1
|
Pan Q, Zhang XL. Roles of core fucosylation modification in immune system and diseases. CELL INSIGHT 2025; 4:100211. [PMID: 39624801 PMCID: PMC11609374 DOI: 10.1016/j.cellin.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 01/04/2025]
Abstract
Core fucosylation, catalyzed by α1,6-fucosyltransferase (FUT8), is an important N-glycosylation modification process that attaches a fucose residue via an α1,6-linkage to the core N-acetylglucosamine of N-glycans in mammals. Research over the past three decades has revealed the critical role of FUT8-mediated core fucosylation modification in various physiological and pathological processes, including cell growth, adhesion, receptor activation, antibody-dependent cellular cytotoxicity (ADCC), tumor metastasis and infections. This review discusses the immune system function involving FUT8 and the mechanisms by which core fucosylation regulates immunity and contributes to disease. A deeper understanding of these mechanisms can provide insights into cellular biology and suggest new therapeutic approaches and targets for related diseases.
Collapse
Affiliation(s)
- Qiu Pan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| |
Collapse
|
2
|
Rhodes VL, Waterhouse RM, Michel K. The molecular toll pathway repertoire in anopheline mosquitoes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105287. [PMID: 39522894 PMCID: PMC11717629 DOI: 10.1016/j.dci.2024.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the Anopheles gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles.
Collapse
Affiliation(s)
- Victoria L Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; Biology Department, Missouri Southern University, Joplin, MO 64801, USA
| | | | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Zhang J, Zhao R, Bi H, He J, Guo Y, Liu D, Yang G, Chen X, Chen Z. Positive Selection of TLR2 and MyD88 Genes Provides Insights Into the Molecular Basis of Immunological Adaptation in Amphibians. Ecol Evol 2024; 14:e70723. [PMID: 39691440 PMCID: PMC11650749 DOI: 10.1002/ece3.70723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024] Open
Abstract
The transition from water to land of amphibians is evolutionarily significant in the history of vertebrates, and immunological adaptation is an important challenge for amphibians to respond to the dramatic changes of the environmental pathogens during their origin and diversification. Toll-like receptors (TLRs) are important pattern recognition receptors for the innate immune response and TLRs signaling pathway play essential roles in the immune responses to pathogens and inflammatory reaction. However, the evolutionary patterns and molecular mechanisms underlying their adaptation in amphibians are poorly documented to date. Here, we determined the coding regions, expression patterns of TLR2 and Myeloid differentiation factor 88 (MyD88) in the large treefrog (Zhangixalus dennysi), and explored the evolutionary patterns of these two genes in amphibians. Quantitative Real-time PCR analyses showed that the TLR2 and MyD88 mRNA were expressed in all the organs/tissues examined, both with the highest levels in the heart and the lowest levels in the body fat for TLR2 and lung for MyD88. The highly conservation and functional significance of these two genes in amphibians were supported based on the sequence characteristics and evolutionary analyses. Significantly positive selection was found to be acting on TLR2 and MyD88 in amphibians based on different site models. Strong signal of positive selection among different amphibian lineages for these two genes was also detected and a series of positively selected sites were identified based on the branch-site analysis. Our results suggest that amphibians have adapted to different pathogenic microorganisms during their transition from the aquatic to terrestrial environment and diversification into various habitats. The present study will provide new insights into the evolutionary process and molecular basis underlying the immunological adaptation in vertebrates.
Collapse
Affiliation(s)
- Jie Zhang
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
- College of FisheriesHenan Normal UniversityXinxiangChina
| | - Ruinan Zhao
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Hongyan Bi
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Jiaoying He
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Yang Guo
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Dian Liu
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Ganggang Yang
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Xiaohong Chen
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Zhuo Chen
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| |
Collapse
|
4
|
Todd LA, Le Dreff-Kerwin E, Bui-Marinos MP, Dharmasiddhi IPW, Vo NTK, Katzenback BA. Development and use of two Xenopus laevis spleen stromal cell lines to study the role of splenic stromal cells in anuran immune processes. Mol Immunol 2024; 176:96-110. [PMID: 39602982 DOI: 10.1016/j.molimm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
The spleen is an important immune organ in adult Xenopus laevis, supporting the differentiation of B cells and acting as the main peripheral lymphoid organ. Key to these processes are the supporting non-hematopoietic cells, or stromal cells, within the spleen tissue. Despite the importance of the spleen to frog immunity, few frog cell lines originating from spleen tissue have been reported. In this study, we report on the establishment and characterization of two cell lines originating from X. laevis spleen tissue, Xela S5F and Xela S5E. Morphological observations and gene expression profiling suggest that Xela S5F is fibroblast-like and Xela S5E is epithelial-like. Both cell lines express transcripts corresponding to a variety of hematopoietic growth factors, suggesting their potential utility as a feeder cell line to support ex vivo myelopoietic cell differentiation. Xela S5F and Xela S5E produce transcripts for a diversity of pattern recognition receptors including toll-like receptors, scavenger receptors, and cytosolic nucleic acid sensors, suggesting anuran spleen stromal cells may be important cellular sensors of pathogens filtered through the spleen. This idea is supported by the increase in transcript levels for antiviral and proinflammatory genes in both cell lines in response to treatment with the commercially available toll-like receptor ligands, flagellin and poly(I:C). However, despite the ability to sense extracellular synthetic analogues of viral nucleic acids [i.e. poly(I:C)] and susceptibility and permissibility of both cell lines to frog virus 3 (FV3), a large double-stranded DNA virus that infects amphibians, neither cell line upregulates key antiviral or proinflammatory transcripts when challenged with FV3. The establishment of Xela S5F and S5E cell lines expands the current X. laevis invitrome and provides new in vitro cell model systems to investigate the role of splenic stromal cells in anuran immune functions.
Collapse
Affiliation(s)
- Lauren A Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | | | | | - Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | |
Collapse
|
5
|
Ayalew H, Xu C, Adane A, Sanchez ALB, Li S, Wang J, Wu S, Qiu K, Qi G, Zhang H. Ontogeny and function of the intestinal epithelial and innate immune cells during early development of chicks: to explore in ovo immunomodulatory nutrition. Poult Sci 2024; 104:104607. [PMID: 39693955 PMCID: PMC11720616 DOI: 10.1016/j.psj.2024.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Intestinal epithelial cells (IECs) and innate immune cells in the gastrointestinal tract (GIT) of chickens play crucial roles in pathogens defense and maintaining gut health. However, their effectiveness influenced with their developmental and functional stages during pre and post hatch periods of chick. During embryonic development, differentiation and migration of these innate immune systems are tightly regulated by diverse cellular and molecular factors. The maturation and functionality of IECs are histologically evident starting embryonic day (ED) 14. Moreover, the innate immun cells, such as dendritic cells (DCs), macrophages, natural killer (NK) cells, and gamma-delta (γδ) T cells have showed developmental expression varation, while most identified by the 3rd days of incubation and capable of responsing to their cognate ligands of pathogens by ED 17, it may not efficient during posthatch period. In modern poultry production, in ovo feeding of bioactive substances is a topic of interest to maximize the protection capability of hatched chicks by enhancing improvement on the development of innate immune systems. However, their actions and effects on each distinct innate immune involved response are inconsistent and not clearly understood. Thus, summarizing the ontogeny and function of IECs, innate immunity systems, and interaction mechanisms of in ovo feeding of bioactive substances could provide baseline information for designing targeted in ovo feeding interventions to modulate cell waise specific innate immune systems.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; University of Gondar, College of Veterinary Medicine and Animal Sciences, Po. Box 196, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Assefa Adane
- University of Gondar, College of Veterinary Medicine and Animal Sciences, Po. Box 196, Gondar, Ethiopia
| | - Astrid Lissette Barreto Sanchez
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Siman Li
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
She L, Alanazi HH, Xu Y, Yu Y, Gao Y, Guo S, Xiong Q, Jiang H, Mo K, Wang J, Chupp DP, Zan H, Xu Z, Sun Y, Xiong N, Zhang N, Xie Z, Jiang W, Zhang X, Liu Y, Li XD. Direct activation of toll-like receptor 4 signaling in group 2 innate lymphoid cells contributes to inflammatory responses of allergic diseases. iScience 2024; 27:111240. [PMID: 39563895 PMCID: PMC11574794 DOI: 10.1016/j.isci.2024.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/04/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are key players in type 2 immunity, but whether they can be directly activated by microbial ligands remain uncertain. In this study, we observed a positive correlation between blood endotoxin (LPS) levels and circulating ILC2s in allergic patients. In vitro, LPS robustly induced ILC2 proliferation and production of type 2 effector cytokines. RNA-seq revealed a type 2 immune-responsive profile in LPS-stimulated ILC2s. Notably, ILC2s lost their LPS-mediated growth and activation capacity when treated with TLR4 receptor antagonists and inhibitors of the NF-κB and JAK pathways, though this effect was not observed with IL-33 receptor blocking antibodies. Genetically, ILC2s from TLR4 knockout (KO) mice, but not from ST2 KO mice, were unresponsive to LPS. Collectively, these findings suggest a direct, non-canonical activation mechanism of ILC2s via the LPS-TLR4-NF-κB/JAK signaling axis.
Collapse
Affiliation(s)
- Li She
- Department of Otolaryngology-Head and Neck Surgery, Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders, Otolaryngology Major Disease Research Key Laboratory of Hunan Province, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Hamad H Alanazi
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Aldwally Road, Al-Qurayyat 77454, Saudi Arabia
| | - Yimin Xu
- Department of Otolaryngology-Head and Neck Surgery, Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders, Otolaryngology Major Disease Research Key Laboratory of Hunan Province, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuxuan Yu
- Department of Otolaryngology-Head and Neck Surgery, Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders, Otolaryngology Major Disease Research Key Laboratory of Hunan Province, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuzhang Gao
- Department of Otolaryngology-Head and Neck Surgery, Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders, Otolaryngology Major Disease Research Key Laboratory of Hunan Province, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Shuting Guo
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, 1 Xinzao Road, Guangzhou, Guangdong 511495, China
| | - Qingquan Xiong
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, 1 Xinzao Road, Guangzhou, Guangdong 511495, China
| | - Hui Jiang
- Department of Gynecology, The Fifth Affiliated Hospital, Guangzhou Medical University, 621 Gangwan Road, Guangzhou, Guangdong 510700, China
| | - Kexin Mo
- Department of Gynecology, The Fifth Affiliated Hospital, Guangzhou Medical University, 621 Gangwan Road, Guangzhou, Guangdong 510700, China
| | - Jingwei Wang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Daniel P Chupp
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Yilun Sun
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Zhihai Xie
- Department of Otolaryngology-Head and Neck Surgery, Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders, Otolaryngology Major Disease Research Key Laboratory of Hunan Province, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Weihong Jiang
- Department of Otolaryngology-Head and Neck Surgery, Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders, Otolaryngology Major Disease Research Key Laboratory of Hunan Province, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Xin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders, Otolaryngology Major Disease Research Key Laboratory of Hunan Province, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yong Liu
- Department of Otolaryngology-Head and Neck Surgery, Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders, Otolaryngology Major Disease Research Key Laboratory of Hunan Province, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Xiao-Dong Li
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, 1 Xinzao Road, Guangzhou, Guangdong 511495, China
| |
Collapse
|
7
|
He X, Zhang S, Zou Z, Gao P, Yang L, Xiang B. Antiviral Effects of Avian Interferon-Stimulated Genes. Animals (Basel) 2024; 14:3062. [PMID: 39518785 PMCID: PMC11545081 DOI: 10.3390/ani14213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Interferons (IFNs) stimulate the expression of numerous IFN-stimulating genes via the Janus kinase-signal transducers and activators of the transcription (JAK-STAT) signaling pathway, which plays an important role in the host defense against viral infections. In mammals, including humans and mice, a substantial number of IFN-stimulated genes (ISGs) have been identified, and their molecular mechanisms have been elucidated. It is important to note that avian species are phylogenetically distant from mammals, resulting in distinct IFN-induced ISGs that may have different functions. At present, only a limited number of avian ISGs have been identified. In this review, we summarized the identified avian ISGs and their antiviral activities. As gene-editing technology is widely used in avian breeding, the identification of avian ISGs and the elucidation of their molecular mechanism may provide important support for the breeding of avians for disease resistance.
