin stimulates CXCL8 release from both cell lines. Suppression of CXCL8 homologue (CXCL2/MIP-2) release by the capsule was also observed in vivo during intranasal colonization of mice but was only discernable in the absence of pneumolysin. When pneumococci were administered intranasally to mice in a model of long term, stable nasopharyngeal carriage, encapsulated S. pneumoniae remained in the nasopharynx whereas the nonencapsulated pneumococci disseminated into the lungs. Pneumococcal capsule plays a role not only in protection from phagocytosis but also in modulation of the pro-inflammatory immune response in the respiratory tract.
Collapse
Affiliation(s)
- Eliane Küng
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - William R. Coward
- Nottingham Respiratory Biomedical Research Unit, Clinical Sciences Building, Nottingham City Campus, Nottingham, United Kingdom
| | - Daniel R. Neill
- Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hesham A. Malak
- Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Kathrin Mühlemann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Aras Kadioglu
- Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Infectious Diseases, University Hospital, Bern, Switzerland
| | - Lucy J. Hathaway
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Abstract
Cholesterol dependent cytolysins are important in the ability of some bacteria to cause disease in man and animals. Pneumolysin (PLY) plays a key role in the diseases caused by Streptococcus pneumoniae (the pneumococcus). This chapter describes the role of PLY in some of the key process in disease. These include induction of cell death by pore formation and toxin-induced apoptosis as well as more subtle effects on gene expression of host cells including epigenetic effects of the toxin. The use of bacterial mutants that either do not express the toxin or express altered versions in biological systems is described. Use of isolated tissue and whole animal systems to dissect the structure/function relationships of the toxin as well as the role played by different activities in the pathogenesis of infection are described. The role of PLY in meningitis and the associated deafness is discussed as well as the role of the toxin in promoting increased lung permeability and inflammation during pneumococcal pneumonia. Different clinical strains of the pneumococcus produce different forms of PLY and the impact of this on disease caused by these strains is discussed. Finally, the impact of this knowledge on the development of treatment and prevention strategies for pneumococcal disease is discussed.
Collapse
|
49
|
Xu Q, Pichichero ME. Co-colonization by Haemophilus influenzae with Streptococcus pneumoniae enhances pneumococcal-specific antibody response in young children. Vaccine 2013; 32:706-11. [PMID: 24355091 DOI: 10.1016/j.vaccine.2013.11.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hi) and Moraxella catarrhalis (Mcat) are common bacterial pathogens of respiratory infections and common commensal microbes in the human nasopharynx (NP). The effect of interactions among theses bacteria during co-colonization of the NP on the host immune response has not been evaluated. The objective of this study was to assess the impact of co-colonization by Hi or Mcat on the systemic antibody response to vaccine protein candidate antigens of Spn and similarly the impact of co-colonization by Spn and Mcat on antibody responses to Hi vaccine protein candidate antigens. METHODS Serum samples were collected from healthy children at 6, 9, 15, 18, and 24 months of age when they were colonized with Spn, Hi, Mcat or their combinations. Quantitative ELISA was used to determine serum IgA and IgG against three Spn antigens and three Hi antigens, and as well as whole cells of non-typeable (NT) Spn and Hi. RESULTS NP colonization by Spn increased serum IgA and IgG titers against Spn antigens PhtD, PcpA and PlyD and whole cells of NTSpn, and co-colonization of Hi or Mcat with Spn resulted in further increases of serum pneumococcal-specific antibody levels. NP colonization by Hi increased serum IgA and IgG titers against Hi antigens P6, Protein D and OMP26 and whole cells of NTHi, but co-colonization of Spn or Mcat with Hi did not result in further increase of serum NTHi-specific antibody levels. CONCLUSION Co-colonization of Hi or Mcat with Spn enhances serum antibody response to NTSpn whole cells and Spn vaccine candidate antigens PhtD, PcPA and PlyD1. Co-colonization appears to variably modulate pathogen species-specific host adaptive immune response.
Collapse
Affiliation(s)
- Qingfu Xu
- Center for Infectious Disease and Immunology, Rochester General Hospital Research Institute, 1425 Portland Avenue, Rochester, NY 14621, USA.
| | - Michael E Pichichero
- Center for Infectious Disease and Immunology, Rochester General Hospital Research Institute, 1425 Portland Avenue, Rochester, NY 14621, USA
| |
Collapse
|
50
|
Hong W, Khampang P, Erbe C, Kumar S, Taylor SR, Kerschner JE. Nontypeable Haemophilus influenzae inhibits autolysis and fratricide of Streptococcus pneumoniae in vitro. Microbes Infect 2013; 16:203-13. [PMID: 24269704 DOI: 10.1016/j.micinf.2013.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 11/09/2013] [Accepted: 11/12/2013] [Indexed: 11/15/2022]
Abstract
Streptococcus pneumoniae (SP) and nontypeable Haemophilus influenzae (NTHi) are common commensals of the human airway and major bacterial pathogens of otitis media (OM) and other upper airway infections. The interaction between them may play an important role in the pathogenesis of polymicrobial infections. Although previous studies suggested NTHi could promote pneumococcal survival and biofilm formation, how NTHi affects pneumococcal activities has not been defined. Our data in the present studies indicated that the outcome of the interaction between SP and NTHi was in a cell-density-dependent manner and the enhancement of pneumococcal survival happened at the later stages of culturing. Using quantitative PCR, we found that the expression of pneumococcal genes regulating autolysis and fratricide, lytA and cbpD, were significantly down-regulated in co-culture with NTHi. We further observed that influence of NTHi was not on direct cell-to-cell contact, but that this contact may contribute to the interaction between these two microorganisms. These results suggest that pneumococcal survival and biofilm formation can be enhanced by down-regulating pneumococcal cell wall hydrolase production thereby inhibiting pneumococcal autolysis and fratricide in the presence of NTHi.
Collapse
Affiliation(s)
- Wenzhou Hong
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Pawjai Khampang
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Christy Erbe
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Suresh Kumar
- Department of Pathology, CRI Imaging Core, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Steve R Taylor
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Division of Pediatric Otolaryngology, Medical College of Wisconsin, Children's Hospital of Wisconsin, 9000 W Wisconsin Ave., Milwaukee, WI 53226, USA
| |
Collapse
|