Collapse
Affiliation(s)
- Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyuan Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ziheng Zou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453000, China;
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Doğan G, Sandıkçı M, Karagenç L. Stage-specific expression of Toll-like receptors in the seminiferous epithelium of mouse testis. Histochem Cell Biol 2024; 162:323-335. [PMID: 39085445 PMCID: PMC11364606 DOI: 10.1007/s00418-024-02310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Genes encoding Toll-like receptors (TLRs) are expressed by germ cells in the mouse testis. Nevertheless, the expression of TLRs by germ cells has only been demonstrated for TLR-3, TLR-9, and TLR-11. Furthermore, the expression of each TLR in relation to the stage of spermatogenesis remains uncertain. We aimed in the present study to examine the expression pattern of all TLRs in germ cells throughout the cycle of seminiferous epithelium in the adult mouse testis. Immunohistochemistry was used to evaluate the expression of TLRs. Results of the present study reveal the expression of TLRs by specific populations of germ cells. Expression of TLRs, except for TLR-7, at endosomal compartments, acrosomes, and/or residual bodies was another interesting and novel finding of the present study. We further demonstrate that the expression of TLR-1, -2, -3, -4, -5, -7, -11, -12, and -13 follows a distinct spatiotemporal pattern throughout the cycle of seminiferous epithelium. While TLR-1, -3, -5, -11, and -12 are expressed in all stages, TLR-4 is expressed only in early and middle stages of spermatogenic cycle. On the other hand, TLR-2, -7, and -13 are expressed only in early stage of spermatogenic cycle. Evidence demonstrating the expression of TLRs in a stage specific manner throughout spermatogenesis strengthen the hypothesis that the expression of various TLRs by germ cells is a developmentally regulated process. However, if TLRs play a role in the regulation of proliferation, growth, maturation, and differentiation of germ cells throughout the cycle of the seminiferous epithelium warrants further investigations.
Collapse
Affiliation(s)
- Göksel Doğan
- Faculty of Veterinary Medicine, Department of Histology-Embryology, Aydın Adnan Menderes University, 09000, Aydın, Turkey
| | - Mustafa Sandıkçı
- Faculty of Veterinary Medicine, Department of Histology-Embryology, Aydın Adnan Menderes University, 09000, Aydın, Turkey
| | - Levent Karagenç
- Faculty of Veterinary Medicine, Department of Histology-Embryology, Aydın Adnan Menderes University, 09000, Aydın, Turkey.
| |
Collapse
|
9
|
Rhodes VL, Waterhouse RM, Michel K. The Molecular Toll Pathway Repertoire in Anopheline Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612760. [PMID: 39345384 PMCID: PMC11429875 DOI: 10.1101/2024.09.12.612760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the An. gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles.
Collapse
Affiliation(s)
- Victoria L. Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Biology Department, Missouri Southern University, Joplin, MO 64801, USA
| | | | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
10
|
Willer T, Kaiser A, Smith A, Rautenschlein S. Morphological and immunological characterization of primary cultured chicken caecal epithelial cells. Eur J Microbiol Immunol (Bp) 2024; 14:261-271. [PMID: 38905002 PMCID: PMC11393646 DOI: 10.1556/1886.2024.00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024] Open
Abstract
Cell cultures are models in biological and medical research to understand physiological and pathological processes. Cell lines are not always available depending on cell type and required species. In addition, the immortalization process often affects cell biology. Primary cells generally maintain a greater degree of similarity in short-term culture to the cells in tissue. Goal of this study was to verify the suitability of chicken primary epithelial caecal cells (PECCs) for in vitro investigations of host‒pathogen interactions. Epithelial nature of PECCs was confirmed by detection of tight and adherens junctions and cobblestone-like cell morphology. Sialic acids distribution was similar to that in caecal cyrosections. To understand the capacity of PECCs to respond to microbial challenges, the Toll-like receptors (TLRs) repertoire was determined. Exposure of PECCs to polyinosinic-polycytidylic acid (poly(I:C)) or lipopolysaccharide (LPS) led to upregulation of type I and III interferon (IFN) as well as interleukin (IL-) 1β, IL-6 and IL-8 mRNA expression. Overall, the PECCs showed properties of polarized epithelial cells. The presence of TLRs, their differential expression, as well as pattern recognition receptor dependent immune responses enable PECCs to act as suitable in vitro model for host‒pathogen interaction studies, which are difficult to conduct under in vivo conditions.
Collapse
Affiliation(s)
- Thomas Willer
- 1Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| | - Annette Kaiser
- 1Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| | - Adrian Smith
- 2Department of Biology, Peter Medawar Building, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Silke Rautenschlein
- 1Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| |
Collapse
|
11
|
Ren Y, Kong M, Sun H, Zhao B, Wu H, Chen Z, Qi J, Liu J, Zhang Q. Genome-wide identification, characterization and expression profiling of TLR family genes in Chromileptesaltivelis. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109720. [PMID: 38945413 DOI: 10.1016/j.fsi.2024.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Toll-like receptors (TLRs) represent a prominent category of pattern recognition receptors that have been extensively investigated for their pivotal role in combating pathogen incursions. Despite this, there has been a notable absence of comprehensive identification and exploration of the immune response associated with the TLR family genes in C. altivelis. This study successfully identified and named fourteen genes as Catlr1-1, Catlr1-2, Catlr2-1, Catlr2-2, Catlr3, Catlr5, Catlr7, Catlr8, Catlr9, Catlr13-1, Catlr13-2, Catlr18, Catlr21, and Catlr22. A series of bioinformatic analysis were performed, encompassing analysis of protein properties, examination of gene structures, evolutionary assessments, and prediction of protein tertiary structures. The expression patterns of Catlr genes were analyzed in five immune tissues: liver, spleen, kidney, gill, and intestine, in both healthy and bacterial stimulated-fish. The results showed that different tissue and different genes showed differed expression patterns after V. harveyi infection, indicating the involvement of all Catlr members in mounting immune responses following infection in various tissues. Additionally, histological evaluations of immune tissues unveiled varying levels of damage. In conclusion, this investigation into the TLR gene family offers novel information that contribute to a more profound comprehension of the immune response mechanisms in C. altivelis.
Collapse
Affiliation(s)
- Yanjie Ren
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China.
| | - Miao Kong
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China.
| | - Huibang Sun
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China.
| | - Benqi Zhao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China.
| | - Hanwei Wu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China.
| | - Zhennian Chen
- Hainan Chenhai Aquatic Co., Ltd, Sanya, 572025, China.
| | - Jie Qi
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Jinxiang Liu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Quanqi Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China.
| |
Collapse
|
12
|
Du YT, Zhang HQ, Li Y, Li XP, Yuan ZZ, Li MF. Teleost-specific TLR23 in Takifugu rubripes recruits MyD88 to trigger ERK pathway and promotes antibacterial defense. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109724. [PMID: 38942251 DOI: 10.1016/j.fsi.2024.109724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Takifugu rubripes is a highly valued cultured fish in Asia, while pathogen infections can result in severe diseases and lead to substantial economic losses. Toll-like receptors (TLRs), as pattern recognition receptors, play a crucial role on recognition pathogens and initiation innate immune response. However, the immunological properties of teleost-specific TLR23 remain largely unknown. In this study, we investigated the biological functions of TLR23 (TrTLR23) from T. rubripes, found that TrTLR23 existed in various organs. Following bacterial pathogen challenge, the expression levels of TrTLR23 were significantly increased in immune related organs. TrTLR23 located on the cellular membrane and specifically recognized pathogenic microorganism. Co-immunoprecipitation and antibody blocking analysis revealed that TrTLR23 recruited myeloid differentiation primary response protein (MyD88), thereby mediating the activation of the ERK signaling pathway. Furthermore, in vivo showed that, when TrTLR23 is overexpressed in T. rubripes, bacterial replication in fish tissues is significantly inhibited. Consistently, when TrTLR23 expression in T. rubripes is knocked down, bacterial replication is significantly enhanced. In conclusion, these findings suggested that TrTLR23 played a critical role on mediation TLR23-MyD88-ERK axis against bacterial infection. This study revealed that TLR23 involved in the innate immune mechanism, and provided the foundation for development disease control strategies in teleost.
Collapse
Affiliation(s)
- Yu-Ting Du
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Hong-Qiang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Yan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| | - Zeng-Zhi Yuan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Mo-Fei Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
13
|
Felch KL, Crider JD, Bhattacharjee D, Huhn C, Wilson M, Bengtén E. TLR7 in channel catfish (Ictalurus punctatus) is expressed in the endolysosome and is stimulated by synthetic ssRNA analogs, imiquimod, and resiquimod. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105197. [PMID: 38763479 PMCID: PMC11234115 DOI: 10.1016/j.dci.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Toll-like receptors (TLRs) are pivotal pattern recognition receptors (PRRs) and key mediators of innate immunity. Despite the significance of channel catfish (Ictalurus punctatus) in comparative immunology and aquaculture, its 20 TLR genes remain largely functionally uncharacterized. In this study, our aim was to determine the catfish TLR7 agonists, signaling potential, and cellular localization. Using a mammalian reporter system, we identified imiquimod and resiquimod, typical ssRNA analogs, as potent catfish TLR7 agonists. Notably, unlike grass carp TLR7, catfish TLR7 lacks the ability to respond to poly (I:C). Confocal microscopy revealed predominant catfish TLR7 expression in lysosomes, co-localizing with the endosomal chaperone protein, UNC93B1. Furthermore, imiquimod stimulation elicited robust IFNb transcription in peripheral blood leukocytes isolated from adult catfish. These findings underscore the conservation of TLR7 signaling in catfish, reminiscent of mammalian TLR7 responses. Our study sheds light on the functional aspects of catfish TLR7 and contributes to a better understanding of its role in immune defense mechanisms.
Collapse
Affiliation(s)
- Kristianna L Felch
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Jonathan D Crider
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Department of Biology, Belmont University, 1900 Belmont Blvd, 37212, Nashville, TN, USA.
| | - Debduti Bhattacharjee
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Cameron Huhn
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Melanie Wilson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Eva Bengtén
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| |
Collapse
|
14
|
Gallardo-Zapata J, Pérez-Figueroa E, Olivar-López V, Medina-Sansón A, Jiménez-Hernández E, Ortega E, Maldonado-Bernal C. TLR Agonists Modify NK Cell Activation and Increase Its Cytotoxicity in Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:7500. [PMID: 39000607 PMCID: PMC11242025 DOI: 10.3390/ijms25137500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in innate immunity, particularly in combating infections and tumors. However, in hematological cancers, NK cells often exhibit impaired functions. Therefore, it is very important to activate its endosomal Toll-like receptors (TLRs) as a potential strategy to restore its antitumor activity. We stimulated NK cells from the peripheral blood mononuclear cells from children with acute lymphoblastic leukemia and NK cells isolated, and the NK cells were stimulated with specific TLR ligands (Poly I:C, Imiquimod, R848, and ODN2006) and we evaluated changes in IFN-γ, CD107a, NKG2D, NKp44 expression, Granzyme B secretion, cytokine/chemokine release, and cytotoxic activity. Results revealed that Poly I:C and Imiquimod enhanced the activation of both immunoregulatory and cytotoxic NK cells, increasing IFN-γ, CD107a, NKG2D, and NKp44 expression. R848 activated immunoregulatory NK cells, while ODN2006 boosted CD107a, NKp44, NKG2D, and IFN-γ secretion in cytotoxic NK cells. R848 also increased the secretion of seven cytokines/chemokines. Importantly, R848 and ODN 2006 significantly improved cytotoxicity against leukemic cells. Overall, TLR stimulation enhances NK cell activation, suggesting TLR8 (R848) and TLR9 (ODN 2006) ligands as promising candidates for antitumor immunotherapy.
Collapse
Affiliation(s)
- Janet Gallardo-Zapata
- Immunology and Proteomics Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
| | - Erandi Pérez-Figueroa
- Immunology and Proteomics Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Víctor Olivar-López
- Emergency Service, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Aurora Medina-Sansón
- Hemato-Oncology Department, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | | | - Enrique Ortega
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México, Mexico City 4510, Mexico
| | - Carmen Maldonado-Bernal
- Immunology and Proteomics Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
15
|
Ghosh M, Basak S, Dutta S. Evolutionary divergence of TLR9 through ancestral sequence reconstruction. Immunogenetics 2024; 76:203-211. [PMID: 38441635 DOI: 10.1007/s00251-024-01338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/24/2024] [Indexed: 05/12/2024]
Abstract
The transmembrane pattern recognition receptor, Toll-like receptor (TLR), are best known for their roles in innate immunity via recognition of pathogen and initiation of signaling response. Mammalian TLRs recognize molecular patterns associated with pathogens and initiate innate immune response. We have studied the evolutionary diversity of mammalian TLR genes for differences in immunological response. Reconstruction of ancestral sequences is a key aspect of the molecular evolution of TLR to track changes across the TLR genes. The comprehensive analysis of mammalian TLRs revealed a distinct pattern of evolution of TLR9. Various sequence-based features such as amino acid usage, hydrophobicity, GC content, and evolutionary constraints are found to influence the divergence of TLR9 from other TLRs. Ancestral sequence reconstruction analysis also revealed that the gradual evolution of TLR genes in several ancestral lineages leads to the distinct pattern of TLR9. It demonstrates evolutionary divergence with the progressive accumulation of mutations results in the distinct pattern of TLR9.
Collapse
Affiliation(s)
- Manisha Ghosh
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T Road, Scheme-XM, Beliaghata Kolkata, 700010, India
| | - Surajit Basak
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T Road, Scheme-XM, Beliaghata Kolkata, 700010, India.
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
16
|
Su Q, Chen Y, He H. Molecular evolution of Toll-like receptors in rodents. Integr Zool 2024; 19:371-386. [PMID: 37403417 DOI: 10.1111/1749-4877.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Toll-like receptors (TLRs), the key sensor molecules in vertebrates, trigger the innate immunity and prime the adaptive immune system. The TLR family of rodents, the largest order of mammals, typically contains 13 TLR genes. However, a clear picture of the evolution of the rodent TLR family has not yet emerged and the TLR evolutionary patterns are unclear in rodent clades. Here, we analyzed the natural variation and the evolutionary processes acting on the TLR family in rodents at both the interspecific and population levels. Our results showed that rodent TLRs were dominated by purifying selection, but a series of positively selected sites (PSSs) primarily located in the ligand-binding domain was also identified. The numbers of PSSs differed among TLRs, and nonviral-sensing TLRs had more PSSs than those in viral-sensing TLRs. Gene-conversion events were found between TLR1 and TLR6 in most rodent species. Population genetic analyses showed that TLR2, TLR8, and TLR12 were under positive selection in Rattus norvegicus and R. tanezumi, whereas positive selection also acted on TLR5 and TLR9 in the former species, as well as TLR1 and TLR7 in the latter species. Moreover, we found that the proportion of polymorphisms with potentially functional change was much lower in viral-sensing TLRs than in nonviral-sensing TLRs in both of these rat species. Our findings revealed the first thorough insight into the evolution of the rodent TLR genetic variability and provided important novel insights into the evolutionary history of TLRs over long and short timescales.
Collapse
Affiliation(s)
- Qianqian Su
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Stejskalova K, Janova E, Splichalova P, Futas J, Oppelt J, Vodicka R, Horin P. Twelve toll-like receptor (TLR) genes in the family Equidae - comparative genomics, selection and evolution. Vet Res Commun 2024; 48:725-741. [PMID: 37874499 PMCID: PMC10998774 DOI: 10.1007/s11259-023-10245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Toll-like receptors (TLRs) represent an important part of the innate immune system. While human and murine TLRs have been intensively studied, little is known about TLRs in non-model species. The order Perissodactyla comprises a variety of free-living and domesticated species exposed to different pathogens in different habitats and is therefore suitable for analyzing the diversity and evolution of immunity-related genes. We analyzed TLR genes in the order Perissodactyla with a focus on the family Equidae. Twelve TLRs were identified by bioinformatic analyses of online genomic resources; their sequences were confirmed in equids by genomic DNA re-sequencing of a panel of nine species. The expression of TLR11 and TLR12 was confirmed in the domestic horse by cDNA sequencing. Phylogenetic reconstruction of the TLR gene family in Perissodactyla identified six sub-families. TLR4 clustered together with TLR5; the TLR1-6-10 subfamily showed a high degree of sequence identity. The average estimated evolutionary divergence of all twelve TLRs studied was 0.3% among the Equidae; the most divergent CDS were those of Equus caballus and Equus hemionus kulan (1.34%) in the TLR3, and Equus africanus somaliensis and Equus quagga antiquorum (2.1%) in the TLR1 protein. In each TLR gene, there were haplotypes shared between equid species, most extensively in TLR3 and TLR9 CDS, and TLR6 amino acid sequence. All twelve TLR genes were under strong negative overall selection. Signatures of diversifying selection in specific codon sites were detected in all TLRs except TLR8. Differences in the selection patterns between virus-sensing and non-viral TLRs were observed.
Collapse
Affiliation(s)
- K Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
| | - E Janova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - P Splichalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
| | - J Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - J Oppelt
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | | | - P Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic.
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic.
| |
Collapse
|
18
|
Cui Sun M, Otálora-Alcaraz A, Prenderville JA, Downer EJ. Toll-like receptor signalling as a cannabinoid target. Biochem Pharmacol 2024; 222:116082. [PMID: 38438052 DOI: 10.1016/j.bcp.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Toll-like receptors (TLRs) have become a focus in biomedicine and biomedical research given the roles of this unique family of innate immune proteins in immune activation, infection, and autoimmunity. It is evident that TLR dysregulation, and subsequent alterations in TLR-mediated inflammatory signalling, can contribute to disease pathogenesis, and TLR targeted therapies are in development. This review highlights evidence that cannabinoids are key regulators of TLR signalling. Cannabinoids include component of the plant Cannabis sativa L. (C. sativa), synthetic and endogenous ligands, and overall represent a class of compounds whose therapeutic potential and mechanism of action continues to be elucidated. Cannabinoid-based medicines are in the clinic, and are furthermore under intense investigation for broad clinical development to manage symptoms of a range of disorders. In this review, we present an overview of research evidence that signalling linked to a range of TLRs is targeted by cannabinoids, and such cannabinoid mediated effects represent therapeutic avenues for further investigation. First, we provide an overview of TLRs, adaptors and key signalling events, alongside a summary of evidence that TLRs are linked to disease pathologies. Next, we discuss the cannabinoids system and the development of cannabinoid-based therapeutics. Finally, for the bulk of this review, we systematically outline the evidence that cannabinoids (plant-derived cannabinoids, synthetic cannabinoids, and endogenous cannabinoid ligands) can cross-talk with innate immune signalling governed by TLRs, focusing specifically on each member of the TLR family. Cannabinoids should be considered as key regulators of signalling controlled by TLRs, and such regulation should be a major focus in terms of the anti-inflammatory propensity of the cannabinoid system.
Collapse
Affiliation(s)
- Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jack A Prenderville
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Transpharmation Ireland Limited, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
19
|
Gozashti L, Hartl DL, Corbett-Detig R. Universal signatures of transposable element compartmentalization across eukaryotic genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562820. [PMID: 38585780 PMCID: PMC10996525 DOI: 10.1101/2023.10.17.562820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The evolutionary mechanisms that drive the emergence of genome architecture remain poorly understood but can now be assessed with unprecedented power due to the massive accumulation of genome assemblies spanning phylogenetic diversity1,2. Transposable elements (TEs) are a rich source of large-effect mutations since they directly and indirectly drive genomic structural variation and changes in gene expression3. Here, we demonstrate universal patterns of TE compartmentalization across eukaryotic genomes spanning ~1.7 billion years of evolution, in which TEs colocalize with gene families under strong predicted selective pressure for dynamic evolution and involved in specific functions. For non-pathogenic species these genes represent families involved in defense, sensory perception and environmental interaction, whereas for pathogenic species, TE-compartmentalized genes are highly enriched for pathogenic functions. Many TE-compartmentalized gene families display signatures of positive selection at the molecular level. Furthermore, TE-compartmentalized genes exhibit an excess of high-frequency alleles for polymorphic TE insertions in fruit fly populations. We postulate that these patterns reflect selection for adaptive TE insertions as well as TE-associated structural variants. This process may drive the emergence of a shared TE-compartmentalized genome architecture across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
20
|
Wei Z, Zhang M, Chen Y, Hu H, Zhao X, Zheng Y, Tran NT, Feng H, Zeng C, Li S. Spätzle maintains homeostasis of hemolymph microbiota in Scylla paramamosain through Toll2. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109385. [PMID: 38242262 DOI: 10.1016/j.fsi.2024.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The Toll pathway is crucial for innate immune responses in organisms (including Drosophila and mammals). The Spätzle protein outside of cells acts as a ligand for Toll receptors, enabling the transfer of signals from outside the cell to the inside. However, the function of Spätzle in the immune system of mud crab (Scylla paramamosain) remains unclear. This research discovered a novel Spätzle gene (Sp-Spz) in mud crab, which showed extensive expression in all the tissues that were examined. The RNA interference exhibited the correlation between Sp-Spz and the anti-lipopolysaccharide factors (ALFs). Knockdown of Sp-Spz decreased the expression of Sp-Toll2 but not Sp-Toll1. In Drosophila Schneider 2 cells, Sp-Spz was found interacted with Sp-Toll2. Moreover, the depletion of Sp-Spz caused the separation of hepatic lobules from the basement membrane, resulting in the disruption of the structural coherence of hepatopancreatic cells. Additionally, the knockdown of Sp-Spz resulted in changes to the composition of the hemolymph microbiota, specifically affecting the proportions of different phylum and family levels. The findings indicated that Sp-Spz may promote the synthesis of ALFs via Sp-Toll2, thereby influencing the homeostasis of microbiota in the hemolymph. In this study, novel insights into mud crab immunity are provided.
Collapse
Affiliation(s)
- Zibo Wei
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hang Hu
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xinshan Zhao
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yuqing Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Haipeng Feng
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
| | - Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China.
| |
Collapse
|
21
|
Arivazhagan L, Popp CJ, Ruiz HH, Wilson RA, Manigrasso MB, Shekhtman A, Ramasamy R, Sevick MA, Schmidt AM. The RAGE/DIAPH1 axis: mediator of obesity and proposed biomarker of human cardiometabolic disease. Cardiovasc Res 2024; 119:2813-2824. [PMID: 36448548 PMCID: PMC11484493 DOI: 10.1093/cvr/cvac175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/07/2023] Open
Abstract
Overweight and obesity are leading causes of cardiometabolic dysfunction. Despite extensive investigation, the mechanisms mediating the increase in these conditions are yet to be fully understood. Beyond the endogenous formation of advanced glycation endproducts (AGEs) in overweight and obesity, exogenous sources of AGEs accrue through the heating, production, and consumption of highly processed foods. Evidence from cellular and mouse model systems indicates that the interaction of AGEs with their central cell surface receptor for AGE (RAGE) in adipocytes suppresses energy expenditure and that AGE/RAGE contributes to increased adipose inflammation and processes linked to insulin resistance. In human subjects, the circulating soluble forms of RAGE, which are mutable, may serve as biomarkers of obesity and weight loss. Antagonists of RAGE signalling, through blockade of the interaction of the RAGE cytoplasmic domain with the formin, Diaphanous-1 (DIAPH1), target aberrant RAGE activities in metabolic tissues. This review focuses on the potential roles for AGEs and other RAGE ligands and RAGE/DIAPH1 in the pathogenesis of overweight and obesity and their metabolic consequences.
Collapse
Affiliation(s)
- Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, Science Building, 435 E. 30th Street, New York, NY 10016, USA
| | - Collin J Popp
- Center for Healthful Behavior Change, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Henry H Ruiz
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, Science Building, 435 E. 30th Street, New York, NY 10016, USA
| | - Robin A Wilson
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, Science Building, 435 E. 30th Street, New York, NY 10016, USA
| | - Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, Science Building, 435 E. 30th Street, New York, NY 10016, USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY 12222, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, Science Building, 435 E. 30th Street, New York, NY 10016, USA
| | - Mary Ann Sevick
- Center for Healthful Behavior Change, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, Science Building, 435 E. 30th Street, New York, NY 10016, USA
| |
Collapse
|
22
|
Aksu B, Afonso AC, Akil I, Alpay H, Atmis B, Aydog O, Bayazıt AK, Bayram MT, Bilge I, Bulut IK, Buyukkaragoz B, Comak E, Demir BK, Dincel N, Donmez O, Durmus MA, Dursun H, Dusunsel R, Duzova A, Ertan P, Gedikbasi A, Goknar N, Guven S, Hacihamdioglu D, Jankauskiene A, Kalyoncu M, Kavukcu S, Kenan BU, Kucuk N, Kural B, Litwin M, Montini G, Morello W, Obrycki L, Omer B, Oner HA, Ozdemir EM, Ozkayin N, Paripovic D, Pehlivanoglu C, Saygili S, Schaefer F, Schaefer S, Sonmez F, Tabel Y, Tas N, Tasdemir M, Teixeira A, Tekcan D, Topaloglu R, Tulpar S, Turkkan ON, Uysal B, Uysalol M, Vitkevic R, Yavuz S, Yel S, Yildirim T, Yildirim ZY, Yildiz N, Yuksel S, Yurtseven E, Yilmaz A. Urine soluble TLR4 levels may contribute to predict urinary tract infection in children: the UTILISE Study. Pediatr Nephrol 2024; 39:483-491. [PMID: 37462743 DOI: 10.1007/s00467-023-06063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND One of the most common bacterial infections in childhood is urinary tract infection (UTI). Toll-like receptors (TLRs) contribute to immune response against UTI recognizing specific pathogenic agents. Our aim was to determine whether soluble TLR4 (sTLR4), soluble TLR5 (sTLR5) and interleukin 8 (IL-8) can be used as biomarkers to diagnose UTI. We also aimed to reveal the relationship between urine Heat Shock Protein 70 (uHSP70) and those biomarkers investigated in this study. METHODS A total of 802 children from 37 centers participated in the study. The participants (n = 282) who did not meet the inclusion criteria were excluded from the study. The remaining 520 children, including 191 patients with UTI, 178 patients with non-UTI infections, 50 children with contaminated urine samples, 26 participants with asymptomatic bacteriuria and 75 healthy controls were included in the study. Urine and serum levels of sTLR4, sTLR5 and IL-8 were measured at presentation in all patients and after antibiotic treatment in patients with UTI. RESULTS Urine sTLR4 was higher in the UTI group than in the other groups. UTI may be predicted using 1.28 ng/mL as cut-off for urine sTLR4 with 68% sensitivity and 65% specificity (AUC = 0.682). In the UTI group, urine sTLR4 levels were significantly higher in pyelonephritis than in cystitis (p < 0.0001). Post-treatment urine sTLR4 levels in the UTI group were significantly lower than pre-treatment values (p < 0.0001). CONCLUSIONS Urine sTLR4 may be used as a useful biomarker in predicting UTI and subsequent pyelonephritis in children with UTI. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Bagdagul Aksu
- Department of Pediatrics Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey.
- Division of Pediatric Nephrology, Istanbul Faculty of Medicine, Istanbul University, Fatih, Istanbul, Turkey.
| | - Alberto Caldas Afonso
- Division of Pediatric Nephrology, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ipek Akil
- Division of Pediatric Nephrology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Harika Alpay
- Division of Pediatric Nephrology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Bahriye Atmis
- Pediatric Nephrology, Erzurum Training and Research Hospital, Erzurum, Turkey
- Division of Pediatric Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ozlem Aydog
- Division of Pediatric Nephrology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Aysun Karabay Bayazıt
- Division of Pediatric Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Meral Torun Bayram
- Division of Pediatric Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ilmay Bilge
- Division of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Koc University, Istanbul, Turkey
| | - Ipek Kaplan Bulut
- Division of Pediatric Nephrology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Bahar Buyukkaragoz
- Division of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Elif Comak
- Division of Pediatric Nephrology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Belde Kasap Demir
- Division of Pediatric Nephrology, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
- Division of Pediatric Nephrology, Izmir Katip Celebi University Faculty of Medicine, Izmir, Turkey
| | - Nida Dincel
- Division of Pediatric Nephrology, Dr. Behcet Uz Children Diseases Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Osman Donmez
- Division of Pediatric Nephrology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Mehmet Akif Durmus
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hasan Dursun
- Division of Pediatric Nephrology, Okmeydani Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ruhan Dusunsel
- Division of Pediatric Nephrology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ali Duzova
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pelin Ertan
- Division of Pediatric Nephrology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Asuman Gedikbasi
- Department of Rare Diseases, Institute of Child Health, Istanbul University, Istanbul, Turkey
| | - Nilufer Goknar
- Division of Pediatric Nephrology, Bagcilar Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sercin Guven
- Division of Pediatric Nephrology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Duygu Hacihamdioglu
- Division of Pediatric Nephrology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Augustina Jankauskiene
- Clinic of Pediatrics, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| | - Mukaddes Kalyoncu
- Division of Pediatric Nephrology, Faculty of Medicine, Karadeniz Technic University, Trabzon, Turkey
| | - Salih Kavukcu
- Division of Pediatric Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Bahriye Uzun Kenan
- Division of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Nuran Kucuk
- Division of Pediatric Nephrology, Kartal Training and Research Hospital, Istanbul, Turkey
| | - Bahar Kural
- Department of Pediatrics, Health Science University Bakirkoy Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Mieczysław Litwin
- Division of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - William Morello
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Lukasz Obrycki
- Division of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Beyhan Omer
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Huseyin Adil Oner
- Division of Pediatric Nephrology, Istanbul Faculty of Medicine, Istanbul University, Fatih, Istanbul, Turkey
| | - Ebru Misirli Ozdemir
- Department of Pediatrics, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Nese Ozkayin
- Division of Pediatric Nephrology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Dusan Paripovic
- Division of Pediatric Nephrology, University Children's Hospital, Belgrade, Serbia
| | - Cemile Pehlivanoglu
- Division of Pediatric Nephrology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Seha Saygili
- Division of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | - Susanne Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | - Ferah Sonmez
- Division of Pediatric Nephrology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Yilmaz Tabel
- Division of Pediatric Nephrology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Nesrin Tas
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Tasdemir
- Division of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Koc University, Istanbul, Turkey
- Department of Pediatric Nephrology, Istinye University, Faculty of Medicine, Liv Hospital Ulus, Istanbul, Turkey
| | - Ana Teixeira
- Division of Pediatric Nephrology, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Demet Tekcan
- Division of Pediatric Nephrology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Rezan Topaloglu
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sebahat Tulpar
- Division of Pediatric Nephrology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Ozde Nisa Turkkan
- Division of Pediatric Nephrology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Berfin Uysal
- Division of Pediatric Nephrology, Dortcelik Children's Hospital, Bursa, Turkey
- Division of Pediatric Nephrology, Bursa City Hospital, Bursa, Turkey
| | - Metin Uysalol
- Division of Pediatric Emergency, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Renata Vitkevic
- Clinic of Pediatrics, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| | - Sevgi Yavuz
- Division of Pediatric Nephrology, Department of Pediatrics, Kanuni Sultan Suleyman Research and Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sibel Yel
- Division of Pediatric Nephrology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tarik Yildirim
- Department of Pediatrics, Kanuni Sultan Suleyman Research and Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Zeynep Yuruk Yildirim
- Department of Pediatrics Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Division of Pediatric Nephrology, Istanbul Faculty of Medicine, Istanbul University, Fatih, Istanbul, Turkey
| | - Nurdan Yildiz
- Division of Pediatric Nephrology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Selcuk Yuksel
- Division of Pediatric Nephrology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Eray Yurtseven
- Department of Biostatistics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alev Yilmaz
- Department of Pediatrics Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Division of Pediatric Nephrology, Istanbul Faculty of Medicine, Istanbul University, Fatih, Istanbul, Turkey
| |
Collapse
|
23
|
Fernández JJ, Mancebo C, Garcinuño S, March G, Alvarez Y, Alonso S, Inglada L, Blanco J, Orduña A, Montero O, Sandoval TA, Cubillos-Ruiz JR, Bustamante-Munguira E, Fernández N, Crespo MS. Innate IRE1α-XBP1 activation by viral single-stranded RNA and its influence on lung cytokine production during SARS-CoV-2 pneumonia. Genes Immun 2024; 25:43-54. [PMID: 38146001 DOI: 10.1038/s41435-023-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
The utilization of host-cell machinery during SARS-CoV-2 infection can overwhelm the protein-folding capacity of the endoplasmic reticulum and activate the unfolded protein response (UPR). The IRE1α-XBP1 arm of the UPR could also be activated by viral RNA via Toll-like receptors. Based on these premises, a study to gain insight into the pathogenesis of COVID-19 disease was conducted using nasopharyngeal exudates and bronchioloalveolar aspirates. The presence of the mRNA of spliced XBP1 and a high expression of cytokine mRNAs were observed during active infection. TLR8 mRNA showed an overwhelming expression in comparison with TLR7 mRNA in bronchioloalveolar aspirates of COVID-19 patients, thus suggesting the presence of monocytes and monocyte-derived dendritic cells (MDDCs). In vitro experiments in MDDCs activated with ssRNA40, a synthetic mimic of SARS-CoV-2 RNA, showed induction of XBP1 splicing and the expression of proinflammatory cytokines. These responses were blunted by the IRE1α inhibitor MKC8866, the TLR8 antagonist CU-CPT9a, and knockdown of TLR8 receptor. In contrast, the IRE1α-XBP1 activator IXA4 enhanced these responses. Based on these findings, the TLR8/IRE1α system seems to play a significant role in the induction of the proinflammatory cytokines associated with severe COVID-19 disease and might be a druggable target to control cytokine storm.
Collapse
Affiliation(s)
- José J Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Cristina Mancebo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Sonsoles Garcinuño
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Gabriel March
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Yolanda Alvarez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Luis Inglada
- Servicio de Medicina Interna, Hospital Universitario Rio-Hortega, 47012, Valladolid, Spain
| | - Jesús Blanco
- Servicio de Medicina Intensiva, Hospital Universitario Rio-Hortega, 47012, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Orduña
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Olimpio Montero
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Tito A Sandoval
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elena Bustamante-Munguira
- Servicio de Medicina Intensiva, Hospital Clínico Universitario de Valladolid, 47003, Valladolid, Spain
| | - Nieves Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain.
| |
Collapse
|
24
|
Gao S, Huang W, Peng S, Zhou J, Zhan H, Lu T, Liang W, Li J, Zhang Y, Li W, Han C, Li Q. Molecular characterization and expression analysis of nine toll like receptor (TLR) genes in Scortum barcoo under Streptococcus agalactiae infection. Int J Biol Macromol 2024; 254:127667. [PMID: 37918608 DOI: 10.1016/j.ijbiomac.2023.127667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Toll like receptors (TLRs) are important pattern recognition receptors participating in innate immune system. Up to now, no TLR has been identified in Jade perch (Scortum barcoo). In this study, we successfully identified 9 members of TLRs from the Jade perch. Amino acid sequence alignment analysis showed that the whole sequences of these TLRs were highly conserved among different fish species, especially in LRR, TM and TIR domains. Phylogenetic analysis revealed that each SbTLR was successfully grouped into corresponding gene family of teleosts. Expression analysis showed that most SbTLRs mainly expressed in liver, spleen, muscle and skin, while expressed less in brain and stomach. After Streptococcus agalactiae infection, expression of SbTLR2, SbTLR5S and SbTLR22 were significantly upregulated, while SbTLR3, SbTLR5M, SbTLR9, SbTLR13, and SbTLR14 were significantly downregulated. In all, this research first reported molecular characterization and expression profiles of 9 TLRs in Jade perch. These data will make a contribution for better understanding the antibacterial mechanism of TLRs in teleosts.
Collapse
Affiliation(s)
- Songze Gao
- Guangzhou Mygene Diagnostics Co., Ltd., Guangzhou 510320, PR China
| | - Wenwei Huang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Suhan Peng
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Jiangwei Zhou
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Huawei Zhan
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Tongfu Lu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Weiqian Liang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Junwu Li
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Yuying Zhang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Wenjun Li
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Chong Han
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| | - Qiang Li
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
25
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management. Int J Biol Macromol 2023; 253:126541. [PMID: 37648127 DOI: 10.1016/j.ijbiomac.2023.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Ashis Saha
- Reproductive Biology and Endocrinology Laboratory, Fish Nutrition and Physiology Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
26
|
Almazmomi MA, Esmat A, Naeem A. Acute Kidney Injury: Definition, Management, and Promising Therapeutic Target. Cureus 2023; 15:e51228. [PMID: 38283512 PMCID: PMC10821757 DOI: 10.7759/cureus.51228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Acute kidney injury (AKI) is caused by a sudden loss of renal function, resulting in the build-up of waste products and a significant increase in mortality and morbidity. It is commonly diagnosed in critically ill patients, with its occurrence estimated at up to 50% in patients hospitalized in the intensive critical unit. Despite ongoing efforts, the death rate associated with AKI has remained high over the past half-century. Thus, it is critical to investigate novel therapy options for preventing the epidemic. Many studies have found that inflammation and Toll-like receptor-4 (TLR-4) activation have a significant role in the pathogenesis of AKI. Noteworthy, challenges in the search for efficient pharmacological therapy for AKI have arisen due to the multifaceted origin and complexity of the clinical history of people with the disease. This article focuses on kidney injury's epidemiology, risk factors, and pathophysiological processes. Specifically, it focuses on the role of TLRs especially type 4 in disease development.
Collapse
Affiliation(s)
- Meaad A Almazmomi
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Ahmed Esmat
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Anjum Naeem
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
| |
Collapse
|
27
|
Zheng W, Lv X, Tao Y, Cui Y, Zhu X, Zhu T, Xu T. A circRNA therapy based on Rnf103 to inhibit Vibrio anguillarum infection. Cell Rep 2023; 42:113314. [PMID: 37874674 DOI: 10.1016/j.celrep.2023.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
The losses caused by Vibrio infections in the aquaculture industry are challenging to quantify. In the face of antibiotic resistance, a natural and environmentally friendly alternative is urgently needed. In this study, we identify E3 ubiquitin-protein ligase RNF103 (rnf103) as a crucial target involved in immune evasion by Vibrio anguillarum. Our research demonstrates that Rnf103 promotes immune escape by inhibiting Traf6. Interestingly, we discover a circular RNA (circRNA), circRnf103, formed by reverse splicing of the Rnf103 gene. Predictive analysis and experimentation reveal that circRnf103 encodes Rnf103-177aa, a protein that competes with Rnf103 and binds to Traf6, preventing its degradation. Notably, circRnf103 therapy induces Rnf103-177aa protein production in zebrafish. In zebrafish models, circRnf103 exhibits significant effectiveness in treating V. anguillarum infections, reducing organ burden. These findings highlight the potential of circRNA therapy as a natural and innovative approach to combat infectious diseases sustainably, particularly in aquaculture and environmental management.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yaqi Tao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanqiu Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiangxiang Zhu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tongtong Zhu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
28
|
Carlson KB, Nguyen C, Wcisel DJ, Yoder JA, Dornburg A. Ancient fish lineages illuminate toll-like receptor diversification in early vertebrate evolution. Immunogenetics 2023; 75:465-478. [PMID: 37555888 DOI: 10.1007/s00251-023-01315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023]
Abstract
Since its initial discovery over 50 years ago, understanding the evolution of the vertebrate RAG- mediated adaptive immune response has been a major area of research focus for comparative geneticists. However, how the evolutionary novelty of an adaptive immune response impacted the diversity of receptors associated with the innate immune response has received considerably less attention until recently. Here, we investigate the diversification of vertebrate toll-like receptors (TLRs), one of the most ancient and well conserved innate immune receptor families found across the Tree of Life, integrating genomic data that represent all major vertebrate lineages with new transcriptomic data from Polypteriformes, the earliest diverging ray-finned fish lineage. Our analyses reveal TLR sequences that reflect the 6 major TLR subfamilies, TLR1, TLR3, TLR4, TLR5, TLR7, and TLR11, and also currently unnamed, yet phylogenetically distinct TLR clades. We additionally recover evidence for a pulse of gene gain coincident with the rise of the RAG-mediated adaptive immune response in jawed vertebrates, followed by a period of rapid gene loss during the Cretaceous. These gene losses are primarily concentrated in marine teleost fish and synchronous with the mid Cretaceous anoxic event, a period of rapid extinction for marine species. Finally, we reveal a mismatch between phylogenetic placement and gene nomenclature for up to 50% of TLRs found in clades such as ray-finned fishes, cyclostomes, amphibians, and elasmobranchs. Collectively, these results provide an unparalleled perspective of TLR diversity and offer a ready framework for testing gene annotations in non-model species.
Collapse
Affiliation(s)
- Kara B Carlson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA
| | - Cameron Nguyen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
29
|
Li Y, Hu J, Zhang Y, Yan K, Zhang M, Li Y, Huang X, Tang J, Yao T, Wang D, Xu S, Wang X, Zhou S, Yan X, Wang Y. Identification and characterization of toll-like receptor genes in silver pomfret (Pampus argenteus) and their involvement in the host immune response to Photobacterium damselae subsp. Damselae and Nocardia seriolae infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109071. [PMID: 37703936 DOI: 10.1016/j.fsi.2023.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Toll-like receptors (TLRs) are vital pattern recognition receptors that play a critical role in the innate immune response against pathogenic attack. Among the bacteria commonly found in the culture process of silver pomfret, Photobacterium damselae subsp. Damselae (PDD, gram-negative) and Nocardia seriolae (NS, gram-positive), can cause large-scale mortality in this fish species. However, there is currently no research on the role of TLRs in mediating the immune response of silver pomfret to these two bacterial infections. Therefore, in this study, we identified nine PaTLRs family members, including several fish-specific TLRs (TLR14 and TLR21). Phylogenetic analysis revealed that these PaTLRs genes could be classified into five subfamilies, namely TLR1, TLR3, TLR5, TLR7, and TLR11, indicating their evolutionary conservation. To further explore the interactions of TLR genes with immune-related mediators, protein and protein interaction network (PPI) results were generated to explain the association of TLR genes with TNF receptor-associated factor 6 (TRAF6) and other relevant genes in the MyD88-dependent pathway and NF-κb signaling pathway. Subsequently, RT-qPCR was conducted to verify the expression patterns of the nine TLR genes in the gills, skin, kidney, liver, and spleen of healthy fish, with most of the TLRs showing high expression levels in the spleen. Following infection with PDD and NS, these PaTLRs exhibited different expression patterns in the spleen, with PaTLR2, PaTLR3, PaTLR5, PaTLR7, PaTLR9, and PaTLR14 being significantly up-regulated. Furthermore, when spleen cells were treated with bacterial compositions, the majority of PaTLRs expression was up-regulated in response to Lipopolysaccharide (LPS) and lipophosphorylcholic acid (LTA) treatment, except for PaTLR21. Finally, changes in the expression levels of TLR-interacting genes were also observed under the stimulation of bacteria and bacterial compositions. The results of this study provide a preliminary reference for further understanding the mechanism of the innate immune response of the TLR gene family in silver pomfret and offer theoretical support for addressing the disease problems encountered during large-scale fish breeding.
Collapse
Affiliation(s)
- Yuanbo Li
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiabao Hu
- College of Marine Sciences, Ningbo University, Ningbo, China; School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Youyi Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Kaiheng Yan
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Man Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yaya Li
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xiang Huang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jie Tang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Tingyan Yao
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Danli Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Shanliang Xu
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xubo Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Suming Zhou
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Xiaojun Yan
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yajun Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
30
|
Dimitrakopoulou D, Khwatenge CN, James-Zorn C, Paiola M, Bellin EW, Tian Y, Sundararaj N, Polak EJ, Grayfer L, Barnard D, Ohta Y, Horb M, Sang Y, Robert J. Advances in the Xenopus immunome: Diversification, expansion, and contraction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104734. [PMID: 37172665 PMCID: PMC10230362 DOI: 10.1016/j.dci.2023.104734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Xenopus is a genus of African clawed frogs including two species, X. tropicalis and X. laevis that are extensively used in experimental biology, immunology, and biomedical studies. The availability of fully sequenced and annotated Xenopus genomes is strengthening genome-wide analyses of gene families and transgenesis to model human diseases. However, inaccuracies in genome annotation for genes involved in the immune system (i.e., immunome) hamper immunogenetic studies. Furthermore, advanced genome technologies (e.g., single-cell and RNA-Seq) rely on well-annotated genomes. The annotation problems of Xenopus immunome include a lack of established orthology across taxa, merged gene models, poor representation in gene pages on Xenbase, misannotated genes and missing gene IDs. The Xenopus Research Resource for Immunobiology in collaboration with Xenbase and a group of investigators are working to resolve these issues in the latest versions of genome browsers. In this review, we summarize the current problems of previously misannotated gene families that we have recently resolved. We also highlight the expansion, contraction, and diversification of previously misannotated gene families.
Collapse
Affiliation(s)
- Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Collins N Khwatenge
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eleanor Wise Bellin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yun Tian
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Nivitha Sundararaj
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emma J Polak
- Biology Department, Worcester State University, MA, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daron Barnard
- Biology Department, Worcester State University, MA, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marko Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yongming Sang
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA.
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
31
|
Zhang B, Xiao W, Qin G, Chen Z, Qiu L, Wang X, Lin Q. Gene loss and co-option of toll-like receptors facilitate paternal immunological adaptation in the brood pouch of pregnant male seahorses. Front Immunol 2023; 14:1224698. [PMID: 37588592 PMCID: PMC10426278 DOI: 10.3389/fimmu.2023.1224698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023] Open
Abstract
Male pregnancy in syngnathids (seahorses, pipefishes, and sea dragons) is an evolutionary innovation in the animal kingdom. Paternal immune resistance to the fetus is a critical challenge, particularly in seahorses with fully enclosed brood pouches and sophisticated placentas. In this study, comparative genomic analysis revealed that all syngnathid species lost three vertebrate-conserved Toll-like receptors (TLR1, TLR2, and TLR9), of which all play essential roles in immune protection and immune tolerance in the uterus and placenta. Quantitative real-time PCR (qRT-PCR) analysis showed that the TLR paralog genes including TLR18, TLR25, and TLR21 were highly expressed in the placenta inside the seahorse brood pouch and changed dynamically during the breeding cycle, suggesting the potentially important role of the TLRs during male pregnancy. Furthermore, the immune challenge test in vitro showed a remarkable expression response from all three TLR genes to specific pathogenic antigens, confirming their immune function in seahorse brood pouches. Notably, the altered antigen recognition spectrum of these genes appeared to functionally compensate in part for the lost TLRs, in contrast to that observed in other species. Therefore, we suggest that gene loss and co-option of TLRs may be a typical evolutionary strategy for facilitating paternal immunological adaptation during male pregnancy.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wanghong Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
32
|
Ruiz VL, Robert J. The amphibian immune system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220123. [PMID: 37305914 PMCID: PMC10258673 DOI: 10.1098/rstb.2022.0123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/16/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibians are at the forefront of bridging the evolutionary gap between mammals and more ancient, jawed vertebrates. Currently, several diseases have targeted amphibians and understanding their immune system has importance beyond their use as a research model. The immune system of the African clawed frog, Xenopus laevis, and that of mammals is well conserved. We know that several features of the adaptive and innate immune system are very similar for both, including the existence of B cells, T cells and innate-like T cells. In particular, the study of the immune system at early stages of development is benefitted by studying X. laevis tadpoles. The tadpoles mainly rely on innate immune mechanisms including pre-set or innate-like T cells until after metamorphosis. In this review we lay out what is known about the innate and adaptive immune system of X. laevis including the lymphoid organs as well as how other amphibian immune systems are similar or different. Furthermore, we will describe how the amphibian immune system responds to some viral, bacterial and fungal insults. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Lopez Ruiz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
33
|
Włodarczyk R, Těšický M, Vinkler M, Novotný M, Remisiewicz M, Janiszewski T, Minias P. Divergent evolution drives high diversity of toll-like receptors (TLRs) in passerine birds: Buntings and finches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104704. [PMID: 37019350 DOI: 10.1016/j.dci.2023.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Toll-like receptors (TLRs) form a key component of animal innate immunity, being responsible for recognition of conserved microbial structures. As such, TLRs may be subject to diversifying and balancing selection, which maintains allelic variation both within and between populations. However, most research on TLRs in non-model avian species is focused on bottlenecked populations with depleted genetic variation. Here, we assessed variation at the extracellular domains of three TLR genes (TLR1LA, TLR3, TLR4) across eleven species from two passerine families of buntings (Emberizidae) and finches (Fringillidae), all having large breeding population sizes (millions of individuals). We found extraordinary TLR polymorphism in our study taxa, with >100 alleles detected at TLR1LA and TLR4 across species and high haplotype diversity (>0.75) in several species. Despite recent species divergence, no nucleotide allelic variants were shared between species, suggesting rapid TLR evolution. Higher variation at TLR1LA and TLR4 than TLR3 was associated with a stronger signal of diversifying selection, as measured with nucleotide substitutions rates and the number of positively selected sites (PSS). Structural protein modelling of TLRs showed that some PSS detected within TLR1LA and TLR4 were previously recognized as functionally important sites or were located in their proximity, possibly affecting ligand recognition. Furthermore, we identified PSS responsible for major surface electrostatic charge clustering, which may indicate their adaptive importance. Our study provides compelling evidence for the divergent evolution of TLR genes in buntings and finches and indicates that high TLR variation may be adaptively maintained via diversifying selection acting on functional ligand binding sites.
Collapse
Affiliation(s)
- Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Martin Těšický
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Marian Novotný
- Charles University, Faculty of Science, Department of Cell Biology, Viničná 7, 128 43, Prague, Czech Republic
| | - Magdalena Remisiewicz
- Bird Migration Research Station, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Tomasz Janiszewski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| |
Collapse
|
34
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
35
|
Wang Y, Liu D, Wei M, Chen J, Li Y, Zhao F, Zhang Z, Ma Y. Genome-wide identification and expression analyses of Toll-like receptors provide new insights on adaptation to intertidal benthic environments in Urechis unicinctus (Annelida, Echiura). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106594. [PMID: 37263159 DOI: 10.1016/j.aquatox.2023.106594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
Toll-like receptors (TLR) are an important class of pattern recognition receptors involved in innate immunity that recognize pathogen-associated and damage-associated molecular patterns. Although the role of TLRs in immunity has been extensively studied, a systematic investigation of their function in environmental adaptation is still in its infancy. In this study, a genome-wide search was conducted to systematically investigate TLR family members of Urechis unicinctus, a typical benthic organism in intertidal mudflats. A total of 28 TLR genes were identified in the U. unicinctus genome, and their fundamental physiological and biochemical properties were characterized. Gene copy number analysis among species in different habitats indicated that TLR family gene expansion may be probably related with benthic environmental adaptation. To further investigate the expression patterns of TLR members under environmental stress, transcriptome data was analyzed from different developmental stages and the hindgut under sulfide stress. Transcriptome analysis of different developmental stages showed that most TLR genes were highly expressed during a key period of benthic environment adaptation (worm-shaped larva). Transcriptome analysis of the hindgut under sulfide stress showed that the expression of 12 TLR members was significantly induced under sulfide stress. These results indicate that the regulation of TLR gene expression may be probably involved in the adaptation of U. unicinctus to the benthic intertidal zone environment. Taken together, this study may lay the foundation for future functional analysis of the specific role of TLRs in host immune responses against sulfide exposure and benthic environmental stress in annelid.
Collapse
Affiliation(s)
- Yunjian Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiao Chen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunpeng Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Feng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
36
|
Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L. Amphibian myelopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104701. [PMID: 37196852 DOI: 10.1016/j.dci.2023.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Macrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians. Accordingly, in this review we coalesce what has been established to date about amphibian blood cell development (hematopoiesis), the development of key amphibian innate immune cells (myelopoiesis) and the differentiation of amphibian macrophage subsets (monopoiesis). We explore the current understanding of designated sites of larval and adult hematopoiesis across distinct amphibian species and consider what mechanisms may lend to these species-specific adaptations. We discern the identified molecular mechanisms governing the functional differentiation of disparate amphibian (chiefly Xenopus laevis) macrophage subsets and describe what is known about the roles of these subsets during amphibian infections with intracellular pathogens. Macrophage lineage cells are at the heart of so many vertebrate physiological processes. Thus, garnering greater understanding of the mechanisms responsible for the ontogeny and functionality of these cells in amphibians will lend to a more comprehensive view of vertebrate evolution.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - David B Stern
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | | | - Keith A Crandall
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
37
|
Astuti PK, Gavojdian D, Ilie DE, Wanjala G, Monori I, Bagi Z, Kusza S. Genetic polymorphism in European and African sheep breeds reared in Hungary based on 48 SNPs associated with resistance to gastrointestinal parasite infection using KASP-PCR technique. Trop Anim Health Prod 2023; 55:197. [PMID: 37160635 PMCID: PMC10169887 DOI: 10.1007/s11250-023-03609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
This pilot study used an alternative and economically efficient technique, the Kompetitive Allele-Specific Polymerase Chain Reaction (KASP-PCR) to examine 48 SNPs from 11 parasite-resistance genes found on 8 chromosomes in 110 animals from five sheep breeds reared in Hungary; Hungarian Tsigai, White Dorper, Dorper, Ile de France, and Hungarian Merino. Allele and genotype frequencies, fixation index, observed heterozygosity, expected heterozygosity, F statistic, and their relationship with the Hardy-Weinberg equilibrium (WHE) and the polymorphic information content (PIC) were determined, followed by principal component analysis (PCA). As much as 32 SNPs out of the 48 initially studied were successfully genotyped. A total of 9 SNPs, 4 SNPs in TLR5, 1 SNP in TLR8, and 4 SNPs in TLR2 genes, were polymorphic. The variable genotype and allele frequency of the TLRs gene indicated genetic variability among the studied sheep breeds, with the Hungarian Merino exhibiting the most polymorphisms, while Dorper was the population with the most SNPs departing from the HWE. According to the PIC value, the rs430457884-TLR2, rs55631273-TLR2, and rs416833129-TLR5 were found to be informative in detecting polymorphisms among individuals within the populations, whereas the rs429546187-TLR5 and rs424975389-TLR5 were found to have a significant influence in clustering the population studied. This study reported a moderate level of genetic variability and that a low to moderate within-breed diversity was maintained in the studied populations.
Collapse
Affiliation(s)
- Putri Kusuma Astuti
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
- Department of Animal Breeding and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Dinu Gavojdian
- Research and Development Institute for Bovine Balotesti, 77015, Balotesti, Ilfov, Romania
| | | | - George Wanjala
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
| | | | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
38
|
Zhan F, Li Y, Shi F, Lu Z, Yang M, Li Q, Lin L, Qin Z. Characterization analysis of TLR5a and TLR5b immune response after different bacterial infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108716. [PMID: 37001745 DOI: 10.1016/j.fsi.2023.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Toll-like receptor (TLR) is an important pattern recognition receptor, which specifically recognizes microbial components, and TLR5 recognizes bacterial flagellin in vertebrates and invertebrates. In this study, two forms of TLR5 (TLR5a and TLR5b) were identified in grass carp (Ctenopharyngodon idella). Aeromonas hydrophila and Staphylococcus aureus were used to investigate the role of grass carp TLR5a and TLR5b against bacteria (flagellate and non-flagellate) in innate immunity, and the expression of TLR5a and TLR5b genes and proteins were detected in immune-related tissues. Quantitative real-time polymerase chain reaction results showed that TLR5a and TLR5b genes of grass carp were highly expressed in the liver, spleen, and head kidney, and their expression patterns were similar in tissues. Meanwhile, the TLR5b gene expression was higher than TLR5a in most tissues. Following exposure to A. hydrophila and S. aureus, the expression levels of TLR5a and TLR5b genes in the liver, spleen, and head kidney were up-regulated significantly. Moreover, the downstream gene, NF-κB, was up-regulated significantly. After A. hydrophila infection, the expression of TLR5a gene was up-regulated in the liver and spleen at 24 h, while TLR5b was up-regulated at 6 h. In the head kidney, TLR5a was up-regulated at 6 h, while TLR5b was up-regulated at 6 h and 12 h. After S. aureus infection, TLR5a and TLR5b were up-regulated at 6 h in the liver and 12 h in the spleen. However, in the head kidney, TLR5a was down-regulated, while TLR5b was up-regulated. Compared with TLR5a, TLR5b had a higher expression level and stronger response to pathogen stimulation. The immunofluorescence results showed that TLR5a and TLR5b proteins in the liver of grass carp infected with A. hydrophila and S. aureus were similar but different in the spleen and head kidney. The results indicated that TLR5a and TLR5b play a critical role in resisting bacterial infection, and TLR5a and TLR5b had obvious tissue and pathogen specificity. TLR5b may play a major role in immune tissues, while TLR5a may play an auxiliary regulatory role in early infection. In addition, TLR5a and TLR5b have an irreplaceable regulatory role in response to flagellate and non-flagellate bacteria. This lays a foundation to explore further the role of TLR5 in resisting flagellate and non-flagellate infections in fish and provides a reference for the innate immunity research of grass carp.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
39
|
Wojtkowiak-Giera A, Derda M, Łanocha-Arendarczyk N, Kolasa A, Kot K, Walczykiewicz J, Solarczyk P, Kosik-Bogacka D. The Immunological Changes in the Skin of BALC/c Mice with Disseminated Acanthamoebiasis. Pathogens 2023; 12:pathogens12050631. [PMID: 37242301 DOI: 10.3390/pathogens12050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Toll-like receptors (TLR) are involved in the recognition of numerous pathogens, including Acanthamoeba spp. Thanks to this, it is possible for immune cells to recognize microorganisms and trigger the body's innate immune response. The stimulation of TLRs also leads to the activation of specific immunity. The aim of the study was to determine the TLR2 and TLR4 gene expression in the skin of BALC/c mice infected with Acanthamoeba with AM22 strain isolated from a patient. Receptor expression was assessed by real-time polymerase chain reaction (qPCR) in the amoeba-infected host with normal (A) and reduced immunity (AS) as well as in the control host with normal immunity (C) and reduced immunity (CS). Statistical analysis of TLR2 gene expression in A and AS groups compared to C and CS groups, respectively, were statistically insignificant. In the A group, we found statistical upregulation of TLR4 gene expression at 8 dpi compared to the C group. While in AS group, TLR4 gene expression was at a similar level, such as in the CS group. Taking into account the host's immune status, the TLR4 gene expression was statistically higher in the skin of host from A group than in host from AS group at the beginning of the infection. Increased TLR4 gene expression in hosts with normal immunity infected with Acanthamoeba suggests the involvement of the studied receptor in the course of acanthamoebiasis. The above research results provide new data on the involvement of the studied receptor in the skin in the host's immune defense triggered during the Acanthamoeba infection.
Collapse
Affiliation(s)
- Agnieszka Wojtkowiak-Giera
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Monika Derda
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Joanna Walczykiewicz
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Piotr Solarczyk
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Danuta Kosik-Bogacka
- Independent of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
40
|
Pazoki H, Mirjalali H, Niyyati M, Seyed Tabaei SJ, Mosafa N, Shahrokh S, Aghdaei HA, Kupz A, Zali MR. Toxoplasma gondii profilin induces NLRP3 activation and IL-1β production/secretion in THP-1 cells. Microb Pathog 2023; 180:106120. [PMID: 37080500 DOI: 10.1016/j.micpath.2023.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Toxoplasma gondii is a highly prevalent protozoan that infects a broad spectrum of warm-blooded animals. Profilin is a critical protein that plays a role in the movement and invasion of T. gondii. In the current study, we assessed how profilin stimulates inflammasomes and how it induces transcription and secretion of IL-1β. For this purpose, we assessed the level of TLR 2, 4, 5, and 9 expressions in a THP-1 cell line treated with profilin from T. gondii (TgP). In addition, we analyzed the expression levels of various inflammasomes, as well as IL-1β, and IL-18 in THP-1 cells treated with the NLRP3 inhibitor MCC950. TgP significantly increased the expression of TLR5 but the expression of TLR2, 4, and 9 was not significantly increased. In addition, TgP did not significantly increase the level of inflammasomes after 5 h. Treatment with MCC950 significantly reduced NLRP3 and IL-1β on both transcription and protein levels. Although the transcription level of NLRP3 was reduced 5 h after treatment with TgP, western blot analysis showed an increase in NLRP3. The western blot and ELISA analysis also showed that TgP increased both pro- and mature IL-1β. In summary, our study showed that NLRP3 most probably plays a pivotal role in the expression and production levels of IL-1β during the interaction between TgP and macrophages.
Collapse
Affiliation(s)
- Hossein Pazoki
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Parasitology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Javad Seyed Tabaei
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosafa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, 4878, Queensland, Australia
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Wang S, Li H, Li Q, Yin B, Li S, He J, Li C. Signaling events induced by lipopolysaccharide-activated Toll in response to bacterial infection in shrimp. Front Immunol 2023; 14:1119879. [PMID: 36817428 PMCID: PMC9936618 DOI: 10.3389/fimmu.2023.1119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Toll-like receptors (TLR) play a crucial role in the detection of microbial infections in vertebrates and invertebrates. Mammalian TLRs directly recognize a variety of structurally conserved microbial components. However, invertebrates such as Drosophila indirectly recognize microbial products by binding to the cytokine-like ligand Spätzle, which activates signaling cascades that are not completely understood. In this study, we investigated the signaling events triggered by Toll in response to lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria, and Vibrio parahaemolyticus infection in the arthropod shrimp Litopenaeus vannamei. We found that five of the nine Tolls from L. vannamei bound to LPS and the RNAi of LvToll1, LvToll2, LvToll3, LvToll5, and LvToll9 weakened LvDorsal-L phosphorylation induced by V. parahaemolyticus. All nine Tolls combined with MyD88 via the TIR domain, thereby conferring signals to the tumor necrosis factor receptor-associated factor 6 (TRAF6)-transforming growth factor-β activated kinase 1 binding protein 2 (TAB2)-transforming growth factor-β activated kinase 1 (TAK1) complex. Further examination revealed that the LvTRAF6-LvTAB2-LvTAK1 complex contributes to Dorsal-L phosphorylation and nuclear translocation during V. parahaemolyticus infection. Overall, shrimp Toll1/2/3/5/9-TRAF6/TAB2/TAK1-Dorsal cascades protect the host from V. parahaemolyticus infection, which provides a better understanding of how the innate immune system recognizes and responds to bacterial infections in invertebrates.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Haoyang Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Qinyao Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
| | - Bin Yin
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
| | - Sedong Li
- Guangdong Evergreen Feed Industry Co., Ltd, Zhanjiang, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
42
|
Liu Y, Yang M, Tang X, Xu D, Chi C, Lv Z, Liu H. Characterization of a novel Toll-like receptor 13 homologue from a marine fish Nibea albiflora, revealing its immunologic function as PRRs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104563. [PMID: 36209842 DOI: 10.1016/j.dci.2022.104563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Congenital immunity mediated by Toll-like receptor (TLR) family is the first line of defense for disease-resistant immunity of fish and plays a vital role as a bridge between innate immunity and acquired immunity. As a less known member of the TLR family TLR13 can participate in the immune and inflammatory reactions of the body for recognizing the conserved sequence of 23S rRNA in bacteria and induce immune response. In this study, the full-length cDNA of TLR13 from Nibea albiflora (named as NaTLR13) was cloned and was functionally characterized. It was 4210bp (GenBank accession no. MT701899) including an open reading frame (ORF) of 2886bp to encode 962 amino acids with molecular weight of 110.37 kDa and the theoretical isoelectric point of 9.08. There were several conservative structures in NaTLR13 such as 15 leucine-rich repeat sequences (LRRs), a Toll-IL-1 receptor domain (TIR), an LRR-CT terminal domain, two LRR-TYP structures and two transmembrane domains. The multiple sequence alignment and phylogenetic analysis manifested that NaTLR13 had high similarity with Larimichthys crocea and Collichthys lucidus (88.79% and 87.02%, respectively) and they fell into the same branch. The Real-time PCR showed that NaTLR13 was expressed in all selected tissues, with the highest in the spleen, followed by the liver, kidney, gill, heart and muscle. After being challenged by Vibrio alginolyticus, Vibrio parahaemolyticus or Poly (I:C), the expression of NaTLR13 increased firstly, then decreased and finally stabilized with time for its immune defense function. Subcellular localization analysis revealed that NaTLR13 was unevenly distributed in the cytoplasm with green fluorescence and MyD88 was evenly spread in the cytoplasm with red signals. When NaTLR13 and MyD88 were co-transfected, they obviously overlapped and displayed orange-yellow color, which showed that the homologous TLR13 might interact with MyD88 for NFκB signaling pathway transmission. The functional domains of NaTLR13 (named NaTLR13-TIR and NaTLR13-LRR) were expressed in E.coli BL21 (DE3) and purified by Ni-NAT Superflow Resin conforming to the expected molecular weights, and the recombinant proteins could bind to three Vibrios (V.alginolyticus, V.parahaemolyticus and Vibrio harveyi), indicating that NaTLR13 could be bounden to bacteria through its functional domain. These results suggested that NaTLR13 might play an important role in the defense of N.albiflora against bacteria or viral infection and the data would provide some information for further understanding the regulatory mechanism of the innate immune system in fish.
Collapse
Affiliation(s)
- Yue Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Meijun Yang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xiuqin Tang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316100, China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhenming Lv
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
43
|
Li S, Li C, Chen L, Yang H, Ren X, Xu C, Wu B, Wang C, Ling Y, Shen Y, Lu H, Liu W, Zhou X. Comparative transcriptome analyses of immune responses to LPS in peripheral blood mononuclear cells from the giant panda, human, mouse, and monkey. Front Genet 2023; 13:1053655. [PMID: 36685921 PMCID: PMC9852843 DOI: 10.3389/fgene.2022.1053655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/05/2022] [Indexed: 01/08/2023] Open
Abstract
Gram-negative bacteria are major pathogens that can cause illnesses in giant pandas. Lipopolysaccharides (LPS), components of Gram-negative bacteria, can activate immune responses in mammals (i.e., humans and mice) through recognition by toll-like receptors (TLRs). However, the giant pandas' immune response to LPS stimulation and the differences between the giant panda and other mammals are not fully known. In this study, we administrated peripheral blood mononuclear cells (PBMCs) from giant pandas, humans, C57BL/6 mice, and rhesus monkeys by LPS treatment at 6 h followed by RNA sequencing (RNA-seq), respectively, with control of non-stimulation. KEGG analyses of differentially expressed genes (DEGs) pathways indicated that LPS could activate the classic signaling pathway of NF-κB in PBMCs from those four tested species. Thus, similar to the other three species, NF-κB is an LPS-responsive regulator of innate immune responses in giant pandas. Furthermore, the expression patterns of adapter genes, inflammatory cytokine genes, chemokines, interferon genes, cytokine genes related to cell growth and development, costimulatory molecules, Th1/Th2 cytokine genes, Th17 cytokine genes, Th9, and Th22 cytokine genes were compared among giant pandas and three other species. Our data indicated that in addition to the similar expression patterns of certain genes among giant pandas and other species, the unique expression pattern response to LPS in giant pandas was also discovered. Furthermore, Th9, Th17, and Th22 cells might be involved in the response to LPS in giant pandas at this tested time point. This study reveals that LPS-induced immune responses have different sensitivities and response timelines in giant pandas compared with other mammals. This study facilitates further understanding of the role of the TLR signaling pathway and the immune system in giant pandas, which might be helpful for disease prevention and protection.
Collapse
Affiliation(s)
- Shun Li
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| | - Lixiang Chen
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hua Yang
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaonan Ren
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chunhua Xu
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bin Wu
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chao Wang
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weiping Liu
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| | - Xiaohui Zhou
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Li Y, Xue Y, Peng Z, Zhang L. Immune diversity in lophotrochozoans, with a focus on recognition and effector systems. Comput Struct Biotechnol J 2023; 21:2262-2275. [PMID: 37035545 PMCID: PMC10073891 DOI: 10.1016/j.csbj.2023.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Lophotrochozoa is one of the most species-rich but immunologically poorly explored phyla. Although lack of acquired response in a narrow sense, lophotrochozoans possess various genetic mechanisms that enhance the diversity and specificity of innate immune system. Here, we review the recent advances of comparative immunology studies in lophotrochozoans with focus on immune recognition and effector systems. Haemocytes and coelomocytes are general important yet understudied player. Comparative genomics studies suggest expansion and functional divergence of lophotrochozoan immune reorganization systems is not as "homogeneous and simple" as we thought including the large-scale expansion and molecular divergence of pattern recognition receptors (PRRs) (TLRs, RLRs, lectins, etc.) and signaling adapters (MyD88s etc.), significant domain recombination of immune receptors (RLR, NLRs, lectins, etc.), extensive somatic recombination of fibrinogenrelated proteins (FREPs) in snails. Furthermore, there are repeatedly identified molecular mechanisms that generate immune effector diversity, including high polymorphism of antimicrobial peptides and proteins (AMPs), reactive oxygen and nitrogen species (RONS) and cytokines. Finally, we argue that the next generation omics tools and the recently emerged genome editing technicism will revolutionize our understanding of innate immune system in a comparative immunology perspective.
Collapse
Affiliation(s)
- Yongnan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Zhangjie Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author at: CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
45
|
Tiwari V, Sowdhamini R. Structural modelling and dynamics of full-length of TLR10 sheds light on possible modes of dimerization, ligand binding and mechanism of action. Curr Res Struct Biol 2023; 5:100097. [PMID: 36911652 PMCID: PMC9996232 DOI: 10.1016/j.crstbi.2023.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023] Open
Abstract
Toll like receptors (TLRs) play a pivotal role in innate and adaptive immunity. There are 10 TLRs in the human genome, of which TLR10 is the least characterized. Genetic polymorphism of TLR10 has been shown to be associated with multiple diseases including tuberculosis and rheumatoid arthritis. TLR10 consists of an extracellular domain (ECD), a single-pass transmembrane (TM) helix and intracellular TIR (Toll/Interleukin-1 receptor) domain. ECD is employed for ligand recognition and the intracellular domain interacts with other TIR domain-containing adapter proteins for signal transduction. Experimental structure of ECD or TM domain is not available for TLR10. In this study, we have modelled multiple forms of TLR10-ECD dimers, such as closed and open forms, starting from available structures of homologues. Subsequently, multiple full-length TLR10 homodimer models were generated by utilizing homology modelling and protein-protein docking. The dynamics of these models in membrane-aqueous environment revealed the global motion of ECD and TIR domain towards membrane bilayer. The TIR domain residues exhibited high root mean square fluctuation compared to ECD. The 'closed form' model was observed to be energetically more favorable than 'open form' model. The evaluation of persistent interchain interactions, along with their conservation score, unveiled critical residues for each model. Further, the binding of dsRNA to TLR10 was modelled by defined and blind docking approaches. Differential binding of dsRNA to the protomers of TLR10 was observed upon simulation that could provide clues on ligand disassociation. Dynamic network analysis revealed that the 'open form' model can be the functional form while 'closed form' model can be the apo form of TLR10.
Collapse
Affiliation(s)
- Vikas Tiwari
- National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - R Sowdhamini
- National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| |
Collapse
|
46
|
Abstract
Accumulating evidence indicates that Toll-like receptor (TLR) agonists proficiently (re)instore cancer immunosurveillance as immunological adjuvants. So far, three TLR agonists have been approved by regulatory agencies for use in oncological applications. Additionally, these immunotherapeutics have been extensively investigated over the past few years. Multiple clinical trials are currently evaluating the combination of TLR agonists with chemotherapy, radiotherapy, or different immunotherapies. Moreover, antibodies targeting tumor-enriched surface proteins that have been conjugated to TLR agonists are being developed to stimulate anticancer immune responses specifically within the tumor microenvironment. Solid preclinical and translational results support the favorable immune-activating effects of TLR agonists. Here, we summarize recent preclinical and clinical advances in the development of TLR agonists for anticancer immunotherapy.
Collapse
Affiliation(s)
- Julie Le Naour
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
47
|
Zhou Z, Ding S, Wang Y, Ren J, Zhang X, Li W, Zhang Q. Identification and characterization of Toll-like receptor 14d in Northeast Chinese lamprey ( Lethenteron morii). Front Immunol 2023; 14:1153628. [PMID: 37143659 PMCID: PMC10151648 DOI: 10.3389/fimmu.2023.1153628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/17/2023] [Indexed: 05/06/2023] Open
Abstract
Toll-like receptors (TLRs) play an important role in innate immunity of defense against bacterial or viral pathogens. To study the biological characteristics and functions of the TLR genes, TLR14d was identified from Northeast Chinese lamprey (Lethenteron morii) and named LmTLR14d. LmTLR14d coding sequence (cds) is 3285 bp in length and encodes 1094 amino acids (aa). The results showed that LmTLR14d has the typical structure of TLR molecule, which contains the extracellular domain of leucine-rich repeats (LRR), transmembrane domain, and intracellular domain of Toll/interleukin-1 receptor (TIR). The phylogenetic tree showed that LmTLR14d is a homologous gene of TLR14/18 in bony fish. Quantitative real-time PCR (qPCR) revealed that LmTLR14d was expressed in various healthy tissues, including immune and non-immune tissues. Pseudomonas aeruginosa infection up-regulated LmTLR14d in the supraneural body (SB), gill, and kidney tissues of infected Northeast Chinese lamprey. Immunofluorescence results showed that LmTLR14d was located in the cytoplasm of HEK 293T cells in clusters, and its subcellular localization was determined by the TIR domain. The immunoprecipitation results showed that LmTLR14d could recruit L.morii MyD88 (LmMyD88) but not L.morii TRIF (LmTRIF). Dual luciferase reporter results showed that LmTLR14d significantly enhanced the activity of L.morii NF-κβ (LmNF-κβ) promoter. Furthermore, co-transfection of LmTLR14d with MyD88 significantly enhanced the L.morii NF-κβ (LmNF-κβ) promoter activity. LmTLR14d can induce the expression of inflammatory cytokine genes il-6 and tnf-α downstream of NF-κB signal. This study suggested that LmTLR14d might play an important role in the innate immune signal transduction process of lamprey and revealed the origin and function of teleost-specific TLR14.
Collapse
Affiliation(s)
- Zebin Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shaoqing Ding
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yaqian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Janfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiangyang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- *Correspondence: Qinghua Zhang,
| |
Collapse
|
48
|
Neves F, Muñoz-Mérida A, Machado AM, Almeida T, Gaigher A, Esteves PJ, Castro LFC, Veríssimo A. Uncovering a 500 million year old history and evidence of pseudogenization for TLR15. Front Immunol 2022; 13:1020601. [PMID: 36605191 PMCID: PMC9808068 DOI: 10.3389/fimmu.2022.1020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Toll like receptors (TLRs) are at the front line of pathogen recognition and host immune response. Many TLR genes have been described to date with some being found across metazoans while others are restricted to specific lineages. A cryptic member of the TLR gene family, TLR15, has a unique phylogenetic distribution. Initially described in extant species of birds and reptiles, an ortholog has been reported for cartilaginous fish. Methods Here, we significantly expanded the evolutionary analysis of TLR15 gene evolution, taking advantage of large genomic and transcriptomic resources available from different lineages of vertebrates. Additionally, we objectively search for TLR15 in lobe-finned and ray-finned fish, as well as in cartilaginous fish and jawless vertebrates. Results and discussion We confirm the presence of TLR15 in early branching jawed vertebrates - the cartilaginous fish, as well as in basal Sarcopterygii - in lungfish. However, within cartilaginous fish, the gene is present in Holocephalans (all three families) but not in Elasmobranchs (its sister-lineage). Holocephalans have long TLR15 protein sequences that disrupt the typical TLR structure, and some species display a pseudogene sequence due to the presence of frameshift mutations and early stop codons. Additionally, TLR15 has low expression levels in holocephalans when compared with other TLR genes. In turn, lungfish also have long TLR15 protein sequences but the protein structure is not compromised. Finally, TLR15 presents several sites under negative selection. Overall, these results suggest that TLR15 is an ancient TLR gene and is experiencing ongoing pseudogenization in early-branching vertebrates.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal,*Correspondence: Fabiana Neves,
| | - Antonio Muñoz-Mérida
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - André M. Machado
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Tereza Almeida
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Arnaud Gaigher
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal,Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany,Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Pedro J. Esteves
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal,CITS - Center of Investigation in Health Technologies, CESPU, Gandra, Portugal
| | - L. Filipe C. Castro
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Ana Veríssimo
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
49
|
Ghosh P, Patra P, Mondal N, Chini DS, Patra BC. Multi Epitopic Peptide Based Vaccine Development Targeting Immobilization Antigen of Ichthyophthirius multifiliis: A Computational Approach. Int J Pept Res Ther 2022; 29:11. [PMID: 36532362 PMCID: PMC9734321 DOI: 10.1007/s10989-022-10475-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 12/13/2022]
Abstract
The white spot disease causes significant damage to global aquaculture production. A prominent vaccine, eliciting the immunogenicity of freshwater fishes against Ichthyophthirius multifiliis yet to be developed. Thus, an Immunoinformatic drive was implemented to find out the potential epitopes from the surface immobilization antigens. B-cell derived T-cell epitopes are promiscuous elements for new generation peptide-based vaccine designing. A total of eight common B and T-cell epitopes had filtered out with no overlapping manner. Subsequently, the common epitopes are linked up with EAAAKEAAAKEAAAK linker peptides, we also added L7/L12 ribosomal protein adjuvant at the N- terminal side of peptide sequence for eliciting the immune response in a better way. The secondary and tertiary structural properties of the modeled 3D protein revealed that the protein had all the properties required for a protective immunogen. Afterward, three globally used validation server: PROCKECK, ProSA and ERRAT were used to justify the proper coordinate. NMR, Crystallographic range and error plot calculation for vaccine model also been done respectively. This was followed by molecular docking, MD simulation, NMA analysis, in silico cloning and vaccine dose-based immune response simulation to evaluate the immunogenic potency of the vaccine construct. The in silico immune simulation in response to multi-epitopes show antibody generation and elevated levels of cell-mediated immunity during repeated exposure of the vaccine. The favourable results of the in silico analysis significantly specify that the vaccine construct is really a powerful vaccine candidate and ready to proceed to the next steps of experimental validation and efficacy studies. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10989-022-10475-1.
Collapse
Affiliation(s)
- Pratik Ghosh
- Department of Zoology, Vidyasagar University, Midnapore, 721102 West Bengal India
| | - Prasanta Patra
- Department of Zoology, Vidyasagar University, Midnapore, 721102 West Bengal India
| | - Niladri Mondal
- Department of Zoology, Vidyasagar University, Midnapore, 721102 West Bengal India
- Department of Biology, Indiana State University, Terre Haute, Indiana, 47809 USA
| | - Deep Sankar Chini
- Department of Zoology, Vidyasagar University, Midnapore, 721102 West Bengal India
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore, 721102 West Bengal India
| |
Collapse
|
50
|
Effect of Flagellin Pre-Exposure on the Inflammatory and Antifungal Response of Bronchial Epithelial Cells to Fungal Pathogens. J Fungi (Basel) 2022; 8:jof8121268. [PMID: 36547601 PMCID: PMC9782670 DOI: 10.3390/jof8121268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Bronchial epithelial cells (BEC) play a crucial role in innate immunity against inhaled fungi. Indeed, in response to microorganisms, BEC synthesize proinflammatory cytokines involved in the recruitment of neutrophils. We have recently shown that BEC exert antifungal activity against Aspergillus fumigatus by inhibiting filament growth. In the present study, we first analyzed the inflammatory and antifungal responses of BEC infected by several fungal species such as Aspergillus spp., Scedosporium apiospermum and Candida albicans, which are frequently isolated from the sputum of people with chronic pulmonary diseases. The airways of these patients, such as people with cystic fibrosis (pwCF), are mainly colonized by P. aeruginosa and secondary by fungal pathogens. We have previously demonstrated that BEC are capable of innate immune memory, allowing them to increase their inflammatory response against A. fumigatus following a previous contact with Pseudomonas aeruginosa flagellin. To identify the impact of bacteria exposure on BEC responses to other fungal infections, we extended the analysis of BEC innate immune memory to Aspergillus spp., Scedosporium apiospermum and Candida albicans infection. Our results show that BEC are able to recognize and respond to Aspergillus spp., S. apiospermum and C. albicans infection and that the modulation of BEC responses by pre-exposure to flagellin varies according to the fungal species encountered. Deepening our knowledge of the innate immune memory of BEC should open new therapeutic avenues to modulate the inflammatory response against polymicrobial infections observed in chronic pulmonary diseases such as CF.
Collapse
|